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Abstract

Position modeling plays a critical role in Trans-
formers. In this paper, we focus on length ex-
trapolation, i.e., training on short texts while
evaluating longer sequences. We define at-
tention resolution as an indicator of extrapo-
lation. Then we propose two designs to im-
prove the above metric of Transformers. Specif-
ically, we introduce a relative position embed-
ding to explicitly maximize attention resolu-
tion. Moreover, we use blockwise causal at-
tention during inference for better efficiency.
The proposed architecture is named Length-
Extrapolatable (LEX) Transformer. We evalu-
ate different Transformer variants on language
modeling. Experimental results show that our
model achieves better performance in both in-
terpolation and extrapolation settings. The
code will be available at https://aka.ms/
LeX-Transformer.

1 Introduction

Transformer (Vaswani et al., 2017) has shown
strong performance in NLP and become a de-facto
backbone (Dosovitskiy et al., 2020; Radford et al.,
2021; Wang et al., 2022). However, most of them
have a crucial shortcoming: they can only deal
with the in-distribution size of inputs. Figure 1
shows that the perplexity of previous Transform-
ers increases rapidly when the input sequence is
getting longer. It is usually infeasible to train a
model with all possible input lengths. Therefore, a
length-extrapolatable Transformer is essential for
wider usage.

In sequence modeling, position information
plays a crucial role in building the correct repre-
sentation and understanding of the latent mean-
ing. For Recurrent Neural Networks such as
LSTM (Hochreiter and Schmidhuber, 1997), the
calculation is done along the sequence order in
O(N) time. However, the parallel attention module

∗Work done during internship at Microsoft Research.

Figure 1: The perplexity of different Transformer de-
signs with various input lengths.

makes it hard to encode position effectively. First,
Vaswani et al. (2017) proposes absolute sinusoidal
position embedding, and Devlin et al. (2019) ad-
justs it to a learnable one. The absolute design is
computation-efficient, but not comparable with sub-
sequent relative ones (Shaw et al., 2018; Su et al.,
2021; Press et al., 2021). Among many relative po-
sition embeddings, ROPE (Su et al., 2021) shows
better performance and is used to many PLMs such
as PaLM (Chowdhery et al., 2022). However, it
can’t deal with sequences with exceeding length.
Alibi (Press et al., 2021) mitigates the extrapolation
problem but sacrifices the general performance.

Since different strategies concentrate on some
part of the position feature, it is essential to build a
comprehensive view and guide the Transformer’s
design systematically. First, a Transformer should
be sensitive to order. Otherwise, it will degener-
ate into a bag-of-word model which confuses the
whole meaning. Then, position translation can’t
hurt the representation, especially, when a prefix
is added to the target sentence, the representation
should stay the same with an attention mask on the
prefix. After that, a good sequence model needs to
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Models Translation Invariance Length Extrapolation

Absolute Position Modeling
Transformer (Sinusoidal) ✘ ✘✘

GPT-2 (Learnable) ✘ ✘✘

Relative Position Modeling
PaLM / Roformer (ROPE) ✔ ✘

T5 ✔ ✘

BLOOM / Alibi ✔ ✔

LEX Transformer (Ours) ✔ ✔✔

Table 1: Position modeling capabilities of Transformer variants for language modeling.

deal with any input length. As illustrated before,
the length problem is not universal but special for
Transformer. Especially, when a Transformer is
pre-trained under a maximal length, it is not afford-
able to re-train for applying to tasks with longer
sequences. Finally, when a Transformer satisfies
the principles above, we evaluate its performance,
which requires thorough experiments and empirical
analysis.

Considering all the properties above, we propose
Extrapolatable Position Embedding (XPOS), which
is a universal-good design for Transformers. Based
on ROPE’s design, we propose attention resolu-
tion as a metric to measure position monotonicity.
Then, we generalize its mathematical form, where
an exponential decay is added to the rotation ma-
trix. XPOS preserves the advantage of ROPE, and
behaves stably at long-term dependency. Besides,
inspired by sparse attention methods (Child et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2020;
Xiong et al., 2021), we choose blockwise causal
attention to increase attention resolution, which im-
proves the performance of length extrapolation for
language modeling.

