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Abstract
Emotion recognition in conversation (ERC) has
attracted enormous attention for its applications
in empathetic dialogue systems. However, most
previous researches simply concatenate multi-
modal representations, leading to an accumu-
lation of redundant information and a limited
context interaction between modalities. Fur-
thermore, they only consider simple contextual
features ignoring semantic clues, resulting in an
insufficient capture of the semantic coherence
and consistency in conversations. To address
these limitations, we propose a cross-modality
context fusion and semantic refinement net-
work (CMCF-SRNet). Specifically, we first
design a cross-modal locality-constrained trans-
former to explore the multimodal interaction.
Second, we investigate a graph-based seman-
tic refinement transformer, which solves the
limitation of insufficient semantic relationship
information between utterances. Extensive ex-
periments on two public benchmark datasets
show the effectiveness of our proposed method
compared with other state-of-the-art methods,
indicating its potential application in emotion
recognition. Our model is available at https:
//github.com/zxiaohen/CMCF-SRNet.

1 Introduction

Emotion recognition in conversation (ERC) plays
an important role in affective dialogue systems,
aiming to understand and generate empathetic re-
sponses (Raamkumar and Yang, 2022). Most stud-
ies on ERC focus primarily on the textual modal-
ity (Majumder et al., 2019). Although they can be
easily extended to multimodal paradigms by per-
forming early or late fusion (Poria et al., 2017a),
it is difficult to capture contextual interactions be-
tween modalities, which limits the utilization of
multiple modalities. For instance, a tensor fu-
sion network based on the utterance-level explicit
alignment learning both intra-modality and inter-
modality interactions via the Cartesian product was
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Fig. 1. An example conversation between two speakers
with corresponding emotions evoked for each utterance
illustrating the importance of local context.

firstly created (Zadeh et al., 2017), then a low-rank
multimodal fusion network to improve efficiency
and reduce trainable parameters was designed (Liu
et al., 2018). A conversational memory network
aligns features from different modalities by fusing
multi-view information (Hazarika et al., 2018b). In
addition, a cross-modal transformer was integrated
that learns attention between two-modal features,
thus enabling implicit enhancement of the target
modality (Tsai et al., 2019). A multimodal fusion
graph convolutional network for ERC was put for-
ward discussing the impact of fusion methods of
various modalities (Hu et al., 2021).

However, these methods mostly use a simple
concatenation ignoring complex interactions be-
tween modalities, resulting in leveraging context
information insufficiently or the problem of data
sparseness. Besides, they simply consider the emo-
tional impact of context in the whole conversation
but neglect the emotional inertia of speakers and
the fact that the local context may have a higher
impact than long-distance utterances.

As both the current utterance and the surround-
ing contexts are vital for the emotion perception,
previous works proposed different methods in-
cluding RNN-based models and graph-based mod-
els to explore contextual clues: A LSTM-based

13099

https://github.com/zxiaohen/CMCF-SRNet
https://github.com/zxiaohen/CMCF-SRNet


model (Poria et al., 2017b) and an interactive con-
versational memory network ICON (Hazarika
et al., 2018a) capture interaction and history con-
text, while DialogueRNN model (Majumder et al.,
2019) leverages distinct GRUs to capture speakers’
contextual information.

Other popular approaches use graph-based neu-
ral networks and solve the context propagation is-
sues in RNN-based architectures, including Dia-
logueGCN (Ghosal et al., 2019) which first con-
structed the graph considering both speaker and
conversation sequential information. Recent ap-
proaches like DAG-ERC (Shen et al., 2021) com-
bined the advantages of conventional graph-based
models and RNN-based models, a semantics GAT
was employed to adjust the weight of knowl-
edge (Tu et al., 2022), latent correlations have been
leveraged among the utterances through a multi-
branch graph network (Ren et al., 2022). Mean-
while, existing GNN models use different aggrega-
tion schemes for a node to aggregate feature mes-
sages from its neighbors (Yuan et al., 2022): Graph
convolutional networks use mean pooling while
graph attention networks aggregate neighborhood
information with trainable attention weights to cap-
ture local details (Isufi et al., 2022). Furthermore,
graph networks consider global graph information
during aggregation and have been used to explore
the semantic relationship between regional objects
and global concepts (Zhu et al., 2022).

