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Abstract

Open domain question answering (ODQA) is
a longstanding task aimed at answering factual
questions from a large knowledge corpus with-
out any explicit evidence in natural language
processing (NLP). Recent works have predomi-
nantly focused on improving the answering ac-
curacy and have achieved promising progress.
However, higher accuracy often requires more
memory consumption and inference latency,
which might not necessarily be efficient enough
for direct deployment in the real world. Thus, a
trade-off between accuracy, memory consump-
tion and processing speed is pursued. In this
paper, we will survey recent advancements in
the efficiency of ODQA models and conclude
core techniques for achieving efficiency. Addi-
tionally, we will provide a quantitative analysis
of memory cost, query speed, accuracy, and
overall performance comparison. Our goal is
to keep scholars informed of the latest advance-
ments and open challenges in ODQA efficiency
research and contribute to the further develop-
ment of ODQA efficiency.

1 Introduction

Open domain question answering (Voorhees and
Tice, 2000) is a longstanding task in natural lan-
guage processing that can answer factoid ques-
tions, from a large knowledge corpus such as
Wikipedia (Wikipedia, 2004) or BookCorpus (Zhu
et al., 2015). Traditional QA models rely on ex-
plicit evidence texts to locate the answer (Cao et al.,
2019; Khashabi et al., 2020; Huang et al., 2021),
while ODQA models require the processing of
large amounts of knowledge quickly to answer in-
put questions. And compared to search engines,
ODQA models aim to enhance user-friendliness by
presenting the final answer to a question directly,
rather than returning a list of relevant snippets or
hyperlinks (Zhu et al., 2021).

∗*Corresponding author.

Recently, ODQA systems have attracted consid-
erable research attention and a classic framework
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Figure 1: The general pipeline of ODQA models is shown in
(I), along with three different ODQA frameworks: Retriever-
Reader (a), Retriever-Only (b), and Generator-Only (c).

of the ODQA system is implemented by encom-
passing an information retriever (IR) and a reader,
i.e., Retriever-Reader (Chen et al., 2017). The task
of IR is to retrieve evidence pieces from a large
knowledge corpus. Popularly used IR can be TF-
IDF (Chen et al., 2017), BM25 (Mao et al., 2021)
and DPR (Karpukhin et al., 2020), etc. The target
of the reader is understanding and reasoning the
retrieved evidence to yield the answer. It is often
achieved by transformer-based language models,
such as BERT (Devlin et al., 2019), ALBERT (Lan
et al., 2019) or generator T5 (Raffel et al., 2020),
BART (Lewis et al., 2020a), GPT (Brown et al.,
2020), etc. This two-module system enjoys a broad
range of applications (Zhu et al., 2021).

However, most general-purpose ODQA models
are computationally intensive, slow to infer, and
expensive to train. One of the reasons is the huge
index/document size. For example, Karpukhin et al.
(2020) processed an English Wikipedia corpus in-
cluding 26 million articles and built a dense in-
dex with a size of 65GB. Besides, the majority of
general-purpose ODQA models are developed with
large pre-trained language models, which often con-
tain millions of parameters. For instance, the state-
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of-the-art ODQA models on the Natural Question
dataset, R2-D2 (Fajcik et al., 2021) and UnitedQA
(Cheng et al., 2021) have 1.29 billion and 2.09
billion model parameters, respectively. Storing
the corpus index and pre-trained language models
is memory-intensive (Xia et al., 2022) while evi-
dence retrieving and reading are memory and time
consuming. These make general-purpose ODQA
models a big challenge for real-time use (Seo et al.,
2019), such as on a mobile phone.

Towards this challenge, there are various trade-
offs in building ODQA models that meet real-world
application needs, such as the trade-offs among ac-
curacy, memory consumption, inference speed, and
so on (Izacard et al., 2020; Wu et al., 2020; Mao
et al., 2021). NeurIPS 2020 organized an Efficien-
tQA Competition (Min et al., 2021), aiming to build
ODQA systems that can predict correct answers
while also satisfying strict on-disk memory budgets.
For this purpose, a line of work focused on building
more efficient protocols. Besides Retriever-Reader,
Retriever-Only (Lee et al., 2021b), Generator-Only
(Roberts et al., 2020) are newly proposed proto-
cols. See Fig. 1 for more details. Various effi-
ciency techniques are also developed, such as in-
dex downsizing (Yamada et al., 2021; Lewis et al.,
2022), fast searching (Lewis et al., 2021; Malkov
and Yashunin, 2020), evidence retrieval or read-
ing omitting (Roberts et al., 2020; Seonwoo et al.,
2022; Lee et al., 2021b) and model size reducing
(Yang and Seo, 2021; Singh et al., 2021) etc.

In this survey, we provide a comprehensive intro-
duction to the broad range of methods that aim to
improve efficiency with a focus on the ODQA task.
In Section 2, we overview general-purpose ODQA
models and discuss their strategies and limitations
in terms of efficiency. In Section 3, we first walk
through the key ODQA models which concentrate
on efficiency, then conclude the core techniques
used. Section 4 gives a quantitative analysis with
an overall comparison of different frameworks and
three specific aspects, i.e., memory cost, process-
ing speed, and accuracy. Finally, in Section 5, we
discuss the challenges reminded followed by the
conclusion given in Section 6.1

2 Overview of ODQA models

In this section, we summarize ODQA models into
three typical frameworks (see in Fig. 1): Retriever-

1We accompany the survey with a repository that lists the
resources: https://github.com/hyintell/EfficientODQA.

