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Abstract

Given a query, the task of Natural Language
Video Localization (NLVL) is to localize a tem-
poral moment in an untrimmed video that se-
mantically matches the query. In this paper, we
adopt a proposal-based solution that generates
proposals (i.e., candidate moments) and then
select the best matching proposal. On top of
modeling the cross-modal interaction between
candidate moments and the query, our proposed
Moment Sampling DETR (MS-DETR) enables
efficient moment-moment relation modeling.
The core idea is to sample a subset of mo-
ments guided by the learnable templates with
an adopted DETR (DEtection TRansformer)
framework. To achieve this, we design a multi-
scale visual-linguistic encoder, and an anchor-
guided moment decoder paired with a set of
learnable templates. Experimental results on
three public datasets demonstrate the superior
performance of MS-DETR.1

1 Introduction

Natural language video localization (NLVL) aims
to retrieve a temporal moment from an untrimmed
video that semantically corresponds to a given lan-
guage query, see Fig. 1 for an example. This task
is also known as temporal sentence grounding in
video, and video moment retrieval. As a fundamen-
tal video-language task, it has a wide range of ap-
plications, such as video question answering (Fan
et al., 2019; Yu et al., 2018; Li et al., 2019), video
retrieval (Gabeur et al., 2020; Liu et al., 2019; Chen
et al., 2020), and video grounded dialogue (Le et al.,
2019; Kim et al., 2021).

Generally speaking, in NLVL models, a video is
first split to a sequence of many small fixed-length
segments. Video features are then extracted from
these segments to interact with the text query. Con-
ceptually, each video segment can be viewed as a

∗Corresponding Authors
1Code is released in https://github.com/K-Nick/MS-DETR

Video

Ground-Truth
Query He stops playing and continues talking.

 Moment Candidate #1  Moment Candidate #2

Figure 1: An NLVL example with query and ground truth
video moment. Two moment candidates with similar video
features are also highlighted in light and dark green colors.

form of “video token”. There are mainly two gen-
res of approaches to NLVL. Proposal-free methods
directly model the interaction between video tokens
and text, and aim to identify start/end boundaries
along the video token sequence. Proposal-based
methods generate candidate moments as propos-
als and then select the best matching proposal2 as
the answer. Each proposal is a continuous span of
video tokens.

To generate proposals, some methods enumer-
ate all possible moment candidates via pre-defined
anchors. Anchors are reference start/end positions
along the video. Fig. 2 shows three 2D-Map exam-
ples. Each cell in a 2D-Map corresponds to a can-
didate moment defined by its start/end time along
the two axes. Some other methods produce mo-
ment candidates with a proposal generator guided
by text query and then refine them independently.
The interaction between text and video is mainly
modeled between text and video moments; each
moment is characterized by the video segments
that compose it. Very few studies have consid-
ered moment-moment interaction. Consequently,
it is challenging to discriminate among moments
if there are multiple moments that all demonstrate
high level of semantic matching with the text query.
For instance, the two candidate moments in Fig. 1
have very similar video content and share similar
semantic correspondence with the query.

In this paper, we adopt the proposal-based ap-
2We use the terms proposal and candidate moment inter-

changeably, or even simply moment when the context is clear.
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Figure 2: Illustration of three strategies of moment-level
interactions. Each cell represents a moment with start time
i and end time j indicated on the two axes; only the upper
triangular area is valid as i ≤ j.

proach for its capability of cross-modal interaction
at both segment level and moment level. We pro-
pose MS-DETR to facilitate effective text-moment
alignment and efficient moment-moment interac-
tion. For text-moment alignment, we devise a
multi-scale vision-language transformer backbone
to conduct segment-word and segment-segment in-
teractions at different segment scales. For moment-
moment interaction, our main focus is on which
moments should be sampled for interaction, due
to the large number of possible pairs. Recall that
a moment is a span of segments. Let O(N) be
the magnitude of segment space; the magnitude of
moments is O(N2). Then moment-moment inter-
action has a space of O(N4).

