
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12632–12646

July 9-14, 2023 ©2023 Association for Computational Linguistics

DT-Solver: Automated Theorem Proving with Dynamic-Tree Sampling
Guided by Proof-level Value Function

Haiming Wang1∗, Ye Yuan2, Zhengying Liu3 Jianhao Shen2, Yichun Yin3, Jing Xiong1,
Enze Xie3, Han Shi3, Yujun Li3, Lin Li3, Jian Yin1†, Zhenguo Li3, Xiaodan Liang1,4†

1Sun Yat-sen University, 2Peking University, 3Huawei Noah’s Ark Lab, 4MBZUAI
{wanghm39,xiongj69}@mail2.sysu.edu.cn, {yuanye_pku,jhshen}@pku.edu.cn,

{liuzhengying2,yinyichun,xie.enze,shi.han}@huawei.com
{liyujun9,lilin29,Li.Zhenguo}@huawei.com

issjyin@mail.sysu.edu.cn, xdliang328@gmail.com

Abstract

Recent advances in neural theorem-proving re-
sort to large language models and tree searches.
When proving a theorem, a language model
advises single-step actions based on the cur-
rent proving state and the tree search finds a
sequence of correct steps using actions given
by the language model. However, prior works
often conduct constant computation efforts for
each proving state while ignoring that the hard
states often need more exploration than easy
states. Moreover, they evaluate and guide the
proof search solely depending on the current
proof state instead of considering the whole
proof trajectory as human reasoning does. Here,
to accommodate general theorems, we pro-
pose a novel Dynamic-Tree Driven Theorem
Solver (DT-Solver) by guiding the search pro-
cedure with state confidence and proof-level
values. Specifically, DT-Solver introduces a
dynamic-tree Monte-Carlo search algorithm,
which dynamically allocates computing bud-
gets for different state confidences, guided by
a new proof-level value function to discover
proof states that require substantial exploration.
Experiments on two popular theorem-proving
datasets, PISA and Mathlib, show significant
performance gains by our DT-Solver over the
state-of-the-art approaches, with a 6.65% im-
provement on average in terms of success rate.
And especially under low computing resource
settings (11.03% improvement on average).

1 Introduction

Automated theorem proving (ATP) (Harrison et al.,
2014) has been considered an essential task of Arti-
ficial Intelligence (AI) ever since the birth of mod-
ern AI (McCarthy et al., 2006). Besides its re-
markable theoretical value and huge potential to
accelerate research in mathematics, ATP already
demonstrates excellent application value in, for ex-

†
Corresponding authors.

∗
Work done during internship in Huawei Noah’s Ark Lab

Figure 1: Illustration of a theorem and its proof
in Lean (de Moura et al., 2015). The theorem
sub_ne_zero_of_ne states that if the hypothesis h
holds (i.e. we have a ̸= b), then we have a − b ̸= 0.
Three proof steps are used to prove this theorem.
After the keyword begin, a proof state (containing
one or several goals) is initialized. Then each proof
step is applied to the current proof state to obtain a
new one until a proof state ‘goals accomplished’ is
reached, which marks the success of the proof.

ample, formal verification (Barras et al., 1997) and
code generation (Howard, 1980).

In general, the goal of a theorem proving task is
to construct a proof (a sequence of proof steps)
that proves a given theorem (often within a given
time budget, e.g. 300 seconds). The validity of
this proof is verified by a formal environment in
which the theorem and the proof are formalized.
We show in Fig. 1 an example of a theorem proven
in Lean (de Moura et al., 2015), a formal envi-
ronment we use in this work. Sec.2.1 gives more
details on the formal environment.

To deal with this theorem proving problem au-
tomatically, many task-specific algorithms have
been proposed and are later implemented as state-
of-the-art ATP solvers such as Z3 (de Moura and
Bjørner, 2008), Vampire (Kovács and Voronkov,
2013), E (Schulz, 2002) and Zipperposition (Ben-
tkamp et al., 2021). These approaches are task-
specific in that they are specific to one given formal
environment and rely on solid domain knowledge,
symbolic operations, and usually human heuris-

12632

tics. With the exciting development of deep learn-
ing (LeCun et al., 2015) over the past decade, ap-
proaches (not necessarily for ATP) in the task-
agnostic paradigm have been proposed, such as
AlphaZero (Silver et al., 2017) and more recently
Gato (Reed et al., 2022). As for ATP, task-agnostic
approaches are also proposed. For example, GPT-
f (Polu and Sutskever, 2020) uses a language model
to suggest a set of candidates for the next proof
step and then search for a complete valid proof
within the formal system Metamath (MEGILL and
DAVID A, 2019). In contrast to classic ATP algo-
rithms, GPT-f has remarkable generality and can
be applied to any ATP tasks in any formal system,
such as propositional logic, first-order logic, higher-
order logic, typed lambda calculi, etc. With GPT-f,
domain knowledge and human heuristics are no
more absolutely required. Some works following
the workflow of GPT-f are introduced in A.2.

Although approaches such as GPT-f demonstrate
impressive generality and performance, they still
have two significant drawbacks. On the one hand,
GPT-f consumes considerable computational re-
sources. According to (Lample et al., 2022), the
original GPT-f requires 2000 GPU days (A100)
for training, and their approach HTPS (HyperTree
Proof Search (Lample et al., 2022)) also consumes
more than 1000 GPU days for one training pro-
cess, which sets a prohibitive threshold for most
researchers. Even worse, the cost for inference
with GPT models and search can be 5 to 10 times
heavier than that of training. On the other hand,
the search process in GPT-f could reach a state of
‘empty queue’, where all proof step candidates (i.e.
all leaf nodes in the search tree) generated by the
language model turn out to be inapplicable. This
can typically take place within the time budget and
an premature ‘Failed’ result is returned, potentially
resulting in a low pass rate (sometimes we also
use the term ‘one-pass success rate’ to be more spe-
cific). Also, prior works (Polu and Sutskever, 2020;
Han et al., 2021; Polu et al., 2022) often conduct
constant computation efforts for each proving state
while ignoring that the hard states often need more
exploration than easy states. Moreover, they evalu-
ate and guide the proof search solely depending on
the current proof state instead of considering the
whole proof trajectory as human reasoning does.