However, the existing graph-based methods also
have limitations. First, they mostly ignore the se-
mantic similarity between context utterances lead-
ing to a lack of semantic correlation. Second, these
models learn node embeddings by capturing lo-
cal network structure but ignore the position of the
node within a broader context of the graph structure
and the deep semantic features from a global view.
To address this issue, we investigate a semantic
graph-based transformer.

In this work, we propose a cross-modality
context fusion and semantic refinement network
(CMCF-SRNet). First, we investigate a cross-
modality context fusion module to integrate textual
and audio information considering the impact of
the local context and the emotional inertia of speak-
ers, achieved by a cross-modal locality-constrained
attention. Second, we design a semantic refine-
ment module to extract effective semantic features
and contextual information including the nearby
surroundings and distant information. The main

contributions can be summarized as follows:

• Our proposed CMCF-SRNet is developed firstly
by exploring cross-modal locality-constrained
transformer to facilitate multimodal context fu-
sion, bridging the gap of current works on ERC.

• We define a semantic graph to model the relations
between neighboring utterances and a semantic
graph-based transformer encoder is adopted to
capture the global underlying semantic.

• We systemically analyze the importance of each
component, including cross-modal transformer-
based fusion, and semantic refinement meth-
ods. Experimental results demonstrate the perfor-
mance of our proposed model.

2 Methodology

Given a dialogue D = {u1, u2, ..., uN}, where N
denotes the number of utterances and um is the mth

utterance in the conversation, the emotion recogni-
tion in conversation task aims to predict the emo-
tion label for each utterance in the conversation.
Each utterance involves two sources of data corre-
sponding to acoustic (a) and textual (t) modalities
represented as um = {uam, utm} where u

(a)
m ∈ Rda

for audio and u
(t)
m ∈ Rdt for text, where da, dt

represent feature dimensions. The combined input
features matrix for all utterances in a dialogue is
given by: Xi = [u

(i)
1 , u

(i)
2 , ...u

(i)
n ] where i ∈ {a, t}.

The overall architecture of our proposed CMCF-
SRNet is outlined in Fig. 2 and summarized as
follows: (1) The acoustic/textual feature matrix
for utterances is first fed to acoustic/linguistic em-
bedding block to obtain unimodal representations,
and then cross-modal locality-constrained atten-
tion (LCA) is utilized to generate high-level cross-
modal features which go into an attentive selection
block; (2) We define a semantic graph and employ
the relational graph convolutional network to cap-
ture the inter-utterance dependence, then leverage
an aggregation of effective semantic features by
integrating a semantic-position encoding; (3) The
nodes embeddings are fed into the classifier to ob-
tain the final prediction. In the following three
subsections, we discuss in detail the specific imple-
mentation of the proposed innovation modules.

2.1 Cross-modality Context Fusion Module

We consider the order of the utterances by adding
the triangle positional embedding (PE) directly to
Xi while i ∈ {a, t}, and we define the query Q

(h)
i ,
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Fig. 2. Illustration of the proposed CMCF-SRNet consisting of two modules: cross-modal context fusion module
and semantic refinement module (LCA: locality-constrained attention).

the key K
(h)
i and the value V

(h)
i vector for encod-

ing input features Xi ∈ Rn×di as shown in Fig. 3
(a). An attention map of attention weights for a
single attention head α(h) ∈ Rn×n is obtained by
the attention mechanism and is used to compute a
weighted sum of the values and obtain the output.

O
(h)
i = softmax(

Q
(h)
i (K

(h)
i )T√
k

)V
(h)
i (1)

Ôi
(h)

= [O
(1)
i ⊕O

(2)
i ⊕ · · · ⊕O

(N)
i ]W (2)

where W ∈ RkN×di , N represents the total num-
ber of heads. Finally, we add a residual connection
followed by a layer norm and obtain X ′

i.

Fig. 3. (a) Unimodal embedding. (b) Cross-modal LCA.

