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Abstract

Explainable question answering (XQA) aims
to answer a given question and provide an ex-
planation why the answer is selected. Existing
XQA methods focus on reasoning on a single
knowledge source, e.g., structured knowledge
bases, unstructured corpora, etc. However, inte-
grating information from heterogeneous knowl-
edge sources is essential to answer complex
questions. In this paper, we propose to lever-
age question decomposing for heterogeneous
knowledge integration, by breaking down a
complex question into simpler ones, and se-
lecting the appropriate knowledge source for
each sub-question. To facilitate reasoning, we
propose a novel two-stage XQA framework,
Reasoning over Hierarchical Question Decom-
position Tree (RoHT). First, we build the Hier-
archical Question Decomposition Tree (HQDT)
to understand the semantics of a complex ques-
tion; then, we conduct probabilistic reasoning
over HQDT from root to leaves recursively, to
aggregate heterogeneous knowledge at differ-
ent tree levels and search for a best solution
considering the decomposing and answering
probabilities. The experiments on complex QA
datasets KQA Pro and Musique show that our
framework outperforms SOTA methods signifi-
cantly, demonstrating the effectiveness of lever-
aging question decomposing for knowledge in-
tegration and our RoHT framework.

1 Introduction

Explainable question answering (XQA) is the task
of (i) answering a question and (ii) providing an
explanation that enables the user to understand why
the answer is selected (Neches et al., 1985; Schuff
et al., 2020). It provides a qualified way to test the
reasoning ability and interpretability of intelligent
systems, and plays an important role in artificial
intelligence (Lu et al., 2022).

∗Indicates equal contribution.
†Corresponding author.

𝒒𝟎:Which is higher, the highest mountain in North 
America or the highest mountain in Africa?

𝒒𝟏: How high is the highest 
mountain in North America?

𝒒𝟐: How high is the highest 
mountain in Africa?

𝒒𝟓: How high is #4? 𝒒𝟔:Which mountain 
is the highest in 

Africa?

𝒒𝟕: How high is #6?𝒒𝟒:Which mountain 
is the highest in 
North America?

𝒒𝟑:[SelectBetween] 
[greater] #1 #2

Figure 1: An example of Hierarchical Question Decom-
position Tree (HQDT). qi represents the index of node
in its BFS ordering enumeration.

Recent work in XQA can be grouped into two di-
rections: 1) neuro-symbolic methods (Berant et al.,
2013; Liang et al., 2017; Cao et al., 2022b) translate
natural language questions into formal representa-
tions (e.g., SPARQL (Sun et al., 2020), KoPL (Cao
et al., 2022a), lambda-DCS (Liang, 2013), etc.),
whose execution on structured knowledge bases
(KBs) gives the answer. Here, the formal repre-
sentation acts as an explanation of the final answer.
2) Decompose-based models generate natural lan-
guage intermediate steps that lead to the final an-
swer (e.g., question decomposing which decom-
poses a complex question into sub-questions (Min
et al., 2019; Perez et al., 2020; Deng et al., 2022),
chain-of-thought prompting (Wei et al., 2022; Dua
et al., 2022; Khot et al., 2022), etc.). Here, the in-
termediate steps shows the rationale of reasoning.

Although achieving significant results, both di-
rections have key limitations. For neuro-symbolic
methods, the formal representation can only be ex-
ecuted on KBs. However, even the largest KBs are
incomplete, thus limits the recall of model. For
decompose-based methods, they employ free-text
corpora as the knowledge source, and the diversity
of natural language makes XQA difficult. In fact,
integrating knowledge from heterogeneous sources
is of great importance to QA (Wolfson et al., 2020),
especially for answering complex questions. Sev-
eral attempts have been made for knowledge inte-
gration (e.g., KBs, text corpora) (Sun et al., 2018,
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2019; Shi et al., 2021). Although promising, these
graph-based methods suffer from lacking explain-
ability or are constrained to limited reasoning ca-
pability.

Intuitively, leveraging question decomposing to
integrate heterogeneous knowledge sources is a
promising direction, since we can flexibly select
the appropriate knowledge source for each sub-
question. The challenges lie in: 1) How to de-
termine the granularity of question decomposing,
since certain complex questions can be directly
answered with a knowledge source, and further de-
composition increases the possibility of error. For
example, in Figure 1, q1 can be answered with the
Wikipedia corpus without further decomposition.
2) How to find the optimal solution among various
possible ones, since question decomposing and an-
swering are both uncertain. For example, q0 can
also be decomposed as “Which mountains are in
North America or Afirica”, “What’s the height of
#1”, “[SelectAmong] [largest] #2”.

To this end, we propose a novel two-stage XQA
framework Reasoning over Hierarchical Question
Decomspotion Tree, dubbed RoHT. First, we pro-
pose to understand the complex question by build-
ing its hierarchical question decomposition tree
(HQDT). In this tree, the root node is the original
complex question, and each non-root node is a sub-
question of its parent. The leaf nodes are atomic
questions that cannot be further decomposed. Com-
pared with existing representations that directly
decompose a question into the atomic ones, e.g.,
QDMR (Wolfson et al., 2020), our tree structure
provides the flexibility to determine solving a ques-
tion whether by directly answering or further de-
composing. Second, we propose probabilistic rea-
soning over HQDT, to fuse the knowledge from
KB and text at different levels of the tree, and take
into consideration the probability score of both tree
generation and answering. The reasoning process
is recursive, from the root to leaves, and constitues
three steps: 1) a scheduler determines the appro-
priate knowledge sources for a particular question
(from KB, text, or solving its children sequentially);
2) the corresponding executors output the answers
with probabilities; 3) an aggregator aggregates the
candidate answers from all the knowledge sources
and outputs the best ones.