We train different Transformers from scratch.
We evaluate models on PG22 and QMSum (Zhong
et al., 2021) with various input lengths. On the in-
terpolation experiments, LEX Transformer reaches
minimal perplexity. In the extrapolation experi-
ments, our methods can continue decreasing the
perplexity while other methods either can’t extrap-
olate (i.e., perplexity increases) when the input
length is very long. Figure 1 shows clearly that
LEX Transformer has an opposite tendency com-
pared with others.

We summarize our contributions as follows:

• We summarize the design principles of Trans-
formers for position modeling.

• We define attention resolution to indicate a
Transformer’s capability on encoding posi-
tion.

• We propose an extrapolatable position embed-
ding and use blockwise causal attention to
improve length extrapolation.

• We conduct experiments on language model-
ing and show that the proposed LEX Trans-
former achieves strong performance on both
short and long texts.

2 Design Principles of Transformers for
Position Modeling

2.1 Order Variance

A transformer without position information is actu-
ally a bag-of-word model. Although bag-of-words
models can achieve comparable performance for
some tasks (Wang et al., 2020a), position infor-
mation is essential for sequence modeling. Most
of the existing position modeling satisfies this
goal (Vaswani et al., 2017; Devlin et al., 2019;
Shaw et al., 2018; Wang et al., 2020a; Raffel et al.,
2020; Su et al., 2021). With effective position in-
formation, Transformer models should be variant
with permuting the order (Dufter et al., 2022). Give
a permutation function Pπ(X) : [x1, x2, ..., xn] →
[xπ1 , xπ2 , ..., xπn ], where [π1, π2, ..., πn] is a ran-
dom order, a Transformer model f(input) should
satisfy:

f(Pπ(X)) ̸= Pπ(f(X)) (1)

2.2 Translation Invariance

The representation of a sequence should be ro-
bust with the translation of its positions. For
instance, a sentence’s meaning is invariant with
padding before or after the whole sentence. Similar
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to (Wang et al., 2020a), we give a general form
for translation invariance: given a Transformer
model f(input,mask), any input sequence X =
[x0, x1, ..., xn] with mask M = [m0,m1, ...,mn],
the output should be same with the padding ones:

Xpad = [0]i ⊕X ⊕ [0]j

Mpad = [0]i ⊕M ⊕ [0]j

f(X,M) = f(Xpad,Mpad)[i : i+ n]

(2)

Relative positions (Shaw et al., 2018; Raffel
et al., 2020; Wang et al., 2020a; Su et al., 2021)
satisfy this condition, while most of the absolute
positions do not (Vaswani et al., 2017; Devlin et al.,
2019). Although sinusoidal embedding has a simi-
lar property (Vaswani et al., 2017): PEpos+k can
be represented as a linear function of PEpos, the
addition operation in the initial word embedding
messes the attention weight, where the spread form
of QKT has 4 components whose geometric con-
nection with position is unclear.

2.3 Length Extrapolation

As the cost of pre-training is getting bigger due to
the larger model size and corpus, it is infeasible to
retrain a model for a longer context. A Transformer
model with a suitable design should be capable of
dealing with any input length.

First, learnable absolute position embedding (De-
vlin et al., 2019) is not able to extrapolate because
it does not have any pre-defined position knowl-
edge. With the evaluation of perplexity on dif-
ferent lengths (Press et al., 2021), almost every
position embedding’s performance drops signifi-
cantly (Vaswani et al., 2017; Raffel et al., 2020;
Su et al., 2021). Alibi (Press et al., 2021) solves
this problem by adding an exponential decay on the
attention matrix, which lower the influence of out-
of-distribution position like a soft sliding window.
However, the absence of long-term dependency
contributes to a performance drop compared with
other relative strategies. Table 2 shows that Alibi’s
perplexity is larger than ROPE by about 0.3.

However, the extrapolation ability needs a sys-
tematic design where position embedding is a cru-
cial but not only component. With the proper atten-
tion mask, the relative position can deal with long
text. The ideal situation is to use the long context
in the right way, in that case, the perplexity should
decrease as the input length increases.

