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Abstract

Large language models (LLMs) that have been
trained on multilingual but not parallel text ex-
hibit a remarkable ability to translate between
languages. We probe this ability in an in-
depth study of the pathways language model
(PaLM), which has demonstrated the strongest
machine translation (MT) performance among
similarly-trained LLMs to date. We investi-
gate various strategies for choosing translation
examples for few-shot prompting, concluding
that example quality is the most important fac-
tor. Using optimized prompts, we revisit pre-
vious assessments of PaLM’s MT capabilities
with more recent test sets, modern MT metrics,
and human evaluation, and find that its perfor-
mance, while impressive, still lags that of state-
of-the-art supervised systems. We conclude by
providing an analysis of PaLM’s MT output
which reveals some interesting properties and
prospects for future work.

1 Introduction

Large language models (LLMs) trained to pre-
dict the next token from a lengthy context have
demonstrated impressive machine translation ca-
pabilities, despite being trained on corpora that
are overwhelmingly English, with no intentionally-
included parallel text. In this paper, we carry out
an in-depth investigation into the translation capa-
bilities of LLMs, testing different prompting strate-
gies and carefully assessing the resulting perfor-
mance. We study the recently-introduced PaLM
model (Chowdhery et al., 2022), a 540B-parameter
decoder-only language model trained on a heav-
ily English-centric, multilingual corpus. It has
achieved the strongest MT results among LLMs
trained on non-parallel multilingual corpora.

To ensure a fair assessment of PaLM’s MT ca-
pability, we begin with an exploration of exam-
ple selection methods for use with fixed prompt
templates. We vary both the pool from which ex-
amples are chosen and the method for choosing
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Figure 1: Histogram of the sentence-level BLEURT dif-
ference between two different 5-shot PaLM runs using
the random prompt selection method from the original
paper on a corpus of 1000 sentences. Each bar cor-
responds to a difference range of 1 BLEURT point. A
majority of sentences (516) show a difference of more
than 1 BLEURT point, demonstrating that the choice of
prompt can strongly affect translation quality.

them, comparing standard random selection to k-
nearest-neighbour (kNN) selection that customizes
prompts for specific inputs. Figure 1 highlights the
importance of example selection by showing that
two randomly-selected sets of examples can result
in significantly different distributions of sentence-
level BLEURT scores.

Although Chowdhery et al. (2022) report inter-
esting results on low-resource and non-English lan-
guage pairs, their most striking findings concern
high-resource pairs. Accordingly, we limit our in-
vestigation to French, German, and Chinese trans-
lation to and from English. We evaluate sentence-
level translation quality using recommended prac-
tices for high-quality MT, specifically: (i) we use
recent WMT test sets to guard against train/test
data leakage, and to facilitate comparison with
state-of-the-art (SOTA) MT systems; (ii) we use
a SOTA automatic metric (BLEURT) instead of
BLEU which has been demonstrated to be subop-
timal for high-quality translations (Kocmi et al.,

15406



2021; Freitag et al., 2021b); and (iii) we conduct
an expert-based human evaluation with detailed
categories to characterize the error patterns of the
automatically generated translations.

Our contributions are as follows:

• We carry out the first systematic study of LLM
prompting for MT, exploring both the example
candidate pool and the selection strategy. We
find that the quality of examples matters more
than the domain from which they are drawn or
their lexico-semantic proximity to the current
input.

• We evaluate the translation capability of
LLMs with the procedure currently recom-
mended by the MT community. We find
that, although impressive, the sentence-level
translation capacity of LLMs still lags behind
SOTA MT.

2 Related Work

Inspired by the findings of Radford et al. (2019);
Brown et al. (2020), prompting strategies for LLMs
have become a topic of intense interest, generating
work across a broad spectrum of methods and ap-
plications (Liu et al., 2021). A basic distinction can
be made between hard (explicit text) prompting
such as we use, and soft prompting that seeks to
learn embeddings (Lester et al., 2021), activations
(Li and Liang, 2021; Hambardzumyan et al., 2021),
or attention weights (Liu et al., 2022a) that condi-
tion the model to perform a desired task. The latter
approach is more expressive and more efficient at
inference time, but performance can be sensitive
to initialization (Hou et al., 2022), and some tech-
niques require modifications to the model.

Hard prompts have the advantage of being easy
to interpret and modify. Work in this area in-
cludes tools to facilitate development of hand-
crafted prompts (Strobelt et al., 2022; Bach et al.,
2022); algorithms to find optimal prompts through
gradient-guided search (Shin et al., 2020) or ex-
haustive search through labels (Schick and Schütze,
2021) or both labels and templates (Gao et al.,
2021); as well as studies on the effect of exam-
ple order (Kumar and Talukdar, 2021; Lu et al.,
2022). Hard prompts have also been used to ana-
lyze model capabilities (Garg et al., 2022; Li et al.,
2022a), the role of data (Singh et al., 2022), and the
nature of prompting itself (Min et al., 2022; Wei
et al., 2022).

With few exceptions, e.g. (Li et al., 2022b;
Liu et al., 2022b; Valvoda et al., 2022), early ap-
proaches to hard prompting tended to condition on
the task rather than the specific input. Our kNN
approach for conditioning on the input was pio-
neered by Liu et al. (2022b), who used RoBERTa
embeddings to identify relevant GPT-3 prompts for
sentiment, table-to-text, and QA tasks. They found
that kNN works better than a random-selection
baseline, and that the advantage grows as the size
of the (domain-controlled) example pool increases.

Work on prompting LLMs for MT began with
the GPT-3 and PaLM papers (Brown et al., 2020;
Chowdhery et al., 2022), which adopted simi-
lar approaches, comparing 0, 1, and n-shot1 ran-
dom selection of independent sentence pairs from
WMT training corpora, and testing on older French,
German, and Romanian WMT test sets tradi-
tionally used in ML, augmented in PaLM with
French→German and Kazakh. For both models,
performance increased with number of shots, and
n-shot BLEU scores were found to be competitive
with previous unsupervised SOTA, and in some
settings—particularly into English—supervised
SOTA as well.

In other early MT work, Reynolds and Mc-
Donell (2021) experimented with prompt templates
for GPT-3, and found that 0-shot prompts with
carefully-chosen templates can outperform n-shot
prompts with sub-optimal templates. Garcia and Fi-
rat (2022) explored using prompts with mT5 (Xue
et al., 2021) to control output attributes such as for-
mality, and also examine the effect of using prompt-
like natural-language tags during fine-tuning. Patel
et al. (2022) proposed autoregressive prompting:
concatenating only the first predicted word to a
prompt and output prefix at each step.

Après nous, le déluge

Since our paper appeared on arXiv in November
2022, there has been a flood of work on using
LLMs for MT, which we summarize briefly for
completeness. A number of papers (Agrawal et al.,
2022; Zhang et al., 2023; Jiao et al., 2023; Hendy
et al., 2023) investigate prompt quality and source
proximity using methods similar to ours but with
different LLMs, notably GPT-3.5, GPT-4 and their
instruction-tuned counterparts. Their findings are
in line with ours, with the exception of Agrawal
et al. (2022), who achieve significant gains using

1Where n is 64 for GPT-3 and 5 for PaLM.
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lexical matching augmented with a diversity mech-
anism to select prompts. Apart from differences
in model and setting, a potentially salient discrep-
ancy is their emphasis on BLEU rather than neural
metrics to measure performance. Other interesting
work that conditions prompts on source segments
uses dictionaries to supply translations in low-
resource settings (Ghazvininejad et al., 2023; Lu
et al., 2023), or chain-of-thought inspired prompts
that elicit keywords, topic, and related examples
from the model itself (He et al., 2023).