In this work, we address the above two issues
and propose a novel Dynamic-Tree driven Theo-
rem Solver (DT-Solver). As an automated theorem-

proving algorithm, DT-Solver uses dynamic-tree
sampling guided by a proof-level value function.
We illustrate these two main components as fol-
lows.

• Dynamic-tree sampling. To remedy the issue
of premature failure with ‘empty queue’, we
allow the nodes in the search tree to be ex-
panded (i.e. generate child nodes using proof
steps predicted by the language model) sev-
eral times, instead of being expanded just once
(as proposed by GPT-f). To achieve this, we
add an imaginary node or a virtual node to
each node in the search tree. When this vir-
tual node is selected, no specific proof step is
applied. Instead, we use the language model
again to generate possible proof steps and po-
tentially produce new and promising child
nodes (proof states). Thus the width of the
search tree can be adjusted dynamically. Fur-
thermore, we modify the usual PUCT score in
the Monte-Carlo tree search to ensure that the
computational resources focus on promising
but possibly ‘hard’ nodes. We find this dy-
namic sampling technique helpful and obtain
an increase of 39.9% -> 48.4% in terms of the
pass rate.

• Proof-level value function. Different from
GPT-f (Polu and Sutskever, 2020) and
HTPS (Lample et al., 2022), which use step-
level value function to guide the search,
we train another encoder-only transformer,
RoBERTa (Liu et al., 2019) to predict whether
a new proof state is on the right track to fin-
ishing the proof. As we consider the whole
proof instead of the current proof step, this
RoBERTa model is actually a proof-level
value function. We find that this technique
can help increase the value function’s accu-
racy, for instance, from 63.6% to 70.7%.

2 Background

2.1 Formal mathematics environments
Following (Han et al., 2021; Polu et al., 2022)
and (Jiang et al., 2021, 2022), we choose
Lean (de Moura et al., 2015) and Isabelle (Paul-
son, 1994) as our formal environments. As il-
lustrated in Fig. 1, the theorem-proving process
in Lean (and similarly in Isabelle) consists of se-
quentially applying a proof step (also known as a
tactic) to a given theorem statement. Specifically,

12633

the formal environment first constructs an initial
proof state from the theorem statement, which
contains one or multiple goals to be proved. Seek-
ing to solve all goals in the proof state, the user
produces a proof step that applies an existing
theorem (apply int.eq_of_sub_eq_zero), intro-
duces some new assumptions (intro hap), or tells
the formal environment to use techniques like proof
by contradiction or mathematical induction. If the
produced proof step is applicable, the formal envi-
ronment applies the proof step and transforms the
original proof state into a new proof state. This
process is repeated until the proof state reaches
‘no goals’ (or ‘goals accomplished’ as illustrated),
which means all goals in the theorem are proven.

2.2 Language model guided theorem proving

Recent approaches that use language models to
solve the ATP problem mostly follow the work
from GPT-f. Given the current proof state, a
causal language model (usually a decoder-only
transformer like GPT (Radford et al.)) is used to
predict possible proof steps that can be applied.
Concretely, the language model is trained on se-
quences in the following form using a language
modeling objective:
GOAL $(proof state) PROOFSTEP $(proof

step) where $(·) is the placeholder for the actual
proof state and proof step. At test time, multi-
ple new proof steps are sampled from the language
model giving a prompt as follows:
GOAL $(proof state) PROOFSTEP

We denote this atomic operation as expansion.
To construct a complete proof for a given theorem,
GPT-f adopts the best-first search algorithm that
iterates among selecting a best-scoring proof state
from the priority queue to expand, doing expansion
using the language model with the selected proof
state, and adding new states to the priority queue.
Each state’s score is either calculated by a value
function or uses the prior probability of the pre-
ceding proof step. Iterations continue until GPT-f
finds the theorem’s proof or reaches the limit of
computational budgets.

3 Methodology

Starting from the initial state of the theorem,
DT-Solver adapts the language model to suggest
forward-moving actions and empowers dynamic-
tree sampling guided by a proof-level value func-
tion to find the complete proof path. This is ac-

complished by a three-step pipeline: (1) Follow-
ing procedures described in Sec. 2.2, DT-Solver
trains a language model using supervised data ex-
tracted from formal mathematics libraries to pre-
dict proof steps based on proof states. The trained
language model is called the policy model. (2) Sub-
sequently, dynamic-tree sampling uses the trained
policy model to generate steps and searches for the-
orems proofs in the training set. A data collection
procedure collects proof trajectories from success-
ful proof searches. (3) Lastly, DT-Solver trains the
proof-level value function (called the critic model)
to identify promising proof paths from astray ones
on collected data with a classification loss. At test
time, to evaluate the performance of our method,
we use the trained policy model and critic model
to perform dynamic-tree sampling on the test set
theorems.

In the following section, we first introduce the
dynamic-tree sampling algorithm and the data col-
lection procedure (Sec.3.1). After that, we intro-
duce our proof-level value function (Sec. 3.2).

3.1 Dynamic-tree sampling

The dynamic-tree sampling algorithm strives to
maximize the efficiency of the search procedure
under limited computational budgets. In practice,
it controls the exploration of different proof states
according to two criteria: state value and model
confidence. The state value estimates whether the
state is on the correct proof path. Only high-valued
states deserve more exploration. The model confi-
dence is calculated with the prior probabilities of
the current state’s proof step. A state is considered
to require more exploration if the policy model
cannot produce confident steps toward the current
state.

