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Abstract

Link prediction on knowledge graphs (KGs)
has been extensively studied on binary rela-
tional KGs, wherein each fact is represented
by a triple. A significant amount of important
knowledge, however, is represented by hyper-
relational facts where each fact is composed of
a primal triple and a set of qualifiers compris-
ing a key-value pair that allows for express-
ing more complicated semantics. Although
some recent works have proposed to embed
hyper-relational KGs, these methods fail to
capture essential inference patterns of hyper-
relational facts such as qualifier monotonic-
ity, qualifier implication, and qualifier mutual
exclusion, limiting their generalization capa-
bility. To unlock this, we present ShrinkE,
a geometric hyper-relational KG embedding
method aiming to explicitly model these pat-
terns. ShrinkE models the primal triple as
a spatial-functional transformation from the
head into a relation-specific box. Each qual-
ifier “shrinks” the box to narrow down the
possible answer set and, thus, realizes quali-
fier monotonicity. The spatial relationships be-
tween the qualifier boxes allow for modeling
core inference patterns of qualifiers such as im-
plication and mutual exclusion. Experimental
results demonstrate ShrinkE’s superiority on
three benchmarks of hyper-relational KGs.

1 Introduction

Link prediction on knowledge graphs (KGs) is a
central problem for many KG-based applications
(Zhang et al., 2016; Lukovnikov et al., 2017; Lu
et al., 2023; Xiong et al., 2022b; Chen et al., 2022).
Existing works (Sun et al., 2019; Bordes et al.,
2013) have mostly studied link prediction on bi-
nary relational KGs, wherein each fact is repre-
sented by a triple, e.g., (Einstein, educated_at, Uni-
versity of Zurich). In many popular KGs such as
Freebase (Bollacker et al., 2007), however, a lot of
important knowledge is not only expressed in triple-
shaped facts, but also via facts about facts, which

taken together are called hyper-relational facts.
For example, ((Einstein, educated_at, University
of Zurich), {(major:physics), (degree:PhD)}) is
a hyper-relational fact, where the primary triple
(Einstein, educated_at, University of Zurich) is
contextualized by a set of key-value pairs {(ma-
jor:physics),(degree:PhD)}. Like much other re-
lated work, we follow the terminology established
for Wikidata (Vrandečić and Krötzsch, 2014) and
use the term qualifiers to refer to the key-value
pairs.1 The qualifiers play crucial roles in avoiding
ambiguity issues. For instance, Einstein was edu-
cated_at several universities and the qualifiers for
degree and major help distinguish them.

In order to predict links in hyper-relational
KGs, pioneering works represent each hyper-
relational fact as either an n-tuple in the form of
r(e1, e2, · · · , en) (Wen et al., 2016; Zhang et al.,
2018; Fatemi et al., 2020; Liu et al., 2020; Abboud
et al., 2020) or a set of key-value pairs in the form
of {(ki : vi)}mi=1 (Guan et al., 2019, 2021; Liu
et al., 2021a). However, these modelings lose key
structure information and are incompatible with the
RDF-star schema (Arndt et al., 2021) used by mod-
ern KGs, where both primal triples and qualifiers
constitute the fundamental data structure. Recent
works (Guan et al., 2020; Rosso et al., 2020) repre-
sent each hyper-relational fact as a primary triple
coupled with a set of qualifiers that are compatible
with RDF-star standards (Arndt et al., 2021). Link
prediction is then achieved by modeling the valid-
ity of the primary triple and its compatibility with
each annotated qualifier (Guan et al., 2020; Rosso
et al., 2020). More complicated graph encoders and
decoders (Galkin et al., 2020; Yu and Yang, 2021;
Wang et al., 2021; Shomer et al., 2022) are pro-
posed to further boost the performance. However,
they require a relatively huge number of parameters

1Synonyms include statement-level metadata in RDF-star
(Arndt et al., 2021) and triple annotation in provenance com-
munities (Green et al., 2007).
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that make them prone to overfitting.

To encourage generalization capability, KG
embeddings should be able to model inference
patterns, i.e., specifications of logical properties
that may exist in KGs, which, if learned, empowers
further principled inferences (Abboud et al., 2020).
This has been extensively studied for binary
relational KG embeddings (Trouillon et al., 2016;
Sun et al., 2019) but ignored for hyper-relational
KGs in which not only primal triples but also
qualifiers matter. One of the most important
properties is qualifier monotonicity. Given a query,
the answer set shrinks or at least does not expand as
more qualifiers are added to the query expression.
For example, a query (Einstein, educated_at, ?x)
with a variable ?x corresponds to two answers
{University of Zurich,ETH Zurich}, but a query
((Einstein, educated_at, ?x) , {(degree : B.Sc.)})
extended by a qualifier for degree will only
respond with {ETH Zurich}. Besides, different
qualifiers might form logical relationships that the
model must respect during inference including
qualifier implication (e.g., adding a qualifier that is
implicitly implied in the existing qualifiers does
not change the truth of a fact) and qualifier mutual
exclusion (e.g., adding any two mutually exclusive
qualifiers to a fact leads to a contradiction).

In light of this, we propose ShrinkE, a hyper-
relational embedding model that allows for mod-
eling these inference patterns. ShrinkE embeds
each entity as a point and models a primal triple as
a spatio-functional transformation from the head
entity to a relation-specific box that entails the pos-
sible tails. Each qualifier is modeled as a shrinking
of the primal box to a qualifier box. The shrinking
of boxes simulates the “monotonicity” of hyper-
relational qualifiers, i.e., attaching qualifiers to a
primal triple may only narrow down but never en-
larges the answer set. The plausibility of a given
fact is measured by a point-to-box function that
judges whether the tail entity is inside the intersec-
tion of all qualifier boxes. Moreover, since each
qualifier is associated with a box, the spatial re-
lationships between the qualifier boxes allow for
modeling core inference patterns such as qualifier
implication and mutual exclusion. We theoretically
show the capability of ShrinkE on modeling vari-
ous inference patterns including (fact-level) mono-
tonicity, triple-level, and qualifier-level inference
patterns. Empirically, ShrinkE achieves competi-
tive performance on three benchmarks.