Reader, Retriever-Only, and Generator-Only. As
described in Section 1, Retriever-Reader models
include two modules: a retriever and a reader. For
retrievers, traditional non-neural methods, such as
TF-IDF (Chen et al., 2017) and BM25 (Mao et al.,
2021), use sparse representations to measure term
matching between questions and passages. How-
ever, these approaches can only capture lexical in-
formation, limiting capabilities in matching ques-
tions and passages (Qu et al., 2021). Differently, re-
cent neural network-based dual-encoder retrievers
(Karpukhin et al., 2020) encode questions and doc-
uments into a latent dense vector space where text
semantics beyond terms can be adequately learned
and measured. For readers, considering the way
of obtaining answers, there exist two categories:
extractive readers and generative readers. Extrac-
tive readers normally answer the question using a
span from the context and the goal is to classify
the start and end positions of the answer in the re-
trieved evidence (Karpukhin et al., 2020; Qu et al.,
2021). And generative readers are not restricted to
the input context and freely generate answers by au-
toregressively predicting tokens (Raffel et al., 2020;
Izacard and Grave, 2021). Distinctively, Retriever-
Only models only use one retriever to extract an-
swers directly from a phrase or QA-pair knowl-
edge base. And Generator-Only models directly
generate answers with the question, not involving
evidence retrieval and reading (Lee et al., 2021c;
Lewis et al., 2021).

Retriever-Reader ODQA methods generally ob-
tain good performance. However, due to dense
encoding for corpus passages and longer evidence
for answer reasoning, they normally suffer from a
larger index size and a slower processing speed. In
addition, the dual-encoder retrievers like DPR, en-
coding for questions and documents independently,
ignored interaction between them and limited the
retrieval performance (Khattab et al., 2021; Lu
et al., 2022). In Retriever-Only ODQA models, the
omission of the reading/generating step greatly im-
proves the speed of answering questions. But there
are a few limitations for Retriever-Only ODQA
models: (1) lower performance on average com-
pared to Retriever-Reader ODQA models since less
information is considered during answer inference;
(2) high storage requirement in terms of indexes
for fine-grained retrieval units such as phrases or
QA pairs. For Generator-Only ODQA models,
skipping evidence retrieving and reading makes
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low memory costs and short processing time than
two-stage systems. However, the performances of
Generator-Only ODQA methods have much room
for improvement. Additionally, real-world knowl-
edge is updated routinely, and the huge training cost
of the generative language models makes it labori-
ous and impractical to keep them always up-to-date
or retrain them frequently. Billions of parameters
also make them storage-unfriendly and hard to ap-
ply on resource-constrained devices (Roberts et al.,
2020). A diagram is provided with the typology of
ODQA methods in Fig. 4 in the Appendix, while
their main concerns are also indicated.

3 Efficient ODQA Models and Techniques

In this section, we first walk through the key ODQA
models which concentrate on efficiency, and dis-
cuss their strengths and weaknesses as well as their
unique characteristics in Section 3.1. Then we con-
clude the core techniques used in these models for
improving the efficiency of ODQA, from data and
model perspectives, respectively, in Section 3.2.

Before we start, we first take DPR on the Nat-
ural Questions (NQ) test dataset as an example to
show the time each module needs during inference
and their detailed memory costs in Fig. 2. We can
see the total processing time DPR needs is 0.91
seconds (s)2 where the inference speed is mainly
affected by evidence searching (74.79%) and read-
ing (23.95%). The total memory cost of DPR is
79.32GB which is huge. The index takes up 81.95%
of the memory, the raw corpus takes 16.39% space,
and the remaining 1.66% are for the models where
the retriever model is around twice the size of the
reader model.

Based on these observations, how to improve
the efficiency of ODQA models focuses on the re-
duction of processing time and memory cost. To
reduce processing time, we can accelerate evidence
searching and reading. To reduce the memory cost,
we can reduce the size of the index and model. Be-
sides, some emerging directions are also proposed,
such as jumping the retrieval part to generate an-
swers using questions directly or retrieving answers
directly to omit evidence reading. We introduce the
details below.

3.1 Walk through Efficiency ODQA Models

In this subsection, we delve into the details of ef-
ficiency ODQA models. We categorize them into

2The passages in the corpus are embedded offline.
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Figure 2: Query processing time and memory for DPR on NQ
test set. We test them on an Nvidia GeForce Rtx 2080 Ti GPU
and show the average results of 1000 examples.

three classes regarding the different means of imple-
menting efficiency, i.e., reducing processing time,
reducing memory cost, and blazing new directions.

3.1.1 Reducing Processing Time

When giving a question, the processing time for
ODQA involves three stages: question embedding,
evidence searching, and evidence reading. Whereas
evidence searching and evidence reading occupy
most of the processing time, researchers mainly
focus on narrowing the time cost of the two stages.
By Accelerating Evidence Searching. Other than
the traditional brute search method (Zhan et al.,
2021), hierarchical navigable small world graphs
(HNSW) (Malkov and Yashunin, 2020) and the
approximate nearest neighbor (ANN) search (John-
son et al., 2021) techniques become increasingly
popular, due to the characteristic of fast searching.

DPR (Yamada et al., 2021) and RePAQ (Lewis
et al., 2021) adopt HNSW to achieve much faster
search without a significant decline in retrieval ac-
curacy. However, the negative effect HNSW brings
is a larger index. For example, DPR with HNSW
increases the index from 65GB to 151GB (Yamada
et al., 2021). Besides, Locality Sensitive Hashing
(LSH) (Neyshabur and Srebro, 2015) and Inverted
File (IVF) (Sivic and Zisserman, 2003) are both
efficient ANN methods to speedup search (Yamada
et al., 2021; Lewis et al., 2022), but they often lead
to a significant drop of retrieval accuracy (Yamada
et al., 2021; Lewis et al., 2021, 2022). Concretely,
LSH generates the same hashkey for similar em-
beddings through suitable hash functions, and then
evidence retrieval is based on hashkeys (Wang et al.,
2022). IVF constructs two-level indices using the
K-means clustering method (Lewis et al., 2022).
Different from LSH which can reduce the index
size, IVF does not achieve this goal. Compared
to LSH and IVF, Learned Index for large-scale
DEnse passage Retrieval (LIDER) (Wang et al.,
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2022) makes a trade-off between search speed
and retrieval accuracy through dynamically learn-
ing a corpus index when training. It achieves a
faster search with a fewer drop in retrieval accu-
racy compared IVF, by predicting the location from
the learned key-location distribution of the dataset.
Specifically, LIDER builds two-level indices with
a similar method IVF uses. LIDER further maps
the documents in indices into hashkeys using the
LSH method and sorts them based on the hashkeys.
Meanwhile, the hashkeys are also used to train a
multi-layer linear regression model for the loca-
tion prediction of a hashkey in the sorted indexes.
During inference, with a query embedded by DPR
(Karpukhin et al., 2020), LIDER first calculates
its hashkey, and finds its c nearest centroids. With
these centroids, LIDER then searches the top-p
nearest evidence in each subset in parallel. Finally,
it merges all the retrieved evidence and selects the
top-k ones as output. To conclude, LIDER is a pow-
erful, efficient, and practical method for ODQA
evidence searching.