3 A Length-Extrapolatable Transformer

We define attention resolution as the indicator of
the Transformer’s capability on encoding position
in Section 3.1. Then we propose two ways to maxi-
mize the resolution metric, i.e., improve the length
interpolation and extrapolation of Transformers.
First, we introduce a relative position encoding
method (Section 3.2) to explicitly maximize atten-
tion resolution. Second, we propose to use block-
wise causal masking (Section 3.3) during extrapo-
lation inference for improved resolution.

In the following section, we denote d as the hid-
den dimension and l as the input length. For each
attention layer, query, key, and value are calculated
by input x: q = WQx, k = WKx, v = WV x.

3.1 Attention Resolution

The monotonicity of attention scores is essential
to represent distance in language models. In an
attention layer of the vanilla Transformer, we mea-
sure the attention score expectation as s[n] when
the distance of two tokens is n:

s[n] = E
0≤i≤N

(
qi+nk

T
i√

d
) (3)

We define attention resolution R(s) as a metric
to evaluate attention’s ability to recognize position:

R(s) =
N∑

i=0

es[i](es[i] − es[i+1])

(
∑N

i=0 e
s[i])2

(4)

First, s[i] > s[i+1] is preferred to ensure mono-
tonicity. Besides, we implement softmax opera-
tion on s[n] to simulate the attention probability. To
mitigate the influence of long-tail distribution, the
factor es[i] is multiplied. We can estimate s[n] and
R(s) quantitatively when we design Transformers.

3.2 Improve Resolution by Position Encoding

Su et al. (2021) propose that by adding absolute
position embedding on query and key, the attention
matrix is actually encoded with relative position
information. ROPE shows a strong performance in
interpolation tasks, but its s[n] oscillates dramati-
cally in Figure 2, which harms the resolution.

We use a similar but generalized strategy to im-
prove resolution. First, a pseudo inner product is
defined as ⟨x, y⟩ = ∑

Re(xi ·y∗i ), which is consis-
tent with the exact inner product’s definition when
we map Cd/2 → Rd. Before calculating attention,
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the query and key are encoded with position in-
formation. Generally, the attention function is as
follows:

aij =
⟨fq(qi, i), fk(kj , j)⟩√

d

oi =
i∑

j=0

eaij∑i
j=0 e

aij
vj

(5)

Formally, the encoding must satisfy:

⟨fq(q, n+r), fk(k, n)⟩ = ⟨fq(q, r), fk(k, 0)⟩ (6)

A simple solution is as follows:

fq(q, n) = Aqqe
λn

fk(k, n) = Akke
−λ∗n

(7)

The scaling factor Aq, Ak is unnecessary be-
cause q, k is obtained by a linear transformation.
Since λ ∈ Cd/2, it can be represented as λ = ξ+iθ
where ξ, θ ∈ Rd/2:

fq(q, n) = qeξn+iθn

fk(k, n) = ke−ξn+iθn
(8)

If ξ = 0, the form is the same as ROPE (Su
et al., 2021). Geometrically, the transformation
provides a rotation on vectors. If the relative an-
gle between q and k is larger, the inner product is
smaller. However, the cosine function is not mono-
tonic if the rotating angle is large than π, which
causes an unstable phenomenon in that the expec-
tation of the inner product oscillates dramatically
with the growth of relative distance. Following the
parameters (Vaswani et al., 2017; Su et al., 2021)
θ = {θi = 10000−2i/d, i ∈ [0, 1, ..., d/2]}, we
will calculate the expectation as follows. For gen-
erative models, we assume E(∠q) ≤ E(∠k) to
ensure the monotonicity:

E[⟨qemξ+imθ, ke−nξ+inθ⟩]

=

d/2∑

x=0

E[Re(qxkxe
(m−n)ξx+i(m−n)θx)]

≤
d/2∑

x=0

Re(E[|qxkx|]e(m−n)ξx+i(m−n)θx)

∝
d/2∑

x=0

cos(m− n)θxe
(m−n)ξx

(9)

The inference here is different from (Su et al.,
2021) because of two reasons: 1) there is an addi-
tional assumption brought by generative language

models where E(∠q) ≤ E(∠k); 2) the inequality
scaling of (Su et al., 2021) is too strong to lose
generality. We calculate expectation instead of the
upper bound.