2 Related Work

Related works on hyper-relational KG embeddings
can be categorized by their representations of facts.
Prominent representations include tuple, key-value
pairs, and triple+key-value pairs.

Tuple based Pioneering works view a hyper-
relational fact as an n-tuple, a.k.a. n-ary fact, con-
sisting of a single abstract relation r and its n val-
ues, i.e., r(v1, v2, · · · , vn). Functional models rep-
resent the tuple-based facts by functional mapping.
For example, m-TransH (Wen et al., 2016), a gen-
eralization of TransH (Wang et al., 2014) to hyper-
relational facts, projects all entities onto a relation-
specific hyperplane and measures the plausibility as
the weighted sum of projected embeddings. RAE
(Zhang et al., 2018) improves m-TransH by fur-
ther modeling the relatedness of values. Multi-
linear models generalize bilinear models to hyper-
relational facts via multi-linear products. For exam-
ple, HsimplE (Fatemi et al., 2020), m-CP (Fatemi
et al., 2020), and GETD (Liu et al., 2020) gener-
alize SimplE (Kazemi and Poole, 2018), Canoni-
cal Polyadic (CP) decomposition (Trouillon et al.,
2017), and TuckER (Balazevic et al., 2019), respec-
tively. GETD only applies to KGs with single-arity
relations (Liu et al., 2021b) and S2S (Di et al.,
2021) extends it to support mixed arity facts. HypE
(Fatemi et al., 2020) encodes hyper-relational facts
by positional convolutional filters and evaluates
the facts’ plausibility using the multilinear product.
However, these models ignore the semantics of re-
lations and loosely represent a combination of all
relations of the original fact (Galkin et al., 2020).

Key-value pairs NaLP (Guan et al., 2019) view
each hyper-relational fact as a set of key-value pairs,
i.e., {(ki : vi)}mi=1. Convolutional networks are em-
ployed to encode the key-value pairs, followed by
a multi-layer perceptron (MLP) that measures the
compatibility between the key and its values. RAM
(Liu et al., 2021b) further models the relatedness
between different keys and the relatedness between
a key and all involved values. NaLP+ (Guan et al.,
2021) improves NaLP by considering type informa-
tion. However, the key-value-based modeling treats
all key-value pairs equally and does not distinguish
primal triples from qualifiers.

Triple+key-value pairs NeuInfer (Guan et al.,
2020) and HINGE (Rosso et al., 2020) represent a
hyper-relational fact as a primary triple combined
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Albert Einstein Uni. of Zurich
educated_at

degree: PhD

major: Physics

(a)

educated_at Uni. of Zurich

Degree: PhD 

major: Physics
Albert Einstein

(b)

Figure 1: An illustration of the proposed idea. (a) A hyper-relational fact is composed of a primal triple and two
key-value qualifiers, in which entities (values) are underlined while relations (keys) are not. (b) An illustration
of the proposed hyper-relational KG embedding model ShrinkE. ShrinkE models the primal triple as a relation-
specific transformation from the head entity to a query box (purple) that entails the possible answer entities. Each
qualifier is modeled as a shrinking of the query box (orange and cyan) such that the shrinking box is a subset of the
query box. The shrinking of the box can be viewed as a geometric interpretation of the monotonicity assumption
that we follow. The final answer entities are supposed to be in the intersection box of all shrinking boxes.

with a set of the key-value form of qualifiers, i.e.,
((h, r, t) , {(ki : vi)}mi=1), which is compatible with
the RDF-star standard (Delva et al., 2021) used
in modern KGs. Both methods adopt neural net-
works to obtain the fact validity by measuring the
validity of the primary triple and its compatibility
with each qualifier. NeuInfer applies MLP while
HINGE uses a convolutional network as an en-
coder. StarE (Galkin et al., 2020) leverages a mes-
sage passing network, CompGCN (Vashishth et al.,
2020), as an encoder to obtain the relation and
entity embeddings, which are then fed into a trans-
former decoder to obtain the validity of facts. Hy-
Transformer (Yu and Yang, 2021), GRAN (Wang
et al., 2021) and QUAD (Shomer et al., 2022) fur-
ther improve it with alternative designs of encoders
and via auxiliary training tasks. Relatively, these
models, though useful, require a large number of
parameters and are prone to overfitting.

3 Preliminaries

We view a hyper-relational fact in the form of a
primal triple coupled with a set of qualifiers.
Definition 1 (Hyper-relational fact). Let E andR
denote the sets of entities and relations, respec-
tively. A hyper-relational fact F is a tuple (T ,Q),
where T = (h, r, t), h, t ∈ E , r ∈ R is a primal
triple and Q = {(ki : vi)}mi=1 ki ∈ R, vi ∈ E is
a set of qualifiers. We call the number of involved
entities in F , i.e., (m+ 2), the arity of the fact.

A hyper-relational fact reduces to a triple/binary
fact when m = 0. When m > 0, each qualifier can
be viewed as an auxiliary description that contex-
tualizes or specializes the semantics of the primal

triple. In typical open-world settings, facts with
the same primal triple might have different num-
bers of qualifiers. To characterize this property, we
introduce the concepts of partial fact and qualifier
monotonicity in hyper-relational KGs.
Definition 2 (Partial fact (Guan et al., 2020)).
Given two facts F1 = (T ,Q1) and F2 = (T ,Q2)
that share the same primal triple. We call F1 a
partial fact of F2 iff Q1 ⊆ Q2.