Further recent work looks at the role of data, at-
tributing LLM MT capabilities to the presence of
incidental bilingual examples (Briakou et al., 2023),
or showing that parallel data (Schioppa et al., 2023),
dictionaries (Jones et al., 2023), or restriction to
bilingual settings (Garcia et al., 2023) can boost
performance in smaller LMs. Another popular line
aims at controlling various properties of transla-
tions such as formality or use of specified terminol-
ogy, either statically (Garcia et al., 2023; Moslem
et al., 2023) or with human interaction (Pilault et al.,
2023). Finally, there is extensive work on analyzing
the translation output of LLMs, generally finding
that it is more fluent than accurate (Hendy et al.,
2023; Anonymous, 2023), good at handling doc-
ument context (Wang et al., 2023; Karpinska and
Iyyer, 2023) but also prone to problems such as
hallucination (Zhang et al., 2023; Guerreiro et al.,
2023), and frequently sub-par in low-resource set-
tings (Zhu et al., 2023; Bawden and Yvon, 2023)

3 Prompting for Machine Translation

For a general task, prompting an LLM to gener-
ate a desired output y from an input x can involve
many steps (Liu et al., 2021), including template
generation, slot filling, answer search, and answer
mapping. In MT, the answer search and mapping
processes are simplified because the answers gener-
ated by the LLM can be used directly; we simplify
further by using a fixed template. What we explore
in depth is the slot filling portion; in particular, we
test a variety of methods to select few-shot exam-
ples for the prompt.

In initial experiments we determined that for
few-shot prompting the exact form of the template
is unimportant, see Appendix A for details. Follow-
ing this observation, we decided to adopt simple
templates where each example if preprended by
the corresponding language name. These results in

prompts of the form (for n-shot prompting):

[source]: [X1]

[target]: [Y1 ]

...

[source]: [Xn]

[target]: [Yn ]

[source]: [X ]

[target]:

where [source] and [target] are instantiated
with the names in English of the source and target
languages, e.g. English and German. Note that this
scheme has been found to be present in the training
data as a marker for multilingual content (Briakou
et al., 2023). Each slot pair (Xi, Yi) is filled with
a translation example for these languages, and the
final slot X is filled with the current source text.
Our algorithm for n-shot translation from a source
text x to a target text y is:

1. Choose translation example pairs (x1, y1) ...
(xn, yn). In general, these can depend on x.

2. Plug the example pairs and x into the template.
Condition PaLM on the resulting string.

3. Perform a greedy search,2 stopping when the
model outputs a newline.

4. Output the predicted suffix verbatim as y.

Example selection operates in two phases: first
choose a pool containing parallel text, then choose
examples from the pool. Choosing the pool lets
us control global attributes of examples such as
domain and average quality. Our baseline method
for choosing examples is to select them randomly
from the pool. We also experiment with selecting
examples that are “closest” to the source text, on
the hypothesis that such examples will help guide
the model to produce similar translations.

To find relevant examples, we use k-nearest
neighbor (kNN) search on the source side of our
parallel pool, inspired by Khandelwal et al. (2021).
We carry out the search itself using the method of
Guo et al. (2020)3, and investigate two possible
representations of the sentences, with associated
distance measures:

2We found that using a sampling temperature other than 0
tended to degrade translation quality.

3Available at https://github.com/google-research/
google-research/tree/master/scann.
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LP Year #sents Ref

en → de 2021 1002 C
de → en 2021 1000 B

en → zh 2021 1002 A
zh → en 2021 1948 A

en → fr 2014 3003 N/A
fr → en 2014 3003 N/A

Table 1: Test set information, including the newstest
dataset year and, when applicable, the reference we use
for scoring.

Bag-of-words (BOW): Each sentence is repre-
sented by a (sparse) vector of counts associated
with words in the vocabulary. As the associated
distance measure we use cosine distance. This
representation focuses on the surface form of the
words, and thus favors lexical similarity between
the examples.

RoBERTa: Sentences are represented as embed-
dings in the space defined by RoBERTa (Liu et al.,
2019), a multilingual transformer-based model,
with Euclidean distance used for retrieval. We ex-
pect these embeddings to reflect the semantics of
the sentence, and thus retrieve prompts that are
relevant to their subject matter.4

4 Data

We experiment with translation into and out of En-
glish for Chinese, French and German. After En-
glish (78.0%), German (3.5%) and French (3.3%)
are the two largest languages in PaLM’s 780B to-
ken training corpus; Chinese (0.4%) is the 15th
largest, and it also represents an inherently more
difficult translation task. To facilitate comparisons
with recent SOTA systems, and to minimize the
chance of overlap with PaLM’s training corpus, we
test on news data from the WMT 2021 evaluation
campaign (Akhbardeh et al., 2021). Since French
was not included in WMT21, we use data from
WMT14; apart from being older, these test sets are
not purely source-original (Freitag et al., 2019) like
the more recent ones. Table 1 shows statistics for
our test data.

4Note that it would be conceivable to use PaLM itself as
embedding model, which would provide a representation (and
associated similarity measure) closer to the application that
we are targeting. However, due to the high computational cost
and large amounts of data (for some experiments we embed
the totality of the WMT training data) we decided to use a
smaller model.

LP Pool
Size

en → X X → en

de ↔ en
WMT-full 96M
WMT-dev 11 732 13 060
high-end 152 para.

zh ↔ en
WMT-full 55M
WMT-dev 7 481 5 916
high-end 170 para.

fr ↔ en
WMT-full 40M
WMT-dev 2 886 2 957
high-end 98 para.

Table 2: Size of the different prompt pools, measured
in sentences for the WMT sets and in paragraphs for
the high-end pool.

For prompt selection, we use three distinct pools:
the full WMT training corpus for each language
pair (WMT-full), the corresponding WMT devel-
opment sets (WMT-dev), and a manually-curated
“high-end” pool. Sizes are shown in Table 2. The
WMT-full pool is largest and offers the highest
probability of close kNN matches, but it is crawled
text drawn from sources of varying quality. The
WMT-dev pool has generally better quality, and is
a closer domain match to our test set; to encourage
PaLM to produce more natural text, we included
only target-original texts.5 For German ↔ English
and Chinese ↔ English we include all the news test
sets from 2010 to 2020. As English ↔ French was
discontinued after 2015, we used sets from 2010 to
2013, augmented with newsdiscussion2015.

The high-end pool comes from websites contain-
ing bilingual articles that we judged to be profes-
sionally edited, with native or near-native quality
in both languages. The articles are drawn from var-
ious domains (biography, business, commentary,
culture, fashion, food, news, and obituary), with
the news domain of the test sets comprising less
than 50% for each language. We treat these articles
as symmetrical, and use them as prompt sources in
both translation directions. Due to the non-literal
nature of the translations, there is frequently no
1-1 correspondence between sentence pairs, so we
extract aligned paragraphs for prompting. More
detailed information about the high-end pool is
provided in Appendix B.