In practice, not every pair of moments are rele-
vant to each other, and are needed to be discrimi-
nated for a given query. Existing methods (Zhang
et al., 2020b, 2021b; Wang et al., 2021a) mainly
rely on a strong assumption that only the overlap-
ping or adjacent moments are more likely to be
relevant, i.e., moment locality. An example of mo-
ment locality is shown in Fig. 1, where two adjacent
candidate moments share high level of visual simi-
larity. The local interaction strategy is illustrated
in Fig. 2, where the reference moment only inter-
acts with the surrounding moments in the 2D-Map.
However, not all relevant moments are overlapping
or located close to each other. Following the exam-
ple in Fig. 1, if the person plays saxophone again
in the later part of the video (not showing for the
sake of space), and the query becomes “He plays
saxophone again”, then there will be at least two
highly relevant moments for playing saxophone,
separated by his action of talking in between. To
correctly locate the answer, the model needs to un-
derstand that “again” refers to the second moment
of playing saxophone. This calls for a better way of
sampling moments for efficient moment-moment
interaction, to avoid the full global interaction as

shown in Fig. 2.
The proposed MS-DETR samples moments for

interaction using learnable templates and anchors,
illustrated in the third 2D-Map in Fig. 2. We design
an anchor-guided moment decoder to interact and
aggregate moment features from the encoder in an
adaptive and progressive manner. A fixed number
of learnable templates paired with dynamic anchors
are used to match the moment content and its loca-
tion. Here, the templates are used to match video
content in a moment, and anchors specify the ref-
erence start/end positions of the moment because
multiple moments may share similar visual features.
We then revise the anchors based on the predictions
from the last decoder block in an iterative manner.
We remark that our method has no assumption on
moment locality: the moments can be scattered in
diverse locations of the video.

Our key contributions are threefold. First, we
propose a novel multi-scale visual-linguistic en-
coder (Section 4.1) to align textual and video fea-
tures as well as to aggregate language-enhanced
semantics of video frames, in a hierarchical man-
ner. Second, we introduce a new anchor-guided
moment decoder (Section 4.2) to decode learnable
templates into moment candidates, in which we
propose an anchor highlight mechanism to guide
the decoding. Third, we conduct extensive exper-
iments (Section 5) on three benchmark datasets:
ActivityNet Captions, TACoS, and Charades-STA.
Our results demonstrate the effectiveness of the
proposed MS-DETR.

2 Related Work

We first briefly review existing NLVL approaches
and highlight the differences between our work and
other proposal-based solutions. Next, we briefly
introduce object detection to provide background
for the concept of learnable templates.

Natural Language Video Localization. NLVL
was first introduced in Hendricks et al. (2017),
and since then a good number of solutions have
been proposed (Zhang et al., 2022c). As aforemen-
tioned, existing methods can be largely grouped
into proposal-based and proposal-free methods.
Proposals, or candidate moments, can be either pre-
defined (Gao et al., 2017; Hendricks et al., 2017)
or computed by proposal generator (Xiao et al.,
2021a,b; Liu et al., 2021a). Proposal-free meth-
ods output time span (Zhang et al., 2020a, 2022b,
2021a; Liu et al., 2021b) or timestamps (Yuan et al.,
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2019; Ghosh et al., 2019; Li et al., 2021; Zhou et al.,
2021) directly on top of video tokens, without con-
sidering the notion of candidate moments.

Most proposal-based methods conduct multi-
modal interaction between video segments and text,
then encode moments from the segment features.
Typically there is no further interactions among mo-
ments. 2D-TAN (Zhang et al., 2020b) is the first
to demonstrate the effectiveness of moment-level
interaction. However, 2D-TAN assumes moment
locality and only enables local interactions among
moments as shown in Fig. 2. However, similar
moments requiring careful discrimination may be
scattered all over the video. This motivates us to go
beyond the moment locality assumption and pro-
pose moment sampling for interaction, which is a
key difference and also a contribution of our work.

In this paper, we adapt the concept of learnable
templates from DETR framework to achieve dy-
namic moment sampling. DETR was originally
introduced for object detection in computer vision
(CV), to be briefed shortly. Most similar to our
work is Xiao et al. (2021a), which also uses learn-
able templates. However, their work directly adopts
learnable templates without any adaption to the
specific requirements of NLVL. For instance, the
answer moment in NLVL needs to match the given
text query, whereas in object detection, there is
no such requirement. We bridge the gap between
NLVL and object detection by introducing a hierar-
chical encoder and a decoder with an anchor high-
light mechanism. These designs greatly improve
performance and unveil the potential of DETR for
NLVL. At the same time, these designs also make
our model much different from the original DETR.