To achieve the above objectives, we build the
dynamic-tree sampling based on the Monte-Carlo
tree search algorithm. As shown in Fig. 2, dynamic
tree sampling progressively adds new proof states
to construct a proof tree. Specifically, each node in
the proof tree represents a proof state denoted as
si ∈ {s0, s1..., sM}, where M is the total number
of tree nodes. Each edge represents a proof step
denoted as aj ∈ {a0, a1..., aM−1}, where M − 1
is the total number of edges. For notational clar-
ity, the edge from si to sj is always denoted as
aj , using the same subscript as sj . Similar to the
classic Monte-Carlo tree search algorithm, every
node-edge pair in the proof tree has a visit count

12634

Figure 2: Overview of DT-Solver. The algorithm consists of 3 phases: Selection, Expansion & Evaluation, and
Backpropagation. (a) In the Selection phase, the child node (or a virtual node) with the highest PUCT score is
selected for expansion. (b) The phase Expansion & Evaluation first expands the selected virtual node’s parent
(detailed in (d)) and then evaluates the generated new state with our proof-level value function (detailed in (e)).
(c) The Backpropagation phase backpropagates the new state score to the root state by successively adding the
score to the parent’s value count W and accumulating visit count N . (d) Detailed Model expansion procedure.
The trained policy model (GPT) takes the selected proof state as input and sample e proof steps. We then
apply the generated proof steps and use a formal environment to produce new proof states if successful. (e)
State evaluation with proof-level value function. Specifically, the critic model takes the current state and auxiliary
information (complete proof path, initial proof state) as input and outputs a score for the current state.

denoted as N(si, aj) and a value count denoted as
W (si, aj). Starting from the root node, dynamic-
tree sampling repeats the following three steps until
the theorem’s proof is found or the computational
budget is exhausted. (1) The selection phase (Fig.
2(a)). Dynamic-tree sampling computes the PUCT
score for child nodes and the virtual child node.
We select the highest-scoring child node and pro-
ceed according to the following conditions: if a
non-virtual child node is selected, dynamic-tree
sampling continues the selection phrase from the
selected child node. If a virtual node is selected,
the selection phase ends and proceeds to expan-
sion & evaluation. (2) The expansion & evaluation
phase (Fig. 2(b)(d)(e)). Dynamic-tree sampling
performs expansion on the parent node of the se-
lected virtual node. A fixed number (denoted as
e) of proof steps are sampled from the trained pol-
icy model. The formal environment verifies proof
steps and produces new proof states, which are then
deduplicated and evaluated by the critic model, and
finally added to the tree. (3) The backpropagation
phase (Fig. 2(c)). Dynamic-tree sampling back-
propagates new state scores to the root state by
successively adding the score to the parent’s value
count W and accumulating visit count N .

We detailed the selection and backpropagation
phrases in the following. The expansion phase
is well discussed and we leave the details about
evaluating states’ value in Sec. 3.2

Selection. We denote the current node to per-
form selection as st, and its children as sc ∈ C(st)
where C(·) is the function that returns all the chil-
dren for a given node. The virtual child of st is
denoted as s′t. The PUCT score for each child node
sc ∈ C(st) is formulated as follow:

PUCTsc =
W (st, ac)

N(st, ac)
+ c · p(ac|st) ·

√
N(st, ·)

N(st, ac)
(1)

where c is a constant balancing the exploration and
exploitation trade-off, and p(ac|st) is the probabil-
ity (estimated by the language model) of generating
the proof step ac given current state st. The PUCT
score for the virtual child node s′t is formulated as
follow:

PUCTs′t = vals′t + c · confs′t ·
√
N(st, ·)
|C(st)|

(2)

vals′t = 1− max
sc∈C(st)

W (st, ac)

N(st, ac)
(3)

confs′t = 1−
∑

sc∈C(st)

p(ac|st) (4)

where |C(st)| is the number of children st have.
Two parts control the score of selecting the vir-
tual node. vals′t estimates the value of the virtual
node. When st finds high-valued promising chil-
dren, vals′t will have a low score, indicating that

12635

no more exploration is required on st. confs′t es-
timates the model confidence on st. The value of
confs′t remains high until confident proof steps are
generated. The model confidence is discounted
by the number of children st have and keeps an-
nealing with more exploration performed on st. In
the selection phase, we repeatedly select the child
node with the highest PUCT score and continue
until we reach a virtual node. The selection process
empowers dynamic-tree sampling by being able
to backtrack to previously expanded states, elim-
inating the "empty queue" failure and drastically
increasing DT-Solver’s stability of finding valid
proof.

Backpropagation. The backpropagation fol-
lows the classical Monte-Carlo tree search. We
denote the function that returns the node’s parent
as P (·). The value counts W (P (sc), ac) and visit
counts N(P (sc), ac) are both initialized as 0 for
newly add child node. Given the newly added leaf
state sc and its estimated score vc, dynamic-tree
sampling repeats the following steps until the root
node is reached: (1) Accumulate the visit count
N(P (sc), ac) += 1, and accumulate the value
count W (P (sc), ac) += vc (2) Traverse back the
tree by changing the current node to the parent
sc ⇐ P (sc).

Data collection. To construct a proof-level
value function capable of identifying promising
states from astray ones, DT-Solver collects super-
vised training data by performing dynamic-tree
sampling in training set theorems1. Specifically,
DT-Solver collects trajectories data in the form
of ([(s0, a0), (s1, a1), ..., (sl, al)], y), where s0 is
the root state and sl is the leaf state. The label
y = 1 if the trajectory correctly proves the theorem
and y = 0 otherwise. The same data collection
procedure is performed on the validation and test
theorems for testing the value function.

3.2 Proof-level value function
The performance and efficiency of the dynamic-
tree sampling algorithm depend heavily on cor-
rectly evaluated state values. Existing methods like
GPT-f only use a representation of the current state
to assess the state’s quality. However, according to
our close-up observation, states along correct proof
paths tend to be more similar and consistent, while
states along false proof paths exhibit more diversity.

1At this stage, the proof-level value function is not applica-
ble; thus the state’s preceding step’s prior probability is used
as value estimate v.

Figure 3: Four types of proof-level value functions. In
practice, we use Roberta as our classifier to output the
probability of being in a good state.

Thus, it is beneficial to use proof-level information
to estimate the value of a state.