5As identified by SACREBLEU.
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5 Experiments

For compatibility with Chowdhery et al. (2022), we
ran all experiments at the sentence level, translat-
ing each test sentence individually and in isolation
from its context. This deprives PaLM of the abil-
ity to exploit the longer contexts it was exposed to
during training, but it matches the operating mode
of our baselines (including SOTA baselines), and
facilitates evaluation.6 We leave an exploration of
potential gains from conditioning on longer histo-
ries to future work.

In preliminary experiments, we varied the num-
ber of shots from 0 to 10, and found clear perfor-
mance gains as we increased the number of shots,
with diminishing returns after 5 sentence pairs (see
Appendix A). Accordingly we report all results
on the WMT pools in the 5-shot setting, where
each shot is a single sentence pair, matching the
configuration in Chowdhery et al. (2022). For the
high-end pool, lacking 1-1 sentence alignments, we
use 1-shot examples, where each shot is a single
paragraph pair. This provides roughly the same
quantity of text as 5-shot with sentences, although
it creates a stylistic mismatch with our test setup,
as we still translate on a sentence-by-sentene basis,
as in the other conditions.

When randomly selecting examples, we ob-
served that there is little variability in automatic
scores when selecting different samples7 (see Ap-
pendix C). For the results reported in this section,
we let PaLM produce translations with 5 differ-
ent seeds and we selected the run with the median
BLEURT score. Translation time was some orders
of magnitude longer than a dedicated translation
system.

Following recent recommendations (Kocmi
et al., 2021; Freitag et al., 2021a) we favour neural
metrics (BLEURT in our case) over BLEU, although
we also report BLEU scores for completeness. We
use a cased version of BLEURT (Sellam et al., 2020)
that is based on RemBERT (Chung et al., 2020). We
use BLEU as implemented in SACREBLEU8 (Post,
2018), with zh tokenization for English-Chinese,
and 13a tokenization for all other languages.

6Evaluation of document-level translations is complicated
by potentially non 1-1 sentence correspondences, resulting in
long translation units that are truncated by BLEURT and can
be difficult for humans to rate reliably.

7Note that this holds for document level scores. The effect
on single sentences can still be very important, cf. Figure 1.

8SACREBLEU signature: nrefs:1|case:mixed|eff:no|
tok:TOK|smooth:exp|version:2.1.0, where TOK is 13a
or zh.

To perform human evaluation, we hired profes-
sional translators (7 for En→De, 5 for De→En,
4 for Zh→En, and 4 for En→Zh) and measure
translation quality with a document-context ver-
sion of MQM (Lommel et al., 2014) which mimics
the setup proposed in Freitag et al. (2021a). This
includes using the same error categories, severity
levels and error weighting schema. As suggested
in the study, we weight each major error with 5 and
each minor error with 1, except for minor punctu-
ation errors which get a score of 0.1. We depart
from Freitag et al. (2021a) in using only a single
annotator per segment, and in not imposing a limit
of 5 errors per sentence. Additionally, due to tech-
nical restrictions on the length of an evaluation
session, we limited the MQM evaluation to the first
12 segments per document.

5.1 Selection strategies and pools
We warm up by comparing example selection
strategies on the two WMT pools, using automatic
metrics to evaluate quality on English↔German.
Results are shown in Table 3. The main observation
is that the choice of pool is much more important
than the selection method: the results for WMT-dev
are notably higher than those for WMT-full across
all settings. When comparing kNN selection meth-
ods, RoBERTa is more effective than BOW, but it
does not provide a consistent advantage over ran-
dom selection.

We conjecture that the quality of an example
is more important than its proximity to the cur-
rent source sentence. The larger size of the full
WMT pool means that the kNN approaches will
in general be able to find examples that are closer
to each source sentence than those from the dev
pool, but any resulting gain is offset by the greater
risk that an example from the full pool will be a
poor translation (since we match only on the source
side). Interestingly, had we relied only on BLEU,
we would have concluded that the choice of pool
is unimportant, and that random selection consis-
tently outperforms kNN.

5.2 Results on all language pairs
Table 4 contains our main results, for German ↔
English, Chinese ↔ English, and French ↔ En-
glish. For each language pair, we ran PaLM with
random selection on all three pools and with kNN
RoBERTa on the WMT-full pool. We compared
these systems to output from the best performing
system in the 2021 WMT evaluation campaign for

15410



LP Pool Selection BLEURT BLEU
en

→
de full

random 71.8 32.9
kNN BOW 71.7 32.4
kNN RoBERTa 73.0 32.5

dev
random 74.8 32.8
kNN RoBERTa 74.8 32.3

de
→

en full
random 74.8 38.4
kNN BOW 72.7 36.9
kNN RoBERTa 73.8 35.4

dev
random 75.9 38.0
kNN RoBERTa 75.8 37.2

Table 3: Comparison of example selection strategies on
the WMT-full and WMT-dev pools. Values for random
selection are averaged over 5 runs.

German and Chinese, and for off-the-shelf Google
Translate for all six language pairs. We evaluate
with BLEU and BLEURT as in the previous section,
augmented with human MQM assessments for Ger-
man and Chinese. French is a special case, as its
evaluation set is eight years old, and it is difficult
to ensure that any of the MT systems we evaluate
have not been exposed to it during training. We
include it mostly for the purposes of comparison to
Chowdhery et al. (2022), and do not provide SOTA
results or perform human evaluation.

Comparing PaLM results for German and Chi-
nese, the pattern from the previous section holds up:
random selection from the WMT-dev pool outper-
forms selection from the full pool. MQM scores cor-
relate well with BLEURT for these results. Despite
domain and style mismatch, results for the high-
end pool are very similar to those for WMT-dev—
closer than any results on the full pool—adding
support to the hypothesis that example quality is
the main determinant of PaLM’s output quality.

The French results reverse the general pattern.
For this language pair, random selection from the
WMT-full pool does best, although the results for
all methods are fairly similar, with a difference of
approximately 0.5 BLEURT between the best and
worst. One potential explanation is the age and
quality of newstest2014, as WMT test-set creation
has dramatically improved since then.

Turning to a comparison between PaLM and
conventional MT systems, the specialized SOTA
systems have a substantial advantage of between
1 and 3 BLEURT points over the best PaLM re-

sults, a gap that is reflected in their much lower
MQM scores. The difference is narrower for the
general-purpose Google Translate system: less than
1 BLEURT except for Chinese→English (1.8), with
French→English at parity. PaLM’s performance
relative to the best MT system for each language
pair is generally better when translating into En-
glish, where it is lower by 1.0, 2.3, and 0.0 BLEURT

for German, Chinese, and French, compared to
drops of 2.1, 2.5, and 0.6 in the reverse direction.

The MQM results show some interesting char-
acteristics of translations produced by PaLM.
In all language pairs evaluated, fluency MQM

scores for PaLM are generally similar to those for
SOTA systems, while accuracy scores are lower.
The accuracy gap is dominated by Major Accu-
racy/Omission errors, followed by inconsistent pat-
terns of other Accuracy/* errors across language
pairs. In some languages, the best-performing
PaLM systems make fewer Style/Awkward errors
than SOTA. Table 5 shows a selection of MQM er-
ror counts for PaLM WMT-dev random and SOTA
systems; full details are provided in Appendix D.