Transformer-based Object Detection. Object
detection is a fundamental CV task. Transformer-
based methods now set a new paradigm that uses
learnable templates to sparsely localize objects in
images. The core idea is to aggregate encoder fea-
tures globally, by using (randomly initialized) learn-
able templates. To achieve end-to-end detection,
object detection is reformulated as a set prediction
problem, e.g., certain template combinations can be
used to identify some specific image objects. Early
solutions match predictions with ground-truth one
by one using bipartite matching, leading to unsta-
ble matching and slow convergence. Recent work
alleviates this issue by designing many-to-one as-
signment (Chen et al., 2022; Jia et al., 2022) or
the self-supervision task specifically for learnable

templates (Li et al., 2022; Zhang et al., 2022a).
Introducing learnable templates to NLVL poses

two challenges: supervision sparsity and scale mis-
matching. An image typically contains multiple
objects and these co-occurred objects all serve as
detection objects for supervision. In NLVL, given
a good number of candidate moments in a video,
there is only one ground-truth. We refer to this phe-
nomenon as supervision sparsity. The scale extrem-
ity in NLVL is more severe than that in object de-
tection. The ground truth moments in videos, anal-
ogous to objects in images, vary from 3% to 90%
in terms of video length. The diverse scales bring
the issue of scale mismatching when the learned
templates are decoded to cover all encoder features,
i.e., the entire video. Hence in MS-DETR, we
adapt learnable templates mainly for the purpose of
sparsely sampling moments for interaction, rather
than as the main backbone.

3 Problem Formulation

We first present how to map video and text into
features, and then define NLVL in feature space.

Let V = [ft]
t=T−1
t=0 be an untrimmed video with

T frames; L = [wj ]
j=M−1
j=0 be a natural language

query with M words. We uniformly split the video
V into N segments (i.e., video tokens) and em-
ploy a pre-trained video feature extractor to encode
these segments into visual features V = [vi]

i=N−1
i=0 .

The M words are encoded with pre-trained word
embeddings as L = [wj ]

j=M−1
j=0 .

Given the video and text query in their encoded
features (V,L), the task of NLVL is to localize the
timestamp pair (ts, te), the start and end timestamp,
of the video moment that matches the query. Note
that, due to the uniform split to segments, there is
a correspondence between ts and te of the original
video and the segment Ids in the segment sequence.

4 Method

The main architecture of the proposed MS-DETR is
depicted in Fig. 3. Illustrated in the feature extrac-
tion part, given visual features V ∈ Rdv×N and lan-
guage query features L ∈ Rdw×M , we first project
them into a unified dimension d using single layer
FFN and decorate them by adding positional en-
coding, respectively. The linearly projected visual
features {v0

i }i=N−1
i=0 and language query features

{w0
j}j=M−1

j=0 are then concatenated and fed into
multi-scale vision-language transformer. Next, we
mainly detail two main components: multi-scale
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Figure 3: The architecture of MS-DETR for Natural Language Video Localization.

visual-language encoder, and anchor-guided mo-
ment decoder.

4.1 Multi-scale Visual-Language Encoder

Many transformer-based methods for cross-modal
interaction treat video and language tokens identi-
cally, in a unified sequence. However, video and
text have completely different syntactic and seman-
tic structures. It is more reasonable to use separate
projections for the two modalities, similar to the
idea of modality-specific expert Peng et al. (2022).
In MS-DETR, we separate the projections by using
specifically designed attention modules.

Before we further modify the multi-modal atten-
tion modules to handle different video resolutions
(i.e., multi-scale), we present our attention designs
in their base form. We design two sets of attentions:
visual cross-modal attention and linguistic cross-
modal attention, see the middle part of Fig. 3. The
two sets are highly similar. For conciseness, we
only introduce visual cross-modal attention, which
contains language to video (L→V), and video to
video (V→V) attentions. The visual cross-modal at-
tention aggregates visual embeddings Vl ∈ RN×d

and language embeddings Ll ∈ RM×d into new
visual features as Vl+1:

Al+1
LV =

FFN(Vl)FFN(Ll)√
dh

(1)

Al+1
V V =

FFN(Vl)FFN(Vl)√
dh

(2)

Al+1 = Al+1
LV ⊕Al+1

V V (3)

Vl+1 = Softmax(Al+1)

×
(

FFN(Ll)⊕ FFN(Vl)
)

(4)

The linguistic cross-modal attention uses a simi-
lar set of equations to model language to language

(L→L) and video to language (V→L) attentions, to
get new language features as Ll+1.

