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Abstract

In this paper, we propose NUWA-XL, a novel
Diffusion over Diffusion architecture for eX-
tremely Long video generation. Most current
work generates long videos segment by seg-
ment sequentially, which normally leads to the
gap between training on short videos and infer-
ring long videos, and the sequential generation
is inefficient. Instead, our approach adopts a
“coarse-to-fine” process, in which the video can
be generated in parallel at the same granularity.
A global diffusion model is applied to generate
the keyframes across the entire time range, and
then local diffusion models recursively fill in
the content between nearby frames. This sim-
ple yet effective strategy allows us to directly
train on long videos (3376 frames) to reduce
the training-inference gap and makes it possible
to generate all segments in parallel. To evalu-
ate our model, we build FlintstonesHD dataset,
a new benchmark for long video generation.
Experiments show that our model not only gen-
erates high-quality long videos with both global
and local coherence, but also decreases the av-
erage inference time from 7.55min to 26s (by
94.26%) at the same hardware setting when
generating 1024 frames. The homepage link is
https://msra-nuwa.azurewebsites.net/

1 Introduction

Recently, visual synthesis has attracted a great deal
of interest in the field of generative models. Ex-
isting works have demonstrated the ability to gen-
erate high-quality images (Ramesh et al., 2021;
Saharia et al., 2022; Rombach et al., 2022) and
short videos (e.g., 4 seconds (Wu et al., 2022b), 5
seconds (Singer et al., 2022), 5.3 seconds (Ho et al.,
2022a)). However, videos in real applications are
often much longer than 5 seconds. A film typically
lasts more than 90 minutes. A cartoon is usually 30
minutes long. Even for “short” video applications

∗Both authors contributed equally to this research.
† Corresponding author.

like TikTok, the recommended video length is 21 to
34 seconds. Longer video generation is becoming
increasingly important as the demand for engaging
visual content continues to grow.

However, scaling to generate long videos has a
significant challenge as it requires a large amount
of computation resources. To overcome this chal-
lenge, most current approaches use the “Autore-
gressive over X” architecture, where “X” denotes
any generative models capable of generating short
video clips, including Autoregressive Models like
Phenaki (Villegas et al., 2022), TATS (Ge et al.,
2022), NUWA-Infinity (Wu et al., 2022a); Dif-
fusion Models like MCVD (Voleti et al., 2022),
FDM (Harvey et al., 2022), LVDM (He et al., 2022).
The main idea behind these approaches is to train
the model on short video clips and then use it to
generate long videos by a sliding window during
inference. “Autoregressive over X” architecture not
only greatly reduces the computational burden, but
also relaxes the data requirements for long videos,
as only short videos are needed for training.

Unfortunately, the “Autoregressive over X” ar-
chitecture, while being a resource-sufficient solu-
tion to generate long videos, also introduces new
challenges: 1) Firstly, training on short videos but
forcing it to infer long videos leads to an enor-
mous training-inference gap. It can result in un-
realistic shot change and long-term incoherence
in generated long videos, since the model has no
opportunity to learn such patterns from long videos.
For example, Phenaki (Villegas et al., 2022) and
TATS (Ge et al., 2022) are trained on less than 16
frames, while generating as many as 1024 frames
when applied to long video generation. 2) Sec-
ondly, due to the dependency limitation of the slid-
ing window, the inference process can not be done
in parallel and thus takes a much longer time. For
example, TATS (Ge et al., 2022) takes 7.5 minutes
to generate 1024 frames, while Phenaki (Villegas
et al., 2022) takes 4.1 minutes.
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Figure 1: Overview of NUWA-XL for extremely long video generation in a “coarse-to-fine” process. A global
diffusion model first generates L keyframes which form a “coarse” storyline of the video, a series of local diffusion
models are then applied to the adjacent frames, treated as the first and the last frames, to iteratively complete the
middle frames resulting O(Lm) “fine” frames in total.