In this paper, we follow the monotonicity as-
sumption by restricting the model to respect the
monotonicity property.2 For this purpose, we con-
sider the monotonicity of query and inference.
Definition 3 (Qualifier monotonicity). Let QA(·)
denote a query answering model taking a query
and a KG as input and outputting the set of an-
swer entities. Given any pair of queries q1 =
((h, r, x?) ,Q1) and q2 = ((h, r, x?) ,Q2) that
share the same primal triple and Q1 ⊆ Q2, quali-
fier monotonicity is given iff,

QA(q2; KG) ⊆ QA(q1; KG). (1)

Qualifier monotonicity implies that attaching any
qualifiers to a query does not enlarge the answer set
of the possible tail entities, and inversely, removing
the qualifiers from a query can only return more
possible tail entities. This implies that if a fact is
true, then all its partial facts must also be true (a.k.a.
weakening of inference rule), i.e.,

(T ,Q1) ∧ (Q2 ⊆ Q1)→ (T ,Q2) . (2)
2Some kinds of qualifiers may represent semantically

opaque contexts. For instance, ((Crimea, belongs_to, Rus-
sia), {(said_by, Putin)}) does not imply the primary triple and
should therefore be excluded.
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4 Shrinking Embeddings for
Hyper-Relational KGs

We aim to design a scoring function f(·) taking
the embeddings of facts as input so that the output
values respect desired logical properties. To this
end, we introduce primal triple embedding and
qualifier embedding, respectively.

4.1 Primal Triple Embedding
We represent each entity as a point e ∈ Rd. Each
primal relation r is modeled as a spatio-functional
transformation Br : Rd → Box(d) that maps the
head eh ∈ Rd to a d-dimensional box in Box(d)
with Box(d) being the set of boxes in Rd. Each box
can be parameterized by a lower left point m ∈ Rd
and an upper right point M ∈ Rd, given by

Boxd(m,M) =

{x ∈ Rd |mi ≤ xi ≤Mi, i = 1, · · · , d}.
(3)

We leave the superscript of Boxd away if it is clear
from context. and call the transformed box a query
box. Intuitively, all points in the query box corre-
spond to the possible answer tail entities. Hence,
the query box can be viewed as a geometric em-
bedding of the answer set. Note that a query could
result in an empty answer set. In order to cap-
ture such property, we do not exclude empty boxes
that correspond to queries with empty answer set.
Empty boxes are covered by the cases where there
exists a dimension i such that mi ≥Mi.

Point-to-box transform The spatio-functional
point-to-box transformation B is composed of a
relation-specific point transformation Hr : Rd →
Rd that transforms the head point eh to a new point,
and a relation-specific spanning that spans the trans-
formed point to a box, formally given by

Br(eh) = Box(Hr(eh)−τ(δr),Hr(eh)+τ(δr)),
(4)

where δr ∈ Rn is a relation-specific span-
ning/offset vector, and τt(x) = t log

(
1 + ex/t

)

with t being a temperature hyperparameter, is a
softplus function that enforces the spanned box to
be non-empty.

The point transformation functionHr could be
any functions that are used in other KG embedding
models such as translation used in TransE (Bordes
et al., 2013) and rotations used in RotatE (Sun et al.,
2019). Hence, our model is highly flexible and
effective at embedding primal triples. To allow for

Figure 2: An illustration of the point-to-box distance.
The distance (visualized by color maps) grows slowly
when the point is inside of the box (right) while grow-
ing faster when the point is outside of the box (left).

capturing multiple triple-level inference patterns
such as symmetry, inversion, and composition, we
combine translation and rotation, and formulateHr
as

Hr(eh) = Θreh + br (5)

where Θr is a rotation matrix and br is a
translation vector. We parameterize the rota-
tion matrix by a block diagonal matrix Θr =

diag
(
G (θr,1) , . . . ,G

(
θr, d

2

))
, where

G(θ) =

[
cos(θ) sin(θ)
sin(θ) cos(θ)

]
. (6)

Point-to-box distance The validity of a primal
triple (h, r, t) is then measured by judging whether
the tail entity point et is geometrically inside of the
query box. Given a query box Boxn(m,M) and an
entity point e ∈ Rd, we denote the center point as
c = m+M

2 . Let | · | denote the L1 norm and max()
denote an element-wise maximum operation. The
point-to-box distance is given by

D(e,Box(m,M)) =
|e− c|1

|max(0,M−m)|1
+ (|e−m|1 + |e−M|1 − |max(0,M−m)|1)2 .

(7)

Fig. 2 visualizes the distance function. Intuitively,
in cases where the point is in the query box, the
distance grows relatively slowly and inversely cor-
relates with the box size. In cases where the point
is outside the box, the distance grows fast.

4.2 Qualifier Embedding
Conceptually, qualifiers add information to given
primary facts potentially allowing for additional in-
ferences, but never for the retraction of inferences,
reflecting the monotonicity of the representational
paradigm. Corresponding to the non-declining
number of inferences, the number of possible mod-
els for this representation shrinks, which can be
intuitively reflected by a reduced size of boxes in-
curred by adding qualifiers.
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Box Shrinking To geometrically mimic this
property in the embedding space, we model each
qualifier (k : v) as a "shrinking" of the query box.
Given a box Box(m,M), a shrinking is defined as
a box-to-box transformation S : Box→ Box that
potentially shrinks the volume of the box while not
moving the resulting box outside of the source box.
Let L = (M−m) denote the side length vector,
box shrinking is defined by

Sr,k,v (Box (m,M)) =

Box (m + σ (sr,k,v)� L,M− σ (Sr,k,v)� L) ,

(8)

where sr,k,v ∈ Rn and Sr,k,v ∈ Rn are the "shrink-
ing" vectors for the lower left corner and the up-
per right corner, respectively. σ is a sigmoid
function and � is element-wise vector multipli-
cation. The resulting box, including the case of
empty box, is always inside the query box, i.e.,
S(Boxn(m,M)) ⊆ Boxn(m,M), which exactly
resembles the qualifier monotonicity.