Sequence-reduced Multi-modal Attention. Re-
call that relative lengths of ground truth range from
3% to 90% to their source videos. A fixed resolu-
tion for all moments becomes sub-optimal. To this
end, we extend the aforementioned multi-modal
attention and build a transformer that is capable
of providing hierarchical text-enhanced video fea-
tures, from high to low temporal resolutions. Our
encoder design is motivated by the Pyramid Vision
Transformer (PVT) (Wang et al., 2021b), which is
a successful application of deploying transformer
in segmentation problem.

Handling high temporal resolution is a challenge.
Directly applying multi-modal attention on high
temporal resolution video features suffers from its
quadratic complexity as in Eq. 2. Recall that the
sequence lengths of key, query, and value in multi-
head attention (Vaswani et al., 2017) do not have to
be the same. Its output has the same length as the
query, and the key-value pair keep the same length.
Thus, reducing sequence lengths of the key and
value simultaneously is an effective way to save
computation. Accordingly, we modify V→V atten-
tion in the visual cross-modal attention module to
a sequence-reduced version as follows:

Vl
r = Conv1D(Vl)

Al+1
V V =

FFN(Vl)FFN(Vl)√
dh

(5)

Vl+1 = Softmax(Al+1)

×
(

FFN(Ll)⊕ FFN(Vl
r)
)

(6)

Here, Conv1D is a non-overlapping 1D convolu-
tion with stride and kernel size set to R. Eq. 2
and Eq. 4 are respectively modified to their new
versions in Eq. 5 and Eq. 6. Time complexity is
reduced from O(N2) to O(N

2

R ). We also apply
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sequence reduction to V→L attention in the lin-
guistic cross-modal attention. Conceptually, this
sequence reduction technique can be explained as
decomposing the local and global interaction. The
local interaction is achieved by convolution and the
global interaction by attention. Next, we focus on
how to merge high to low temporal resolutions.

Temporal Merging To form a hierarchical ar-
chitecture, a crucial step is a pooling-like step to
shrink the temporal scale. We utilize an 1D convo-
lution with overlapping to shrink representations
from high to low temporal resolutions. The over-
lapped convolution allows information flow among
convolutional windows, so that the interaction is
not constrained locally within windows. With both
sequence-reduced multi-modal attention and tem-
poral merging, we form a hierarchical architecture.
For the deeper layers in the encoder, which already
have a low resolution, we turn off these two com-
ponents and use the vanilla multi-modal attention.

Auxiliary Supervision Losses We design two
auxiliary losses: span loss and masked word loss.
Span loss is to enhance the language-conditioned
video representations from encoder. We use the
video features V(Lenc−1) from the last layer of en-
coder to predict whether each video segment falls
within the ground truth. This auxiliary supervision
facilitates the model to distinguish relevant video
segments from irrelevant ones. We predict span
logits Ssp = FFN(VLenc−1) by passing forward
encoder output V(Lenc−1) after a two-layer FFN.
Span scores Psp are then calculated from Ssp with
a sigmoid function. Then the span loss is computed
in Eq. 7, where Ysp ∈ {0, 1}.

Lspan = (logPsp ×Ysp)× (Psp −Ysp)
2 (7)

Considering ground-truth can be a small portion
of the source video, focal loss (Lin et al., 2020) is
adopted here to alleviate the label imbalance issue.

The masked word loss aims to better align text
features and video features. We dynamically re-
place 15% words from language query during train-
ing with randomly initialized mask embedding.
The model is then compelled to learn from both
textual and video contexts to recover the miss-
ing tokens. Text features W(Lenc−1) from last
layer of encoder are used to predict the original
words before masking. Masked word score is
predicted by Pwm = Softmax(Swm), where
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Figure 4: Anchor-guided Moment Decoder. Here AHAttn is
the abbreviation for Anchor Highlight Attention.

Swm = FFN(W(Lenc−1)). We use the cross en-
tropy loss for masked word prediction.

Lmask = CrossEntropy(Pwm,Ywm) (8)

Multi-scale Text-enhanced Features After Lenc

layers of encoder, we select C text-enhanced
video features of different scales from intermedi-
ate layer outputs. We re-index the selected out-
puts {Vi0 · · ·ViC−1} into {V0

s · · ·VC−1
s } for fu-

ture reference.

4.2 Anchor-guided Moment Decoder
After obtaining the multi-scale text-enhanced video
features Vs = {Vc

s}c=C−1
c=0 , our focus now is to

decode the learnable templates with their corre-
sponding anchors into moment timestamps. Recall
that templates aim to match moment content and
anchors are the reference start/end positions. Ini-
tially, the anchors are uniformly distributed along
the video to guarantee at least one anchor falls
within the range of ground truth.