5.3 Comparison to previous results

Our only results that are directly comparable
to the few-shot results from Chowdhery et al.
(2022) are the WMT-full BLEU scores in ta-
ble 4c (WMT14 French test-set). Our result for
French→English matches theirs exactly, but our
score for English→French is lower by 1.7 (42.3
versus 44.0). We attribute this discrepancy to their
use of the SACREBLEU intl tokenizer; when we
evaluate our output using this version, we obtain
matching scores.

Our general finding that PaLM’s into-English
performance is better than the reverse direction
matches the conclusion from Chowdhery et al.
(2022), while our comparison with recent SOTA
systems on current test sets contrasts with their
results indicating that PaLM can rival supervised
performance in older settings.

6 Analysis

In this section we delve further into various aspects
of PaLM’s MT performance.

6.1 kNN versus random prompts

To understand the performance difference between
kNN RoBERTa and randomly-selected examples,
we performed a qualitative analysis, choosing sen-
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LP System MQM ↓ BLEURT ↑ BLEU ↑

en → de

WMT21 Facebook Submission (Tran et al., 2021) 1.18† 76.9 42.0
Google Trans. 1.59 75.7 39.8

PaLM

WMT-full random 1.90 73.7 32.9
WMT-full kNN 1.93 73.0 32.5
WMT-dev random 1.58 74.8 32.8
high-end random 1.67 74.7 32.9

de → en

WMT21 Facebook Submission (Tran et al., 2021) 1.31† 76.9 41.9
Google Trans. 1.71 76.4 40.9

PaLM

WMT-full random 2.38 74.7 38.3
WMT-full kNN 3.03 73.8 35.4
WMT-dev random 1.92 75.9 38.0
high-end random 1.89 75.8 38.8

(a) German→English (nt2021). All MQM results labelled with † are significantly better than all other systems based on
PERM-BOTH pair-wise significance testing (Koehn, 2004) with p = 0.05.

LP System MQM ↓ BLEURT ↑ BLEU ↑

en → zh

WMT21 WeChat Submission (Zeng et al., 2021) 2.47† 66.6 36.9
Google Trans. 3.23 65.0 36.2

PaLM

WMT-full random 4.35 62.2 28.6
WMT-full kNN 5.06 60.7 28.5
WMT-dev random 3.24 64.1 29.2
high-end random 3.70 63.9 29.6

zh → en

WMT21 Borderline Submission (Wang et al., 2021) 3.11 70.0 33.4
Google Trans. 3.12 69.5 32.2

PaLM

WMT-full random 3.95 67.2 25.8
WMT-full kNN 4.06 65.8 23.8
WMT-dev random 3.60 67.5 25.3
high-end random 3.89 67.7 25.1

(b) Chinese→English (nt2021). All MQM results labelled with † are significantly better than all other systems based on
PERM-BOTH pair-wise significance testing (Koehn, 2004) with p=0.05.

LP System BLEURT ↑ BLEU ↑

en → fr

Google Trans. 76.5 45.7

PaLM

WMT-full random 75.9 42.3
WMT-full kNN 75.3 41.8
WMT-dev random 75.4 41.9
high-end random 75.2 38.6

fr → en

Google Trans. 77.7 43.2

PaLM

WMT-full random 77.7 42.7
WMT-full kNN 77.3 41.2
WMT-dev random 77.2 42.1
high-end random 77.6 40.4

(c) French→English (nt2014).

Table 4: Translation results for all language pairs. Values for random selection are the BLEURT median of 5 runs.
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LP Sev. Category PaLM SOTA

de → en Major Omission 51 19
en → de Major Omission 26 7
zh → en Major Omission 109 42
en → zh Major Omission 80 46
de → en Minor Awkward 73 81
en → de Minor Awkward 166 144
zh → en Minor Awkward 205 284
en → zh Minor Awkward 115 142

Table 5: Selected MQM error count comparisons be-
tween PaLM WMT-dev random and SOTA. Omission
is a subcategory of Accuracy errors, and Awkward is a
subcategory of Style. Full details are provided in Ap-
pendix D.

tences with the largest BLEURT difference between
the two systems. Table 14a in Appendix F shows an
example where the kNN system correctly retrieves
relevant translation examples in the football do-
main, guiding PaLM to produce a better translation
than the random selection system. This contrasts
with the example in Table 14b, where the retrieved
source sentences are also from the relevant domain,
but all have alignment errors, causing PaLM to gen-
erate hallucinated output. In general, random selec-
tion is also prone to landing on alignment errors,
but as each prompt is selected independently, the
odds that all examples will be errors are low. An in-
formal analysis of kNN examples indicates that if
one non-parallel prompt is selected, the others also
tend to be of poor quality, perhaps due to corpus
alignment errors that are concentrated in particular
documents or topics. Since kNN matches only on
the source side, it is not robust to this noise.

6.2 Example Translations

Example translations comparing PaLM and
SOTA systems for German→English and
English→Chinese are given in Appendix 6.2,
in Table 15 and Table 16, respectively. We
compared the translations of both systems and
chose examples that are short, but include the most
frequent patterns that we observed also in longer
translations. In general, PaLM’s translations are
less literal when compared to supervised NMT
systems. Even though this is one of the strengths
of PaLM, it occasionally misses some important
information in the source or hallucinates facts not
present in the source sentence. The supervised
models on the other hand are faithful to the source;

Year LP % Clean

2014
fr → en 69.2
en → fr 93.6

2016
de → en 80.3
en → de 97.3

2021

en → de 99.6
en → zh 99.7
de → en 97.9
zh → en 98.1

Table 6: The size of clean (lacking 15-gram target-side
overlap with PaLM training data) versions of test sets
for various WMT years and language pairs

this reduces the risk of omission and addition
errors, but occasionally leads to translations
that are not natural in the target language (e.g.
translating street names or using the wrong time
format). These findings are in line with the MQM

results presented in section 5.2.

6.3 Overlap of test and training data

One major change with respect to Chowdhery et al.
(2022) is our use of more recent WMT test sets,
which are unlikely to overlap with PaLM’s training
data.9 We test this hypothesis using the technique
from Chowdhery et al. (2022), which involves mea-
suring high-order n-gram matches; specifically,
we measure 15-gram overlap as tokenized by the
mBERT tokenizer (Devlin et al., 2019).10 For
test sequences with fewer than 15 tokens, we con-
sider them overlapping if the complete sequence
is found as a subsequence of a training example.
We report the degree of overlap by showing the
percentage of original test examples that survive
in the clean test set after removing overlap in Ta-
ble 6. This confirms that the older French→English
and German→English sets have substantial over-
lap with PaLM’s training data, while the newer test
sets, whether into or out of English, have much
smaller overlapping portions.

Chowdhery et al. (2022) also measure the effect
of test-set overlap on translation quality, comparing
scores on the original test set to the clean set with
overlapping examples removed. In section H we

9Here we measure target-side overlap only; we assume
there is no substantial parallel data in PaLM’s training corpus,
and therefore no substantial parallel overlap.

10We selected the mBERT tokenizer, as opposed to the
PaLM’s sentence-piece tokenizer, because it decouples the
measurement of overlap from the model under test.
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report similar scores for the older test sets, and
extend the analysis to calibrate the effect of overlap
on MT evaluation, by comparing to an overlap-free
off-the-shelf system.