After an intra-modal transformer to capture the
global temporal dependencies of unimodal features,
we apply a cross-modal locality-constrained trans-
former to capture the local contextual informa-
tion focusing on correspondences between differ-
ent modalities. We extend the traditional trans-
former to a two-stream cross-modal transformer to
model interactions between two modalities, where
each cross-modal transformer block is combined
with a cross-modal locality-constrained attention
layer. The attention layer could combine the infor-
mation from the different sources of data to trans-
form the text features using the feature map of
audio. Querys, Keys, and Values has been defined
as Q(h)

i = X ′
iWh,q, K

(h)
j = X ′

jWh,k, V
(h)
j =

X ′
jWh,v for a single attention head where i, j ∈

{a, t}, i ̸= j. Considering that to predict the emo-
tion of an utterance, the speaker’s recently stated ut-
terance has the greatest correlation with its emotion,
thus, we propose a locality-constrained and speaker
aware attention LCA (Fig. 3 (b)) by masking the
traditional weight map Wij = softmax(QiK

T
j )

in Eq. (3) as in Eq. (4).
Oij(Q,K) = Wij · Vj (3)

Oij(Q,K) = (Wij ⊙ LCA) · Vj (4)
We design intra-speaker masks SA to focus on the
utterances of the current speaker and model the
emotional inertia of this interlocutor’s emotional
flow on the current utterance:

SAm,n =

{
1 if sm = sn;
0 otherwise.

(5)

where sm, sn are respectively the speakers of utter-
ances um and un. As the emotion of current utter-
ance is more affected by the local utterances close
to it, a common idea is to apply a fixed window, but
in order to solve the problem that the fixed-window
method treats utterances in the window equally,
we calculate the relative position weighting RP
of hm and hn, then feed into a sigmoid function.
Finally, we apply an element-wise product to ob-
tain LCA = sigmoid(RP )×SA, which combines
both local context and speaker information.

RPm,n =

{
M− C(n−m)2 if m,n ≤ N ;
0 otherwise.

(6)
where N is the actual length of the dialogue, and
both M and C are hyperparameters. Here, we set
M and C to 5 and 1.5 respectively.

To obtain the fusion representation combing both
intra-modal and cross-modal contextual informa-
tion from two modalities, an attentive selection
block is proposed to distribute different impor-
tance to different modalities, we propose a model-
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level fusion strategy instead of a simple concatena-
tion (Chen and Jin, 2016). Experimental results in
Section V verify the effectiveness.

We extract utterance-level acoustic features
h
(a)
m ∈ Rd, text features h

(t)
m ∈ Rd, cross-modal

features h(c)m ∈ Rd for each utterance um (where
um is the mth utterance in the conversation). Then
we equalize feature dimensions of all inputs and
concatenate them together considering different
contributions of different modalities to focus on
important modalities. Technically, at a given time,
given the input feature H = [H(1), H(2), ...,H(K)]
with K the number of modalities. The score for
each modality is computed by:

ai = ReLU(W TH(i) + b) (7)

αi =
exp(ai)∑K
j=1 exp(aj)

(8)

the attention scores αatt ∈ R1×K where K =
3. The final multimodal features gm ∈ Rd2 are
generated as follows with the output X ′

c ∈ Rn×d2 :

g(j) = concat([α1H
(1), ..., αKH(K)]) (9)

2.2 Semantic Refinement Module

To explore the semantic relationships between ut-
terances in a dialogue, a novel model for semantic
information refining is proposed, which is illus-
trated in the semantic refinement module in Fig. 2.
It mainly consists of two stages: relational seman-
tic graph construction and semantic information
refinement. The well-defined semantic graph is fed
into a two-layer RGCN to compute semantic fea-
tures of utterances and their interaction relations.
Then the global semantic information is further
extracted by a semantic graph-transformer.
Semantic Graph Construction: To establish se-
mantic relations between the nearby utterances and
to capture both inter-speaker and intra-speaker ef-
fects, we define a semantic graph Gs= (Vs,Es)
based on the conversational semantic-aware depen-
dency. Each utterance is represented by a node
and different connection edges represent directed
relations (past and future), Vs denotes a set of utter-
ance nodes, and Es ⊂ Vs × Vs is a set of relations
that represent the semantic similarity between the
utterances, defined as Eq. (10).

simi,j = 1− arccos(
gTi gj

∥gi∥∥gj∥
) (10)

We define intra-relations between the utter-
ances spoken by the same speaker Rintra ∈{
USi → USi

}
and inter-relations by different

speakers, Rinter ∈
{
USi → USj

}
i ̸=j

. We fur-
ther consider a context window using P and F
as hyperparameters to denote relations between the
past P utterances and future F utterances for ev-
ery utterance. The relational semantic graph can
be regarded as a local-view modeling of the re-
lationships between utterances in a dialogue and
covering semantics features.