To address the above issues, we propose NUWA-
XL, a “Diffusion over Diffusion” architecture to
generate long videos in a “coarse-to-fine” pro-
cess, as shown in Fig. 1. In detail, a global dif-
fusion model first generates L keyframes based
on L prompts which forms a “coarse” storyline
of the video. The first local diffusion model
is then applied to L prompts and the adjacent
keyframes, treated as the first and the last frames,
to complete the middle L− 2 frames resulting in
L+(L− 1)× (L− 2) ≈ L2 “fine” frames in total.
By iteratively applying the local diffusion to fill in
the middle frames, the length of the video will in-
crease exponentially, leading to an extremely long
video. For example, NUWA-XL with m depth and
L local diffusion length is capable of generating a
long video with the size of O(Lm). The advantages
of such a “coarse-to-fine” scheme are three-fold:
1) Firstly, such a hierarchical architecture enables
the model to train directly on long videos and thus
eliminating the training-inference gap; 2) Secondly,
it naturally supports parallel inference and thereby
can significantly speed up long video generation;
3) Thirdly, as the length of the video can be ex-
tended exponentially w.r.t. the depth m, our model
can be easily extended to longer videos. Our key
contributions are listed in the following:

• We propose NUWA-XL, a “Diffusion over
Diffusion” architecture by viewing long video

generation as a novel “coarse-to-fine” process.

• To the best of our knowledge, NUWA-XL is
the first model directly trained on long videos
(3376 frames), which closes the training-
inference gap in long video generation.

• NUWA-XL enables parallel inference, which
significantly speeds up long video generation.
Concretely, NUWA-XL speeds up inference
by 94.26% when generating 1024 frames.

• We build FlintstonesHD, a new dataset to val-
idate the effectiveness of our model and pro-
vide a benchmark for long video generation.

2 Related Work

Image and Short Video Generation Image Gen-
eration has made many progresses, auto-regressive
methods (Ramesh et al., 2021; Ding et al., 2021;
Yu et al., 2022; Ding et al., 2022) leverage VQVAE
to tokenize the images into discrete tokens and use
Transformers (Vaswani et al., 2017) to model the
dependency between tokens. DDPM (Ho et al.,
2020) presents high-quality image synthesis results.
LDM (Rombach et al., 2022) performs a diffusion
process on latent space, showing significant effi-
ciency and quality improvements.

Similar advances have been witnessed in video
generation, (Vondrick et al., 2016; Saito et al.,
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2017; Pan et al., 2017; Li et al., 2018; Tulyakov
et al., 2018) extend GAN to video generation. Sync-
draw (Mittal et al., 2017) uses a recurrent VAE
to automatically generate videos. GODIVA (Wu
et al., 2021) proposes a three-dimensional sparse
attention to map text tokens to video tokens.
VideoGPT (Yan et al., 2021) adapts Transformer-
based image generation models to video generation
with minimal modifications. NUWA (Wu et al.,
2022b) with 3D Nearby Attention extends GO-
DIVA (Wu et al., 2021) to various generation tasks
in a unified representation. Cogvideo (Hong et al.,
2022) leverages a frozen T2I model (Ding et al.,
2022) by adding additional temporal attention mod-
ules. More recently, diffusion methods (Ho et al.,
2022b; Singer et al., 2022; Ho et al., 2022a) have
also been applied to video generation. Among
them, VDM (Ho et al., 2022b) replaces the typical
2D U-Net for modeling images with a 3D U-Net.
Make-a-video (Singer et al., 2022) successfully ex-
tends a diffusion-based T2I model to T2V without
text-video pairs. Imagen Video (Ho et al., 2022a)
leverages a cascade of video diffusion models to
text-conditional video generation.

Different from these works, which concentrate
on short video generation, we aim to address the
challenges associated with long video generation.