The moment decoder contains two parts: (i)
Moment-moment Interaction, which is achieved by
self-attention, and (ii) Anchor Highlighting, which
aims to not only highlight the area that is relevant to
the current moment but also be aware of the global
context. The highlighting, or searching for relevant
moments, is achieved through an Anchor Highlight
Attention, an modification of the cross attention in
DETR with RoI features, shown in Fig. 4. All atten-
tions mentioned above follow the specification of
multi-head scaled dot-product defined in Vaswani
et al. (2017).

Learnable Templates and Anchors In the origi-
nal DETR (Carion et al., 2020) paper, the learnable
templates can be seen as special positional embed-
dings, to provide a spatial prior of objects. How-
ever, the recent success of advanced DETRs (Liu
et al., 2022; Meng et al., 2021) motivates us to sep-
arately model a moment anchor according to which
the attention is constrained. Let k denote the index
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refine

Figure 5: An example of anchor refinement. The anchor
(c, w) paired with learnable template q0 is refined to (c′, w′).
Accordingly, its moment contents shift from R to R′.

of templates among the total Nq templates. We
define qk as the kth learnable template and (c0k, w

0
k)

as its initial anchor. Here c and w stand for the cen-
ter and width of the corresponding moment, which
can be easily mapped to the start/end boundary.
Anchors will be refined in the decoder, layer by
layer. We use (clk, w

l
k) to denote the anchor after

refinement of the lth decoder layer.

Anchor Highlight Attention. One of our moti-
vations is to discriminate the best matching mo-
ment among all candidate moments that share good
matching to the text query. To highlight the areas
that are similar to the current moment, we modify
the attention query to adjust attention weight.

Suppose the current anchor is (ck, wk), we can
easily locate the corresponding area in the nth

multi-scale feature from the encoder output. We
use rc,k to denote the features in this area that
are taken from the cth multi-scale video features
Vc

s. Let Rk be the collection of features from all
scales. We then construct a function f to map Rk

to a single vector Hk ∈ Rd to guide the highlight
in attention mechanism, illustrated in Fig. 4. Let
HNq×d ∈ R be the collection of Hk and M be
the moment features after self-attention module in
decoder layer, we adjust the attention as follows:

AAH =
FFN(M+H)FFN(VC−1

s )T√
dh

MAH = AAH × FFN(VC−1
s )

(9)

Here, AAH refers to the adjusted attention weight,
and MAH is the output of the adjusted cross atten-
tion. Since H is sampled and transformed from
the corresponding anchor areas in encoder outputs
Vs, it is essentially the representation of moment
content. Therefore, the term H(VC−1

s )T will be
more responsive when a specific area from VC−1

s

is similar to the moment content. Consequently,
the attention above will highlight the areas similar

to the current moment. We then refine the anchors
based on these highlighted areas, through an offset
prediction head as shown in Fig. 4.

Anchor Refinement. Based on the predictions
from the last decoder block, we revise the anchor
with the predicted offsets. This is analogous to
the eye skimming process of humans: focuses on
a local area in the video and then decides where
to move her sight at the next step. The anchors
are refined iteratively as shown in Fig. 5. Specif-
ically, we first project the center clk and scale slk
of the kth anchor at the lth decoder level into logit
space, using an inverse sigmoid operation. The
offset (∆clk,∆wl

k) is added to their logits, then the
modified logits are projected back using sigmoid.
The whole process is described in Eq. 10.

cm+1
k = σ

(
∆cmk + σ−1(cmk )

)

wm+1
k = σ

(
∆wm

k + σ−1(wm
k )

) (10)

Here σ stands for sigmoid function, and σ−1 for
inverse sigmoid function.

Boundary Modeling. After encoding moment
candidate features, we pass them through two sep-
arate FFNs to predict anchor offset and scores, re-
spectively. Depending on anchor positions, only a
small portion of anchors may match with ground
truth moments. Among them, we simply select the
candidate moment with the largest IoU (intersec-
tion over union) with ground truth as our positive
sample. A similar label assignment strategy has
been used in early studies (Carion et al., 2020).