Accordingly, shown in Fig. 3, we propose four
types of proof-level value functions. Current-state-
only value function construct supervised data for-
matted as (sl, y) from the collected trajectory data.
A Roberta language model is fine-tuned on the
current-state-only data with a classification loss.
Root-state-and-current-state value function con-
structs sentence pair data formatted as ([s0, sl], y)
from the collected trajectory. The two states are
concatenated and fed into the Roberta to predict
the state’s value. Conversely, previous-state-to-
current-state uses more recent state information and
formats the training data as ([sl−1, sl], y). Entire-
trajectory value function concatenates the entire
proof path as follows:
GOAL $(s0) PROOFSTEP $(a0) </s></s> GOAL

$(s1) PROOFSTEP $(a1) ...

where the </s></s> separate different state-
action pair. Empirically, the entire-trajectory value
function performs the best in the value function
test set, but slightly worse than the Root-state-and-
current-state value function in end-to-end proof
successful rate.

4 Experiments

4.1 Experimental setup

Implementation details. In this paper, we adopt
the same model setup from PACT (Han et al.,

12636

Table 1: Performance comparison between our DT-Solver and baselines. Columns three and four show the one-pass
success rate of the theorems proven in the test set. The low-resources setting uses e = 8 for one expansion, and the
high-resources setting uses e = 32 for one expansion. On-Track Rate (OTR) averages the rate of selecting the
correct nodes to expand in each proof search. Success On Track Rate (SOTR) only calculates the OTR of successful
proof searches. Time shows the average time used per proof search. The values expressed in ‘X/Y’ format illustrate
the outcome for low-resource and high-resource settings, and the up arrow symbol signifies these values are higher
the superior. The best results without using the expert iteration are underlined.

Dataset Methods low. ↑ high. ↑ OTR ↑ SOTR Time (s) STime (s)

PISA
Lisa† (Jiang et al., 2021) 16.8 27.3 15.2 / 23.1 57.0 / 47.4 58.6 / 229.4 26.4 / 108.7
Lisa+MCTS 13.3 21.1 11.7 / 17.3 53.3 / 47.2 37.8 / 209.3 24.2 / 51.3
Lisa+DT-Solver 26.7 27.6 19.7 / 20.6 53.0 / 44.5 176.5 / 229.1 45.8 / 88.7

mathlib

GPT-f† (Polu and Sutskever, 2020) 12.6 23.4 11.9 / 19.2 61.3 / 48.2 7.6 / 77.6 15.1 / 83.2
PACT† (Han et al., 2021) 22.6 35.1 20.2 / 30.1 54.4 / 53.5 23.1 / 165.4 29.1 / 98.6
Expert iter.† (Polu et al., 2022) 39.9 45.9 35.5 / 40.5 53.6 / 50.8 61.4 / 149.2 34.1 / 87.3
PACT+MCTS 23.2 36.1 20.5 / 29.6 48.6 / 45.0 32.8 / 170.1 61.3 / 115.4
Expert iter.+MCTS 40.9 47.1 35.4 / 40.2 48.1 / 46.1 75.3 / 150.8 64.3 / 101.2
PACT+DT-Solver 37.3 39.3 28.3 / 31.7 43.0 / 42.4 203.9 / 204.3 95.5 / 136.6
Expert iter.+DT-Solver 48.4 48.2 39.5 / 40.2 45.5 / 45.6 167.7 / 175.2 75.6 / 103.9

2021)2 in Lean formal environment and Thor(Jiang
et al., 2022) in Isabelle formal environment for bet-
ter comparison. Detailed model configuration and
training procedure are described at Sec. A.3 in
Appendix.

Dataset. To validate our proposed DT-Solver,
we choose the Mathlib dataset in the Lean formal
environment and the PISA dataset constructed from
Archive of Formal Proofs (AFP) in the Isabelle
formal environment. Although both datasets are
extracted from the world’s largest formal mathemat-
ical libraries, these two datasets have very different
characteristics. Mathlib’s proof steps are instruc-
tional, such as applying a theorem or simplifying
a goal. Contrary, Isabelle’s proof steps are more
human-friendly and declarative. The proof step is
usually led by a conjecture to proof and followed
by short instructions to prove it. Empirically, it
is much harder for the model to suggest a correct
conjecture. Detailed statics regarding the training
dataset are shown in Table.4 and Table.5 in Ap-
pendix.

Baseline methods. For the Isabelle formal
environment, we compare our DT-Solver with
Lisa (Jiang et al., 2021)3, the first work that ap-
plies the GPT-f model to the Isabelle environment.
In addition, Lisa proposes to add previous proof
context to the original proof state to help the lan-

2Unfortunately, we cannot use models with the same pre-
training configuration since the data for pre-training have not
been released.

3We leave the comparison of Thor (Jiang et al., 2022) in the
future work since the use of the Sledgehammer is compatible
with our DT-solver and is a guaranteed improvement.

guage model predict the following proof states. For
the Lean formal environment, besides the origi-
nal GPT-f model (Polu and Sutskever, 2020), we
compare our DT-Solver with PACT (Han et al.,
2021) and Expert iteration (Polu et al., 2022) PACT
(Proof Artifact Co-training) built upon the GPT-f
model and proposed to co-train the language model
with nine auxiliary tasks. Expert iteration boot-
straps the language model by training the model
with self-generated data from proof searches. All
the baseline methods described above use the best-
first search algorithm described in Sec. 2.2.

DT-Solver follows previous work to construct
a policy model. For fair comparisons, we use the
same policy models from baseline methods. Specif-
ically, three policy models are trained: Lisa, PACT,
and Expert iter. We evaluate our DT-Solver by
substituting the best-first search with dynamic-tree
sampling and entire-trajectory proof-level value
function. For ablation, we substitute dynamic-tree
sampling with classic Monte-Carlo tree search but
leave the policy and critic models unchanged. All
the baseline methods are re-implemented by our-
selves since none of them releases the code.

4.2 Main results

4.2.1 Comparison with state-of-the-art

As shown in Table 1, our proposed DT-Solver dra-
matically outperforms all the baseline methods un-
der all scenarios. Specifically, Expert iter.+DT-
Solver improves from 39.9% to 48.4% in the low-
resource setting, surpassing the model performance
of 45.9% for the Expert iter. method in high-

12637

Table 2: Performance comparison among different value functions on mathlib dataset. The accuracy (acc.) is the
classification accuracy calculated on the value function test set. All the results are conducted with Expert iter. policy
model and dynamic tree sampling in the low-resources setting.