Long Video Generation To address the high
computational demand in long video generation,
most existing works leverage the “Autoregressive
over X” architecture, where “X” denotes any gen-
erative models capable of generating short video
clips. With “X” being an autoregressive model,
NUWA-Infinity (Wu et al., 2022a) introduces auto-
regressive over auto-regressive model, with a local
autoregressive to generate patches and a global
autoregressive to model the consistency between
different patches. TATS (Ge et al., 2022) presents
a time-agnostic VQGAN and time-sensitive trans-
former model, trained only on clips with tens of
frames but can infer thousands of frames using
a sliding window mechanism. Phenaki (Ville-
gas et al., 2022) with C-ViViT as encoder and
MaskGiT (Chang et al., 2022) as backbone gen-
erates variable-length videos conditioned on a se-
quence of open domain text prompts. With “X” be-
ing diffusion models, MCVD (Voleti et al., 2022)
trains the model to solve multiple video genera-
tion tasks by randomly and independently masking
all the past or future frames. FDM (Harvey et al.,
2022) presents a DDPMs-based framework that

produces long-duration video completions in a va-
riety of realistic environments.

Different from existing “Autoregressive over X”
models trained on short clips, we propose NUWA-
XL, a Diffusion over Diffusion model directly
trained on long videos to eliminate the training-
inference gap. Besides, NUWA-XL enables paral-
lel inference to speed up long video generation

3 Method

3.1 Temporal KLVAE (T-KLVAE)
Training and sampling diffusion models directly on
pixels are computationally costly, KLVAE (Rom-
bach et al., 2022) compresses an original image into
a low-dimensional latent representation where the
diffusion process can be performed to alleviate this
issue. To leverage external knowledge from the pre-
trained image KLVAE and transfer it to videos, we
propose Temporal KLVAE(T-KLVAE) by adding
external temporal convolution and attention layers
while keeping the original spatial modules intact.

Given a batch of video v ∈ Rb×L×C×H×W with
b batch size, L frames, C channels, H height, W
width, we first view it as L independent images
and encode them with the pre-trained KLVAE spa-
tial convolution. To further model temporal in-
formation, we add a temporal convolution after
each spatial convolution. To keep the original pre-
trained knowledge intact, the temporal convolution
is initialized as an identity function which guaran-
tees the output to be exactly the same as the orig-
inal KLVAE. Concretely, the convolution weight
W conv1d ∈ Rcout×cin×k is first set to zero where
cout denotes the out channel, cin denotes the in
channel and is equal to cout, k denotes the tem-
poral kernel size. Then, for each output channel
i, the middle of the kernel size (k − 1)//2 of the
corresponding input channel i is set to 1:

W conv1d[i, i, (k − 1)//2] = 1 (1)

Similarly, we add a temporal attention after the
original spatial attention, and initialize the weights
W att_out in the out projection layer into zero:

W att_out = 0 (2)

For the T-KLVAE decoder D, we use the same
initialization strategy. The training objective of T-
KLVAE is the same as the image KLVAE. Finally ,
we get a latent code x0 ∈ Rb×L×c×h×w, a compact
representation of the original video v.
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Figure 2: Overview of Mask Temporal Diffusion (MTD) with purple lines standing for diffusion process, red for
prompts, pink for timestep, green for visual condition, black dash for training objective. For global diffusion, all
the frames are masked as there are no frames provided as input. For local diffusion, the middle frames are masked
where the first and the last frame are provided as visual conditions. We keep the structure of MTD consistent with
the pre-trained text-to-image model as possible to leverage external knowledge.

3.2 Mask Temporal Diffusion (MTD)

In this section, we introduce Mask Temporal Diffu-
sion (MTD) as a basic diffusion model for our pro-
posed Diffusion over Diffusion architecture. For
global diffusion, only L prompts are used as inputs
which form a “coarse” storyline of the video, how-
ever, for the local diffusion, the inputs consist of
not only L prompts but also the first and last frames.
Our proposed MTD which can accept input condi-
tions with or without first and last frames, supports
both global diffusion and local diffusion. In the
following, we first introduce the overall pipeline of
MTD and then dive into an UpBlock as an example
to introduce how we fuse different input conditions.