After labeling predictions as positive or negative,
we refer to the index of positive prediction as ip.
Then we model the boundary with two losses: (i)
IoU prediction loss, and (ii) L1 regression loss.
Note that, L1 regression loss is only applied to the
positive prediction. Let (tks , t

k
e) be the timestamps

predicted by kth anchor and (tgs, t
g
e) be the ground-

truth timestamps, we calculate L1 regression loss
and IoU prediction loss as follows:

LL1 =
1

2

(
|tips − tgs|+ |tipe − tge|

)

LIoU =
1

Nq

∑

k∈Nq

Focal(TrIoUk, ok)
(11)

Here TrIoU truncates IoU between (tks , t
k
e) and

(tgs, t
g
e) below a threshold θ and set IoU of the as-

signed positive prediction to 1. Different from Car-
ion et al. (2020), by using TrIoU , we not only
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calculate IoU loss for the positive prediction but
also consider the hard negative predictions which
have large overlapping with ground-truth. Note
that, IoU prediction loss and L1 regression loss are
calculated for all decoder layer outputs.

4.3 Training and Inference
The overall training loss of MS-DETR contains
three losses:

L = λspanLspan + λmaskLmask

+
∑

m∈Ldec

(λIoULIoU + λL1LL1)
(12)

To stabilize training, we introduce an extra denois-
ing group of templates and pass them through the
decoder, motivated by (Chen et al., 2022). The over-
all loss is averaged over losses calculated from two
groups independently. During inference, we dep-
recate the denoising group and use the main group
only. All moments are sorted by their scores and
their anchors are converted from (c, w) to start/end
format. We apply truncation to start/end times-
tamps to deal with out-of-range values, since no
constraint is attached to (c, w) during training.

5 Experiments

We evaluate MS-DETR against baselines on three
public benchmarks: ActivityNet Captions (Kr-
ishna et al., 2017), TACoS (Regneri et al., 2013),
and Charades-STA (Gao et al., 2017). The three
datasets cover videos from different domains and
lengths (see Appendix A.1 for video distributions
and train/dev/test splits).

Following prior work (Zhang et al., 2021a), we
adopt “R@n, IoU = µ” and “mIoU” as evalua-
tion metrics. R@n, IoU = µ is the percentage
of testing samples that have at least one of top-n
results hitting ground truth, where “hitting” means
an overlapping with IoU ≥ µ. mIoU denotes the
average IoU over all test samples. We set n = 1
and µ = {0.3, 0.5, 0.7}. In our comparison and
discussion, we mainly focus on µ = 0.7 as large
IoU means high-quality matching.

5.1 Comparison with the State-of-the-Arts
Results on the three datasets are compared in Ta-
bles 1, 2, and 3, respectively. Baseline results are
mostly cited from (Zhang et al., 2021a). We also
include GTR (Cao et al., 2021), LP-Net (Xiao et al.,
2021a) and MMN (Wang et al., 2022) for a com-
plete comparison.

Method R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

DEBUG 55.91 39.72 - 39.51
ExCL 63.00 43.60 24.10 -
SCDM 54.80 36.75 19.86 -
CBP 54.30 35.76 17.80 -
GDP 56.17 39.27 - 39.80
2D-TAN 59.45 44.51 27.38 -
TSP-PRL 56.08 38.76 - 39.21
TMLGA 51.28 33.04 19.26 -
VSLNet 63.16 43.22 26.16 43.19
DRN - 45.45 24.36 -
LGI 58.52 41.51 23.07 -
SeqPAN 61.65 45.50 28.37 45.11
GTR - 49.67 28.45 -
LP-Net 64.29 45.92 25.39 44.72
MMN 65.05 48.59 29.26 -

MS-DETR 62.12 48.69 31.15 46.82

Table 1: Results on ActivityNet Captions. The best results
are in bold face and second best underlined.

Method R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

TGN 21.77 18.90 - -
ACL 24.17 20.01 - -
DEBUG 23.45 11.72 - 16.03
SCDM 26.11 21.17 - -
CBP 27.31 24.79 19.10 21.59
GDP 24.14 13.90 - 16.18
TMLGA 24.54 21.65 16.46 -
VSLNet 29.61 24.27 20.03 24.11
DRN - 23.17 - -
SeqPAN 31.72 27.19 21.65 25.86
DRN - 23.17 - -
CMIN 24.64 18.05 - -
2D-TAN 37.29 25.32 - -
GTR 40.39 30.22 - -
MMN 39.24 26.17 - -

MS-DETR 47.66 37.36 25.81 35.09

Table 2: Results on TACoS, best results in bold face, and
second best underlined.