Now we define a function to represent the prop-
erty of relative position:

gζ [n] =

d/2∑

i=0

cosnθiζ
n
i (10)

g[n] simplifies Equation 9 by defining ζi = eξi .
Stabilizing the g[n] curve is intuitive. Although
attention bias can achieve this goal, we try to avoid
additional position calculations. Instead, we can
accomplish this goal using a good ζ to maximize
R(gζ).

Obviously, the oscillation mainly comes from
large θi. Manually setting ζ can achieve this goal:

ζ̃i =
i/(d/2) + γ

1 + γ
∈ [0, 1] (11)

where ζ̃i becomes smaller when θi is larger. In this
way, we punish the oscillation of unstable dimen-
sions and keep the distribution of stable ones.

Numerical optimization methods are tried to find
optimal values for ζ. However, the results rely on
the initial value and lack control when the hidden
dimension changes. Besides, the numerical preci-
sion should be considered because of fp16’s range.
Finally, we find a sub-optimal solution by manually
setting γ to both satisfy the resolution is recogniz-
able (R(gζ) is partially optimized) and ζni can be
represented by fp16 when n is big (8192 in our
setting). Besides, in implementation, the position
is re-scaled with base B in the exponential calcula-
tion to avoid overflow and underflow (eξn → eξn/B

in Equation (8)). We use γ = 0.4 and B = 512 as
the final implementation in LEX Transformer.

The curves of ζ = 1, ζ̂ are shown in Figure 2.
The default rotary embedding contributes to a dra-
matic oscillation, especially in the large relative
distance, which causes bad extrapolation perfor-
mance and restricts the model’s convergence speed.
After adding a decay, the curve is almost stable, es-
pecially on long-term dependency. What’s more, it
does not hurt pure rotation’s fitting ability because
ζni ≈ 1 when i is large or n is small. In that way,
short-term and long-term dependencies are divided
continuously.

Finally, we have Extrapolatable Position Embed-
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Figure 2: The long dependency curve of attention ex-
pectation. ROPE’s dramatic oscillation confuses the
attention resolution at long distances. In contrast, XPOS
provides stable and accurate position modeling.

Algorithm 1: Attention with XPOS

def rot(x):
return [−x1, x0,−x3, x2, ...]

Initialization:
θi = 1/100002⌊i/2⌋/d, θ ∈ Rd

ζ̂i = (2⌊i/2⌋/d+ γ)/(1 + γ), ζ̂ ∈ Rd

Input: Q,K, V ∈ Rh×l×d,M ∈ Rd×d

Cmn = cosmθn, C ∈ Rl×d

Smn = sinmθn, S ∈ Rl×d

Tmn = ζ̂mn , T ∈ Rl×d

Q = Q⊙ (C ⊙ T ) + rot(Q)⊙ (S ⊙ T )
K = K⊙(C⊙T−1)+rot(K)⊙(S⊙T−1)

output = softmax(QKT
√
d

·M)V
return output

ding (XPOS):

fq(q, n) =




q1 cosnθ1ζ̂
n/B
1 − q2 sinnθ1ζ̂

n/B
1

q2 cosnθ1ζ̂
n/B
1 + q1 sinnθ1ζ̂

n/B
1

...
qn−1 cosnθd/2ζ̂

n/B

d/2 − qn sinnθd/2ζ̂
n/B

d/2

qn cosnθd/2ζ̂
n/B

d/2 + qn−1 sinnθd/2ζ̂
n/B

d/2




fk(k, n) =




k1cosnθ1ζ̂
−n/B
1 − k2 sinnθ1ζ̂

−n/B
1

k2 cosnθ1ζ̂
−n/B
1 + k1 sinnθ1ζ̂

−n/B
1

...
kn−1 cosnθd/2ζ̂

−n/B

d/2 − kn sinnθd/2ζ̂
−n/B

d/2

kn cosnθd/2ζ̂
−n/B

d/2 + kn−1 sinnθd/2ζ̂
−n/B

d/2




(12)
In the implementation, the transformation for

key and value can be easily calculated by paral-
lel addition and multiplication as shown in Algo-
rithm 1. Since position embedding’s size C, S, T ∈
Rl×d is much smaller than batched multi-head at-

Training Phase Inference Phase

Figure 3: Our language model is trained on shorter texts
in the same way as vanilla Transformers, i.e., using
causal masking. During inference, we use blockwise
causal attention for longer sequences, which recurrently
reuses the overlapped parts (i.e., key and value vectors).

tention matrix and doesn’t require gradients, the
cost is almost the same with ROPE and bigger than
Absolute Position with 6% additional time.