Input L prompts, we first encode them by a
CLIP Text Encoder to get the prompt embedding
p ∈ Rb×L×lp×dp where b is batch size, lp is the
number of tokens, dp is the prompt embedding di-
mension. The randomly sampled diffusion timestep
t ∼ U(1, T ) is embedded to timestep embedding
t ∈ Rc. The video v0 ∈ Rb×L×C×H×W with L
frames is encoded by T-KLVAE to get a represen-
tation x0 ∈ Rb×L×c×h×w. According to the prede-

fined diffusion process:

q (xt|xt−1) = N (xt;
√
αt xt−1, (1− αt) I) (3)

x0 is corrupted by:

xt =
√
ᾱt x0 +

√
(1− ᾱt)ϵ ϵ ∼ N (0, I) (4)

where ϵ ∈ Rb×L×c×h×w is noise, xt ∈
Rb×L×c×h×w is the t-th intermediate state in diffu-
sion process, αt, ᾱt is hyperparameters in diffusion
model.

For the global diffusion model, the visual con-
ditions vc0 are all-zero. However, for the local
diffusion models, vc0 ∈ Rb×L×C×H×W are ob-
tained by masking the middle L − 2 frames in
v0. vc0 is also encoded by T-KLVAE to get a
representation xc0 ∈ Rb×L×c×h×w. Finally, the
xt, p, t, xc0 are fed into a Mask 3D-UNet ϵθ (·).
Then, the model is trained to minimize the dis-
tance between the output of the Mask 3D-UNet
ϵθ (xt, p, t, x

c
0) ∈ Rb×L×c×h×w and ϵ.

Lθ = ||ϵ− ϵθ (xt, p, t, x
c
0)||22 (5)

The Mask 3D-UNet is composed of multi-Scale
DownBlocks and UpBlocks with skip connection,
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Figure 3: Visualization of the last UpBlock in Mask 3D-
UNet with purple lines standing for diffusion process,
red for prompts, pink for timestep, green for visual
condition.

while the xc0 is downsampled to the corresponding
resolution with a cascade of convolution layers and
fed to the corresponding DownBlock and UpBlock.

To better understand how Mask 3D-UNet works,
we dive into the last UpBlock and show the details
in Fig. 3. The UpBlock takes hidden states hin,
skip connection s, timestep embedding t, visual
condition xc0 and prompts embedding p as inputs
and output hidden state hout. It is noteworthy that
for global diffusion, xc0 does not contain valid in-
formation as there are no frames provided as con-
ditions, however, for local diffusion, xc0 contains
encoded information from the first and last frames.

The input skip connection s ∈ Rb×L×cskip×h×w

is first concatenated to the input hidden state hin ∈
Rb×L×cin×h×w.

h := [s;hin] (6)

where the hidden state h ∈ Rb×L×(cskip+cin)×h×w

is then convoluted to target number of channels
h ∈ Rb×L×c×h×w. The timestep embedding t ∈
Rc is then added to h in channel dimension c.

h := h+ t (7)

Similar to Sec. 3.1, to leverage external knowl-
edge from the pre-trained text-to-image model, fac-
torized convolution and attention are introduced
with spatial layers initialized from pre-trained
weights and temporal layers initialized as an iden-
tity function.

For spatial convolution, the length dimension L
here is treated as batch-size h ∈ R(b×L)×c×h×w.

For temporal convolution, the hidden state is re-
shaped to h ∈ R(b×hw)×c×L with spatial axis hw
treated as batch-size.

h := SpatialConv (h) (8)

h := TemporalConv (h) (9)

Then, h is conditioned on xc0 ∈ Rb×L×c×h×w

and xm0 ∈ Rb×L×1×h×w where xm0 is a binary
mask to indicate which frames are treated as condi-
tions. They are first transferred to scale wc, wm and
shift bc, bm via zero-initialized convolution layers
and then injected to h via linear projection.

h := wc · h+ bc + h (10)

h := wm · h+ bm + h (11)

After that, a stack of Spatial Self-Attention (SA),
Prompt Cross-Attention (PA), and Temporal Self-
Attention (TA) are applied to h.

For the Spatial Self-Attention (SA), the hid-
den state h ∈ Rb×L×c×h×w is reshaped to h ∈
R(b×L)×hw×c with length dimension L treated as
batch-size.

QSA = hWSA
Q ;KSA = hWSA

K ;V SA = hWSA
V

(12)

Q̃SA = Selfattn(QSA,KSA, V SA) (13)

where WSA
Q ,WSA

K ,WSA
V ∈ Rc×din are parame-

ters to be learned.
For the Prompt Cross-Attention (PA), the prompt

embedding p ∈ Rb×L×lp×dp is reshaped to p ∈
R(b×L)×lp×dp with length dimension L treated as
batch-size.