Methods acc. ↑ low. ↑ OTR ↑ SOTR ↑ Time(s) ↓
� Ablation:
Log prob (Polu and Sutskever, 2020) - 47.9 39.4 51.7 150.3
Outcome (Han et al., 2021) 63.62 47.6 39.5 48.1 175.7
� Expert iter.+DT-Solver:
Current state only 66.43 48.2 38.6 47.6 169.2
Root state and current state 68.01 48.9 38.7 48.7 167.1
Previous state to current state 69.39 49.6 39.3 44.5 167.9
Entire trajectory 70.70 48.4 39.5 45.5 167.7

resource settings. Moreover, in the low-resources
setting, PACT+DT-Solver achieves a success rate
of 37.3%, only 2.6% worse than the Expert iter.
baseline of 39.9%. This result implies that our pro-
posed DT-Solver can substantially close the gap
brought by different policy models and empower
weaker models to solve more difficult problems.
The same improvement applies to the PISA dataset,
where the Lisa+DT-Solver model improves from
16.8% to 26.7% in the Lisa baseline. In the high
resources setting, the effectiveness of DT-Solver
is marginalized by high expansion samples in the
best-first search algorithm. Nevertheless, Our DT-
Solver can still improve upon baseline methods
2.25% on average.

Focusing on how well different search algo-
rithms can find the correct proof state to perform
expansion, we calculated the global on-track rate
(OTR) and successful on-track rate (SOTR). On-
track rate averages the rate of selecting the correct
nodes to expand in each proof search. As shown in
the Table, our proposed DT-Solver has the highest
global on-track rate in most scenarios. The result
shows that DT-Solver with proof-level value func-
tion can locate states requiring more exploration
and finds the proof efficiently.

The best success on-track rate and shortest av-
erage search time are biased toward weaker policy
models. The high successful on-track rate with
weak policy models is accomplished by only being
able to solve simple theorems within one or two
steps long. Meanwhile, the short average search
time is because a weak policy model with the
best-first search quickly exhausted the plausible ac-
tion, resulting in a state named "empty queue" that
quickly declares the search’s failure. Although DT-
Solver takes more time to solve a theorem, the algo-
rithm makes maximum utility within the given time
limitation. On average, Expert iter.+DT-Solver

only uses 10.2 seconds more to find 5.4% more
proofs that Expert iter. in the high-resource setting.
Calculating only the successful proof search, Ex-
pert iter.+DT-Solver in the low-resources setting
uses 75.6 seconds on average to solve a problem,
which is 11.6 seconds less than the high-resources
setting counterpart Expert iter.

4.2.2 The effect of dynamic-tree sampling
We compare our proposed dynamic tree sampling
with the classic Monte-Carlo tree search algorithm
(MCTS). MCTS disables dynamic tree sampling
by restricting the selection process until a non-
expanded leaf node, denoting no backtracking ca-
pabilities. As shown in Table. 1, PACT+MCTS and
Expert iter.+MCTS both improved against PACT
and Expert iter. 0.95% on average. This shows
MCTS a better algorithm to locate correct proof
states in proof searches. Compared to DT-Solver,
the model’s performance dropped drastically with-
out the ability to backtrack to previous states. In the
low-resources setting, MCTS, on average, drops
11.25% in success rate compared to DT-Solver. We
observe similar performance drops in the PISA
dataset. From these results, we believe that the
back-tracking capability in DT-Solver plays a vital
role in improving the algorithm effect.

4.2.3 The effect of proof-level value function
To validate the effectiveness of our proof-level
value function, we substitute the proof-level value
function with outcome value function (Han et al.,
2021) and log prob value function (Polu and
Sutskever, 2020). Additionally, We calculate the
value function’s accuracy on the created value func-
tion test set to evaluate the performance of different
value functions. As shown in Table 2, the critic
model using Roberta as the classifier backbone per-
forms better than the GPT counterpart (Log prob
and Outcome). The entire-trajectory value func-

12638

Figure 4: Case Study. We use a concrete theorem as an example to demonstrate how DT-Solver (left) differs from an
approach using best-first search (right). Both approaches use the same language model (Expert-iter) for predicting
proof steps. The trees beside the proof are the proof tree created in the proof search.

Figure 5: The effect of balancing exploration and ex-
ploitation. We explore different chooses of c in Eq.1
and Eq. 2

tion substantially outperforms the outcome objec-
tive baseline in test set accuracy. Furthermore, the
previous-to-current-state value functions provide
the best end-to-end result. The result indicates that
the state value is better estimated by more recent
representations, instead of a remote anchor.

The minor disadvantage of the entire-trajectory
value function might be the over-length trajectories,
which need to be truncated to feed into the language
model for prediction. Specifically, trajectories with
lengths exceeding the maximum LM input were
truncated from the left, resulting in the absence of
the root state being preserved as a prefix. Among
all value function queries, truncation occurred at a
frequency of 53.00%, covering 53.54% of theorems
in the Lean test set. However, when employing
the "root-state-and-current-state" strategy, trunca-
tion only took place 3.10% of the time. We have
extracted a sub-dataset that solely contains theo-
rems with shorter proofs. This subset enables one
to calculate the "entire trajectory" value function
without resorting to any truncation. Table 3 shows
the performance of root-state-and-current-state and

Table 3: Performance comparison among different value
functions in the short-proof subset.

Methods low. ↑ OTR ↑ SOTR ↑ Time(s) ↓
Root & current 90.67 82.9 56.7 41.0
Entire trajectory 93.22 86.7 57.6 32.4

entire-trajectory strategies in the short-proof subset.
This outcome validates our initial hypothesis that
truncation harms the overall performance of the
value function.