By Accelerating Evidence Reading. Accelerating
the evidence reading is another effective way to
speed up the question processing of ODQA mod-
els. Actually, in the retrieved evidence, a high
percentage of content is not pertinent to answers
(Min et al., 2018). However, the reader module
still allocated the same computational volume to
these contents, which involves many unnecessary
computations and prolongs the inference latency
(Wu et al., 2020). Thus, the jumping reading strat-
egy is proposed and studies have found it can bring
certain inference speedup (Wu et al., 2020; Guan
et al., 2022). Concretely, the jumping reading strat-
egy dynamically identifies less relevant text blocks
at each layer of computation by calculating an im-
portant score for each text block. Toward blocks
with low scores, they will not be further involved
in the subsequent processing.

Adaptive computation (AC) (Bengio et al., 2015;
Graves, 2016) and Block-Skim (Guan et al., 2022)
are efficient methods to ameliorate the reading effi-
ciency following jumping reading strategy which
manipulates the allocation of computation of the
model input (Wu et al., 2020, 2021). SkyLineB-
uilder (Wu et al., 2020) applies AC to an extrac-
tive reader and dynamically decides which passage
to allocate computation at each layer during read-
ing. Further, Adaptive Passage Encoder (APE) (Wu
et al., 2021) considers applying the AC strategy to

Fusion-in-Decoder (FiD) system. In APE, the AC
strategy is used to early stop the encoder of the
generator to read the evidence that is less likely to
include answers. Meanwhile, inspired by the idea
of passage filtering before retrieval (Yang and Seo,
2021), Block-Skim (Guan et al., 2022) is proposed
which skips question-irrelevant text blocks to op-
timize the reading speed. It first slices an input
sequence into text blocks with a fixed length. A
CNN module is utilized to compute the importance
score for each block in each transformer layer, then
the unimportant blocks are skipped. Block-Skim
implements an average of 2.56 times speedup in-
ference than BERT-based models with little loss of
accuracy on multiple extractive QA datasets. This
enlightens us that all BERT-based Retriever-Reader
ODQA models can be optimized by Block-skim to
speed up their inference.

3.1.2 Reducing Memory Cost
For ODQA models, there are three kinds of mem-
ory cost: index, model, and raw corpus. Normally,
reducing the sizes of the index and model are two
ways to break through and to achieve storage ef-
ficiency, while reducing raw corpus size results
in certain knowledge source loss and a significant
drop in performance (Yang and Seo, 2021).
By Reducing Index Size. The index of a corpus
takes a major proportion of memory cost during
running an ODQA system. The evidence-searching
module, which is strongly related to the index size,
is also the module that takes the most time during
reference. Thus, downsizing the index is key to
improving the efficiency of ODQA models. A line
of research has tried to achieve this goal.

BPR (Yamada et al., 2021) and DrBoost (Lewis
et al., 2022) are representative works in this direc-
tion. BPR reduces the index size by sacrificing data
precision while DrBoost achieves this through com-
pacting embedding dimension (Lewis et al., 2022).
Specifically, BPR (Yamada et al., 2021) leverages a
learning-to-hash technique (Cao et al., 2017; Wang
et al., 2018) to hash continuous passage vectors into
compact binary codes, which is different from DPR
(Karpukhin et al., 2020) utilizing dense continuous
embeddings of corpus passages. It optimizes the
search efficiency of the retriever while maintain-
ing accuracy through multi-target joint learning:
evidence retrieval and reranking. During retrieval,
top-c passages are retrieved with the Hamming
distance of the binary codes. Then, the retrieved
evidences are reranked with maximum inner prod-
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uct search (MIPS) (Shrivastava and Li, 2014; Guo
et al., 2016) between the query dense vector and
the passage binary codes. Finally, the top-k ev-
idences are outputted, where k is much smaller
than c. Differently, DrBoost (Lewis et al., 2022), a
dense retrieval ensemble method inspired by boost-
ing (Freund and Schapire, 1997), incrementally
compacts the dimension of representations during
training. Concretely, it builds sequentially mul-
tiple weak learners and integrates them into one
stronger learner. Each weak learner consists of a
BERT-based dual-encoder for encoding passages
and questions by learning embeddings in low di-
mensions, normally 32-dim. The weak learners
are trained iteratively using hard negative samples.
The final embeddings for passages and questions
are a linear combination of embeddings from all
weak learners. Thus the dimension of the final em-
bedding can be controlled by the iterative rounds
during training, which makes the total embedding
dimension flexible and the index size adjustable.
One limitation of DrBoost is that it must keep mul-
tiple encoders simultaneously to compute the final
representation of the question during inferring. To
remedy this issue, DrBoost further distills all R
question encoders (32 dim) into a single encoder
(32*R dim). Therefore, the single encoder out-
puts the final question embedding directly, which
achieves the goal of low resources.

By Reducing Model Size. Besides downsizing the
index, compressing model is another way to cut
the memory cost of ODQA systems. One way to
accomplish this goal is building a comprehensive
model to implement retrieval and reading simulta-
neously, instead of multiple models in traditional
ODQA systems.