QPA = hWPA
Q ;KPA = pWPA

K ;V PA = pWPA
V

(14)

Q̃PA = Crossattn(QPA,KPA, V PA) (15)

where QPA ∈ R(b×L)×hw×din , KPA ∈
R(b×L)×lp×din , V PA ∈ R(b×L)×lp×din are query,
key and value, respectively. WPA

Q ∈ Rc×din ,
WPA

K ∈ Rdp×din and WPA
V ∈ Rdp×din are pa-

rameters to be learned.
The Temporal Self-Attention (TA) is exactly the

same as Spatial Self-Attention (SA) except that
spatial axis hw is treated as batch-size and temporal
length L is treated as sequence length.

Finally, the hidden state h is upsampled to target
resolution hout ∈ Rb×L×c×hout×wout via spatial
convolution. Similarly, other blocks in Mask 3D-
UNet leverage the same structure to deal with the
corresponding inputs.
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3.3 Diffusion over Diffusion Architecture
In the following, we first introduce the inference
process of MTD, then we illustrate how to generate
a long video via Diffusion over Diffusion Architec-
ture in a novel “coarse-to-fine” process.

In inference phase, given the L prompts p and
visual condition vc0, x0 is sampled from a pure
noise xT by MTD. Concretely, for each timestep
t = T, T − 1, . . . , 1, the intermediate state xt in
diffusion process is updated by

xt−1 =
1√
αt

(
xt −

1− αt√
(1− ᾱt)

ϵθ (xt, p, t, x
c
0)

)

+
(1− ᾱt−1)βt

1− ᾱt
· ϵ (16)

where ϵ ∼ N (0, I), p and t are embedded prompts
and timestep, xc0 is encoded vc0. αt, ᾱt, βt are
hyperparameters in MTD.

Finally, the sampled latent code x0 will be de-
coded to video pixels v0 by T-KLVAE. For sim-
plicity, the iterative generation process of MTD is
noted as

v0 = Diffusion(p, vc0) (17)

When generating long videos, given the L
prompts p1 with large intervals, the L keyframes
are first generated through a global diffusion model.

v01 = GlobalDiffusion(p1, v
c
01) (18)

where vc01 is all-zero as there are no frames pro-
vided as visual conditions. The temporally sparse
keyframes v01 form the “coarse” storyline of the
video.

Then, the adjacent keyframes in v01 are treated
as the first and the last frames in visual condition
vc02. The middle L − 2 frames are generated by
feeding p2, vc02 into the first local diffusion model
where p2 are L prompts with smaller time intervals.

v02 = LocalDiffusion(p2, v
c
02) (19)

Similarly, vc03 is obtained from adjacent frames
in v02, p3 are L prompts with even smaller time
intervals. The p3 and vc03 are fed into the second
local diffusion model.

v03 = LocalDiffusion(p3, v
c
03) (20)

Compared to frames in v01, the frames in v02 and
v03 are increasingly “fine” with stronger consis-
tency and more details.

By iteratively applying the local diffusion to
complete the middle frames, our model with m
depth is capable of generating extremely long video
with the length of O(Lm). Meanwhile, such a hier-
archical architecture enables us to directly train on
temporally sparsely sampled frames in long videos
(3376 frames) to eliminate the training-inference
gap. After sampling the L keyframes by global
diffusion, the local diffusions can be performed in
parallel to accelerate the inference speed.

4 Experiments

4.1 FlintstonesHD Dataset
Existing annotated video datasets have greatly pro-
moted the development of video generation. How-
ever, the current video datasets still pose a great
challenge to long video generation. First, the length
of these videos is relatively short, and there is an
enormous distribution gap between short videos
and long videos such as shot change and long-term
dependency. Second, the relatively low resolution
limits the quality of the generated video. Third,
most of the annotations are coarse descriptions of
the content of the video clips, and it is difficult to
illustrate the details of the movement.