Semantic Information Refinement: In this paper,
a modified relational graph convolution layer is
adopted to capture local dependency defined by
the relations. The node representations and edge
weights are feed into a two-layer correlation-based
RGCN which can be summarized as follows, here,
we introduce the concept of aggregate functions to
generalize the above mechanism:

h
(1)
i =σ(

∑

r∈R

∑

j∈Nr
i

ai,j
qi,r

W (1)
r gj + ai,iW

(1)
0 gi)

h
(2)
i = σ(

∑

j∈Nr
i

W (2)h
(1)
j + ai,iW

(2)
0 gi) (11)

where N r
i denotes the neighboring indices of each

node under relation r ∈ R, W (m)
i are learnable

parameters, σ(·) is the activation function as ReLU.
In this way, each graph convolution layer models
the interaction between utterances, and refines the
semantic features.

Then, we adopt a semantic graph-transformer to
extract global semantic information from the node
feature taking in consideration the relative position
of utterances (Fig. 4). It adopts the vanilla multi-
head attention into graph learning by taking into ac-
count nodes connected via edges. Given node fea-
tures H = [h1, h2, ..., hn] obtained from RGCN,
we define two encodings to represent semantic re-
lationship between two nodes in a graph. The first
is relative position encoding P , each vector of P
represents the topological relation represented by
their shortest path distance between two nodes, the
second is semantic encoding S defined by Eq. (10),
we take an addition operation and obtain SP .

aij =
(Wqhi)

T (Wkhj)√
d
value

+Φsem
ij (12)

Φsem
ij = qiSPϕsem

ij
+ kjSPϕsem

ij
(13)

h′i =
N∑

i=1

âij(vj + SPϕsem
ij

) (14)

Previous methods focus on encoding graph infor-
mation into either the attention map or input fea-
tures. First, our method encodes positional and
semantic information represented by edge weight
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into attention map to take the global context struc-
ture into consideration. Moreover, it encodes the
hidden features of value as shown in Eq. (14).

Fig. 4. Semantic Information Refinement.

2.3 Emotion Classifier

The output of graph transformer is fed into a MLP
with fully connected layers and get the prediction
values of the utterance ui under each emotion label:

hi = ReLU(W1h
′
i + b1) (15)

Pi = softmax(W2hi + b2) (16)

ŷi = argmax(Pi) (17)
where ŷi is the emotion label predicted for the utter-
ance ui. We choose the categorical cross-entropy
loss function during training as is shown below:

L = − 1
∑N

i=1 Li

N∑

n=1

C∑

i=1

yi · logŷi (18)

where N is the number of conversations and Li is
the number of utterances in the ith conversation.

3 Experiments and Results

3.1 Datasets

In this section, we conduct several experiments
to evaluate our proposed method and compare it
with state-of-the-art baselines on two benchmark
datasets, the dataset statistics are given in Table 1:

Table 1: Statistics of IEMOCAP and MELD datasets.

Statistics
IEMOCAP MELD

train valid test train valid test
Nb of dialogues 120 31 1039 114 280
Nb of utterances 4290/5810 1241/1623 9989 1109 2610

- IEMOCAP (Busso et al., 2008) dataset contains
approximately 12 hours of dyadic emotional im-
provised and scripted conversations (10039 ut-
terances). The labelling of each utterance was
determined by 3 annotators as the following cate-
gorical labels: anger, happiness, sadness, neutral,
excitement, frustration, fear, surprise. To com-
pare with state-of-the-art frameworks, we adopt
their dataset settings respectively the first four
categories for the 4-way condition (Lian et al.,

2021) and the first six categories for the 6-way
conditions. Following previous works, utterances
from the first 8 speakers are used as the training
and validation sets while the others are used as
the testing set.

- MELD (Poria et al., 2019) is a large-scale
multi-party conversational dataset which con-
tains 13708 utterances and 1433 conversations
from TV series Friends, and each utterance is
annotated with one of the following labels: anger,
joy, sadness, neutral, disgust, fear and surprise.