In evaluation, we instantiate our RoHT frame-
work on two complex QA datasets: KQA Pro (Cao
et al., 2022a), where we remove half of the triples

in its KB and supplement it with Wikipedia corpus,
and Musique (Trivedi et al., 2022), where we take
Wikidata (Vrandecic and Krötzsch, 2014) as addi-
tional KB besides the given text paragraphs. Ex-
perimental results show that, RoHT improves the
performance significantly under the KB+Text set-
ting, by 29.7% and 45.8% EM score on KQA Pro
and Musique compared with existing SOTA model.
In addition, compared with the decompose-based
methods, RoHT improves the SOTA by 11.3% F1
score on Musique.

Our contributions include: 1) proposing to
leverage question decomposing to integrate het-
erogeneous knowledge sources for the first time;
2) designing a novel two-stage XQA famework
RoHT by first building HQDT and then reason-
ing over HQDT; 3) demonstrating the effective-
ness of our RoHT framework through extensive
experiments and careful ablation studies on two
benchmark datasets.

2 Related Work

2.1 QA over Text and KB

Over time, the QA task has evolved into two main
streams: 1) QA over unstructured data (e.g., free-
text corpora like Wikipedia); 2) QA over struc-
tured data (e.g., large structured KBs like DB-
pedia (Lehmann et al., 2015), Wikidata (Vrande-
cic and Krötzsch, 2014)). As structured and un-
structured data are intuitively complementary in-
formation sources (Oguz et al., 2022), several at-
tempts have been made to combines the best of
both worlds.

An early approach IBM Watson (Ferrucci, 2012)
combines multiple expert systems and re-ranks
them to produce the answer. (Xu et al., 2016) maps
relational phrases to KB and text simultaneously,
and use an integer linear program model to pro-
vide a globally optimal solution. Universal schema
based method (Das et al., 2017) reasons over both
KBs and text by aligning them in a common em-
bedded space. GraftNet (Sun et al., 2018) and its
successor PullNet (Sun et al., 2019) incorporate
free text into graph nodes to make texts amenable
to KBQA methods. TransferNet (Shi et al., 2021)
proposes the relation graph to model the label-form
relation from KBs and text-form relation from cor-
pora uniformly.

Although achieving promising results, these
methods lack interpretability or are constrained
to limited question type, i.e., TransferNet shows
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interpretability with transparent step transfering,
however, it can only answer multi-hop questions,
and cannot deal with questions that require attribute
comparison or value verification. In contrast, our
proposed framework shows great interpretability
with HQDT and cover more question types.

2.2 Question Decomposing

For datasets, KQA Pro (Cao et al., 2022a) proposes
to decompose a complex question into a multi-step
program KoPL, which can be executed on KBs.
BREAK (Wolfson et al., 2020) proposes to de-
compose questions into QDMR, which constitutes
the ordered list of steps, expressed through natu-
ral language. Musique (Trivedi et al., 2022) is a
QA dataset constructed by composing single-hop
questions obtained from existing datasets, and thus
naturally provides question decompositions.

For models, several attempts have been made
for learning to decompose with weak-supervision,
such as span prediction based method (Min et al.,
2019), unsupervised sequence transduction method
ONUS (Perez et al., 2020), AMR-based method
QDAMR (Deng et al., 2022). Another line of work
is to employ large language models with in-context
learning, such as Least-to-most Prompting (Zhou
et al., 2022), decomposed prompting (Khot et al.,
2022), successive prompting (Dua et al., 2022).

Compared with existing works, we are the first to
design a hierarchical question decomposition tree
for integrating information from multiple knowl-
edge sources.

3 Definition of HQDT

Formally, given a complex question, its HQDT is
a tree T . Each node qi ∈ T represents a ques-
tion. For root node, it represents the given complex
question, and for non-root nodes, it represents a
sub-question of its parent node. The leaf nodes are
simple ("atomic") questions that cannot be decom-
posed. Note that HQDT is a 3-ary ordered tree. As
shown in Figure 1, we enumerate the nodes of T
with BFS ordering, and q0 is the root question.

A question qi =
〈
w1, · · · , wj , · · · , w|qi|

〉
can

be categorized into one of the three types accord-
ing to the token vocabulary: 1) natural language
question (e.g., q4: “Which mountain is the high-
est in North America?”), here, wj ∈ V , and V
is the word vocabulary; 2) bridge question (e.g.,
q5: “How high is #4?”), here, wj ∈ V ∪ R, and
R is the reference token vocabulary. In this ques-

tion, “#4” refers to the answer of q4, which is the
sibling question of q5; 3) symbolic operation ques-
tion (e.g., q3: “[SelectBetween][greater] #1 #2”),
here, wj ∈ V ∪ R ∪ O, and O is the vocabulary
of pre-defined symbolic operations, which are de-
signed for supporting various reasoning capacity
(e.g., attribute comparison and set operation) and
are shown in appendix A in details. Note that all
the bridge questions and symbolic operation ques-
tions are atomic questions and can only appear in
leaf nodes.