7 Conclusion

We perform a careful assessment of the sentence-
level MT capabilities of PaLM, which we compare
to SOTA and a current off the shelf (COTS) MT sys-
tem for three high-resource languages—German,
Chinese, and French—into and out of English, us-
ing the latest test sets from WMT. We chose to fo-
cus on a small set of high-resource language pairs
in order to test the claims of the original PaLM
paper, which are most striking for these pairs. The
time and expense of performing high-quality hu-
man evaluations precluded a broader investigation.

Comparing kNN and random strategies for se-
lecting 5-shot translation examples to instantiate
fixed prompt templates, we find that kNN’s poten-
tial advantage in identifying examples relevant to
the source sentence is outweighed by its susceptibil-
ity to corpus noise. Choosing examples randomly
from small, high-quality pools works well, and per-
formance appears to be independent of the domain
and translation style of the pool, suggesting that
example quality is the most important factor.

Using both the BLEURT metric and MQM human
evaluations, we show that PaLM’s performance,
while very impressive for a system never delib-
erately exposed to parallel text, still significantly
lags that of competition-grade SOTA systems on
recent WMT test sets, and to a lesser extent the
performance of COTS systems as well. This con-
trasts with some of the findings of Chowdhery et al.
(2022). As in that work, we find that performance
into English is somewhat better than the reverse di-
rection. Finally, we perform an extensive analysis
of the characteristics of PaLM’s MT output, no-
tably finding that in all languages we tested it tends
to be creative and fluent but prone to omissions and
other accuracy errors; broadly speaking, it matches
the fluency but lags the accuracy of conventional
NMT.

In future work we look forward to testing PaLM
on document-level translation tasks, unleashing
its formidable capacity for leveraging long con-
texts. We would also like to explore prompt tun-
ing methods that are more sophisticated than the
hard-prompt setting we adopted for this paper, par-
ticularly to see if these might offer a way to tighten

up PaLM’s MT accuracy without destroying its
impressive ability to generate highly-fluent text.

Limitations

As we use only a small number of language pairs, it
is not clear how general our conclusions are; in par-
ticular, they pertain only to languages that are well
represented in PaLM’s training corpus, and only
to translation into and out of English. Our restric-
tion to independent sentence-level translations may
have caused us to underestimate PaLM’s true capa-
bilities, since some of the accuracy problems we
observed might be considered less severe in the con-
text of whole-document translation where less lit-
eral translations are more typical. Our exploration
of prompting barely scratches the surface of the
many methods that have been proposed for adapt-
ing LLMs to particular tasks, and we may have
missed a technique that produces higher-quality
translations than we observed. Finally, the human
evaluation we rely on to provide our most accurate
results is necessarily subjective, and if we were to
have carried out the evaluation with different raters
and a different methodology, our conclusions might
well have been different.

Ethical Considerations

Working with large language models comes with
many ethical concerns that are discussed in detail
in Brown et al. (2020) and Chowdhery et al. (2022).
There, MT is often one task of many, while we fo-
cus on the question of proper example selection for
few-shot prompting of MT, which adds a few spe-
cific concerns. Our conclusion that prompt quality
is important could lead one to build a system with
prompts drawn from a small set of trusted sources;
indeed, our high-end set is one such example of this.
In such a scenario, this small source will have an
outsized impact on the output of the translation sys-
tem, and one must be careful to manage issues of
attribution and intellectual property. Furthermore,
an editorial choice defining high-quality language
can potentially reduce quality for groups and topics
not typically discussed in this style (Gururangan
et al., 2022). Finally, by highlighting the power of
few-shot examples, one might be tempted to turn
example selection over to the users of a system.
There, special steps must be taken to avoid expos-
ing users to biased or toxic outputs, which may
be triggered by unconstrained prompting (Gehman
et al., 2020; Costa-jussà et al., 2022).
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Appendices

A Prompt Exploration

As preliminary experiments we tried different
prompting templates:

Language This is the prompt template used in
the paper (see Section 3). It prepends the
examples with the corresponding language
name in English.

# shots
Prompt 0 1 2 5 10

Language 63.9 69.1 71.7 73.6 74.4
Codes 59.0 68.5 71.2 73.4 74.1
Header 72.4 69.1 70.7 73.4 74.1
Textual 36.9 67.5 71.8 73.0 73.7
Deutsch 72.6 70.8 71.9 73.5 74.1
None 3.2 38.5 59.6 73.0 74.1

Table 7: BLEURT results with different prompt tem-
plates and number of prompts for the English → Ger-
man translation directions. The prompt examples were
randomly selected. The median of 5 runs are shown.

Codes Like “Language”, but instead of full En-
glish names, two-letter languages codes are
used (e.g. “en”, “de”).

Header Like “Language”, but the header “Trans-
late following sentences:” is added.

Textual A textual request for translating a sen-
tence: “Translate Xn from English into Ger-
man: Yn”, where Xn and Yn are the transla-
tion examples, as in Section 3. The source
sentence X is given with the same template,
but without specifying any translation.

Deutsch Like “Language”, but the language
names are given in German (“Englisch”,
“Deutsch”).

None No added text. Source and target examples
are just input one after the other.

As shown in Table 7, the choice of a prompting
strategy has a crucial impact when the number of
shots is low, but the effect is reduced when we in-
crease the number of examples shown. The number
of examples also has a significant impact on transla-
tion quality. We chose to work with 5 examples, as
there are diminishing returns when increasing the
number of prompts, and choosing a higher number
has additional practical implications (e.g. possibly
exceeding the maximum input length).

B High-end pool

Table 9 describes the high-end pool. All listed ar-
ticles were manually downloaded in June–August
2022, and semi-automatically divided into bilin-
gual paragraphs. Our high-end pool consists of all
paragraphs from all articles. The domain break-
down for each language pair is shown in Table 8.
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Genre
Proportion

en ↔ de en ↔ fr en ↔ zh

biography 31% 20% –
business – – 15%
commentary 25% 10% 16%
culture – 44% 14%
fashion 16% – –
food – 8% –
news 4% 18% 43%
obituary 24% – 13%

Table 8: Genre distributions for the high-end pool.

C Variability of Random Runs

Table 10 shows the automatic scores for random
runs for the German→English language pair. It can
be observed that the range of scores is quite small,
less than 0.5 BLEURT points for all language direc-
tions. For both directions, the use of WMT-dev, as
opposed to WMT-full, for the random pool reduces
the observed range in BLEURT by at least 0.1.

D Detailed MQM Scores

Table 11 presents MQM scores for PaLM WMT-
dev random and SOTA systems in the four lan-
guage pairs evaluated, along with the breakdown of
the scores into their Accuracy and Fluency compo-
nents. Table 12 presents detailed MQM error counts
for PaLM WMT-dev random and SOTA systems in
en→de and de→en.

E Significance numbers

We calculate pairwise significance numbers based
on PERM-BOTH pair-wise significance test-
ing (Koehn, 2004; Deutsch et al., 2021). Results
can be seen in Table 13.

F Example Prompts

Tables 14a and 14b show prompt examples where
kNN and random selection do better, respectively,
as described in section 6.1.

G Example Translations

Tables 15 and 16 show example translations for
German→English and English→Chinese as de-
scribed in section 6.2.