We use r, k, v as the indices of the shrinking
vectors because the shrinking of the box should
depend on the relatedness between the primal re-
lation and the qualifier. For example, if a qualifier
(degree : bachelor) is highly related to the primal
relation educated_at, the scale of the shrinking vec-
tors should be small as it adds a weak constraint to
the triple. If the qualifier is unrelated to the primal
relation, e.g., (degree : bachelor) and born_in, the
shrinking might even enforce an empty box.

To learn the shrinking vectors, we leverage
an MLP layer that takes the primal relation
and key-value qualifier as input and outputs
the shrinking vectors defined by sr,k,v,Sr,k,v =
MLP (concat (rθ, kθ, vθ)) where rθ, kθ, vθ are the
embeddings of r, k, v, respectively.

4.3 Scoring function and learning.
Scoring function The score of a given hyper-
relational fact is defined by

f (((h, r, t) ,Q)) = D(et,BoxQ(m,M)), (9)

where BoxQ(m,M) denotes the target box that is
calculated by the intersection of all shrinking boxes
of the qualifier set Q. The intersection of n boxes
can be calculated by taking the maximum of lower
left points of all boxes and taking the minimum of
upper right points of all boxes, given by

I(Box1, · · · ,Boxn) = Box

(
max

i∈1,··· ,n
mi, min

i∈1,··· ,n
Mi

)
.

(10)

Note that if there is no intersection between
boxes, this intersection operation still works as it
results in an empty box. The intersection of boxes
is a permutation-invariant operation, implying that
perturbing the order of qualifiers does not change
the plausibility of the facts.

Learning As a standard data augmentation strat-
egy, we add reciprocal relations

(
t′, r−1, h′

)
for

the primary triple in each hyper-relational fact. For
each positive fact in the training set, we generate
nneg negative samples by corrupting a subject/tail
entity with randomly selected entities from E . We
adopt the cross-entropy loss to optimize the model
via the Adam optimizer, which is given by

L = − 1

N

N∑

i=1

(
yi log (pi) +

nneg∑

i=1

(1− yi) log (1− pi)

)
,

(11)

where N denotes the total number of facts in the
training set. yi is a binary indicator denoting
whether a fact is true or not. pi = σ(f(F)) is
the predicted score of a fact F with σ being the
sigmoid function.

5 Theoretical Analysis

Analyzing and modeling inference patterns is of
great importance for KG embeddings because it
enables generalization capability, i.e., once the pat-
terns are learned, new facts that respect the patterns
can be inferred. An inference pattern is a specifi-
cation of a logical property that may exist in a KG,
Formally, an inference pattern is a logical form
ψ → φ with ψ and φ being the body and head,
implying that if the body is satisfied then the head
must also be satisfied.

In this section, we analyze the theoretical capac-
ity of ShrinkE for modeling inference patterns. All
proofs of propositions are in Appendix B.

Fact-level inference pattern (monotonicity)
The following proposition shows that ShrinkE is
able to model monotonicity.

Proposition 1. Given any two facts F1 = (T ,Q1)
and F2 = (T ,Q2) where Q2 ⊆ Q1, i.e., F2

is a partial fact of F1, the output of the scor-
ing function f(·) of ShrinkE satisfy the constraint
f(F2) ≥ f(F1).

Triple-level inference patterns Promi-
nent triple-level inference patterns in-
clude symmetry (h, r, t) → (t, r, h), anti-
symmetry (h, r, t) → ¬(h, r, t), inver-
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All facts Higher-arity facts (%) Entities Relations Train Dev Test
JF17K 100,947 46,320 (45.9%) 28,645 501 76,379 – 24,568

WikiPeople 382,229 44,315 (11.6%) 47,765 193 305,725 38,223 38,281
WD50k 236,507 32,167 (13.6%) 47,156 532 166,435 23,913 46,159

WD50K(33) 102,107 31,866 (31.2%) 38,124 475 73,406 10,568 18,133
WD50K(66) 49,167 31,696 (64.5%) 27,347 494 35,968 5,154 8,045
WD50K(100) 31,314 31,314 (100%) 18,792 279 22,738 3,279 5,297

Table 1: Dataset statistics, where the columns indicate the number of all facts, hyper-relational facts with the
number of qualifiers m > 0, entities, relations, and facts in train/dev/test sets, respectively.

sion (h, r1, t) → (t, r2, h), composition
(e1, r1, e2) ∧ (e2, r2, e3) → (e1, r3, e3), relation
implication (h, r1, t) → (h, r2, t), relation inter-
section (h, r1, t) ∧ (h, r2, t)→ (h, r3, t), and rela-
tion mutual exclusion (h, r1, t) ∧ (h, r2, t) → ⊥.
All these triple-level inference patterns also exist
in hyper-relational facts when their qualifiers are
the same, e.g., hyper-relational symmetry means
((h, r, t) ,Q) → ((t, r, h) ,Q). Proposition 2
states that ShrinkE is able to infer all of them.

Proposition 2. ShrinkE is able to infer hyper-
relational symmetry, anti-symmetry, inversion, com-
position, relation implication, relation intersection,
and relation exclusion.

Qualifier-level inference pattern In hyper-
relational KGs, inference patterns not only exist
at the triple level but also at the level of qualifiers.