3.3 Blockwise Causal Attention

To deal with length extrapolation, a simple way
to improve attention resolution (Section 3.1) is us-
ing windowed attention. During inference, we use
blockwise masking (Dai et al., 2019; Zaheer et al.,
2020; Xiong et al., 2021) for self-attention. Notice
that other window strategies, such as sliding win-
dow (Child et al., 2019), also work. We use block-
wise causal attention because it is cache-friendly
and easy to implement.

As shown in Figure 3, if the pre-training length
is l, we divide the query as blocks with l/2 length,
and each query interacts with its own block and
the last block. In this way, the context information
can be delivered by the reuse of key and value.
The window constraint helps models encode longer
input with improved resolution.

Different from training a long-sequence model
with a stop gradient, we use vanilla attention in
the training phase, because the pre-training corpus
is not very long on average. However, during the
inference phase, when dealing with long sequences,
we directly implement BCA to help the model to
be more position-recognizable.

4 Experiments

4.1 Pre-training

To fairly evaluate different Transformer variants,
we pre-train the Transformer from scratch. We use
1024 hidden dimensions, 16 heads, and 24 layers,
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i.e., comparable to medium-size GPT-3 (Brown
et al., 2020). The training corpus includes a
subset of the Pile (Gao et al., 2020): Books3,
OpenWebText2, Stack Exchange, PubMed Ab-
stracts, Wikipedia, Gutenberg (PG-19), BookCor-
pus2, NIH ExPorter, and Pile-CC datasets. The
training procedure is performed on 16×V100
GPUs. We use the tokenizer from GPT2 (Radford
et al., 2019). The maximal length is 1024 for saving
memory and extrapolation evaluation. The learning
rate is 3×10−4 and polynomial decay is used to ad-
just the learning rate. The global batch size is 512
to follow GPT-3 (Brown et al., 2020), i.e., 0.5M
token size. We use Adam (Kingma and Ba, 2015)
optimizer with β1 = 0.9, β2 = 0.98, ϵ = 10−6.
The code is based on TorchScale (Ma et al., 2022a).

4.2 Language Modeling

We measure perplexity on long document datasets,
which can show the model’s ability for long-
dependency modeling. We use books from Project
Gutenberg whose years are later than 2019 to en-
sure no overlap with PG19, and we name it as
PG22. Besides, we pick QMSum (Zhong et al.,
2021) from SCROLLS (Shaham et al., 2022) with
above 9k length on average. We care about the per-
formance on different input lengths to evaluate the
model’s interpolation and extrapolation capability.
For experiment results in Table 2, we divide the
same input into the target length to fairly compare
the perplexity of different lengths.

For interpolation capability, we analyze the re-
sults where the length is no more than 1024. Since
the validation distribution is very similar to training
data, all Transformers’ generalization capabilities
are also close. XPOS have a stable advantage on
others with a 0.09 perplexity drop on PG22, and
0.27 on QMSum, which proves that XPOS increases
the interpolation ability.

For extrapolation lengths, we do not use BCA
in other Transformers, and the following ablation
study will discuss the performance with that. Press
et al. (2021)’s experiment shows that most of the po-
sition strategies can’t deal with input length longer
than pre-training directly. XPOS shows a stable de-
crease when the sequence length increases, which
satisfies the assumption that a longer context makes
the prediction better. While others’ perplexity in-
creases when the input length is 4096.

To illustrate the tendency of perplexities, Fig-
ure 1 visualizes the relation between input length

and perplexity. When the length is larger than 4096,
Alibi’s perplexity increases gradually. However,
LEX’s perplexity decreases continuously when the
length extends to 8192.