For every non-leaf question qi, we define two
ordered lists:

• qi.children =
〈
qsti , · · · , qedi

〉
, which are

children of qi, successively indexed from sti
to edi. For example, for question q1 in Fig-
ure 1, q1.children is

〈
q4, q5

〉
.

• qi.atoms =
〈
ai1, · · · , aini

〉
, which is a list

of atomic questions deduced from the ni

leaf nodes of the sub-tree rooted by qi, by
rearranging the reference tokens. For ex-
ample, for q0 in Figure 1, its leaf nodes
is

〈
q4, q5, q6, q7, q3

〉
, and correspondingly,

q0.atoms is
〈
q4, q̃5, q6, q̃7, q̃3

〉
, with q̃5 as

“How high is #1?”, q̃7 as “How high is #3”, and
q̃3 as “[SelectBetween][greater] #2 #4”. The
detailed deduction algorithm is in appendix B
due to space limit. We also call qi.atoms the
atomic representation of qi.

Specially, among qi.children, qsti , . . . , qedi−1 are
all natural language questions, and qedi is either a
bridge question or a symbolic operation question.
Answering qi is semantically equivalent to answer-
ing sub-questions in qi.children or in qi.atoms
sequentially. The last question in qi.children or
qi.atoms returns the answer of qi.

4 Methodology

Our framework RoHT is composed of two stages:
1) Building HQDT. We understand the hierarchical
compositional structure of a complex question q0

by generating its HQDT T with probability, where
each question qi ∈ T has a score pig that represents
the certainty of its generation.

2) Probabilistic Reasoning over HQDT. We con-
duct recursive probabilistic reasoning over the
HQDT from root to leaves to solve q0. For each
question qi, we will utilize KBs, text and its child
questions together to get a list Ri, which contains
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answers of qi with probabilistic scores. Finally the
answer with the highest score in R0 will be picked
out as the final answer of q0.

The details are introduced as follows.

4.1 Building HQDT
To build the HQDT for a complex question, we
first generate its atomic representation, which cor-
responds the leaf nodes of HQDT, then generate
every non-leaf nodes based on this atomic represen-
tation. We compute certainty score of each node
based on the likelihood of each step of generation.

Building Leaf Nodes Given a complex question
q0, we first use a BART (Lewis et al., 2020)-based
question decomposer Mθ to generate its atomic rep-
resentation and output the likelihood of generation:

L0, ld = Mθ(q
0). (1)

Here, L0 = a01 ⟨sep⟩ a02 ⟨sep⟩ . . . ⟨sep⟩ a0n0
is the

serialization of q0.atoms, where ⟨sep⟩ is a separat-
ing token. ld = Pr(L0|q0; θ) is the likelihood of
generation. Since q0 is the root of T , each atomic
question in q0.atoms corresponds to a leaf node in
T (with the deterministic algorithm in Appendix C),
and the certainty score of each leaf node in T is ld.

Building Non-leaf Nodes Based on q0.atoms,
we can generate all the non-leaf questions in HQDT.
The root question is just q0 and thus has cer-
tainty score p0g = 1. For every other non-leaf
question qi, its atomic representation qi.atoms =
⟨ai1, . . . , aini

⟩ can be translated from a specific sub-
set of q0.atoms by rearranging the reference to-
kens. The subset can be determined by consider-
ing the reference relations of a bridge or symbolic
operation question a0j ∈ q0.atoms, which corre-
sponds to the leaf node qedi , with other questions in
q0.atoms. We show the details in Appendix C. For
example, q2.atoms in Figure 1 is (“Which moun-
tain is the highest in Africa?”, “How high is #1?”),
and it can be obtained from (a03, a

0
4) in q0.atoms.

Then we can use a BART-based question generator
Mϕ to generate qi from qi.atoms:

qi, lig = Mϕ(L
i), (2)

where Li = ai1 ⟨sep⟩ ai2 ⟨sep⟩ . . . ⟨sep⟩ aini
is the

serialized qi.atoms, and lig = Pr(qi|Li;ϕ) is the
likelihood of qi given Li. The certainty score of qi

is computed as:

pig = ld · lig. (3)

Learning of Question Decomposer and Genera-
tor The question decomposer Mθ can be trained
with paired (q0, q0.atoms) data, where the atomic
representation can be from either given annotation
or unsupervised construction. The question genera-
tor Mϕ can also be trained with the same data by
exchanging the input and output. The details are
shown in Section 5.2.

4.2 Probabilistic Reasoning over HQDT
f(qi, pig, G,C) → Ri : {(ansij , pij)}, (4)

where ansij is an answer of qi, and score pij repre-
sents the certainty of ansij .

As shown in Figure 3, the implementation of f
contains tree steps: 1) a scheduler determines the
suitable knowledge sources for a particular ques-
tion, i.e., whether the question can be answered
from KB, text, or by solving its child questions
sequentially; 2) according to the suitable sources
output by the scheduler, executors aim to get the
answers with probabilities via executing on KB
(KB executor) or retrieving from text (text execu-
tor), or answering the child questions (call f recur-
sively); 3) an aggregator aggregates candidate an-
swers from all the knowledge sources and outputs
the top-k answers according to their probabilities.
In the following, we will introduce their details
when answering qi.