Definition 4 (qualifier implication). Given two
qualifiers qi and qj , qi is said to imply qj , i.e.,
qi → qj iff for any fact F = (T ,Q), if attach-
ing qi to Q results in a true (resp. false) fact, then
attaching qj toQ∪{qi} also results in a true (resp.
false) fact. Formally, qi → qj implies

∀ T ,Q : (T ,Q∪ {qi})→ (T,Q ∪ {qi, qj}) .
(12)

Definition 5 (qualifier exclusion). Two qualifiers
qi, qj are said to be mutually exclusive iff for any
factF = (T ,Q), by attaching qi, qj to the qualifier
set of F , the new fact F ′ = (T ,Q∪ {qi, qj}) is
false, meaning that they lead to a contradiction, i.e.,
qi ∧ qj → ⊥. Formally, qi ∧ qj → ⊥ implies

∀ T ,Q : (T,Q ∪ {qi, qj})→ ⊥ (13)

Note that if two qualifiers qi, qj are neither mu-
tually exclusive nor forming implication pair, then
qi, qj are said to be overlapping, a state between
implication and mutual exclusion. Qualifier over-
lapping, in our case, can be captured by box inter-
section/overlapping. Qualifier overlapping itself

does not form any logical property in the form of
ψ → φ. However, when involving three qualifiers
and two of them overlap, qualifier intersection can
be modeled.

Definition 6 (qualifier intersection). A qualifier qk
is said to be an intersection of two qualifiers qi, qj
iff for any fact F = (T ,Q), if attaching qi, qj toQ
results in a true (resp. false) fact, then by replacing
{qi, qj} with qk, the truth value of the fact does not
change. Namely, qi ∧ qj → qk implies

∀ T ,Q : (T,Q ∪ {qi, qj})→ (T ,Q∪ {qk}) .
(14)

Apparently, qualifier intersection qi ∧ qj → qk
necessarily implies qualifier implications qi → qk
and qj → qk. Hence, qualifier intersection can be
viewed as a combination of two qualifier implica-
tions, and this can be generalized to q1∧q2∧· · · →
qk. Proposition 3 shows that ShrinkE is able to infer
qualifier implication, exclusion, and composition.

Proposition 3. ShrinkE is able to infer qualifier
implication, mutual exclusion, and intersection.

6 Evaluation

In this section, we evaluate the effectiveness of
ShrinkE on hyper-relational link prediction tasks.

6.1 Experimental Setup

Datasets. We conduct link prediction experiment
on three hyper-relational KGs: JF17K (Wen et al.,
2016), WikiPeople (Guan et al., 2019), and WD50k
(Galkin et al., 2020). JF17K is extracted from Free-
base while WikiPeople and WD50k are extracted
from Wikidata. In WikiPeople and WD50k, only
11.6% and 13.6% of the facts, respectively, contain
qualifiers, while the remaining facts contain only
triples (after dropping statements containing liter-
als in WikiPeople, only 2.6% facts contain qual-
ifiers). For better comparison, we also consider
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Method
WikiPeople (2.6) JF17K (45.9) WD50K (13.6)

MRR H@1 H@10 MRR H@ 1 H@ 10 MRR H@ 1 H@ 10
m-TransH 0.063 0.063 0.300 0.206 0.206 0.463 − − −
RAE 0.059 0.059 0.306 0.215 0.215 0.469 − − −
NaLP-Fix 0.420 0.343 0.556 0.245 0.185 0.358 0.177 0.131 0.264
NeuInfer 0.350 0.282 0.467 0.451 0.373 0.604 − − −
HINGE 0.476 0.415 0.585 0.449 0.361 0.624 0.243 0.176 0.377
Transformer 0.469 0.403 0.586 0.512 0.434 0.665 0.264 0.194 0.401
BoxE 0.395 0.293 0.503 0.560 0.472 0.722 − − −
StarE 0.491 0.398 0.648 0.574 0.496 0.725 0.349 0.271 0.496
ShrinkE 0.485 0.431 0.601 0.589 0.506 0.749 0.345 0.275 0.482

Table 2: Link prediction results on three benchmarks with the number in the parentheses denoting the ratio of facts
with qualifiers. Baseline results are taken from Galkin et al. (2020).

Method
WD50K (33) WD50K (66) WD50K (100)

MRR H@1 H@10 MRR H@ 1 H@ 10 MRR H@ 1 H@ 10
NaLP-Fix 0.204 0.164 0.277 0.334 0.284 0.423 0.458 0.398 0.563
HINGE 0.253 0.190 0.372 0.378 0.307 0.512 0.492 0.417 0.636
Transformer 0.276 0.227 0.371 0.404 0.352 0.502 0.562 0.499 0.677
StarE 0.331 0.268 0.451 0.481 0.420 0.594 0.654 0.588 0.777
ShrinkE 0.336 0.272 0.449 0.511 0.422 0.611 0.695 0.629 0.814

Table 3: Link prediction results on WD50K splits with the number in the parentheses denoting the ratio of facts
with qualifiers. Baseline results are taken from Galkin et al. (2020).

three splits of WD50K that contain a higher per-
centage of triples with qualifiers. The three splits
are WD50K(33), WD50K(66), and WD50K(100),
which contain 33%, 66%, and 100% facts with
qualifiers, respectively. Statistics of the datasets
are given in Table 1. We conjecture that the per-
formance on WikiPeople and WD50k will be dom-
inated by the scores of triple-only facts while the
performance on the variants of WD50k will be dom-
inated by the modeling of qualifiers. We conjecture
that WD50K will be a more challenging benchmark
than JF17K and WikiPeople. Besides, WD50K still
contains only a small percentage (13.6%) of facts
that contain qualifiers. Since JF17K does not pro-
vide a validation set, we split 20% of facts from
the training set as the validation set. Details of the
three datasets are given in Table 1.

Environments and hyperparameters We im-
plement ShrinkE with Python 3.9 and Pytorch 1.11,
and train our model on one Nvidia A100 GPU with
40GB of VRAM. We use Adam optimizer with
a batch size of 128 and an initial learning rate of
0.0001. For negative sampling, we follow the strat-
egy used in StarE (Galkin et al., 2020) by randomly
corrupting the head or tail entity in the primal triple.