H Overlap Analysis

Chowdhery et al. (2022) show BLEU differences be-
tween clean and original test sets, and provide some
evidence that differences are not due to memoriza-
tion, but it still isn’t clear how much overlap actu-
ally inflates a model’s score. We directly quantify
the effect of train-test overlap on decision making
by comparing 5-shot PaLM to Google Translate
(GT)11 on our two sets with substantial overlap,
testing under original, clean and ¬clean (including
only overlapping examples) scenarios. BLEU and
BLEURT scores for the two systems and three test
sets are shown in Table 17.

We can see that directly comparing original and
clean results for a single system conflates differ-
ences from overlap with those from the increased
difficulty of the clean subset. For example, for
de→en BLEU, comparing PaLM’s original and
clean scores gives an overlap gap of 2.6-BLEU, in
line with the gaps reported by Chowdhery et al.
(2022). However, the non-overlapping GT sys-
tem also has lower scores on the clean set, indi-
cating that it may simply be more difficult.12 It’s
more useful to see that the original test indicated
a 1.5-BLEU difference between the two systems,
while the clean test indicates a 2.0-BLEU differ-
ence, meaning PaLM benefited from overlap by
0.5 BLEU in this comparison. The fully overlap-
ping ¬clean further distorts the difference between
the two systems: the true (clean) delta of 2.0 BLEU

shrinks to only 0.4. Trends for fr→en are similar:
though PaLM and GT are very close according to
the original test set, the clean set reveals a delta
of 0.8 BLEU. Interestingly, BLEURT may be less
sensitive to overlap, with the original-versus-clean
deltas hovering around 0 for fr→en regardless of
the test subset, and de→en showing that PaLM ben-
efits from an overlap bonus of only 0.3 BLEURT.

In summary, overlap between the target side of
the test data and the LLM training data can have an
impact on both BLEU and BLEURT scores, altering
the delta between two systems where one benefits
from overlap and another does not by up to 0.7

11We chose Google Translate for comparison because it is
non-trivial to build a SOTA baseline for older WMT scenarios.
Through personal communication, we understand that Google
Translate has no overlap with WMT test sets.

12The difference in difficulty between Clean and ¬Clean for
systems without overlap is not easily explained. A common
difficulty indicator is sentence length, but average lengths,
as measured by number of SACREBLEU tokens per sentence,
are similar between Clean and ¬Clean for both de→en (23.8
versus 23.0) and fr→en (21.1 versus 22.7).
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LP paras words URL
en

↔
de

4 255 www.deutschland.de/en/news/new-supercomputer-in-operation
4 208 www.deutschland.de/en/news/patents-germany-ranks-second

11 609 www.deutschland.de/en/news/syrian-swimmer-yusra-mardini-provides-message-of-hope-at-olympics
24 1787 www.zeit.de/kultur/2019-12/schoenheit-fotografie-aesthetik-rankin-mitch-epstein-roger-ballen-english
28 2817 www.zeit.de/kultur/2020-07/

desinformation-peter-pomerantsev-social-media-regulation-democracy/komplettansicht
60 2961 www.zeit.de/politik/ausland/2020-11/

polarization-us-elections-democrats-republicans-donald-trump-family-division-english
21 2757 www.zeit.de/politik/deutschland/2015-11/helmut-schmidt-obituary-english/komplettansicht

en
↔

zh

30 1323 cn.nytimes.com/asia-pacific/20220509/taiwan-china-covid/dual
31 1317 cn.nytimes.com/china/20220427/brownface-barrack-okarma-1968-hong-kong/dual

6 780 cn.nytimes.com/china/20220401/china-cheng-lei-australia/dual
13 609 cn.nytimes.com/china/20220421/china-eastern-crash-report/dual
23 1520 cn.nytimes.com/china/20220412/china-russia-propaganda/dual
22 1373 cn.nytimes.com/business/20220621/china-housing-real-estate-economy/dual
13 478 cn.nytimes.com/china/20220415/shanghais-food-crisis-prompts-residents-in-beijing-to-stockpile-supplies/dual
26 1202 cn.nytimes.com/obits/20220418/peng-ming-min-dead

6 843 https://cn.nytimes.com/world/20220330/solomon-islands-china/dual

en
↔

fr

6 846 france-amerique.com/a-france-of-many-colors
10 1177 france-amerique.com/alice-guy-cinema-forgotten-pioneer
10 1237 france-amerique.com/americanization-is-back-did-it-ever-go-away

8 666 france-amerique.com/a-propos-a-hard-hitting-french-american-podcast
3 457 france-amerique.com/camille-laurens-a-womans-life
8 970 france-amerique.com/football-and-soccer
6 377 france-amerique.com/france-united-states-naval-battle-and-diplomatic-crisis
7 615 france-amerique.com/jeanne-damas-all-the-women-in-her-city
6 631 france-amerique.com/guedelon-building-a-castle-by-hand

11 811 france-amerique.com/raphael-francois-culinary-director
12 874 france-amerique.com/thierry-mugler-provocateur

7 934 france-amerique.com/winds-of-change-over-democracy
4 255 www.deutschland.de/en/news/new-supercomputer-in-operation

Table 9: Sizes and provenance for articles in the high-end prompt pool. The words column contains the number of
English words (whitespace-separated character sequences) in each article.

BLEURT BLEU

LP Pool Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5

en→ de full 71.9 71.9 71.6 71.8 71.9 32.4 32.8 32.1 32.9 32.9
dev 74.7 74.7 74.7 74.9 74.8 32.7 32.6 32.6 32.6 32.8

de→ en full 74.8 75.0 74.8 74.5 74.7 38.4 38.5 38.2 38.0 38.3
dev 75.9 75.9 76.0 75.7 75.9 38.0 38.0 38.0 38.3 38.2

Table 10: Results for random runs for the German→English translation direction.

PaLM SOTA
MQM ↓ Accuracy↓ Fluency↓ MQM ↓ Accuracy↓ Fluency↓

en → de 1.58 1.12 0.46 1.18 0.81 0.37
en → zh 3.24 2.69 0.52 2.47 1.96 0.48

de → en 1.92 1.43 0.48 1.31 0.88 0.43
zh → en 3.60 2.97 0.62 3.11 2.43 0.68

Table 11: MQM scores for PaLM WMT-dev random and SOTA systems, split into Accuracy and Fluency. Accuracy
scores include "Accuracy/*," "Terminology/*," and "Non-translation!" error categories. Fluency scores include
"Fluency/*," "Style/*," and "Locale/*" categories. The "Other" error category is not included in Accuracy or
Fluency scores.
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en → de de → en
PaLM SOTA PaLM SOTA

Major minor Major minor Major minor Major minor

Non-translation! 0 0 0 0 2 0 0 0

Acc/Mistrans. 103 89 79 67 73 41 61 49
Acc/Omission 26 6 7 3 51 33 19 11
Acc/Addition 1 6 3 1 10 2 0 3
Acc/Untranslated 12 4 14 0 6 7 5 8

Ter/Inappr 0 7 0 7 17 21 12 15
Ter/Incons 0 4 0 4 1 5 1 7

Fl/Grammar 0 133 0 100 18 41 5 38
Fl/Register 0 2 0 3 0 0 0 0
Fl/Inconsistency 0 2 0 5 0 2 0 2
Fl/Punctuation 0 260 0 31 1 38 2 29
Fl/Spelling 0 12 0 16 0 16 0 17
Fl/Encoding 0 0 0 0 0 0 0 2