YONO (You Only Need One model) (Lee et al.,
2021a) is a representative model in this way, which
integrates retriever, reranker, and generator models
into a T5-large based singular transformer pipeline.
In this way, YONO achieves a less than 2GB model
size which is as large as EMDR2 (Singh et al.,
2021), and a higher QA performance. This makes
YONO the best performance among models that
are under the size of 2GB. Moreover, YONO can
further manipulate its model size by adding or
removing certain layers flexibly. To be specific,
YONO first discards 18 decoder layers of the T5-
large model and splits the rest model into four parts.
The first 12 layers are for evidence retrieval; the
middle 4 layers are for evidence reranking; the fol-

lowing 8 layers are for impressive encoding and
the last 6 layers are for decoding. The hidden rep-
resentations are progressively improved along the
pipeline. A fully end-to-end training over all stages
is performed to make full use of the capability of
all modules. However, YONO still needs to do
evidence indexing and searching, which is time-
consuming. Thus, how to improve the processing
speed of YONO is still a problem that needs to be
solved urgently.

3.1.3 One-stage Frameworks
Besides the methods which accelerate evidence
searching and reading and the methods that reduce
the size of the index and model, some one-stage
frameworks are proposed as well, such as gener-
ating the answer using the input question directly
or retrieving answers directly from a finer-grained
knowledge base (ie., phrases or question-answer
pairs).
Directly Generate Answers. Some researchers
blazed a brand new path that omits the whole ev-
idence retrieval process, including corpus index-
ing and evidence searching, by leveraging genera-
tive language models (such as T5, BART, GPT) to
tackle ODQA tasks (Roberts et al., 2020; Brown
et al., 2020; Lewis et al., 2020a). Generative mod-
els have learned and stored the knowledge of a
large-size corpus. Given a question, they can gen-
erate the answers directly. Without the evidence re-
trieval process, they save much processing time dur-
ing ODQA, making them inference efficient. The
main advantage of Generator-Only methods is that
they can answer open-domain questions without
any access to external knowledge (Roberts et al.,
2020). And they output the literal text of the an-
swer in a more free-form fashion. However, gener-
ally, there is a significant gap in QA performance
between generative models and Retriever-Reader
ODQA models, as well as the adequacy of explana-
tion. Thus, single generator-based ODQA models
are further combined with existing evidence re-
triever models (Lewis et al., 2020b; Izacard and
Grave, 2021; Singh et al., 2021) to obtain better
QA performance.
Directly Retrieve Answers. As discussed in the
first few paragraphs of Section 3, evidence reading
takes non-negligible processing time. An innova-
tive idea to improve the efficiency of ODQA is to
omit evidence reading. Without evidence reading,
the document corpus is first preprocessed into a
knowledge base offline. When encountering a new
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sample, the model searches the final answer from
the knowledge base for the question directly (Seo
et al., 2019; Lee et al., 2021b; Lewis et al., 2021).

RePAQ (Lewis et al., 2021) is representative of
this framework. It first converts a large corpus to
a knowledge base of question-answer (QA) pairs
using a question generation model, then uses a
lightweight QA-pair retriever to answer the ques-
tions. When inferring, it first calculates the similar-
ity between the input question and each one in the
knowledge base using the maximum inner product
search (MIPS) technique (Shrivastava and Li, 2014;
Guo et al., 2016), to retrieve the most similar QA
pairs. The answer to the most similar question is re-
turned as the output answer directly. However, the
220GB index for the 65 million QA pairs becomes
a major drawback for RePAQ. Similarly, phrase-
based ODQA models, such as DenSPI (Seo et al.,
2019) and DensePhrases (Lee et al., 2021b), split
the corpus documents into fine-grained phrases.
They build an index for these phrases which can
be retrieved directly as the predicted answers. Sim-
ilar to RePAQ, omitting evidence reading makes
phrase-based ODQA models faster than Retriever-
Reader ODQA models when processing questions,
as analyzed in Section 4.3.

3.2 Core Techniques

This section concludes the core techniques com-
monly used in existing ODQA models with respect
to improving efficiency. It can be briefly divided
into two categories: data-based and model-based
techniques. Data-based techniques mainly focus on
the reduction of the index, which can be downsized
from different hierarchies such as the number of
corpus passages, feature dimension, and storage
unit per dimension. Model-based techniques try to
reduce the model size while avoiding a significant
drop in performance. Model pruning and knowl-
edge distillation are commonly used techniques.

3.2.1 Data-based techniques
Passage Filtering. Among the huge corpus ODQA
models rely on, there are massive passages that
contain little useful information and are unlikely to
be evidence for answers. Thus, filtering unrelated
passages is a way to reduce the memory cost of cor-
pus without a large negative impact. For example,
some researchers have designed a linear classifier
to discriminate and discard unnecessary passages
before evidence retrieval (Izacard et al., 2020; Yang
and Seo, 2021).

Dimension Reduction. Another way to reduce the
memory cost is to reduce the dimension for dense
passage representations. To achieve this goal, Izac-
ard et al. (2020) learns an additional feed-forward
layer to project the high-dimensional embeddings
to lower ones. Principle component analysis (PCA)
is another efficient technique that is commonly
used to reduce the dimension of passage represen-
tations without a loss of important information (Ma
et al., 2021; Zouhar et al., 2022). In work Ma et al.
(2021), PCA is used to build a projection matrix to
project the raw data onto the principal components
using an orthonormal basis.
Product Quantization. Product quantization (PQ)
(Jégou et al., 2011) further reduces the index size
by reducing the storage cost of each dimension of
the embeddings. It divides a d-dimensional vector
into n sub-vectors with d/n dimension and quanti-
fies these sub-vectors independently using k-means
(Izacard et al., 2020; Ma et al., 2021; Yang and Seo,
2021). However, PQ also results in a significant
drop in accuracy while it reduces the index size.

The three techniques introduced above are
adopted jointly in Fusion-in-Decoder with Knowl-
edge Distillation (FiD-KD) (Izacard et al., 2020) to
reduce the memory cost of one ODQA system. It
obtains competitive performance compared to the
original system while compressing memory from
more than 70GB to less than 6GB.