Different from HINGE (Rosso et al., 2020) and
NeuInfer (Guan et al., 2020) that score all poten-
tial facts one by one that takes an extremely long
time for evaluation, ShrinkE ranks each target an-
swer against all candidates in a single pass and sig-
nificantly reduces the evaluation time. We search
the dimensionality from [50, 100, 200, 300] and the
best one is 200. We set the temperature parameter
to be t = 1.0. We use the label smoothing strategy
and set the smoothing rate to be 0.1. We repeat
all experiments for 5 times with different random
seeds and report the average values, the error bars
are relatively small and are omitted. Code is avail-
able at 3.

Baselines We compare ShrinkE against various
models, including m-TransH (Wen et al., 2016),
RAE (Zhang et al., 2018), NaLP-Fix (Rosso et al.,
2020), HINGE (Rosso et al., 2020), NeuInfer
(Guan et al., 2020), BoxE (Abboud et al., 2020),
Transformer and StarE (Galkin et al., 2020). Note
that we exclude Hy-Transformer (Yu and Yang,
2021), GRAN (Wang et al., 2021) and QUAD
(Shomer et al., 2022) for comparison because 1)
they are heavily based on StarE and Transformer;

3https://github.com/xiongbo010/ShrinkE
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Method MRR H@ 1 H@ 10
ShrinkE (w/o translation) 0.583 0.495 0.729

ShrinkE (w/o rotation) 0.581 0.497 0.724
ShrinkE (w/o shrinking) 0.571 0.490 0.711

ShrinkE 0.589 0.506 0.749

Table 4: The performance of ShrinkE by removing one
relational component on JF17K.

and 2) they leverage auxiliary training tasks, which
can also be incorporated into our framework and
we leave as one future work.

Evaluation We strictly follow the settings of
Galkin et al. (2020), where the aim is to predict
a missing head/tail entity in a hyper-relational fact.
We consider the widely used ranking-based metrics
for link prediction: mean reciprocal rank (MRR)
and H@K (K=1,10). For ranking calculation, we
consider the filtered setting by filtering the facts
existing in the training and validation sets (Bordes
et al., 2013).

6.2 Main Results and Analysis

Table 2 and Table 3 summarize the performances of
all approaches on the six datasets. Overall, ShrinkE
achieves either the best or the second-best results
against all baselines, showcasing the expressivity
and capability of ShrinkE on hyper-relational link
prediction. In particular, We observe that ShrinkE
outperforms all baselines on JF17K and the three
variants of WD50K with a high ratio of facts con-
taining qualifiers while achieving highly competi-
tive results on WikiPeople and the original version
of WD50K that contain fewer facts with qualifiers.
Interestingly, we find that the performance gains
increase when increasing the ratio of facts contain-
ing qualifiers. On WD50K (100) where 100% facts
contain qualifiers, the performance gain of ShrinkE
is most significant across all metrics (6.2%, 6.9%,
and 4.7% improvements over MRR, H@1, and
H@10, respectively). We believe this is because
that ShrinkE is excellent at modeling qualifiers due
to its explicit modeling of inference patterns.

Case analysis Table 5 shows some examples of
qualifier implication pairs recovered by our learned
embeddings. Note that exclusions pairs are ubiqui-
tous (i.e., most of the random qualifiers are mutu-
ally exclusive) and hence we do not analyze them.
We find that some qualifier implications happen
when they are about geographic information and
involve geographic inclusion such as Monte Carlo

body head
(residence: Monte Carlo) (country, Monaco)

(residence: Belgrade) (country, Serbia)
(owned_by: X) (of, voting interest)

(emergency phone number: Y) (has_use, police)
(emergency phone number: Z) (has_use, fire department)

(used_by: software) (via, operating_system)

Table 5: Example pairs of qualifiers with implication
relations (body → head). X ∈ [Eric Schmidt, Mark
Zuckerberg, Dustin Moskovitz, Larry Page] denotes a
CEO name of a company. Y ∈ [112, 115, 113, · · · ] and
Z ∈ [912, 18, 192, · · · ] are emergency numbers involv-
ing police and fire department, respectively. Qualifier
exclusion pairs are ubiquitous and are hence omitted.

101 102

Dimensionality
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
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et

ric
MRR
H@1
H@10

Figure 3: Performance of ShrinkE with different dimen-
sions d = [4, 8, 16, 32, 64, 128, 256] on JF17K.

is in Monaco. Interestingly, we find that qualifiers
associated with key owned_by imply (of, voting
interest), and qualifiers with key emergency phone
number imply (has_use, police) or (has_use, file
department), which conceptually make sense.

6.3 Ablations and Parameter Sensitivity
Impact of relational components To determine
the importance of each component in relational
modeling, we conduct an ablation study by con-
sidering three versions of ShrinkE in which one of
the components (translation, rotation, and shrink-
ing) is removed. Table 4 shows that the removal
of each component of the relational transformation
leads to a degradation in performance, validating
the importance of each component. In particular, by
removing the qualifier shrinking, which is the main
contribution of our framework, the performance re-
duces 3% and 5% in MRR and H@10, respectively,
showcasing the usefulness of modeling qualifiers
as shrinking. The removals of translation and rota-
tion both result in around 1% and 2% reduction in
MRR and H@10, respectively.

Impact of dimensionality We conduct experi-
ments on JF17K under a varied number of dimen-
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sions d = [4, 8, 16, 32, 64, 128, 256]. As Fig. 3
depicts, the performance increases when increasing
the number of dimensions. However, the growth
trend gradually flattens with the increase of di-
mensions and it achieves comparable performance
when the dimension is higher than 128.

6.4 Discussion
Comparison with neural network models
Heavy neural network models such as GRAN
(Wang et al., 2021) and QUAD (Shomer et al.,
2022) are built on relational GNNs and/or Trans-
formers and require a large number of parameters.
In contrast, ShrinkE is a neuro-symbolic model that
requires only one MLP layer and a much smaller
number of parameters. The logical modelling of
ShrinkE makes it more explainable than GNN-
based and Transformer-based methods.