St/Awkward 0 166 0 144 13 73 16 81

Locale/Date 0 0 0 0 0 1 0 5
Locale/Name 0 0 0 0 2 8 2 5
Locale/Time 0 0 0 0 0 5 0 5

Source Error 0 0 0 0 1 0 0 1
Other 0 0 1 0 0 3 0 3

Total Errors 142 673 102 362 189 296 123 281

Table 12: MQM error counts for PaLM WMT-dev random and SOTA systems for en→de and de→en. Abbrevia-
tions are as follows: “Acc”: Accuracy, “Fl”: Fluency, “St”: Style, “Ter”: Terminology, “Inappr”: Inappropriate for
context, “Incons”: Inconsistent.
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SOTA GTrans.
WMT-dev high-end WMT-full

random random random kNN

de→en

MQM 1.31 1.71 1.92 1.89 2.38 3.03

SOTA - 0.0 0.0 0.0 0.0 0.0
Google Trans. - - 0.073 0.124 0.0 0.0
WMT-dev random - - - 0.588 0.001 0.0
high-end random - - - - 0.001 0.0
WMT-full random - - - - - 0.001

en→de

MQM 1.18 1.59 1.58 1.67 1.90 1.93

SOTA - 0.0 0.0 0.0 0.0 0.0
Google Trans. - - 0.512 0.225 0.003 0.003
WMT-dev random - - - 0.175 0.001 0.0
high-end random - - - - 0.021 0.01
WMT-full random - - - - - 0.372

zh→en

MQM 3.11 3.12 3.60 3.89 3.95 4.06

SOTA - 0.447 0.0 0.0 0.0 0.0
Google Trans. - - 0.002 0.0 0.0 0.0
WMT-dev random - - - 0.022 0.006 0.003
high-end random - - - - 0.343 0.168
WMT-full random - - - - - 0.281

en→zh

MQM 2.47 3.23 3.24 3.70 4.35 5.06

SOTA - 0.0 0.0 0.0 0.0 0.0
Google Trans. - - 0.488 0.004 0.0 0.0
WMT-dev random - - - 0.002 0.0 0.0
high-end random - - - - 0.0 0.0
WMT-full random - - - - - 0.0

Table 13: p-values based on PERM-BOTH pair-wise significance testing (Deutsch et al., 2021). We highlight all
numbers with p<0.05.

BLEU or 0.3 BLEURT for a 20-30%-overlap. How-
ever, we should emphasize that the differences due
to overlap are small overall, and certainly much
smaller than expected if one looked only at the
difference between original and clean scores.

I Fixed versus random prompts

The results from section 5.2 indicate that random
selection from small, high-quality prompt pools
can work better than trying to customize prompts
for specific inputs. In this section we investigate
the effect of using a single high-quality prompt
for all inputs, chosen using a maximum-likelihood
criterion. For convenience, we carried out experi-
ments on the high-end pool with 1-shot paragraph
prompts. For each prompt in the pool, we com-
puted the probability of a set of held-out high-end
paragraphs when PaLM was conditioned on that

prompt. We select the prompt that resulted in the
highest probability for each language pair.

Table 18 compares this method to random se-
lection from the high-end pool. For all language
pairs except Chinese→English, the fixed prompt
does as well or better than the average perfor-
mance over 5 random runs where a different prompt
is selected for each input during each run. In
Chinese→English, the prompt that ranked 5th ac-
cording to the probability criterion also outper-
formed the random average, suggesting problems
with our held-out set for that language pair.

We conclude that using a single high-quality
prompt can be a safer strategy than choosing a fresh
randomly-selected prompt for each input. Model
probability appears to be a reasonable criterion for
judging quality, but we look forward to refining
this heuristic in future work.
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Source "Wir haben die Pflichtaufgaben mit Meisterschaft und Pokal einfach hervorragend gemeistert.
Reference “Quite simply, we have excellently mastered the necessary tasks for the Championship and the Cup.

k
N

N
R

oB
E

R
T

a

Hyp "We have simply mastered the tasks of the championship and the cup excellently.
Prompt 1 German: Mit einer verstärkten Mannschaft holte die Mannschaft das Double aus Meisterschaft und Pokal.

English: The decision paid off as the team achieved a league and cup double.
Prompt 2 German: Darüber hinaus haben wir uns wichtige Meisterschaftspunkte im Kampf um den Vizetitel

gesichert.“ English: We have furthermore secured some important championship points in the fight about
the vice champion’s title.”

Prompt 3 German: Bring deine Mannschaft durch alle Spiele der Europameisterschaft und gewinne den Pokal!
English: Take your team all the way through the Euro Cup stages and lift the trophy!

Prompt 4 German: So konnte er die französische Meisterschaft, den nationalen Pokal sowie den Supercup gewinnen.
English: He helped the club to win the national championship and the Supercup.

Prompt 5 German: Roter Stern gewinnt in jener Saison das Double von Meisterschaft und Pokal. English: Red Star
won their sixth double in this season.

R
an

do
m

Hyp "We have the compulsory tasks with mastery and cup simply superbly mastered.
Prompt 1 German: Im November letzten Jahres war ein einzelner Steinadler und auch Bussarde im Blick der

Kamera. English: In November last year a solitary golden eagle and buzzards too appeared in web camera
view.

Prompt 2 German: Teile: Modesto-14th Street, Stanislaus, California, Kalifornien-Luft-Qualitätsindex English:
Share: Modesto-14th Street, Stanislaus, California, California Air Quality Index

Prompt 3 German: So viel kostet ein Hotel in Chester English: How much does a hotel in Chester cost?
Prompt 4 German: "... alle Mitarbeiter, die alles tun, um hilfsbereit zu sein und sehr freundlich zu sein; köstliche

Margaritas; Kolibris und Granatäpfel im Garten (sowie eine sehr freundliche Katze); Ein echtes Gefühl von
Zuhause. " Aktionsangebot English: "... all staff, who go out of their way to be helpful and are extremely
welcoming; delicious margaritas; hummingbirds and pomegranates in the garden (as well as a very friendly
cat); a real home-from-home feeling. "

Prompt 5 German: Gansevoort Land zum Verkauf English: Gansevoort Land for Sale

(a) Example where kNN outperforms random selection.

Source Frei von Drogen veröffentlichte Green mit der Peter Green Splinter Group einige Alben, bis sich die Band
2004 auflöste.

Reference Free of drugs, Green and the Peter Green Splinter Group released various albums before the band split up
in 2004.

k
N

N
R

oB
E

R
T

a

Hyp The band released their debut album, The Last of the Great Pretenders, in 2003.
Prompt 1 German: Ab 1990 war er Sänger der Gruppe Talisman, mit der er sieben Studioalben veröffentlichte, bis

sich die Band 2007 auflöste. English: From 1998 until his departure in 2007, he was the lead singer of the
group Lonestar, which recorded seven studio albums on BNA Records during his tenure as lead vocalist.

Prompt 2 German: 2001 veröffentlichte die Band unter dem Namen Glass die rockige Single Out Of Nowhere,
verpasste die Charts und löste sich im Anschluss auf. English: Around this time he wrote and presented
the ITV Network productions The Rock that Doesn’t Roll and The Rock That Rolled Away.

Prompt 3 German: Mit ihrer Band Ex Cops veröffentlichte sie zwei Alben, bevor sich die Band 2015 auflöste.
English: Their new band released two EPs before signing to Apparition Records in 2011.