3.2 Implementation Details and Metrics
We performed all experiments on the Pytorch deep
learning framework with the Intel Core i7-12700H
and the NVIDIA RTX3060 GPU. The software
environment includes Python 3.9, Pytorch 1.12.1,
and CUDA 11.3. Adam optimizer with an ini-
tial learning rate of 0.0001 is used to optimize the
parameters in the proposed CMCF-SRNet and a
dropout rate of 0.5 is adopted. The head number
is set to 4 for cross-modal transformer and 2 for
graph-transformer. Besides, audio features (size
100) are extracted using OpenSmile (Eyben et al.,
2010) and text features (size 768) are extracted us-
ing sBERT (Reimers and Gurevych, 2019). We
re-run on each dataset five times and calculate the
mean and standard deviations.

We evaluate the performance of emotion recog-
nition using the following as evaluation metrics:
WAA is a weighted average accuracy over different
emotion classes with weights proportional to the
number of utterances in a class. WF1 is a weighted
mean F1 over different emotion categories with
weights proportional to the number of utterances
in a particular class.

WAA =

∑C
j=1Nj ∗Accuracyj

∑C
j=1Nj

(19)

WF1 =

∑C
j=1Nj ∗ F1j
∑C

j=1Nj

(20)

3.3 Overall Performance
For comparison, we implement following state-of-
the-art baseline approaches to evaluate the perfor-
mance of our proposed method:
BC-LSTM (Poria et al., 2017c) uses a bi-
directional LSTM to encode contextual informa-
tion, but ignoring the speaker-specific information.
DialogueGCN (Ghosal et al., 2019) is the first
to model a conversation by a graph, transforms
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Table 2: Results on IEMOCAP (6-way) and MELD (⋆ represents models with multimodal (A+T+V) setting).

Models Year
IEMOCAP(6-way): Emotion Categories MELD

Happy Sad Neutral Angry Excited Frustrated Average Average
WF1(%) WF1(%) WF1(%) WF1(%) WF1(%) WF1(%) WAA(%) WF1(%) WF1(%)

Bc-LSTM 2017c 35.6 69.2 53.5 66.3 61.1 62.4 59.8 59.0 50.8
DialogueGCN 2019 42.7 84.5 63.5 64.1 63.0 66.9 65.2 64.1 55.8

CTNet⋆ 2021 51.3 79.9 65.8 67.2 78.7 58.8 68.0 67.5 60.5
A-DMN⋆ 2022 50.6 76.8 62.9 56.5 77.9 55.7 64.6 64.3 60.4
I-GCN⋆ 2022 50.0 83.8 59.3 64.6 74.3 59.0 65.5 65.4 60.8

MMDFN⋆ 2022 42.2 78.9 66.4 69.7 75.5 66.3 68.2 68.1 59.4

CMCF-SRNet (Ours) 2023 52.2±0.5 80.9±0.2 68.8±0.5 70.3±0.6 76.7±0.3 61.6±0.7 70.5±0.8 69.6±0.7 62.3±0.6

the emotion classification into a graph-based node
classification problem.
MMGCN (Hu et al., 2021) uses multimodal de-
pendencies and speaker information effectively and
applies GCN to obtain contextual information.
CTNet (Lian et al., 2021) utilizes transformer to
obtain the multimodal rerpesentation by modeling
the intra-modal and cross-modal interactions.
A-DMN (Xing et al., 2022) models self and inter-
speaker influences and then synthesizes this two
factors to update the memory.
I-GCN (Nie et al., 2022) utilize the graph structure
to represent conversation at different times and ap-
ply the incremental graph structure to imitate the
process of dynamic conversation.
MMDFN (Hu et al., 2022) proposes a graph model
where both speaker dependency of the interlocutors
is leveraged and latent correlations are captured.

To verify the effectiveness of our proposed
method, we compare our proposed CMCF-SRNet
with state-of-the-art baseline approaches on the
IEMOCAP (4-way), IEMOCAP (6-way) and
MELD datasets on the overall performance and
for each emotion category. As is shown in Table 2,
our model outperforms all the baselines mentioned
above on the two datasets. For the IEMOCAP (4-
way) dataset, ours achieves the new state-of-the-art
record, 86.5% on F1 and 86.9% on WAA, which
shows an absolute improvement of 2.0% on F1
score. For the IEMOCAP (6-way) dataset, our pro-
posed method also succeeds with 70.5% on WAA
and 69.6% on F1 which outperforms Bc-LSTM
and DialogueGCN by 10.7% on WAA, 10.6% on
WF1 and 5.3% on WAA, 5.5% on WF1 possibly
due to the cross-modal context fusion architecture
applied in our proposed model; in addition, it out-
performs CTNet and MMDFN which utilize multi-
modal fusion approaches by 2.3%~2.5% on WAA
and 1.5%~2.1% on WF1, the reason lies in that
these methods focus on the multimodal represen-