The experiment shows that XPOS gets better per-
formance on language modeling. With the stable
advantage of any length, users can input any sen-
tence freely without the concern of position. Be-
sides, results also indicate that is not essential to
build an explicit decay on the attention matrix, In-
stead, a proper design for an attention mask is actu-
ally better to deal with long-context tasks.

4.3 Measuring Resolution
We empirically evaluate the resolution of different
Transformer variants. In the previous section, we
define attention resolution as a quality indicator of
position modeling in Transformers. The expecta-
tion of s[n] is computed as:

E[s[n]] =
1

N − n
E[

N−1∑

i=n

ai(i−n)] (13)

where aij has the same meaning in Equation 5.
Then the attention resolution can be calculated

by combining Equation (4) and Equation (13). The
final expectation is averaged over input texts and
different layers.

Table 3 reports the average resolution of various
Transformer variants. The results show that XPOS

makes the position more recognizable in both 1024
(i.e., training length) and 2048 (i.e., length extrap-
olation). For Alibi (Press et al., 2021), the stable
resolution comes from explicit decay, but it pre-
vents the model from learning position dependency
itself. In addition, we ablate BCA in 1024 and 2048.
The results support that BCA helps the model dis-
tinguish positions better, achieving higher attention
resolution.

4.4 Ablation Studies
4.4.1 Rotation Computation
As shown in Table 4, we discuss the necessity of
the combination of vector rotation and exponential
decay. XPOS without rotation means Equation (12)
degenerates to θi = 0:

ḟq(q, n) =




q1ζ̂
n
1

q2ζ̂
n
1

...
qn−1ζ̂

n
d/2

qnζ̂
n
d/2




ḟk(k, n) =




k1ζ̂
−n
1

k2ζ̂
−n
1
...

kn−1ζ̂
−n
d/2

knζ̂
−n
d/2
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Length 256 512 1024 2048 4096 8192
Interpolation Extrapolation

PG22

Transformer 38.1 33.5 30.54 132.46 1446.95 12747.41
Alibi 34.25 30.01 27.34 26.01 28.46 32.8
Roformer 33.27 29.2 26.68 68.86 235.71 458.83
LEX Transformer (Ours) 33.18 29.11 26.59 25.53 25.07 24.89

QMSum

Transformer 24.25 18.81 16.05 86.56 1196.92 10781.38
Alibi 22.85 17.74 15.17 13.97 15.36 18.37
Roformer 22.66 17.65 15.12 36.54 146.61 331.56
LEX Transformer (Ours) 22.01 17.24 14.85 13.92 13.56 13.48

Table 2: Results of perplexity with different lengths. The language models are trained with a length of 1024 and
then evaluated on various lengths. LEX obtains better performance not only on shorter texts (i.e., interpolation) but
also on longer texts (i.e., extrapolation). The red color indicates that the perplexity begins increasing compared with
the shorter length. LEX is the only method that has lower perplexity along with increased evaluation length.

Length 1024 2048
Interpolation Extrapolation

Transformer 0.87 0.28
Alibi 0.81 0.88
Roformer 0.91 0.08
LEX (Ours) 0.98 1.08
− BCA 0.98 0.54

Table 3: Results of resolution with different Transformer
variants. Higher resolution indicates that the architec-
ture tends to better distinguish context tokens. “BCA”
is short for blockwise causal attention.

Moreover, the setting of ζ = 0 is RoPE (Su et al.,
2021), which can be viewed as a special case of our
method. Besides, we discuss the situation when
ζ is a scalar instead of a vector, where we choose
ζ = γ/(1 + γ) as the value.

After pre-training on 1024, we evaluate the per-
plexity of PG22 with 1024 and 8192 lengths. Ta-
ble 4 shows that simple scaling operation can-
not match the performance of LEX. The vector
ζ also performs better than ζ = 0 and γ/(1 + γ).
Therefore, the combination of rotation and decay
means the combination of in-distribution and out-
of-distribution capability in terms of length.