Prompt 4 German: In seiner Jugend gründete David Haering die Punk-Band Side Effect, mit der er drei Alben und
eine EP veröffentlichte. English: Peter Hajba and Alexander Brandon used OpenMPT to compose the
soundtracks for Bejeweled 2, Bejeweled 3 and other PopCap games.

Prompt 5 German: Nach der Veröffentlichung des Live-Albums Beast from the East 1988 trennten sich die Wege
der Musiker, als Don Dokken die Band auflöste. English: In 1988, after the Monsters of Rock Tour and a
further platinum album, Don Dokken decided to break up the band and they went on their separate ways.

R
an

do
m

Hyp Free from drugs, Green released several albums with the Peter Green Splinter Group, until the band broke
up in 2004.

Prompt 1 German: 250 gr/m2: eine Reihe merino intermedia, vielseitigkeit und schutz garantiert. English: 250
gr/m2: Range merino intermediate, versatility and guaranteed protection.

Prompt 2 German: 127 Moo.3, Choeng Thale, Thalang, Phuket, Strand Bang Tao, Thailand (Karte anzeigen)
English: 127 Moo.3, Choeng Thale, Thalang, Phuket, Bang Tao Beach (Phuket), Thailand (Show map)

Prompt 3 German: Ich bin stolz, sagen zu können, dass Ihr Produkt mir die Größe verliehen hat, von der ich
jahrelang geträumt habe. English: I am proud to say that your product has given me the size that I sought
for all these years.

Prompt 4 German: In der NBA Saison 2003–2004 schien es endlich besser für Garnett und die Timberwolves zu
laufen. English: The 2002–03 season seemed to look up for the Timberwolves.

Prompt 5 German: APC-Fhrancis Oliver Lopez extern natürliche Links English: APC-Fhrancis Oliver Lopez
External Passing Juice

(b) Example where random selection outperforms kNN.

Table 14: Example prompts for random and kNN RoBERTa selection for the German→English translation direc-
tion.
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Source Wegen eines ersten offiziellen Corona-Verdachtsfalls im Land hat Nordkorea aus Furcht vor einer Katastrophe
eine Großstadt komplett abgeriegelt.

Reference Due to a first official suspected case of coronavirus in the country, North Korea has completely shut down a
major city out of fear of a disaster.

SOTA Due to a first official suspected case of coronavirus in the country, North Korea has completely sealed off a
major city for fear of a catastrophe.

PaLM North Korea has completely sealed off a city of 300,000 people because of a first suspected case of coronavirus
in the country, fearing a catastrophe.

(a) PaLM generated two errors: (i) Makes the assumption that the major city has 300,000 citizens, (ii) Forgot to translate the
word official. SOTA generates a perfect translation. Note: this example also exemplifies PaLM’s less literal translation style.

Source Für mindestens drei Menschen endet die Tour mit dem Motorrad tödlich.
Reference For at least three people, their bike ride ended in death.

SOTA The motorcycle tour ends fatally for at least three people.
PaLM At least three people die in motorcycle accidents.

(b) The source mentions a single accident happening on a bike tour. PaLM refers to multiple accidents happening independently.

Source Ein Zeuge hörte gegen 3.40 Uhr Geräusche in der Talstraße und lief in Richtung des Imbisses.
Reference One witness heard noises on Talstraße around 3:40 am and ran in the direction of the snack stand.

SOTA A witness heard noises in the valley road at around 3.40 a.m. and ran towards the snack bar.
PaLM A witness heard noises in Talstraße at around 3:40 a.m. and ran towards the snack bar.

(c) SOTA generates an overly-literal translation, resulting in copying the street name (Talstrasse) and using the wrong time
format.

Table 15: Example translations from newstest2021 German→English. PaLM translations are generated with the
high-end prompt pool. These are typical of error patterns observed in the translation output. We also observed
the same pattern when using WMT-dev as the prompt pool. In general, SOTA is more faithful to the source while
PaLM generates less literal translations that occasionally miss some information from the source.

Source French World Cup winner Dembele, who has struggled for game time at the Camp Nou, was recently linked
with a move to PSG in a swap deal with Neymar.

Reference 在诺坎普球场冲锋陷阵的法国世界杯冠军得主Dembele最近通过与Neymar交换转投PSG。

SOTA 法国世界杯冠军登贝莱在诺坎普一直在为比赛时间而挣扎，最近他与内马尔交换转会巴黎圣日尔
曼。

PaLM 法国世界杯冠军德容，在诺坎普的出场时间一直不多，最近被传与内马尔进行交换加钱转会
到PSG。

(a) PaLM produces two errors: (i) translates a wrong player’s name; (ii) adds extra information that the player received a raise in
the swap deal. SOTA produces a perfect translation, but is much more literal than PaLM.

Source . . . in the wake of September 11, ASIO was given power to compulsorily question people for up to seven days
in relation to terrorism offences.

Reference . . .在911 事件之后，澳安全情报局有权对牵涉恐怖主义行为的人员进行为期最高7 天的强制性询
问。

SOTA . . .在9月11日之后，安全情报组织被授权对与恐怖主义罪行有关的人进行长达7天的强制性讯问。
PaLM . . .澳大利亚安全情报局在9·11恐怖袭击之后获得了强制询问人员的权力，可以在7天内就恐怖主义

罪行进行询问。

(b) The source phrase “September 11” is translated literally by SOTA into a date, whereas PaLM produces a more appropriate
translation by describing it as a terrorist attack.

Table 16: Example translations from newstest2021 English→Chinese. PaLM translations are generated with the
WMT-dev prompt pool. We find SOTA to generate more literal translations than PaLM, but PaLM suffers from
more omissions and mistranslations.
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Data %Clean Method
BLEU BLEURT

Orig Clean ¬Clean Orig Clean ¬Clean

de → en 2016 80.3
Google Trans. 47.6 45.5 55.3 78.4 77.7 81.3
WMT-full Random 46.1 43.5 54.9 77.3 76.3 81.5
Diff 1.5 2.0 0.4 1.1 1.4 -0.2

fr → en 2014 69.2
Google Trans. 43.1 42.1 44.8 77.7 76.8 79.6
WMT-dev Random 43.0 41.3 45.4 77.7 76.9 79.5
Diff 0.1 0.8 -0.6 0.0 -0.1 0.1

Table 17: Comparison between Google Translate and 5-shot PaLM using three test sets: Orig. (original), Clean
(overlapping examples removed) and ¬Clean (including only overlapping examples). We use Random instead of
WMT-dev Random for de→en to avoid using the WMT 2021 development sets to prompt for the WMT 2016 test
(“sampling from the future”).

LP Selection
BLEURT

min avg max

en → de
fixed 74.7
random 74.5 74.7 75.0

de → en
fixed 76.3
random 75.6 75.8 75.9

en → zh
fixed 64.7
random 63.7 63.9 64.0

zh → en
fixed 67.0
random 67.3 67.5 67.7

en → fr
fixed 75.5
random 75.2 75.2 75.3

fr → en
fixed 77.9
random 77.4 77.6 77.6

Table 18: Fixed (maximum-likelihood) prompts vs ran-
dom prompts. All prompts are drawn from the high-end
pool, and performance is measured on the standard test
sets (WMT21 for German and Chinese, WMT14 for
French). The scores for random selection are the mini-
mum, average, and maximum over 5 random draws.
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