Scheduler We formalize the scheduler as:

suitkb, suittext, suitchild = Scheduler(qi, G,C),
(5)

Where suitkb, suittext and suitchild are 0/1 vari-
ables, respectively representing whether the an-
swers of qi are suitable to get from the KB G, the
corpus C, or by solving qi.children sequentially.

Specifically, to check whether G is suitable, the
scheduler employs a semantic parser (Cao et al.,
2022a) Msp to parse qi into a program K with
probability pparse:

K, pparse = Msp(q
i). (6)

Then it classifies the type of qi according to the
function skeleton of K. For example, the func-
tion skeleton of K in Figure 2 is “Find-Relate-
FilterConcept-SelectAmong”. If the precision of G
on the questions that have the same function skele-
ton with K is larger than a predefined threshold γ
1, the scheduler will set suitkb to be 1.

1The precision of KB is calculated with questions in train-
ing set
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𝒒𝒊: How high is the 
highest mountain in 
North America?
𝒑𝒈𝒊 : 0.98

Scheduler

𝒔𝒖𝒊𝒕𝐭𝐞𝐱𝐭: Yes
𝑪𝒆𝒊 : [ “Denali is the highest mountain peak 
in North America, with a summit elevation of 
20,310 feet above sea level” , …]

𝒔𝒖𝒊𝒕𝐤𝐛: No
𝑲: [Find] <arg> North America <func> 
[Relate] <arg> mountain range <arg> 
backward <func> [FilterConcept] <arg> 
mountain range <func> [SelectAmong] 
<arg> elevation above sea level <arg> 
largest
𝒑𝒑𝒂𝒓𝒔𝒆: 0.96

𝒔𝒖𝒊𝒕𝐜𝐡𝐢𝐥𝐝: Yes

𝑹𝒕𝒆𝒙𝒕𝒊 : [ (“20310 feet”, 0.96) ]

Text Executor

KB Executor

𝑹𝒌𝒃
𝒊 : []

Aggregator

𝑹𝒆𝒅𝒊: [ (“6190m”, 0.95), 
(“20310 feet”, 0.92) ]

𝒒𝒔𝒕𝒊 Scheduler … Aggregator 𝑹𝒔𝒕𝒊

𝒒𝒆𝒅𝒊 Scheduler Aggregator…

𝒒𝒔𝒕𝒊6𝟏 Scheduler Aggregator 𝑹𝒔𝒕𝒊6𝟏…
…

𝑹𝒊 : [ (“20310 feet”, 0.96), 
(“6190m”, 0.95) ]

Return 
empty set

Return 
empty set

if suitable

if suitable

else

else

…
Replace reference tokens

Knowledge sources:
knowledge base 𝐺,
text corpus 𝐶.

Figure 2: Illustration of the recursive reasoning function f . For a question qi, f uses the scheduler to determine
suitable knowledge sources and calls executors to retrieve answers from them. f also recursively calls itself to get
answers from the children of qi. Finally the answers from different sources are fused by the aggregator.

To check whether the corpus C is suitable, the
scheduler tries to find a set of evidence paragraphs
for qi. If C is too large, the scheduler will first
use BM25 (Robertson and Zaragoza, 2009) to re-
call dozens of most relevant paragraphs. For each
paragraphs, we train a RoBERTa (Liu et al., 2019)-
based selector Msl to classify whether it is an evi-
dence paragraph for qi. Suppose the set of selected
evidence paragraphs, Ce is not empty, the scheduler
will set suittext as 1.

To make best use of knowledge from all levels,
the scheduler simply set suitchild to be 1 if qi is a
non-leaf question otherwise 0.

Executors For the KB executor, it takes the pro-
gram K in Equation 6 on KB G to get the answers,
and takes the parsing score pparse in Equation 6 to
calculate the probability score for each answer:

Ri
kb = {(ansikb,j , p

i
g · pparse)}. (7)

For the text executor, it takes the selected para-
graph set Ce as described above, and employs a
Transformer-based reading comprehension model
Mrc to extract answers from Ce:

{(ansitext,j , p
i
ex,j)} = Mrc(q

i, Ce),

Ri
text = {(ansitext,j , p

i
g · piex,j)}.

(8)

where piex,j is the extraction probability of ansitext,j
given by Mrc.

For solving qi by answering its children, f will
recursively call itself to solve qsti , . . . , qedi in or-

der:

Rsti = f(qsti , pstig , G,C),

Rsti+1 = f(qsti+1, psti+1
g , G,C), (9)

. . .