To address the above issues, we build Flint-
stonesHD dataset, a densely annotated long video
dataset, providing a benchmark for long video gen-
eration. We first obtain the original Flintstones
cartoon which contains 166 episodes with an aver-
age of 38000 frames of 1440×1080 resolution. To
support long video generation based on the story
and capture the details of the movement, we lever-
age the image captioning model GIT2 (Wang et al.,
2022) to generate dense captions for each frame in
the dataset first and manually filter some errors in
the generated results.

4.2 Metrics
Avg-FID Fréchet Inception Dis-
tance(FID) (Heusel et al., 2017), a metric
used to evaluate image generation, is introduced to
calculate the average quality of generated frames.

Block-FVD Fréchet Video Distance (FVD) (Un-
terthiner et al., 2018) is widely used to evaluate
the quality of the generated video. In this paper,
we propose Block FVD for long video generation,
which splits a long video into several short clips
to calculate the average FVD of all clips. For sim-
plicity, we name it B-FVD-X where X denotes the
length of the short clips.
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Method Phenaki (Villegas
et al., 2022)/128

FDM* (Harvey
et al., 2022)/128

NUWA-
XL/128

NUWA-
XL/256

Arch AR over AR AR over Diff Diff over Diff Diff over Diff

16f
Avg-FID↓ 40.14 34.47 35.95 32.66
B-FVD-16↓ 544.72 532.94 520.19 580.21
Time↓ 4s 7s 7s 15s

256f
Avg-FID↓ 43.13 38.28 35.68 32.05
B-FVD-16↓ 573.55 561.75 542.26 609.32
Time↓ 65s 114s 17s (85.09%↓) 32s

1024f
Avg-FID↓ 48.56 43.24 35.79 32.07
B-FVD-16↓ 622.06 618.42 572.86 642.87
Time↓ 259s 453s 26s (94.26%↓) 51s

Table 1: Quantitative comparison with the state-of-the-art models for long video generation on FlintstonesHD
dataset. 128 and 256 denote the resolutions of the generated videos. *Note that the original FDM model does not
support text input. For a fair comparison, we implement an FDM with text input.

Model Temporal Layers FID↓ FVD↓

KLVAE - 4.71 28.07
T-KLVAE-R random init 5.44 12.75
T-KLVAE identity init 4.35 11.88

(a) Comparison of different KLVAE settings.

Model MI SI FID↓ FVD↓

MTD w/o MS × × 39.28 548.90
MTD w/o S ✓ × 36.04 526.36
MTD ✓ ✓ 35.95 520.19

(b) Comparison of different MTD settings.

Model depth 16f 256f 1024f

NUWA-XL-D1 1 527.44 697.20 719.23
NUWA-XL-D2 2 516.05 536.98 684.57
NUWA-XL-D3 3 520.19 542.26 572.86

(c) Comparison of different NUWA-XL depth.

Model L 16f 256f 1024f

NUWA-XL-L8 8 569.43 673.87 727.22
NUWA-XL-L16 16 520.19 542.26 572.86
NUWA-XL-L32 32 OOM OOM OOM

(d) Comparison of different local diffusion length.

Table 2: Ablation experiments for long video generation on FlintstonesHD (OOM stands for Out Of Memory).

4.3 Quantitative Results

4.3.1 Comparison with the state-of-the-arts

We compare NUWA-XL on FlintstonesHD with
the state-of-the-art models in Tab. 1. Here, we
report FID, B-FVD-16, and inference time. For
“Autoregressive over X (AR over X)” architecture,
due to error accumulation, the average quality of
generated frames (Avg-FID) declines as the video
length increases. However, for NUWA-XL, where
the frames are not generated sequentially, the qual-
ity does not decline with video length. Meanwhile,
compared to “AR over X” which is trained only
on short videos, NUWA-XL is capable of gener-
ating higher quality long videos. As the video
length grows, the quality of generated segments (B-
FVD-16) of NUWA-XL declines more slowly as
NUWA-XL has learned the patterns of long videos.

Besides, because of parallelization, NUWA-XL sig-
nificantly improves the inference speed by 85.09%
when generating 256 frames and by 94.26% when
generating 1024 frames.