tation ignoring the semantic relationship between
utterances. Our proposed CMCF-SRNet also out-
performs I-GCN which highlights the semantic cor-
relation information of utterances without consid-
ering multimodal fusion approach.

In addition, we present classification accuracies
and F1 scores for each emotion category and vi-
sualize the confusion matrices of the testing set
in Fig. 5. For the IEMOCAP (6-way) dataset, the
improvements on classification performance can
be seen for most emotion categories over existing
approaches (Table 2). Specifically, we notice an
improvement of F1-score for happy, neutral, angry
and excited emotions which show the improved
ability of the model to identify relevant emotions.
Meanwhile, we find neutral and anger emotions can
be confused with the frustration emotion (Fig. 5
(a)) as the majority of the utterances are labeled as
the frustration. Also, the happiness emotion can be
confused with the excitement emotion (Fig. 5 (a))
due to our similar perception of these emotions.

Table 3: Performance on IEMOCAP (4-way).

Methods Year
IEMOCAP(4-way)

Modality WF1(%)
Bc-LSTM 2017c T 76.8
DialogueGCN 2019 T 81.7
CMCF-SRNet (Ours) 2023 T 85.6
CTNet 2021 A+T 83.6
COGMEN 2022 A+T+V 84.5
CMCF-SRNet (Ours) 2023 A+T 86.5

Fig. 5. Visualization the confusion matrices: (a) on the
IEMOCAP (6-way); (b) on the IEMOCAP (4-way).
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4 Discussion

4.1 Effect of Cross-modality Context Fusion

First, we conduct uni-modal experiments using text
modality and our proposed method still gives com-
parable performance compared to the SOTA uni-
modal architectures (Table 3). As shown in Table 4,
adding more information via other modalities helps
to improve the performance.

To verify the effectiveness of our cross-modal
locality constrained transformer-based contextual
fusion strategy, we conduct the ablation experi-
ments as listed in Table 4: 1) Without cross-modal
Locality Constrained Attention (w/o LCA): We re-
move the transformers and combine utterance-level
features directly with Attentive Selection Block; 2)
Without Attentive Selection Block (w/o ASB); 3)
Ours: Our proposed method. The results demon-
strate that our proposed CMCF-SRNet with LCA
significantly improved the WF1 and WA indexes.
After adding LCA, the WA and WF1 of the model
were improved by 3.2% and 3.4% respectively, in-
dicating that the cross-modal transformer can com-
prehensively improve the performance. Then, as
is shown in Fig. 6, we take the lexical modality
for example and visualize its attention weights in
conversations after different components. The red
rectangles at the first line indicate that the 10th
and the 14th utterances in the conversation show
more importance for the emotion detection accord-
ing to the intra-modal transforme while that in the
second line indicates that according to the cross-
modal transformer the 4th to 7th utterances should
be paid more attention. These results verify that
the outputs of cross-modal transformer contribute
to conversational emotion recognition.

Fig. 6. Visualization using attention weights heatmap:
(a) Intra-modal transformer; (b) Cross-modal LCA.

Fig. 7. Performance of different fusion strategies com-
pared with ASB on MELD and IEMOCAP.

To verify the effectiveness of our attentive selec-

tion block (ASB), we implement three comparison
methods. Experimental results (Table 4) demon-
strate that our ASB achieves the best performance.
It shows an absolute improvement over Add on
WA by 2.5% on IEMOCAP, probably because Add
copes with the multimodal features equally and
cannot highlight emotion-relevant modalities while
ASB can prioritize important modalities via the at-
tention mechanism. Meanwhile, it also shows an
improvement over Concatenate and Tensor Fusion
which may suffer from the curse of dimensionality
by 1.2% and 3.2% as our proposed method can
generate more effective smaller-size multimodal
features for emotion recognition.

Table 4: Comparison with unimodal architectures and
ablation study on IEMOCAP(4-way) and MELD.