Redi = fref(q
edi , pedig , G,C, [Rsti , . . . , Redi−1]),

and let
Ri

child = Redi . (10)

Here, fref is a variant of f to solve bridge and sym-
bolic questions, which refer to the answers of their
sibling questions. Suppose qedi refers to the an-
swers of its siblings qr1 , . . . , qrhi in order. If qedi is
a bridge question, fref will 1) convert qedi into sev-
eral possible natural language question q1nl, . . . , q

K
nl

by replacing the reference tokens with every com-
bination ((xk1, v

k
1 ), . . . , (x

k
hi
, vkhi

)) ∈ Rr1 × · · · ×
Rrhi , 2) call f to solve each qknl and 3) fuse the an-
swers from each Rk

nl and select the top-k answers
with the highest scores:

{(ansknl,j , p
k
nl,j)} = f(qjnl, p

i
g, G,C),

Rk
nl = {(ansknl,j , Avg(pknl,j , v

k
1 , . . . , v

k
hi
))},

Redi = Select(R1
nl, . . . , R

K
nl ) (11)

Note that the score of answer ansknl,j is computed
by averaging pknl,j and vk1 , . . . , v

k
hi

, instead of mul-
tiplying them, to avoid exponential shrink during
recursion. If qedi is a symbolic operation ques-
tion with operation op and arguments, fref will ex-
ecute simple program to apply the operation op
over Rr1 , . . . , Rrhi to get Redi . The score of each
answer ansedij is computed as the average of pedig

and the scores of answers in Rr1 , . . . , Rrhi used by
the program to get ansedij .
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Aggregator The aggregator fuses Ri
kb, Ri

text and
Ri

child by selecting the top-k answers with the high-
est scores from them. If several answers have the
same surface form, only the one with the highest
score will be preserved.

Ri = Aggregator(Ri
kb, R

i
text, R

i
child). (12)

5 Experiments

5.1 Datasets

Currently, there are few high-quality complex QA
datasets based on both KBs and text. Previous
methods (Sun et al., 2018, 2019; Shi et al., 2021)
evaluated their models on MetaQA (Zhang et al.,
2018) by pairing its KB with the text corpus of
WikiMovies (Miller et al., 2016). However, the
questions in MetaQA are too simple since there are
only 9 relations in its KB. Therefore, we conduct
our experiments on two more challenging complex
QA datasets: KQA Pro and Musique, and their
details are as follows.

KQA Pro (Cao et al., 2022a) is a large scale com-
plex QA dataset, including 120k diverse natural lan-
guage questions up to 5 hops over KB. Its KB is a
subset of Wikidata (Vrandecic and Krötzsch, 2014),
and consists of 16k entities, 363 predicates, 794
concepts and 890k triple facts. For each question,
KQA Pro also provides the corresponding KoPL
program. To simulate the realistic case where KB
is incomplete, following (Sun et al., 2019; Shi et al.,
2021), we randomly discard 50% triples in the KB
and take Wikipedia as supplementary text corpus.

Musique (Trivedi et al., 2022) is a multi-hop QA
dataset over text, including 25k 2-4 hop questions.
We evaluate our framework under Musique-Ans
setting where all the questions are answerable. Its
questions are carefully constructed from several
single-hop QA datasets via manually composition
and paraphrase, and are hard to cheat via reason-
ing shortcut. For each complex question, Musique
gives 20 paragraphs (including annotated evidence
paragraphs and distractor paragraphs) as the cor-
pus. Specially, for each question in the training set,
Musique also provides a golden atomic represen-
tation, together with the answer and the evidence
paragraph of each atomic question. In addition to
the given paragraphs, we choose Wikidata as the
KB to acquire additional knowledge.

5.2 Implementations

KQA Pro For the experiments of KQA Pro, a key
challenge is that there are no annotations for atomic
representation, which are required for training the
question decomposer and generator in RoHT. Be-
cause the KoPL program of a complex question fol-
lows context free grammar, every atomic question
will correspond to a specific span of the program.
Therefore we first split the KoPL program into sub-
programs according to the grammar, then use each
sub-program to generate the atomic question by
applying BART model fintuned with the (KoPL,
question) pairs from the original dataset. For the
answers for each atomic question, we execute the
corresponding sub-programs on the KB to get corre-
sponding answers. Using these constructed atomic
representations, we train two BART-base models
as the question decomposer and generator, respec-
tively.

For the scheduler, we directly use the semantic
parser trained by (Cao et al., 2022a) on KQAPro,
and set the precision threshold γ to be 0.7. We
train a RoBERTa-large as the evidence selector via
weak supervised method: for each question in the
training set and constructed atomic representations,
we first use BM25 to recall 10 related paragraphs
from wikipedia, then take the paragraphs that con-
tain the answer as positive samples and take other
recalled paragraphs as negative samples. For the
text executor, we also train a BART-large reading
comprehension model on these positive samples.

Musique Since Musique provides golden atomic
representation for every complex question in the
training set, we directly use them to train BART-
base models as question decomposer and genera-
tor. For the scheduler, we adapt semantic parser
trained by (Cao et al., 2022a) on Wikidata. The
KB precision threshold γ is set to be 0.4, which is
determined by the top-10 types of questions with
the highest precision. We train the RoBERTa se-
lector model on complex and atomic questions
in the training set together, taking annotated ev-
idence paragraphs as positive samples and distrac-
tor paragraphs as negative samples. For the text
executor, we pre-train a Longformer-large (Belt-
agy et al., 2020) reading comprehension model
on SQUAD (Rajpurkar et al., 2016), then finetune
it on complex questions and atomic questions of
Musique.
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Model Overall Multihop Qualifier Comparison Logical Count Verify Zero-shot
50% KB
KVMemNN 17.72 17.63 18.53 1.39 15.48 28.38 59.30 0.06
RGCN 34.77 33.71 28.44 31.46 35.39 39.76 64.27 0.06
BART KoPL 38.04 33.10 29.40 51.81 29.92 33.69 60.12 29.03
RoHTKB 38.94 34.16 31.54 50.91 31.61 33.69 60.4 30.52
50%KB + Text
TransferNet 16.80 15.94 17.93 45.35 14.84 10.47 0.00 8.43
RoHTmix 46.45 41.76 41.73 52.21 41.95 31.26 65.45 38.76

Table 1: EM results on the dev set of KQA Pro. RoHT outperforms all the baselines by a large margin and achieves
the best performance on most types of questions.