3.2.2 Model-based techniques
Model Pruning. Most recent works on open do-
main question answering (Chen et al., 2017; Guu
et al., 2020) prefer to adopt large pre-trained lan-
guage models (Devlin et al., 2019; Raffel et al.,
2020) as passage retriever, reader or generator due
to their powerful deep semantic understanding ca-
pability. These large models have millions or even
billions of parameters, requiring large storage, long
training time, and leading to slow inference. To
this point, some researchers have turned to adopt
more lightweight language models (Yang and Seo,
2021). For example, a smaller pre-trained language
model, MobileBERT (Sun et al., 2020), has been
used to reduce the size of an ODQA system to
972MB (Yang and Seo, 2021). Parameter sharing
is another way to constrain the model size. Sky-
linebuilder (Wu et al., 2020) and RePAQ down-
size their model by using the parameter sharing
encoders, i.e., ALBERT (Lan et al., 2019). More
lightweight pre-trained language models have been
proposed and verified in other natural language
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tasks, such as machine reading comprehension (Fan
et al., 2019; Sajjad et al., 2020; Lagunas et al., 2021;
Xia et al., 2022). They obtain smaller model sizes
and achieve high accuracy for downstream tasks,
including ODQA tasks.
Knowledge Distillation. Compared to structure
pruning, knowledge distillation pays more atten-
tion to effectively improving question processing
speed. Knowledge distillation, which transfers
knowledge from a large model into a small one,
has been widely used in several NLP tasks, includ-
ing ODQA and MRC tasks (Sanh et al., 2019; Sun
et al., 2020; Izacard and Grave, 2020; Lewis et al.,
2022; Yang and Seo, 2021). For example, Minimal
R&R system (Yang and Seo, 2021) and DrBoost
(Lewis et al., 2022) both integrate multiple modules
into a single one via knowledge distillation.

4 Quantitative Analysis

This section gives a quantitative analysis of the
aforementioned ODQA models. We first give an
overall comparison of different frameworks and fur-
ther discuss the methods quantitatively from three
specific aspects: memory cost, processing speed,
and accuracy3. At the end of the analysis, the fol-
lowing subsection summarizes and concludes what
has been analyzed and discussed.

4.1 Overall Comparison

In Table 1 in Appendix B, we demonstrate a com-
prehensive comparison of efficiency-related ODQA
models from three aspects: memory cost, process-
ing speed, and answering quality. Specifically, to-
tal memory storage, detailed model size, and in-
dex size are listed to show details of memory cost.
The number of questions that can be answered per
second (Q/s) demonstrates the processing speed.
Exact match (EM) scores on Natural Questions
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017) datasets indicate answering quality.

Concerning comparison between different frame-
works, we can see that two-stage methods
(Retriever-Reader) generally obtain better ODQA
performances than one-stage methods (i.e.,
Retriever-Only and Generator-Only). The best
end-to-end EM performance on NQ (55.9%) and
TriviaQA (74.8%) datasets are obtained by R2-
D2+reranker and GAR_extractive respectively.

3We summarize the corpus and the related partition and
segmentation strategies, as well as metrics introduction in
Appendix B

They are both under the Retriever-Reader frame-
work. The second-best ODQA performances on
NQ (54.7%) and TriviaQA (72.1%) are obtained
by UnitedQA and Fid-large+KD_DPR methods,
which are also under the two-stage frameworks.

In terms of total memory cost, i.e., the sum
of model size and the index size, Generator-Only
systems keep generally low memory overhead. Ex-
cept GPT-3, the rest of the Generator-Only systems
take less than 50GB of memory, and five meth-
ods out of the eight are less than 5GB. On the
contrary, most Retriever-Only ODQA models re-
quire huge memory, normally greater than 200GB.
The method DenSPI needs a 2002.69GB memory
cost, which is enormous. Retriever-Reader ODQA
models have a wide range in terms of memory
cost, from 0.31GB to 363.26GB. Overall speaking,
Minimal R&R achieves the smallest memory over-
head (0.31GB) while DenSPI keeps the largest one
(2002.69GB).

In terms of processing speed, which determines
how fast one ODQA system can answer a given
question, one-stage methods generally achieve
higher processing speed than two-stage methods,
especially Retriever-Only systems. Among the
eight Retriever-Only methods, five of them can pro-
cess more than 20 questions per second (Q/s) and
RePAQ_XL and RePQA_base can answer 800 and
1400 questions per second respectively, which is
impressive. For the methods with slow processing
speed, Fig-large and RAG-seq from the Retriever-
Reader framework are the two slowest systems,
which process less than 1 question per second.

To conclude, Fig. 3 gives a visual presenta-
tion for comprehensive comparison of efficiency-
related ODQA models according to different frame-
works. By using the NQ evaluation dataset as an
example, it illustrates the detailed model size, index
size, EM scores, and processing speed respectively.
From Fig. 3, we can see each framework has its
strengths and weaknesses. Retriever-Only systems
achieve significantly high processing speeds but
cost enormous memory storage. Generator-Only
systems require the least memory storage. How-
ever, the main concern of them is the answering
quality while the majority of these systems’ EM
scores are less than 30% on NQ datasets. Two-
stage Retriever-Reader systems relatively behave
balanced. They achieve high EM scores and obtain
moderate memory cost and processing speed.
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Figure 3: Comprehensive comparison of ODQA models in terms of memory cost, processing speed, and EM accuracy on NQ
evaluation dataset. The extractive-reader and generative-reader ODQA systems both belong to Retriever-Reader ODQA systems.

4.2 Details in Memory Cost

The total memory cost depends on the model size
and the index size.
Index Size. For the index size, the two kinds of
one-stage frameworks are two extremes. Generator-
Only methods do not require creating an index
file while Retriever-Only methods generally need
a huge storage space for index. Most two-stage
methods have a moderate index of 65GB or less.