Methods
IEMOCAP (4-way) MELD
WAA(%) WF1(%) WAA(%) WF1(%)

T 85.6 85.1 60.4 59.7
A 60.6 59.2 55.5 53.2

A+T 86.8 86.5 62.8 62.3
w/o LCA 83.6 83.2 60.5 59.3
w/o ASB 84.5 84.1 61.1 60.3
w/o SEW 84.2 83.6 59.8 57.9
w/o SPE 83.6 83.8 60.8 59.6

Ours 86.8 86.5 62.8 62.3
Concatenate 85.6 84.2 60.2 59.62

Add 84.3 83.9 59.8 58.5
Tensor Fusion 83.6 83.1 53.5 60.3

Ours 86.8 86.5 62.8 62.3

4.2 Effect of Semantic Refinement

To observe the effect of the graph-based seman-
tic refinement components, we visualize the fea-
tures with and without the semantic refinement
components (Fig. 8). We easily notice a better for-
mation of emotion clusters proving the necessity
of capturing semantic dependency in utterances.
Additionally, we conduct ablation experiments on
the correlation-based RGCN and Semantic Graph-
Transformer respectively, specifically, we respec-
tively remove the semantic edge weight (SEW)
in the RGCN and semantic-positional encoding
(SPE) in the Graph-Transformer, after removing
the SEW, WA and WF1 on IEMOCAP decreased
by 2.6%, 1.9% respectively, while after removing
the SPE, WA and WF1 on IEMOCAP decreased
by 3.2%, 2.7% respectively, which indicates that
the proposed semantic encoder is necessary, the
result in Table 4 shows the advantages of focusing
on emotional semantic clues.
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Fig. 8. T-SNE representation with and without semantic
information refinement components respectively on
(a) IEMOCAP (4-way) and (b) IEMOCAP (6-way).

4.3 Visualization and Interpretability

Given the importance of interpretability in machine
learning, we investigate the necessity of local con-
text realised by cross-modal LCA and global se-
mantic context captured by semantic refinement
module. We explore the distribution of distances
between the target utterance and its second (2nd)
highest attended utterance according to our atten-
tion scores for all the utterances correctly classified.
First, most of the correctly classified utterances
depend on their local context when a significant
portion is also present for the distant context. Be-
sides, the dependence on distant context shows
more significance for the 2nd highest attention,
which highlight the importance of the long-term
emotional dependency. Meanwhile, the contextual
dependence exists both towards the past and the
future utterances.

Moreover, we conduct experiments with mul-
tiple window sizes as presented in Fig. 10. The
window size can be modified during the training
period. A larger window size would result in bet-
ter performance for cases where the inter and intra
speaker dependencies are maintained for longer se-
quences. In contrast, a smaller window size would
be better where the topic frequently changes in di-
alogues and speakers are less affected by another
speaker. These results support our design combin-
ing the locality-constrained attention and semantic
refinement from a global-view.

Fig. 9. Histogram of distance between the target utter-
ance and its (2nd) highest attended utterance on MELD.

Fig. 10. Comparison for various window sizes.

5 Conclusion

In this paper, we propose a novel framework
for multimodal emotion recognition which con-
tains two innovative modules: The cross-modal
locality-constrained context fusion leverages the
transformer-based method to focus on localness, ef-
fectively improved the multimodal interaction. The
semantic refinement module makes full use of the
semantic relation information from a global view.
Experiments on two public datasets and the results
demonstrate that our proposed CMCF-SRNet is su-
perior to the existing state-of-the-art methods. The
ablation experiments prove the effectiveness of the
two innovative modules. The detailed discussion
shows that our proposed CMCF-SRNet has satis-
factory generalization ability and interpretability,
indicating that it has the potential for practical use
for emotion recognition.

Limitation

Although experiments on two public datasets show
the effectiveness of our proposed method compared
with other state-of-the-art methods, we notice that
our proposed model fails to distinguish similar emo-
tions effectively going through the prediction re-
sults, as frustrated and anger, happy and excited
(Fig. 5(a)). Moreover, our proposed model tends
to misclassify samples of other emotions to neutral
on MELD due to the majority proportion of neutral
samples in these datasets. We will address this is-
sue in future work by integrating a component for
capturing the fine-grained emotions.
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