MS-DETR achieves the best R@1, µ = 0.7 and
mIoU on ActivityNet and TACos, and the second
best on Charades-STA. Our model achieves reason-
ably good results on smaller µ’s. However, large µ
ensures high-quality matching. A possible reason
for the results on Charades-STA is that the videos in
this dataset are very short (30 seconds on average),
making moment-level interaction less necessary.

5.2 Ablation Study

We perform ablation studies on ActivityNet Cap-
tions for the effectiveness MS-DETR.

Multi-scale Encoder. We evaluate four variants
to study the effectiveness of multi-scale design in
our transformer encoder. First, to evaluate whether
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Method R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

DEBUG 54.95 37.39 17.69 36.34
ExCL 61.50 44.10 22.40 -
MAN - 46.53 22.72 -
SCDM - 54.44 33.43 -
CBP - 36.80 18.87 -
GDP 54.54 39.47 18.49 -
2D-TAN - 39.81 23.31 -
TSP-PRL - 45.30 24.73 40.93
MMN 47.31 27.28 - -
VSLNet 70.46 54.19 35.22 50.02
LGI 72.96 59.46 35.48 -
SeqPAN 73.84 60.86 41.34 53.92

MS-DETR 68.68 57.72 37.40 50.12

Table 3: Results on Charades-STA, best results in bold face,
and second best underlined.

Method R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

MS-DETR 62.12 48.29 31.15 46.82
uni-scale 61.08 47.85 30.69 45.62
single-scale 61.57 47.86 30.91 45.86
BBBRR 60.99 46.97 30.00 44.84
RBBBR 61.42 47.14 30.05 45.48

Table 4: Ablation study on multi-scale hierarchical encoder.

hierarchical design benefits cross-modal interac-
tion, the ‘uni-scale’ variant replaces all sequence-
reduced layers with normal layers without resolu-
tion shrinkage, and set the number of clips to 32.
The multi-scale transformer now degrades to a uni-
scale cross-modal transformer. To study the contri-
bution of encoding moment contents R for anchor
highlighting in multiple scales, the ‘single-scale’
variant selects the output of the last encoder layer
only and fuses it to attention query, while keeping
encoder’s hierarchical structure. Then, we study
the effect of arranging sequence-reduced layers in
different positions in the 5 encoder layers. We com-
pare two arrangements “BBBRR” and “RBBBR”
against MS-DETR’s “RRBBB”. Here ‘R’ means
sequence-reduced and ‘B’ means the base version.

Results in Table 4 suggest the effectiveness
of multi-scale hierarchical encoder. Performance
drops with the removal of the multi-scale mech-
anism, or the other arrangement of sequence-
reduced layers. Placing sequence-reduced version
at shallow layers serves the purpose of reducing
computational cost while benefiting performance.

Anchor Highlight Attention is a variant of stan-
dard cross attention Vaswani et al. (2017). It is
used to highlight similar content with correspond-

Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

MS-DETR 62.12 48.29 31.15 46.82
CrossAtten. 61.25 46.05 27.94 44.30

Table 5: Anchor highlight attention versus standard cross
attention without anchor highlighting.

Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

MS-DETR 62.12 48.29 31.15 46.82
w/o Lspan 58.67 45.75 30.15 44.06
w/o Lmask 62.04 47.9 30.17 45.40
w/o both 57.50 46.07 30.03 43.82

Table 6: The impact of auxiliary losses.

ing moments across the video. We compare its
design with the standard cross attention. Table 5
shows that anchor highlight attention outperforms
standard cross attention, by a large margin. This
justifies the advantage of using anchor highlight
attention and dynamic anchor jointly, to narrow the
range of attention to anchor areas.

The Auxiliary Loss. We use two auxiliary su-
pervision losses, span loss and word mask loss, in
our encoder (see Section 4.1). Table 6 reports the
results of removing either one or both auxiliary
losses. Results suggest that both auxiliary losses
benefit MS-DETR, and span loss contributes more
to the effectiveness of MS-DETR. That is, super-
vising encoder to discriminate whether segments
fall within the ground-truth area is important for
vision-language alignment.

Hyper-parameter Study. Results of the choices
of the number of encoder/decoder blocks, and num-
ber of denoising groups for training stabilization
are in Appendix A.3.