For Retriever-Reader ODQA systems, the 65GB
index set of dense passage embedding, developed
by DPR (Karpukhin et al., 2020), is the most com-
monly adopted index set. It is adopted by 17 meth-
ods as we listed in Table 1 in Appendix B. Based
on this index set, DrQA and GAR_extractive repre-
sent passages into sparse vectors, obtained a much
smaller index size (26GB) (Chen et al., 2017; Mao
et al., 2021). Through the product quantization
(PQ) technique, DPR+PQ compresses the index
size from 65GB to 2GB and the index size of
RePAQ is from 220GB to 48GB. On the other side,
BPR (Yamada et al., 2021) creates a small index
of less than 2.1GB. It also improves the answer-
ing performance from 41.6% to 49% on the NQ
dataset by replacing the BERT-based reader with
the ELECTRA-large reader. Meanwhile, Minimal
R&R (Yang and Seo, 2021) establishes the small-
est index of less than 0.15GB with a price of a

significant drop in ODQA performance has been
paid.

For Retriever-Only ODQA systems, Den-
SPI+Sparc (Lee et al., 2020) and DensePhrase
(Lee et al., 2021b) smallen the phrase index by
pointer sharing, phrase filtering, and PQ. How-
ever, the phrase index is still larger than 1000GB.
DensePhrases further cuts down the index to
320GB by omitting sparse representations and us-
ing SpanBERT-based encoder while a relatively
high performance remained. SpanBERT-based rep-
resents phrases into a lower-dimension space (Joshi
et al., 2020) than that in DenSPI+Sparc. And Dr-
Boost (Lewis et al., 2022) builds an index under
1GB where a passage is represented with a 190-dim
vector through the boosting and PQ techniques.

Model Size The model size involves all modules
present in one ODQA system, including the re-
triever and the reader. It has a great range, from
0.04GB to 700GB. Among all mentioned ODQA
models, a quarter of ones have model sizes less
than 1GB; the model sizes of 40% systems are be-
tween 1∼2GB and 12.5% ones have sizes between
2∼3GB; 7.5% systems have model sizes between
3∼4GB; the remaining 15% models weigh larger
than 4GB. Specifically, GPT-3 (Brown et al., 2020)
has an extremely huge model size of 700GB. Be-
sides it, another three systems are obtaining rela-
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tively large models: T5-1.1-XL_SSM (45.27GB)
(Roberts et al., 2020), UnitedQA (8.36GB) (Cheng
et al., 2021) and R2-D2+reranker (5.16GB) (Faj-
cik et al., 2021), while the system with the small-
est model (0.04GB) is achieved by RePAQ-base
(Lewis et al., 2021). Specifically, GPT-3 keeps
the largest model (700GB) and achieves relatively
high performance, i.e., 71.2% EM on TriviaQA
(top 1) and 29.9% EM on NQ dataset (top 3), com-
pared to other models with the same Generator-
Only framework. Minimal R&R (Yang and Seo,
2021) cuts down the total model size to 0.17GB.
DrQA (Chen et al., 2017) has a small total model
size 0.27GB in that its retriever is non-parameter
BM25 and the reader relies on LSTM with fewer
parameters. GAR_extractive (Mao et al., 2021)
maintains a small total model size and achieves the
best performance on TriviaQA (74.8%) and similar
performance with DPR on NQ (41.8%). RePAQ
(Lewis et al., 2021) achieves the smallest model
of 0.04GB. It also gains competitive performance
compared to DPR.

Most ODQA models are implemented with
PLMs that are less than 2GB. A few ODQA models
keep the total model size more than 3GB to achieve
higher performance, like FiD-large+KD_DPR
(Izacard and Grave, 2020), RePAQ+FiD_large
(Lewis et al., 2021), UnitedQA (Cheng et al., 2021)
and R2-D2_reranker (Fajcik et al., 2021). As they
employ either larger or more pre-trained language
models to focus on improving performance.

4.3 Details on Latency

In terms of latency, i.e., processing speed, most
ODQA models answer less than 10 questions per
second. Retriever-Only ODQA models bring faster
processing speed than the other three frameworks.
Compared to phrase-base systems, the QA-pair-
based system RePAQ (Lewis et al., 2021) and its
variants win the fastest inference speed among the
listed ODQA models, up to 1400 Q/s. Generator-
Only ODQA models also achieve higher Q/s than
Retriever-Reader ODQA models, as they do not
need retrieving evidence from a larger corpus
which is time-consuming.

5 Discussion

In this section, we summarize and illustrate the
insights and future directions from the following
aspects. We first summarize the key points to im-
prove the effectiveness of ODQA systems, from

the two aspects of index and model respectively. In
terms of index size, it is worth exploring deeper on
generative models and the techniques of compact-
ing embedding. In terms of model size, knowledge
distillation is a promising direction to reduce model
size while another direction is the application of
lightweight models. In addition, one-stage ODQA
models are also worthy of research.

Additionally, we provide some advice on model
recommendations under different requirements.
For example, if we pursue real-time feedback,
Retriever-Only systems should be good choices; if
we are limited by computing resources, Generator-
Only systems are suitable candidates; and if we
need to trade off performance, memory cost and
processing time, Retriever-Reader systems are rela-
tively more appropriate. In general, for researchers
who are interested in improving the state-of-the-art
efficiency methods on ODQA tasks, this survey can
serve as an entry point to find opportunities for new
research directions.

However, some salient challenges need to be ad-
dressed in the way of ODQA efficiency research.
One of the worrisome things is that most ODQA
approaches are computation-heavy and energy-
expensive. How can the ODQA system be de-
ployed in low-power devices with limited com-
puting resources and mobile devices is still very
challenging. Another thing is that it seems to be in-
adequate to evaluate the efficiency of ODQA mod-
els only on accuracy, memory, and processing time,
due to many other factors that should be considered
and traded off. For example, it is also important
to establish what resource, e.g., money, time, and
data for model training, power consumption, car-
bon emissions, etc.