5.3 Baselines

we compare RoHT with several representative
methods for complex QA, including memory-based
methods, graph-based methods, and XQA methods.
KVMemNN (Miller et al., 2016) stores encoded
knowledge in key-value memory and iteratively
reads the memory to update the query vector to
conduct multi-hop reasoning.
RGCN (Schlichtkrull et al., 2018) is a variant of
graph convolutional network and utilizes the graph
structure of KB to tackle complex questions.
BART KoPL (Cao et al., 2022a) is a BART-based
semantic parser which can convert complex ques-
tion into KoPL program. It achieves over 90%
accuracy on KQA Pro on the complete KB.
SA (Trivedi et al., 2022) is a two-stage model that
first uses a RoBERTa-large selector to rank and se-
lect the K most relevant paragraphs with the ques-
tion and then uses a Longformer-large answerer to
predict answer based on selected paragraphs.
EX(SA) (Trivedi et al., 2022) is the state-of-the-art
model on Musique. It first explicitly decomposes
the complex question into atomic representation
and then calling SA model repeatedly to answer
each atomic question in order.
TransferNet (Shi et al., 2021) iteratively trans-
fer entity scores via activated path on the relation
graph that consists of both text-form relations and
KB-form relations. It is existing state-of-the-art
model that utilizes both KBs and text as knowledge
soruces, and nearly solves MetaQA. We reimple-
ment it on both KQA Pro and Musique, and the
details are shown in Appendix D.
RoHT: RoHTKB, RoHTtext and RoHTmix denote
the RoHT models that only use KB, only use text
and use both KB and text, respectively.

5.4 Main Results
5.4.1 Results on KQA Pro
The experimental results for KQA Pro are shown
in Table 1. When using only the incomplete
KB, RoHTKB model respectively improves EM by
21.22, 4.17 and 0.90 compared to KVMemNN,
RGCN and BART KoPL, showing the benefit of
integrating the answers of sub-questions of differ-
ent levels. After adding Wikipedia as supplemen-
tary text corpus, RoHTmix yields substantial im-
provement compared with RoHTKB (7.51 on EM),
demonstrating the effectiveness of utilizing knowl-
edge from KB and text together. RoHTmix also
outperforms TransferNet, which is end-to-endly
trained with a mixed relation graph, by a large mar-
gin (29.65 on EM). This is because unlike graph-
based methods, RoHT explicitly shows the compo-
sitional structure of a complex question in natural
language form via HQDT generation, and thus can
retrieve answers from the KB and text with more
advanced and flexible sub-modules (e.g., semantic
parser and reading comprehension model). More-
over, our designed atomic operations in the HQDT
also enable RoHT to solve a wide variety of com-
plex questions: we can see that RoHTmix achieves
the best results on 6 types of questions among 7
types, showing comprehensive reasoning capacity.

5.4.2 Results on Musique
Table 2 presents the results on the dev set of
Musique dataset. As expected, our RoHT models
show significant improvement over all the base-
lines. With only given paragraphs, RoHTtext im-
proves EM/F1 by 13.8/14.3 and 11.6/11.9 com-
pared with SA and EX(SA), respectively; With
both text and KB, the performance of RoHTmix is
also remarkably better than TransferNet (62.3 v.s.
10.9 on F1). Comparing RoHTtext and RoHTmix,
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Model EM F1
Text
SA 39.3 47.3
EX(SA) 41.5 49.7
RoHTtext 53.1 61.6
Text+KB
TransferNet 8.6 10.9
RoHTmix 54.4 62.3

Table 2: EM and F1 results on the dev set of
Musique. Compared with state-of-the-art methods,
RoHT achieves significant improvement.

Model KQA Pro Musique
RoHTmix 46.5 54.4
w/o scheduler 40.7 47.0
RoATmix 32.3 47.6

Table 3: EM performance of RoHTmix with and without
scheduler, and EM performance of RoATmix.

we can also see some benefits of supplementing
the text information with KB information, though
the improvement is smaller than supplementing
the KB with text on KQA Pro because KBs have
lower coverage than text and the semantic parser
is not specially finetuned for questions of Musique.
We submit the predictions of RoHTmix on the test
set and achieve 63.6 F1 score, which significantly
outperforms the best public result 52.3.

5.5 Further Analysis
5.5.1 Effect of Scheduler
To show the effect of the scheduler module, we
remove it from the RoHTmix model, i.e, default
that the KB and recalled/given text paragraphs are
suitable for all questions in the HQDT, and evaluate
the performance again on the dev set of KQA Pro
and Musique. The results are shown in Table 3. We
can see that after discarding the scheduler, the EM
performance on KQA Pro and Musique drops by
5.8 and 7.4, respectively. Therefore, it is important
to use the scheduler to select suitable knowledge
sources for each question.