6 Conclusion

In this paper, we adapt DETR framework from
object detection to NLVL. With the proposed MS-
DETR, we are able to model moment-moment in-
teraction in a dynamic manner. Specifically, we
design a multi-scale visual-linguistic encoder to
learn hierarchical text-enhanced video features, and
an anchor-guided moment decoder to guide the at-
tention with dynamic anchors for iterative anchor
refinement. The promising results on three bench-
marks suggest that moment-moment interaction for
NLVL can be achieved in an efficient and effective
manner.
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7 Limitation

The limitation of this paper are twofold. First, our
method does not provide a recipe for data imbal-
ancement in NLVL task. Thus, our method does
not guarantee the effectiveness on edge cases. Sec-
ond, the choice of feature extractor is considered
relatively outdated. Our model does not benefit
from the recent development of pre-trained vision-
language models. On the other hand, using pre-
trained vision-language models remains in its early
stage in NLVL tasks. Not using pre-trained features
makes a fair comparison between our model with
existing baselines. As a part of future work, we
will explore the potential of using more powerful
feature extractors in our model.
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Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

Enc3 62.47 48.15 30.54 45.80
Enc4 61.17 47.87 30.41 44.91
MS-DETR 62.12 48.29 31.15 46.82
Enc6 62.05 48.00 31.03 45.71

Table 7: The impact on number of encoder layers.

A Appendix

A.1 Dataset Details

ActivityNet Captions (Krishna et al., 2017) con-
tains over 20K videos paired with 100K queries
with an average duration of 2 minutes. We use
the dataset split “val_1” as our validation set and
“val_2” as our testing set. In our setting, 37, 417,
17, 505, and 17, 031 moment-sentence pairs are
used for training, validation, and testing, respec-
tively. TACoS (Regneri et al., 2013) includes 127
videos about cooking activities. The average dura-
tion of videos in TACoS is 7 minutes. We follow
the standard split which includes 10, 146, 4, 589,
and 4, 083 moment-sentence pairs for training, val-
idation, and testing. Charades-STA (Gao et al.,
2017) is built on Charades and contains 6, 672
videos of daily indoor activities. Charades-STA
has 16, 128 sentence-moment pairs in total, where
12, 408 pairs are for training and 3, 720 pairs for
testing. The average duration of the videos is 30s.

A.2 Implementation Details

We use AdamW with learning rate of 3 × 10−4

and batch size of 32 for optimization. We follow
(Zhang et al., 2020b) and use pretrained 3D In-
ception network to extract features from videos.
The number of sampled video frames is set to 512
for ActivityNet Caption and TACoS and 1024 for
Charades-STA. For MS-DETR architecture, we use
a 5-layers encoder and a 5-layers decoder with all
hidden sizes set to 512. For inference, we select the
proposal with highest score from the last decoder
layer as our prediction. As for the specific choice of
f mentioned in Section 4.2, we use RoIAlign to ex-
tract multi-scale feature R, then concatenate them
and pass them through an FFN. One extra denois-
ing group is used for stabilizing training. The loss
is then averaged over two groups. During inference,
No extra operation like Non-Maximum Suppres-
sion (NMS) is required. All experiments are run
on a single A100 GPU. The reported versions take
roughly 8-10 GPU hours for training.

Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

Dec2 60.53 46.54 29.12 44.40
Dec3 62.42 47.92 30.11 45.43
Dec4 61.14 47.03 30.13 44.72
MS-DETR 62.12 48.29 31.15 46.82
Dec6 61.30 47.83 31.65 46.32

Table 8: The impact of the number of decoder layers.

Methods R@1, IoU = µ mIoU
µ = 0.3 µ = 0.5 µ = 0.7

DN0 61.50 47.94 30.83 45.04
MS-DETR 62.12 48.29 31.15 46.82
DN2 62.13 47.74 30.91 45.6
DN3 62.03 47.55 30.84 45.5

Table 9: The impact of the number of denoising groups.

A.3 Hyper-parameter Study
Number of Encoder/Decoder Blocks We study
the impact of the number of encoder and decoder
blocks. We evaluate one of them from 2 to 6,
while keeping the other fixed to 5. The perfor-
mance across various numbers of encoder and de-
coder blocks are listed in Table 7. Best perfor-
mance is achieved by Lenc = 5 and Ldec = 5.
Though the setting of Ldec = 6 has slightly larger
“R@1, IoU = 0.7”, poorer “mIoU” is observed.
We speculate that the cause is overfitting on some
overly confident examples.

Number of Denoising Groups. We study the ef-
fectiveness of using different numbers of denoising
groups in training stabilization. The results are eval-
uated with the number of denoising groups ranging
from 0 to 3, in Table 9. We observe the perfor-
mance increases after using one denoising group,
then gradually decreases. We suspect there is a
trade-off between training stability and the ability
to escape local minima.
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