6 Conclusion

In this survey, we retrospected the typical liter-
ature according to three different frameworks of
open domain question answering (ODQA) systems.
Further, we provided a broad overview of existing
methods to increase efficiency for ODQA models
and discussed their limitations. In addition, we per-
formed a quantitative analysis in terms of efficiency
and offered certain suggestions about method selec-
tions of open domain question answering. Finally,
we discussed possible open challenges and poten-
tial future directions of efficient ODQA models.
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7 Limitations

It seems to be difficult to evaluate the efficiency of
ODQA models fairly and impartially due to multi-
ple factors that should be considered and need to
be traded off. On the one hand, it is not enough to
only use accuracy, memory, and processing time
to evaluate effectiveness. It is also important to
establish what resource, e.g., money, power con-
sumption, carbon emissions, etc., one attempt to
constrain (Treviso et al., 2022). On the other hand,
how to deploy models and what tools model imple-
mentation relies on contributes to inequity growth
(Blodgett et al., 2020). It is extremely challenging
to unify the deployment of all models and the tools
they rely on and to achieve a truly fair and unbiased
effectiveness comparison.
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the accuracy, inference speed, and memory cost
of open domain question answering systems. We
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Figure 4: Typology of ODQA systems and their main concerns in terms of accuracy, memory size, and processing speed. The
symbol ✓in this figure demonstrates whether the corresponding models consider the concerns in terms of accuracy, index size,
and speed respectively, or not.

A Connection to Existing Related Surveys

ODQA has been discussed and summarized with
a broad overview of techniques for NLP in several
survey papers. However, they more focus on deep
neural models for improving ODQA performance.
Specifically, the survey given by Huang et al.
(2020) introduces deep learning-based ODQA mod-
els proposed in the early years, which are mainly
based on LSTM or CNN. Modern Transformer-
based ODQA models are not included. Work given
by Zhu et al. (2021) provides a comprehensive lit-
erature review of ODQA models, with particular
attention to techniques incorporating neural ma-
chine reading comprehension models. Guo et al.
(2022) focuses on the semantic models of the first-
stage retrieval models. Shen et al. (2022) pays more
attention to how to train the dense retrievers effec-
tively with fewer annotation training data. Treviso
et al. (2022) retrospects the efficient methods in nat-

ural language processing (NLP). It mainly involves
the upstream generic pre-trained language mod-
els and training methods. Etezadi and Shamsfard
(2022) mainly concentrates on the comparison of
ODQA methods for complex question answering.
As far as we know, there is no survey summarizing
ODQA methods from the efficiency perspective
so far, which inspires us to overview the efficient
ODQA models in this paper.

B Corpus and Metrics Normally Used

Corpus. The most commonly used corpus for open
domain question answering systems is the 2018-
12-20 dump of Wikipedia corpus, which contains
21 million 100-word-long passages after remov-
ing semi-structured data (tables, information boxes,
lists, and the disambiguation pages) (Karpukhin
et al., 2020). Most ODQA models, such as Rock-
etQA (Qu et al., 2021), FiD (Izacard and Grave,
2021), and R2-D2 (Fajcik et al., 2021), directly
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Table 1: Comprehensive analysis of memory cost (model size, index size, and the total size), processing speed, and EM accuracy
on NQ. Results marked with symbol ∗ were obtained on an Nvidia GeForce Rtx 2080 Ti GPU over 100 examples.

Frameworks Systems
Grouped by

Memory Cost(GB)
Memory Cost(GB)

Processing
Speed

EM
score (%)

Models Index Total Q/s NQ TriviaQA

R
et

ri
ev

er
-R

ea
de

r

E
xt

ra
ct

iv
e-

R
ea

de
r

Minimal R&R

(0, 10]

0.17 0.15 0.31 - 32.60 48.75
SkylineBuilder 0.07 2.40 2.47 - 34.20 -
BM25+BERT-base 0.44 2.40 2.84 4.68* - -
GAR_extractive 0.44 2.40 2.84 2.61* 41.80 74.80
DrBoost+PQ(8-dim) 2.64 0.42 3.06 - - -
DPR+PQ 1.32 2.00 3.32 4.67* 38.40 52.00
BPR_BERT 1.32 2.10 3.42 4.81* 41.60 56.80
DrBoost+PQ(4-dim) 2.64 0.84 3.48 - - -
BPR_ELECTRA-large 2.22 2.10 4.32 - 49.00 65.60
DrBoost

(10, 50]

2.64 13.00 15.64 - - -
ORQA 1.32 18.00 19.32 8.60 33.30 45.00
REALM 1.32 18.00 19.32 8.40 39.20 -
DrQA 0.27 26.00 26.27 1.80 35.70 -
ColBERT-QA-base

(50, 100]

0.88 65.00 65.88 - 42.30 64.60
ANCE 1.32 65.00 66.32 5.51* 46.00 57.50
DPR 1.32 65.00 66.32 1.60* 41.50 56.80
GAR+DPR_extractive 1.32 65.00 66.32 1.25* 43.80 -
RocketQA 1.50 65.00 66.50 - 42.80 -
ColBERT-QA-large 1.76 65.00 66.76 - 47.80 70.10
ERNIE-Search_base 1.76 65.00 66.76 - - -
R2-D2_reranker 5.16 65.00 70.16 - 55.90 69.90
UnitedQA 8.36 65.00 73.36 - 54.70 70.50
DPR+HNSW

(100, 500])
1.32 151.00 152.32 5.82* 41.20 56.60

ERNIE-Search_2.4B 19.20 344.06 363.26 - - -
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R
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EMDR2 (10, 50] 1.76 32.00 33.76 - 52.50 71.40
YONO_retriever
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1.54 65.00 66.54 - 53.20 71.30
FiD-base 1.76 65.00 66.76 2.00 48.20 65.00
FiD-base+KD_DPR 1.76 65.00 66.76 - 49.60 68.80
YONO_reranker 1.76 65.00 66.76 - 53.20 71.90
GAR+DPR_generative 2.50 65.00 67.50 1.25* 45.30 -
RAG-seq 2.50 65.00 67.50 0.80 44.50 56.80
FiD-large 3.96 65.00 68.96 0.50 51.40 67.60
FiD-large+KD_DPR 3.96 65.00 68.96 - 53.70 72.10
RePAQ+FiD_large (100, 500] 3.32 220.00 223.32 2.30 52.30 67.30