5.5.2 Effect of Hierarchical Decomposition
Many existing methods generate non-hierarchical
decomposition of complex questions, similar to
the atomic representation, to assist reasoning (Min
et al., 2019; Wolfson et al., 2020; Deng et al., 2022).
To demonstrate the superiority of hierarchical de-
composition, we compare our RoHTmix model with

𝒒𝟎:Why did Roncalli leave the city where the 
painter of Venus with a Mirror died?

𝒒𝟏:Where did the creator of The 
Venus with a Mirror die?

𝒒𝟐:Why did Roncalli leave #1?

𝒒𝟒: Where did #3 die?𝒒𝟑: The Venus with a Mirror 
was made by whom?

Question: Why did Roncalli leave the city where the painter of Venus with a Mirror died? 

Suitable sources: KB, text
KB ans:  [ (“Titian”, 0.93) ]
Text ans: [ (“Titian”, 0.97) ]
Final ans: [ (“Titian”, 0.97) ]

Suitable sources: KB, text 
KB ans: []
Text ans: [ (“Washington”, 0.95) ]
Final ans: [ (“Washington”, 0.95) ]

Suitable sources: KB, text, 
children 
KB ans: []
Text ans: [ (“Venice”, 0.88) ]
Child ans: [ (“Washington”, 0.95) ]
Final Ans: [ (“Washington”, 0.95), 
(“Venice”, 0.88) ]

Suitable sources: text
Text ans: [ (“the death of Pope Pius 
XII”, 0.81), (“for the conclave in 
Rome”, 0.93) ]
Final ans: [ (“for the conclave in 
Rome”, 0.93), (“the death of Pope 
Pius XII”, 0.81) ]

Suitable sources: text, children
Text ans: [ (“for the conclave in Rome”, 0.91) ]
Child ans: [ (“for the conclave in Rome”, 0.93), 
(“the death of Pope Pius XII”, 0.81) ]
Final Ans: [ (“for the conclave in Rome”, 0.93), 
(“the death of Pope Pius XII”, 0.81) ]

RoHT RoAT

𝒂𝟏𝟎: The Venus with a Mirror was 
made by whom?

Suitable sources: KB, text
KB ans:  [ (“Titian”, 0.93) ]
Text ans: [ (“Titian”, 0.97) ]
Final ans: [ (“Titian”, 0.97) ]

𝒂𝟐𝟎: Where did #1 die?
Suitable sources: KB, text 
KB ans: []
Text ans: [ (“Washington”, 0.95) ]
Final ans: [ (“Washington”, 0.95) ]

𝒂𝟑𝟎:Why did Roncalli leave #2?    
Suitable sources: text
Text ans: [ (“the death of Pope Pius XII”, 
0.81)]
Final ans: [ (“the death of Pope Pius XII”, 
0.81) ]

replace reference
tokensreturn children answers

Figure 3: A case from Musique. We mark the correct
answers in green and the wrong answers in red.

RoATmix model, which uses the same scheduler, ex-
ecutors, and aggregator as RoHTmix, but solves the
complex question by directly answering the atomic
questions in its atomic representation in order. As
shown in Table 3, RoHTmix outperforms RoATmix

by a large margin on both KQA Pro and Musique.
This is because the hierarchical structure of HQDT
enables RoHT model to fuse the knowledge from
KBs and text at different question levels, and to dis-
card wrong answers via comparing the problisitic
scores of answers.

To further understand the reason, we show a case
from Musique in Figure 3. We can see that both
RoHTmix and RoATmix fail to answer the question
“Where did (Titian) die?” (q4 in the left, a02 in
the right). However, RoHTmix directly extracts the
correct answer of q1 from text and finally gets the
correct answer of q0 with the highest score, while
RoHTmix fails to solve a03 because it must rely on
the wrong answer from a02.

6 Conclusion

In this paper, we propose RoHT, an understanding-
reasoning XQA framework that uses both a KB and
a text corpus to derive answers of complex ques-
tions. RoHT first builds the HQDT for a complex
question to understand its hierarchical composi-
tional structure, then conducts recursive probabilis-
tic reasoning over the HQDT to solve the ques-
tion, integrating answers from the KB, text, and
sub-questions. Experiments show that RoHT sig-
nificantly outperforms previous methods. We also
demonstrate the superiority of HQDT compared
with non-hierarchical decomposition.
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7 Limitation

Currently, RoHT framework is restricted to incor-
porating KBs and text. However, since RoHT re-
trieves answers from each knowledge source in a
separate way, it could in principle utilize knowl-
edge from more heterogeneous sources such as
tables, and we will study this in future work. In
addition, a device with large storage space and
memory is needed for the storage and usage of
Wikipeida and Wikidata.
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A Atomic Operations

We design 6 atomic operations: Verify, SelectBe-
tween, SelectAmong, Count, Intersection, Union,
to support various reasoning capacity. We show
their input, output, and examples in Table 4.