4.2.4 The effect of balancing exploration and
exploitation

In this section, we seek to understand how c in Eq.1
and Eq.2 affect model performance. As shown in
Fig.5, with larger c, the dynamic tree sampling
weights more on the model prior to determining
which node to select. DT-Solver achieves a better
end-to-end success rate with larger c. This result
indicates that more exploration and back-tracking
are beneficial to find more plausible actions. How-
ever, the SOTR achieves the best performance in
c = 0.5; this shows better selection accuracy when
we focus more on exploiting the value function’s
state estimates.

4.3 Case Study
In this section, we conduct a detailed case study for
a close-up look at the result DT-solver produced.
More examples are shown in Sec. A.4. As shown in
Fig. 4, we compare proof from DT-solver with the
expert iteration policy model and best-first search-
based expert iteration policy model. The theo-
rem rpow_le_rpow_left_iff_of_base_lt_one
aims to prove that for x ∈ (0, 1) and y, z ∈ R,
we have xy ≤ xz if and only if z ≤ y. Both ap-
proaches can produce (by prediction and search)

12639

the same first 6 proof steps. These steps rewrite
(with the tactic rw) the goal with previously proved
theorems such as rpow_def_of_pos (if x > 0 then
xy = exp(x · log y)) and exp_le_exp (ex ≤ ey if
and only if x ≤ y).

Here, we focus on Fig. 4 left. After the tactic
application of the first rw [<- not_lt], DT-solver
fails to generate the second rw [<- not_lt] sub-
sequently. Ordinarily, such a malfunction in the
best-first search algorithm would lead to the persis-
tence of incorrect states without the opportunity to
re-explore the node after the first application of rw
[<- not_lt]. Nevertheless, the utilization of our
Dynamic-tree sampling approach and proof-level
value function facilitates the algorithm’s return to
the node after 9 attempts to explore other search
branches. Upon the decision to re-expand the state,
there were 20 unexpanded states, and the total num-
ber of different states stood at 41. Thus the proof-
level value function plays an essential role in iden-
tifying the appropriate states for re-expansion.

With the best-first search algorithm, we see that
the search tree has a width of 1 or 2 and one eas-
ily falls into a state of ‘empty queue’, where no
candidate generated by the language model is ap-
plicable. The approach stops the search process
and returns failed before the time budget (300
seconds) is used up. While for DT-Solver, the num-
ber of child nodes varies from 1 to 5 and has greater
variance than the best-first search. Although the
number of child nodes can be relatively larger, the
search process of DT-Solver manages to achieve
a good balance between exploration and exploita-
tion. Eventually, DT-Solver finds proof of 11 steps
within the time budget with higher OTR (36.3% >
21.8%) than the best-first search.

5 Conclusion

In this work, we introduced a new ATP method,
DT-Solver, which uses a proof-level value function
to guide the dynamic tree sampling algorithm. DT-
Solver smartly allocates computational budget to
states that require more exploration and reduces the
cost on easy states. The proof-level value function
effectively locates difficult states. Extensive tests
show that our method can indeed improve success
rates on both PISA and mathlib datasets while be-
ing efficient enough to find proofs within a limited
time budget. Although our method brings substan-
tial advantages, there remain multiple aspects for
improvement in the future, such as utilizing the for-

mal environment’s feedback or reducing enormous
search spaces with high-level proof planning.

6 Limitations

Due to the limited ability of the policy model, most
theorem still failed to find the proof because of
poorly suggested proof steps. Predicting the proof
step from the proof state requires substantial reason-
ing ability. It’s observed in the experiment that the
language model tends to produce the same proof
step in training data, and is unsatisfactory in gener-
alizing for new states. Another limitation resides in
the proof-level value functions. Although the per-
formance of the proof-level value functions shows
promising improvement in the value function test
set. The end-to-end pass rate diminishes the perfor-
mance gap. This accounts for two major reasons:
1) weak policy model fails to produce correct ac-
tion even if our value function correctly located
the state to expand. 2) Our value function’s per-
formance is still behind the performance threshold
where the value really helps the search drastically.
One future direction is to enhance the language
model for better reasoning ability by using a larger
language model or adding symbolic reasoning into
the language model to produce more reasonable
proof steps and better evaluate states’ value.

7 Acknowledgement

This work was supported in part by the
National Key R&D Program of China un-
der Grant No. 2020AAA0109700, Shen-
zhen Science and Technology Program (Grant
No. RCYX20200714114642083) and Shen-
zhen Fundamental Research Program(Grant No.
JCYJ20190807154211365)

References
Alexander A. Alemi, François Chollet, Niklas Een, Ge-

offrey Irving, Christian Szegedy, and Josef Urban.
2016. DeepMath - deep sequence models for premise
selection. In Proceedings of the 30th International
Conference on Neural Information Processing Sys-
tems, NIPS’16, pages 2243–2251, Red Hook, NY,
USA. Curran Associates Inc.

Kshitij Bansal, Christian Szegedy, Markus Norman
Rabe, Sarah M. Loos, and Viktor Toman. 2020.
Learning to Reason in Large Theories without Imita-
tion.

Bruno Barras, Samuel Boutin, Cristina Cornes, Ju-
dicaël Courant, Jean-Christophe Filliâtre, Eduardo

12640

https://openreview.net/forum?id=qbRv1k2AcH
https://openreview.net/forum?id=qbRv1k2AcH

Giménez, Hugo Herbelin, Gérard Huet, César Muñoz,
Chetan Murthy, Catherine Parent, Christine Paulin-
Mohring, Amokrane Saïbi, and Benjamin Werner.
1997. The Coq Proof Assistant Reference Manual :
Version 6.1. report, INRIA. Pages: 214.

Alexander Bentkamp, Jasmin Blanchette, Sophie Tour-
ret, and Petar Vukmirović. 2021. Superposition for
Full Higher-order Logic. In Automated Deduction –
CADE 28, Lecture Notes in Computer Science, pages
396–412, Cham. Springer International Publishing.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An
Efficient SMT Solver. In Tools and Algorithms for
the Construction and Analysis of Systems, Lecture
Notes in Computer Science, pages 337–340, Berlin,
Heidelberg. Springer.

Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. 2015. The
Lean Theorem Prover (System Description). In Au-
tomated Deduction - CADE-25, Lecture Notes in
Computer Science, pages 378–388, Cham. Springer
International Publishing.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W.
Ayers, and Stanislas Polu. 2021. Proof Artifact Co-
training for Theorem Proving with Language Models.
ICLR 2022. ArXiv: 2102.06203.

John Harrison, Josef Urban, and Freek Wiedijk. 2014.
History of interactive theorem proving. In Computa-
tional Logic, volume 9, pages 135–214.

William Alvin Howard. 1980. The Formulae-as-Types
Notion of Construction. In Haskell Curry, Hindley
B, Seldin J. Roger, and P. Jonathan, editors, To H.
B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism. Academic Press.

Albert Q Jiang, Wenda Li, Szymon Tworkowski, Kon-
rad Czechowski, Tomasz Odrzygóźdź, Piotr Miłoś,
Yuhuai Wu, and Mateja Jamnik. 2022. Thor:
Wielding hammers to integrate language models
and automated theorem provers. arXiv preprint
arXiv:2205.10893.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han,
and Yuhuai Wu. 2021. Lisa: Language models of
isabelle proofs.

Laura Kovács and Andrei Voronkov. 2013. First-Order
Theorem Proving and Vampire. In Computer Aided
Verification, Lecture Notes in Computer Science,
pages 1–35, Berlin, Heidelberg. Springer.

Guillaume Lample, Marie-Anne Lachaux, Thibaut
Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix.

2022. HyperTree Proof Search for Neural Theorem
Proving. Technical Report arXiv:2205.11491, arXiv.
ArXiv:2205.11491 [cs] type: article.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436–444.
Number: 7553 Publisher: Nature Publishing Group.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paul-
son. 2020. IsarStep: a Benchmark for High-level
Mathematical Reasoning. In ICLR 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

John McCarthy, Marvin L Minsky, Nathaniel Rochester,
and Claude E Shannon. 2006. A proposal for the
dartmouth summer research project on artificial intel-
ligence, august 31, 1955. AI magazine, 27(4):12–12.

NORMAN. WHEELER MEGILL and DAVID A. 2019.
METAMATH: a computer language for mathematical
proofs. Lulu Press, Place of publication not identified.
OCLC: 1105224041.

Lawrence C. Paulson. 1994. Isabelle a Generic Theo-
rem Prover. Springer Verlag.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2022. Formal Mathematics Statement Curriculum
Learning. Technical Report arXiv:2202.01344, arXiv.
ArXiv:2202.01344 [cs] type: article.

Stanislas Polu and Ilya Sutskever. 2020. Generative Lan-
guage Modeling for Automated Theorem Proving.
arXiv:2009.03393 [cs, stat]. ArXiv: 2009.03393.

Markus Norman Rabe, Dennis Lee, Kshitij Bansal, and
Christian Szegedy. 2020. Mathematical Reasoning
via Self-supervised Skip-tree Training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language Models
are Unsupervised Multitask Learners. page 24.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, Tom Eccles,
Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas
Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. 2022. A Gen-
eralist Agent. Technical Report arXiv:2205.06175,
arXiv. ArXiv:2205.06175 [cs] type: article.

Stephan Schulz. 2002. E - a brainiac theorem prover.
AI Communications, 15(2,3):111–126.

12641

https://hal.inria.fr/inria-00069968
https://hal.inria.fr/inria-00069968
https://doi.org/10.1007/978-3-030-79876-5_23
https://doi.org/10.1007/978-3-030-79876-5_23
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
http://arxiv.org/abs/2102.06203
http://arxiv.org/abs/2102.06203
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
http://arxiv.org/abs/2205.11491
http://arxiv.org/abs/2205.11491
https://doi.org/10.1038/nature14539
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=Pzj6fzU6wkj
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/arXiv.2202.01344
https://doi.org/10.48550/arXiv.2202.01344
http://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=YmqAnY0CMEy
https://openreview.net/forum?id=YmqAnY0CMEy
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.48550/arXiv.2205.06175
https://doi.org/10.48550/arXiv.2205.06175

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-
ray Kavukcuoglu, Thore Graepel, and Demis Hass-
abis. 2016. Mastering the game of Go with deep neu-
ral networks and tree search. Nature, 529(7587):484–
489. Number: 7587 Publisher: Nature Publishing
Group.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. 2017. Mastering Chess and Shogi
by Self-Play with a General Reinforcement Learn-
ing Algorithm. arXiv:1712.01815 [cs]. ArXiv:
1712.01815.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Mingzhe Wang and Jia Deng. 2020. Learning to Prove
Theorems by Learning to Generate Theorems. In
Advances in Neural Information Processing Systems,
volume 33, pages 18146–18157. Curran Associates,
Inc.

Daniel Whalen. 2016. Holophrasm: a neural Automated
Theorem Prover for higher-order logic. Technical
Report arXiv:1608.02644, arXiv. ArXiv:1608.02644
[cs] type: article.

Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and
Roger Grosse. 2021. INT: An Inequality Benchmark
for Evaluating Generalization in Theorem Proving.
ICLR 2021. ArXiv: 2007.02924.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. miniF2F: a cross-system benchmark for formal
Olympiad-level mathematics.

A Appendix

A.1 Overview

In the appendix, we first discuss related works in
Section A.2. We give more implementation details
and dataset statistics of DT-Solver in Section A.3.
More examples of theorem proven by DT-Solver
are shown in Section A.4.

A.2 Related works

Deep learning has already been applied
to automated theorem proving prior to

GPT-f (Polu and Sutskever, 2020). Meth-
ods such as DeeMath (Alemi et al., 2016),
Holophrasm (Whalen, 2016), HOList (Bansal
et al., 2020; Rabe et al., 2020) and MetaGen (Wang
and Deng, 2020) all apply one or several neural
networks to recommend premises and proof steps.
Then the search can either be guided by a neural
network or not.