4.3.2 Ablation study

KLVAE Tab. 2a shows the comparison of dif-
ferent KLVAE settings. KLVAE means treating
the video as independent images and reconstruct-
ing them independently. T-KLVAE-R means the
introduced temporal layers are randomly initial-
ized. Compared to KLVAE, we find the newly in-
troduced temporal layers can significantly increase
the ability of video reconstruction. Compared to
T-KLVAE-R, the slightly better FID and FVD in
T-KLVAE illustrate the effectiveness of identity ini-
tialization.
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Figure 4: Qualitative comparison between AR over Diffusion and Diffusion over Diffusion for long video generation
on FlintstonesHD. The Arabic number in the lower right corner indicates the frame number with yellow standing for
keyframes with large intervals and green for small intervals. Compared to AR over Diffusion, NUWA-XL generates
long videos with long-term coherence (see the cloth in frame 22 and 1688) and realistic shot change (frame 17-20).

MTD Tab. 2b shows the comparison of differ-
ent global/local diffusion settings. MI (Multi-scale
Injection) means whether visual conditions are in-
jected to multi-scale DownBlocks and UpBlocks in
Mask 3D-UNet or only injected to the Downblock
and UpBlock with the highest scale. SI (Symmetry
Injection) means whether the visual condition is in-
jected into both DownBlocks and UpBlocks or it is
only injected into UpBlocks. Comparing MTD w/o
MS and MTD w/o S, multi-scale injection is signif-
icant for long video generation. Compared to MTD
w/o S, the slightly better FID and FVD in MTD
show the effectiveness of symmetry injection.

Depth of Diffusion over Diffusion Tab. 2c
shows the comparison of B-FVD-16 of different
NUWA-XL depth m with local diffusion length L
fixed to 16. When generating 16 frames, NUWA-
XL with different depths achieves comparable re-
sults. However, as the depth increases, NUWA-XL
can produce videos that are increasingly longer
while still maintaining relatively high quality.

Length in Diffusion over Diffusion Tab. 2d
shows the comparison of B-FVD-16 of diffusion
local length L with NUWA-XL depth m fixed to
3. In comparison, when generating videos with the
same length, as the local diffusion length increases,
NUWA-XL can generate higher-quality videos.

4.4 Qualitative results
Fig. 4 provides a qualitative comparison between
AR over Diffusion and Diffusion over Diffusion
for long video generation on FlintstonesHD. As
introduced in Sec. 1, when generating long videos,
“Autoregressive over X” architecture trained only
on short videos will lead to long-term incoherence
(between frame 22 and frame 1688) and unrealis-
tic shot change (from frame 17 to frame 20) since
the model has no opportunity to learn the distribu-
tion of long videos. However, by training directly
on long videos, NUWA-XL successfully models
the distribution of long videos and generates long
videos with long-term coherence and realistic shot
change.

5 Conclusion
We propose NUWA-XL, a “Diffusion over Diffu-
sion” architecture by viewing long video genera-
tion as a novel “coarse-to-fine” process. To the best
of our knowledge, NUWA-XL is the first model
directly trained on long videos (3376 frames), clos-
ing the training-inference gap in long video gener-
ation. Additionally, NUWA-XL allows for paral-
lel inference, greatly increasing the speed of long
video generation by 94.26% when generating 1024
frames. We further build FlintstonesHD, a new
dataset to validate the effectiveness of our model
and provide a benchmark for long video generation.
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Limitations

Although our proposed NUWA-XL improves the
quality of long video generation and accelerates the
inference speed, there are still several limitations:
First, due to the unavailability of open-domain long
videos (such as movies, and TV shows), we only
validate the effectiveness of NUWA-XL on pub-
lic available cartoon Flintstones. We are actively
building an open-domain long video dataset and
have achieved some phased results, we plan to ex-
tend NUWA-XL to open-domain in future work.
Second, direct training on long videos reduces the
training-inference gap but poses a great challenge
to data. Third, although NUWA-XL can accelerate
the inference speed, this part of the gain requires
reasonable GPU resources to support parallel infer-
ence.
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