Comparison with other box embeddings in
KGs ShrinkE is the first to not only represent
hyper-relational facts, but also explicitly model the
logical properties of these facts. SrinkE is different
from previous box embedding methods (Abboud
et al., 2020) of KGs in three key modules: 1) our
point-to-box transform function modelling triple
inference patterns; 2) a new point-to-box distance
function; and 3) we introduce box shrinking to
model qualifier-level inference patterns. Moreover,
we provide a comprehensive theoretical analysis of
ShrinkE on modelling various logical properties.

7 Conclusion

We present a novel hyper-relational KG embedding
model ShrinkE. ShrinkE models a primal triple
as a spatio-functional transformation while mod-
eling each qualifier as a shrinking that monoton-
ically narrows down the answer set. We proved
that ShrinkE is able to spatially infer core inference
patterns at different levels including triple-level,
fact-level, and qualifier-level. Experimental results
on three benchmarks demonstrate the advantages
of ShrinkE in predicting hyper-relational links.

Limitations

Currently, the main goal of ShrinkE is to model in-
ference patterns directly in the embedding space for
hyper-relational KGs and we do not explore more
advanced training strategies that have recently been
proposed. For example, recent works (Yu and Yang,
2021; Wang et al., 2021; Shomer et al., 2022) have
demonstrated that adding auxiliary training tasks,

e.g., the task of predicting qualifier entities, can
further improve the overall performance. We be-
lieve such auxiliary training tasks can also benefit
ShrinkE and we leave it as future work. Another
limitation of ShrinkE, though rarely happens, is
that when dealing with semantically opaque con-
texts, the monotonicity assumption might not hold.
In that case, we need ad-hoc solutions. One sim-
ple way is to explicitly distinguish semantically
transparent and semantically opaque contexts.
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A Supplemental Related Works

We survey some supplemental related work on bi-
nary relational KG embeddings and geometric rela-
tional embeddings.

Binary relational KG embeddings Most of the
existing KG embedding methods consider binary
relational KGs where each fact is represented in
the form of triple (h, r, t). Prominent examples
include the additive (or translational) family such
as TransE (Bordes et al., 2013) that models each
fact as a translation s + r ≈ o, and the multiplica-
tive (or bilinear) family such as RESCAL (Nickel
et al., 2011) that models the relation between two
entities as a bilinear interaction < h, r, t >. Many
other works have been proposed to enhance the
translational and bilinear models such as modeling
relational mapping properties (e.g., one-to-many
and many-to-many) (Wang et al., 2014), modeling
inference patterns (e.g., symmetry and composi-
tion) (Trouillon et al., 2016; Sun et al., 2019), and
modeling complex graph structures (e.g., hierar-
chies and cycles) (Chami et al., 2020; Xiong et al.,
2022d) to name a few.

Geometric relational embeddings Our work is
closely related to geometric relational embeddings.
See (Xiong et al., 2023) for a systematic survey. Ge-
ometric relational embeddings encode real-world
relational knowledge by geometric objects such as
convex regions like n-balls (Kulmanov et al., 2019),
convex cones (Zhang et al., 2021; He et al., 2023),
axis-parallel boxes (Vilnis et al., 2018; Xiong et al.,
2022c; Ren et al., 2020) and non-Euclidean mani-
fold components (Xiong et al., 2022a). A key ad-
vantage of these geometric embeddings is that they
nicely model the set-theoretic semantics that can
be used to capture logical rules of KGs (Abboud
et al., 2020), ontological axioms (Kulmanov et al.,
2019; Xiong et al., 2022c), transitive closure (Vil-
nis et al., 2018), and logical query for multi-hop
reasoning (Ren et al., 2020). Different from all
previous work, ShrinkE is the first geometric em-
bedding that aims at modeling inference patterns
for hyper-relational KGs.

B Proof of propositions

Proposition B.1. Given any two facts F1 =
(T ,Q1) and F2 = (T ,Q2) where Q2 ⊆ Q1, i.e.,
F2 is a partial fact of F1, the output of the scor-
ing function f(·) of ShrinkE satisfy the constraint
f(F2) ≥ f(F1), which implies Eq.(2).

Proof. We first prove that the resulting box of F2

subsumes the resulting box of F2. Since the primal
triple of F1 and F2 are the same (let assume it is
T = (h, r, t) ), the spanned boxes of the two facts
are Hr(eh). Since Q2 ⊆ Q1, the final shrunken
box of F1 must be a subset of the shrunken box of
F2. Hence, we have,

BoxF2 ⊆ BoxF1 . (15)

Given the tail entity t whose embedding is denoted
by et, we consider three cases of its position.

1) If et is inside the small box BoxF2 , then et
must also be inside BoxF1 since BoxF2 ⊆ BoxF1 .
Note that our point-to-box function is monoton-
ically increasing w.r.t. the increase of distance
from the tail point to the center of box. Hence,
we will have D(e,BoxF2) ≥ D(e,BoxF1), imply-
ing f(F2) ≥ f(F1).

2) If et is outside the small box BoxF2 but in-
side in the larger BoxF1 , according to the definition
of the point-to-box distance function, we immedi-
ately have D(e,BoxF2) ≥ D(e,BoxF1), imply-
ing f(F2) ≥ f(F1).

3) If et is outside the larger box BoxF1„ then et
must also be outside BoxF2 since BoxF2 ⊆ BoxF1 .
Note that our point-to-box function is monoton-
ically decreasing w.r.t. the increase of volume
of box. Hence, we will have D(e,BoxF2) ≥
D(e,BoxF1), implying f(F2) ≥ f(F1).