4.4.2 Blockwise Causal Attention

As shown in Table 5, we run the evaluation using
different position embeddings (i.e., Absolute, Al-
ibi, ROPE, and XPOS) with or without blockwise

Methods 1024 8192
Interpolation Extrapolation

LEX 26.59 24.89
w/o Rotation 37.11 34.5
ζ = 0 26.68 26.16
Scalar ζ 26.85 25.1

Table 4: Ablation results on the PG22 set show that
rotation of XPOS is necessary for strong performance.

causal attention.
First, Blockwise Causal Attention works for

ROPE whose perplexity will explode without that.
Alibi performs well without windowed attention
because its “soft window” is broader than a hard
block window. However, when the sequence length
increases to 8192, windowed attention outperforms
vanilla attention again (also shown in Figure 1).
XPOS’s perplexity without BCA increases by about
1.5 in 2048, and 40 in 8192. However, with its
high resolution, XPOS can recognize position with
BCA’s constraint.

Besides, we compare BCA with Sliding Atten-
tion (Child et al., 2019). In this experiment, we set
the window size as 1024 to align with pre-training.
Sliding Attention performs better as shown in the
last row of Table 5 because its interaction range is
broader than Block Causal Attention. The reason
to use block windows instead of sliding windows
is efficiency. According to (Xiong et al., 2021),
the training speed of Blockwise Attention is 1.5x

14596



Methods 2048 8192
Extrapolation

Absolute 132.46 12747.41
Absolute + BCA 322.73 28787.01

ROPE 68.86 458.83
ROPE + BCA 26.37 26.16

Alibi 26.01 32.8
Alibi + BCA 27.53 31.82

XPOS 27.29 63.99
XPOS + BCA 25.53 24.89
XPOS + Sliding Window 25.33 24.61

Table 5: Results of perplexity on PG22 dataset. “BCA”
is short for blockwise causal attention.

faster than using sliding windows. Therefore, LEX
makes a trade-off and uses BCA in our implemen-
tation. Without losing generality, our method is
also compatible with Sliding Attention and other
local attention variants.

5 Related Work

5.1 Long-Sequence Transformers
Long-sequence Transformers aim to solve two key
problems. First, the computation or memory con-
sumption is not efficient enough for long sequences.
Second, there is a trade-off between performance
and efficiency.

One popular solution (Wang et al., 2020b;
Katharopoulos et al., 2020; Choromanski et al.,
2020) is linear attention, i.e., using a kernel-based
or low-rank approximation to replace vanilla atten-
tion. The methods typically target efficiency while
underperforming vanilla Transformers for regular
length. Another strand is sparse attention (Child
et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020;
Xiong et al., 2021), which usually leverages struc-
tured sparsity to reduce computation. For causal se-
quence modeling, the recurrent-style designs (Dai
et al., 2019; Hutchins et al., 2022; Ma et al., 2022b)
are also competitive.

In comparison, we focus on length extrapola-
tion (Press et al., 2021) for language modeling, i.e.,
training on short texts while evaluating long texts.
The training process is kept the same as vanilla
Transformers. The capability of long-sequence
modeling is given for free during inference. So
training efficiency (which is typically expensive
for large-scale language models) is not affected

compared with previous work. Moreover, the per-
formance on regular length is perfectly retained,
without trade-offs for long-sequence modeling.

5.2 Position Modeling
5.2.1 Absolute Position Embedding
Absolute sinusoidal position embedding is pro-
posed by Vaswani et al. (2017), which is the ini-
tial design of the Transformer. For each dimen-
sion, different frequencies are encoded from 2π to
10000× 2π:

PE(pos,2i) = cos(pos/100002i/dmodel)

PE(pos,2i+1) = sin(pos/100002i/dmodel)
(14)

where PEpos+k is represented as a linear function
of PEpos to restore a relative-position property.

5.2.2 Relative Position Embedding
Shaw et al. (2018) propose relative position em-
bedding as an alternative approach. Denote aij as
attention weight, αij = softmax(aij), oi as output,
we have:

aij =
qi · kj√

d
=⇒

qi · (kj + pK
ij )√

d

oi =
∑

j

αijvj =⇒
∑

j

αij(vj + pV
ij)