R
et

ri
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er
-O

nl
y

RePAQ_base+PQ (10, 50] 0.04 48.00 48.04 100.00 41.20 -
RePAQ_base

(100, 500]

0.04 220.00 220.04 1400.00 40.90 -
RePAQ_base+reranker_base 0.09 220.00 220.09 55.00 45.70 -
RePAQ_XL 0.24 220.00 220.24 800.00 41.50 -
RePAQ_XL+reranker_XXL 1.18 220.00 221.18 6.00 47.60 52.10
DensePhrases 0.88 320.00 320.88 20.60 40.90 50.70
DenSPI+Sparc

(1000, 2010]
2.69 1547.00 1549.69 2.10 14.50 34.40

DenSPI 2.69 2000.00 2002.69 2.90 8.10 30.70
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en
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at

or
-O

nl
y

T5-1.1-small+SSM

(0, 10]

0.24 0.00 0.24 7.20* 25.50 -
T5-base 0.88 0.00 0.88 7.53* 25.90 29.10
BART-large 1.62 0.00 1.62 5.88* 26.50 26.70
GAR_generative 1.62 0.00 1.62 2.94* 38.10 62.20
T5-large 3.08 0.00 3.08 3.85* 28.50 35.90
T5-1.1-XL+SSM

(10, 50]
12.00 0.00 12.00 - 29.50 45.10

T5-1.1-XXL+SSM 45.27 0.00 45.27 - 35.20 61.60
GPT-3 (500, 1000] 700.00 0.00 700.00 - 29.90 71.20
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Table 2: The statistical information of Wikipedia corpora used in ODQA models.

Wikipedia
Corpus

Split
Method

Retrieval
Unit

Length of
a Unit (tokens)

Number of
Units (million)

Encoding
Methods

Index
Size (GB)

Relatived
ODQA models

2016-12-21
dump of

English Wikipedia
- article - 5.1

TF-IDF 26 DrQA

BM25 2.4
Skylinebuilder,
GAR_extractive

2018-12-20
snapshot of

English Wikipedia

BERT’s
tokenizer

block/
passage

288 13 dense encoding 18
ORQA,
REALM

-
block/

passage
100 21 dense encoding 65

DPR, RocketQA,
R2-D2, etc.

- phrase <=20 60000

TF-IDF+
dense encoding

2000 DenSPI

dense encoding 320 DensePhrases

generator QA-pair - 65 dense encoding 220 RePAQ

build the index for passages on this Wikipedia cor-
pus. The size of the index file is 65GB. Based on
this Wikipedia corpus, RePQA further generates 65
million QA pairs and indexes these QA pairs to a
220GB file. Some other methods, e.g. DrQA (Chen
et al., 2017) and Skylinebuilder (Wu et al., 2020),
encode and build indexes for documents from the
2016-12-21 dump of English Wikipedia which in-
cludes 5.1 million articles (Chen et al., 2017; Wu
et al., 2020), and the size of this index file is 26GB.

Except for the different choices of the original
corpus, there are also different partition and seg-
mentation strategies. For example, ORQA (Lee
et al., 2019) and REALM (Guu et al., 2020) seg-
ment the corpus documents into 13 million blocks,
each of which has 288 tokens. DenseSPI (Seo
et al., 2019), Dens+Sparc (Lee et al., 2020) and
DensePhrases (Lee et al., 2021b) divide corpus
documents into 60 billion phrases, each phrase in-
cluding 20 tokens. The rest ODQA models segment
corpus documents into 21 million passages with
a length of 100 tokens, leading to a 65GB index
(Karpukhin et al., 2020; Lewis et al., 2021; Izacard
and Grave, 2021; Qu et al., 2021).

A comprehensive introduction is illustrated in
Table 2. In general, the index size of the corpus is
quite large, and the storage of the index is one of
the main challenges for ODQA efficiency.
Metrics. There are various metrics to depict effi-
ciency in different dimensions.

In terms of latency, training time (Mao et al.,
2021), indexing time (Mao et al., 2021), query time
(Yamada et al., 2021) and reasoning time are nor-
mally considered. The metrics Q/s (questions per
second) (Seo et al., 2019) and FLOPs (floating

point operations) (Guan et al., 2022) are popular
in measuring the total processing latency, where
Q/s is the number of questions one ODQA system
can answer per second and FLOPs is the number
of floating point operations of the model.

In terms of memory, model parameter size, pas-
sage corpus size, index size, and training data size
are important to influence factors of memory cost
(Yamada et al., 2021). We measure the memory
consumption for ODQA models using memory
units (bytes) of corresponding data (corpus, index,
and model) after loading into memory.

In terms of answering quality, EM (Exact Match
accuracy) (Chen et al., 2017), F1-score, MRR@k
(Mean Reciprocal Rank ) (Qu et al., 2021), pre-
cision@k, Recall@k and retrieval accuarcy@k
(Karpukhin et al., 2020) are normally used to mea-
sure the quality of the ODQA models. Specifically,
EM is the percentage of questions for which the
predicted answers can match any one of the ref-
erence answers exactly, after string normalization
(Qu et al., 2021). MRR@k is the mean reciprocal
of the rank at which the first relevant passage was
retrieved (Qu et al., 2021).

In this paper, we adopt metrics on latency, mem-
ory, and accuracy to evaluate ODQA models com-
prehensively. Specifically, we use Q/s to measure
the processing speed, use total memory overhead
to evaluate the memory cost, and use EM score to
estimate the end-to-end answer prediction quality
as shown in Table 1.
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