Proposition B.2. ShrinkE is able to infer hyper-
relational symmetry, anti-symmetry, inversion, com-
position, hierarchy, intersection, and exclusion.

We first prove that ShrinkE is able to infer sym-
metry, anti-symmetry, inversion, and composition.
For the sake of proof, we assume θr ∈ [−π, π).
We prove them by proving Lemma B.1-4 one by
one.
Lemma B.1 (Symmetry). Let r be a symmetric
relation such that for each triple (eh, r, et), its sym-
metric triple (et, r, eh) also holds. This symmetric
property of r can be modeled by ShrinkE.

Proof. If r is a symmetric relation, by tak-
ing the δr = 0, br = 0, and Θr =

diag
(
G (θr,1) , . . . ,G

(
θr, d

2

))
, where G(θ) is a

2× 2 diagonal matrix, we have

eh = fr (et) = Θret, et = fr (eh) = Θreh

⇒ Θ2
r = I

which holds true when θr,i = 0 or θr,i = −π for
i = 1, · · · , d2 .
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Lemma B.2 (Anti-symmetry). Let r be an anti-
symmetric relation such that for each triple
(eh, r, et), its symmetric triple (et, r, eh) is not true.
This anti-symmetric property of r can be modeled
by ShrinkE.

Proof. If r is a anti-symmetric relation, by tak-
ing the δr = 0, br = 0, and Θr =

diag
(
G (θr,1) , . . . ,G

(
θr, d

2

))
, where G(θ) is a

2× 2 diagonal matrix, we have

eh 6= fr (et) = Θret, et = fr (eh) = Θreh

⇒ Θ2
r 6= I

which holds true when θr,i 6= 0 or θr,i 6= −π for
i = 1, · · · , d2 .

Lemma B.3 (Inversion). Let r1 and r2 be inverse
relations such that for each triple (eh, r1, et), its
inverse triple (et, r2, eh) is also true. This inverse
property of r1 and r2 can be modeled by ShrinkE.

Proof. If r1 and r2 are inverse relations, by
taking the δr = 0, br = 0, and Θr =

diag
(
G (θr,1) , . . . ,G

(
θr, d

2

))
, where G(θ) is a

2× 2 diagonal matrix, we have

et = fr1 (eh) = Θr1eh, eh = fr2 (et) = Θr2eh

⇒ Θr1Θr2 = I

which holds true when for θr1,ir1 + θr2,i = 0 for
i = 1, · · · , d2 .

Lemma B.4 (Composition). Let relation r1 be
composed of r2 and r3 such that triple (e1, r1, e3)
exists when (e1, r2, e2) and (e2, r3, e3) exist. This
composition property can be modeled by ShrinkE.

Proof. If r1 is composed of r2 and r3, by tak-
ing the δr = 0, br = 0, and Θr =

diag
(
G (θr,1) , . . . ,G

(
θr, d

2

))
, where G(θ) is a

2× 2 diagonal matrix, we have

e3 = fr1 (e1) = Θr1e1, e2 = fr2 (e1) = Θr2e1,

e3 = fr3 (e2) = Θr3e2 ⇒ Θr1 = Θr2Θr3

which holds true when θr1,i = θr2,i + θr3,i or
θr1,i = θr2,i+θr3,i+2π or θr1,i = θr2,i+θr3,i−2π
for i = 1, · · · , d2 .

We now prove that ShrinkE is able to infer rela-
tion implication, exclusion and intersection.

Lemma B.5 (Relation implication). Let r1 →
r2 form a hierarchy such that for each triple
(eh, r1, et), (eh, r2, et) also holds. This hierarchy
property r1 → r2 can be modeled by ShrinkE.

Proof. If r1 → r2, by taking Tr1 = Tr2 ,
i.e., δr1 = δr2 and Θr1 = Θr2 , we have,
(eh, r1, et)→ (eh, r2, et) implies that the spanning
box of query (eh, r1, x?) is subsumed by the span-
ning box of query (eh, r2, x?). i.e., Box(Hr1(eh)−
σ(δr1),Hr1(eh) + σ(δr1)) ⊆ Box(Hr1(eh) −
σ(δr2),Hr1(eh)+σ(δr2)), which holds true when
δr1 ≤ δr2 .

Lemma B.6 (Relation exclusion). Let r1, r2 be mu-
tually exclusive, that is, (eh, r1, et), (eh, r2, et) can
not be simultaneously hold. This mutual exclusion
property r1 ∧ r2 → ⊥ can be modeled by ShrinkE.

Proof. If r1 ∧ r2 → ⊥, we have (eh, r1, et) ∧
(eh, r2, et) → ⊥, which implies that the span-
ning box of query (eh, r1, x?) and the spanning
box of query (eh, r2, x?) are mutually exclusive,
i.e., Box(Hr1(eh)− σ(δr1),Hr1(eh) + σ(δr1)) ∩
Box(Hr1(eh) − σ(δr2),Hr1(eh) + σ(δr2)) →
⊥
Lemma B.7 (Relation intersection). Let r3 be a
intersection of r1, r2, that is, if (eh, r1, et) and
(eh, r2, et) hold, then (eh, r3, et) also holds. This
intersection property r1 ∧ r2 → r3 can be modeled
by ShrinkE.

Proof. Note that box is closed under intersection
and this property can be view as a combination of
two pairs of relation implication. Hence, the proof
is similar to the proof of Lemma B.

Proposition B.3. ShrinkE is able to infer qualifier
implication, mutual exclusion, and intersection.

Proof. Since each qualifier is associated with a
box, the implication and mutual exclusion relation-
ships between qualifiers can be modeled by their
geometric relationships, i.e., box entailment and
box disjointedness, respectively, between their cor-
responding boxes. Qualifier intersection can be
modeled by enforcing the box of one qualifier to
be inside the intersection of the boxes of another
two qualifiers.
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