(15)

where pK
ij = ωK

min(i−j,k),p
V
ij = ωV

min(i−j,k), and
ωK and ωV are learnable parameters. The clipping
strategy helps length generalization but cannot dis-
tinguish the positions that are larger than k. Yang
et al. (2019) and He et al. (2020) further reparam-
eterize the relative position vectors for better per-
formance. T5 (Raffel et al., 2020) uses a simpler
strategy to encode relative position:

aij =
qi · kj√

d
+ pbucket(i−j) (16)

where log-bucket scalars are added to attention
scores. Recently, pre-defined position embedding
is brought back by ROPE (Su et al., 2021). Al-
ibi (Press et al., 2021) proposes to explicitly build
an exponential decay on the attention matrix, which
contributes to length extrapolation:

aij =
qi · kj√

d
−m(i− j), m(·) > 0 (17)

where the values of m(·) are manually defined.
However, Alibi (Press et al., 2021)’s performance
tends to be inferior to ROPE for the context whose
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length is shorter than the pre-training length. In this
work, we propose a theoretically derived relative
position embedding XPOS that optimizes the atten-
tion resolution between tokens. The XPOS method
not only has the nice property of length extrapola-
tion but also achieves strong performance.

6 Conclusion

We propose LEX Transformer to accurately capture
position information for Transformers. We define
attention resolution as the metric of length extrapo-
lation and design a solution to improve the model-
ing. Extensive experiments on language modeling
show that our method achieves lower perplexity
on longer sequences while training on short texts.
The simplicity also makes the method a go-to aug-
mentation for Transformer-based language models.
In addition, attention resolution provides a more
principled view for position modeling, which sheds
light on future architecture design.

Limitations

In this work, we focus on causal language mod-
eling. It needs additional efforts to integrate the
proposed methods into bidirectional attention, such
as masked language modeling (Devlin et al., 2019).
Moreover, XPOS introduces about 6% inference
cost compared with absolute position embeddings,
although it accelerates training convergence.
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A Additional Experiments

Besides the experiments in Section 4, we run lan-
guage modeling evaluation on Arxiv and Narra-
tiveQA (Kočiskỳ et al., 2018). The results are
shown in Table 6. These datasets have their short-
comings. The article length of Arxiv is usually less
than 8192, and part of NarrativeQA’s corpus is sam-
pled from PG19, which is in the training dataset.
Therefore, we show them in the appendix instead
of the main content.

B Hyperparameters for Pre-Training

As shown in Table 7, we present the hyper-
parameters for pre-training. The setting keeps
the same among all Transformer variants. We
follow medium-size GPT3 (Brown et al., 2020),
24 layers, 1024 hidden size, 4096 FFN inner hid-
den size, and 16 attention heads. The number
of batch tokens is 0.5M, for pre-training 1024,
and the number of batch sentences is 512. We
use Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9, β2 = 0.98, ϵ = 10−6. The warmup steps
are 20k, and we use 50k checkpoints for evaluation.
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Length 256 512 1024 2048 4096
Interpolation Extrapolation

arXiv

Transformer 29.74 23.6 19.59 102.09 1240.77
Alibi 26.53 21.07 17.53 15.38 16.88
Roformer 25.89 20.6 17.24 49.29 199.25
LEX Transformer (Ours) 25.73 20.48 17.14 15.81 15.19

NarrativeQA

Transformer 16.74 14.42 13.02 58.95 574.91
Alibi 15.58 13.45 12.15 11.4 12.09
Roformer 15.21 13.16 11.93 20.72 35.14
LEX Transformer (Ours) 14.82 12.86 11.67 11.14 10.93

Table 6: Results of perplexity with different lengths. The language models are trained with a length of 1024 and
then evaluated on various lengths. LEX obtains better performance not only on shorter texts (i.e., interpolation) but
also on longer texts (i.e., extrapolation). The red color indicates that the perplexity begins increasing compared with
the shorter length. LEX is the only method that has lower perplexity along with increased evaluation length.

Hyperparameters Value

Layers 24
Hidden size 1024
FFN inner hidden size 4096
Attention heads 16
Training steps 50K
Batch tokens per task 0.5M
Adam ϵ 1e-6
Adam β (0.9, 0.98)
Learning rate 3e-4
Learning rate schedule Polynomial
Warmup steps 20,000
Gradient clipping 2.0
Weight decay 0.01

Table 7: Hyperparameters used for language model pre-
training.
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