B Get Atomic Representation from Leaf
Nodes

Algorithm 1 describes that how to get the atomic
representation of a question qi ∈ T from the leaf
nodes in the sub-tree rooted by qi.

Algorithm 1 Get Atomic Representation from Leaf
Nodes
Input: An HQDT T and a index i.
Output: qi.atoms

1: function DFS(j, atoms, ids, n)
2: if qj is a leaf question then
3: n← n+ 1
4: ids[j]← n
5: a← qj

6: for k in GetRefTokens(qj) do
7: if qk is a leaf question then
8: a← ModifyRefTokens(a, k, ids[k])
9: else

10: a← ModifyRefTokens(a, k, ids[edk])
11: atoms.append(a)
12: return
13: for k ← stj , . . . , edj do
14: Dfs(k)
15:
16: qi.atoms← []
17: ids← empty dict
18: Dfs(i, qi.atoms, ids, 0)

C Pseudocode for Building HQDT

Algorithm 2 shows the pseudocode for generating
the HQDT of a complex question with probability.

D Reimplementation of TransferNet

To reimplemente TransferNet, we build the mixed
relation graphs that consist of both label-form rela-
tions (i.e., KB triples) and text-form relations for
KQA Pro and Musique, respectively, and train the
models with the open source code. We show the
details of graph building as follows.

KQA Pro We follow the method used by the orig-
inal paper on MetaQA to build the relation graph
of KQA Pro. As mentioned in Section 5.2, we use
half of its KB triples as the label form. We con-
structe the text form by extracting sentences from
Wikipedia. Following the original paper, we use
exact match of surface forms for entity recognition

Algorithm 2 Generation of HQDT
Input: a complex question q0, a question decomposer Mθ , a

question generator Mϕ.
Output: a list T representing the HQDT, where element

(qi, pig, fai) in T denote a sub-question qi, certainty score of
qi and the father of qi, respectively.

1: function REARRANGEREFTOKENS(ar)
2: atoms← []
3: ids← empty dict
4: h← 0
5: for (i, ai) in ar do
6: h← h+ 1
7: ids[i]← h
8: for k in GetRefTokens(ai) do
9: ai ← ModifyRefTokens(ai, k, ids[k])

10: atoms.append(ai)

11: return atoms
12:
13: ([a0

1, . . . , a
0
n0

], ld)←Mθ(q
0)

14: n← n0

15: T ← []
16: for i← 1, 2, . . . , n0 do
17: (qi, pig)← (a0

i , ld)

18: ari ← [(i, a0
i )]

19: if a0
i contains referring tokens then

20: r1, . . . , rh ← GetRefTokens(a0
i )

21: n← n+ 1
22: arn ← []
23: for j ← r1, . . . , rh, i do
24: if faj has been identified then
25: qi ← ModifyRefTokens(qi, j, faj)
26: j ← faj

27: faj ← n
28: T .append((qj , pjg, faj))

29: arn.extend(arj)
30: qn.atoms← RearrangeRefTokens(arn)
31: Ln = Serialize(qn.atoms)
32: (qn, lng )←Mϕ(L

n)
33: png ← ld · lng
34: T .append((q0, 1, 0)) ▷ directly use q0 as root
35: T ← ReIndexByBFS(T )
36: return T

and linking. For every entity in the KB, we recall
all the paragraphs in Wikipedia titled by it, then
take the entity as subject and other relevant entities
appeared in these paragraphs as objects. The sen-
tences that contain the objects are selected as the
relation texts. The recall of answer is 51%, i.e, for
51% questions, there exist a complete path from
the topic entity to the answer in the relation graph,
and this is a upper bound for the performance of
TransferNet.

Musique For each question in Musique, we uti-
lize the 20 given paragraphs to build individual re-
lation graph. Specifically, we first identify entities
mentioned in these paragraphs via Spacy (Honnibal
et al., 2020) and exact match of surface forms with
Wikidata entities. Then we take the co-occuring
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Operation Argument Input → Output Example

Verify Value, > / < / = / != (Value) → (Bool) [Verify] [2005] [<] #3
(1998) → (yes)

SelectBetween greater / smaller (Value, Ent) (Value, Ent) → (ENT) [SelectBetween] [smaller] #3 #4
(6670 km, Nile River) (6440 km, Amazon River) → (Amazon River)

SelectAmong largest / smallest [(Value, Ent)] → (Ent) [SelectAmong] [largest] #1
[(8848m, Everest) (8611m, K2) (8516m, Makalu)] → (Everest)

Count / [(Ent)] → (Value) [Count] #2
[(Bronny James) (Bryce James) (Zhuri James)] → (3)

Intersection / [(Ent)] [(Ent)] → [(Ent)] [Intersection] #1 #2
[(apple) (orange) (peach)] [(orange)] → [(orange)]

Union / [(Ent)] [(Ent)] → [(Ent)] [Union] #1 #2
[(apple) (orange)] [(orange) (peach)] → [(apple) (orange) (peach)]

Table 4: Atomic operations proposed for QDKT, along with the corresponding examples. Ent, Value, Pred, and
Bool denote entity, attribute, predicate, and boolean variable, respectively. () means tuple and [] means list.

sentences of two entities as the text-form, and take
the triples in Wikidata whose subject or object is
one of these entities as the label-form. The recall
of answer is 72%.
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