GPT-f (Polu and Sutskever, 2020) uses a fine-
tuned GPT-2 (Radford et al.) as the language model
to recommend the next proof step for the current
proof state (called tactic state in Lean) and apply
a best-first search based on the log-prob of the se-
quence predicted by the language model. Based on
this framework, PACT (Han et al., 2021) provides
a multi-tasking training scheme for a slightly larger
GPT-2 model. Polu et al. (Polu et al., 2022) further
introduce expert iteration (Silver et al., 2017) to
achieve a sort of data augmentation to improve the
training of the language model further. Most re-
cently, HTPS (Lample et al., 2022) plugs in Monte-
Carlo Tree Search (Silver et al., 2016) in this frame-
work and applies an online version of expert iter-
ation, which further advances the state-of-the-art
performance on Metamath and the Lean benchmark
miniF2F (Zheng et al., 2021).

Approaches in a similar paradigm have also
been successfully applied to other formal systems
such as Isabelle (Paulson, 1994; Li et al., 2020;
Jiang et al., 2021, 2022), Lean (de Moura et al.,
2015; Han et al., 2021; Polu et al., 2022; Lample
et al., 2022) and other customized systems such as
INT (Wu et al., 2021; Polu and Sutskever, 2020)
and Equations (Lample et al., 2022).

A.3 Experimental details

A.3.1 Experimental setup

Model specification. The policy model is a
decoder-only transformer (Vaswani et al., 2017)
language model with 774M parameters, 36 layers,
20 attention heads, a hidden dimension of 1280,
and a GPT-2 (Radford et al., 2018) tokenizer with
50400 vocabulary size. The model is pre-trained
on Github python codes and the arXiv library. For
lean, we further pre-train our policy model on the
PACT dataset (mix1 and mix2 as denoted in PACT).
During per-training, we use a global batch size of
512 with 2500 steps warmup using the AdamW
optimizer. The cosine learning rate scheduling
strategy is used with a maximum learning rate of
5 ∗ 10−5 and a minimum learning rate 5 ∗ 10−6.

12642

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d2a27e83d429f0dcae6b937cf440aeb1-Abstract.html
https://doi.org/10.48550/arXiv.1608.02644
https://doi.org/10.48550/arXiv.1608.02644
http://arxiv.org/abs/2007.02924
http://arxiv.org/abs/2007.02924
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

The policy model is pre-trained for 250000 step.
For fine-tuning in Lean, we use the tactic dataset
in PACT to train the model, with a batch size of
16, and a warmup step of 1000 with a maximum
learning rate of 5 ∗ 10−5 and a minimum learning
rate of 5 ∗ 10−6. We are early-stoping the fine-
tuning in 15000 steps with a total training budget
of 100000 step. For Isabelle, we follow instruc-
tions from Lisa (Jiang et al., 2021) and reproduce
the AFP dataset. The policy model is further fine-
tuned on the AFP dataset with the same fine-tuning
configuration used in Thor.

For the critic model, we use a pre-trained
RoBERTa-base model (Liu et al., 2019) as our
language model classifier. The critic model is fine-
tuned for one epoch on the dataset generated follow-
ing procedures described in Sec.3.1. Fine-tuning
critic model uses a global batch size of 128, a max-
imum sequence length of 512, a linear learning
secluding strategy with 2000 warmup steps, and a
maximum learning rate of 1 ∗ 10−5. We early stop
the training with the lowest evaluation loss.

Dyamic tree sampling configuration. We set
the balancing factor c = 1 in Eq. 1 and Eq. 2. To
sample from the policy model, we use temperature
T = 1.2 for Isabelle and T = 1 for Lean. Each
proof step has a timeout limit of 10 seconds, and the
search is terminated in the following condition: (1)
A proof of the theorem has been found (2) Global
timeout for 300 seconds (3) A total expansion step
of 128 is reached.

Machine Configuration. We use Nvidia V100
GPU with 32GB of GPU memory for pre-training
and fine-tuning. The training server has 104 CPU
cores and 768GB of CPU memory. For training
the policy model and the critic model, we use 8
GPUs with data parallel to speed up the training,
with estimated 1100 GPU hours to run the training.
For running the dynamic tree sampling algorithm,
we use 32 GPUs to speed up the proof-finding pro-
cedure. We estimate it takes 64 GPU hours to run
a single evaluation on the mathlib test set.

Interactive theorem provers To expediently
verify proofs in Lean and Isabelle, we use REPL
wrappers that formulate the interactions with ITPs
in a REPL style. For lean, we use lean-gym fol-
lowing (Polu et al., 2022). In every step, lean-gym
takes a proof state and a proof step as input and
outputs a new proof state. For Isabelle, we created
a REPL verifier named isabelle-gym based on
PISA, with the same IO specification as lean-gym.

Table 4: Data statistics on the training data

Data split size
GitHub python code 159GB
GitHub (the pile) 95GB
Arxiv documents 56GB
PACT-mix1 2GB
PACT-mix2 22GB
PISA fine-tuning 1102MB
Mathlib fine-tuning 119MB

Table 5: Theorem counts on Mathlib and PISA

dataset train valid test
Mathlib 36960 1621 1580
PISA 156809 1627 6491

With these formal environments, we can check if a
proof step is applicable or whether we have proven
the theorem.

A.3.2 Dataset statistics
We provide statistics for our training dataset.
Detailed statics for pre-training are shown in
Table.4. We use 159G Python code collected
from GitHub and PACT-mix{1,2} dataset for
Mathlib pre-train. Moreover, we follow (Jiang
et al., 2022) for Isabelle pre-train with GitHub
and Arxiv dataset from the-pile (Gao et al.,
2020). We also provide the number of theorems
for Mathlib and PISA datasets in Table.5. The
Mathlib dataset is created with versions of
b72300f3455ae73c3ab9ed40fc1f80bbb9c85ba4
and lean core versions of 3.39.1. The PISA dataset
is created with Isabelle2021. For running proof
searches in the test set in Isabelle, we use the
‘quick test problem’ crated following Thor, which
contains 600 theorems randomly sampled from the
test split of the PISA dataset.

A.4 Proof examples
In this section, we provide more examples of proof
found by our DT-Solver. For each proof, we also
compare our method with the best-first search coun-
terpart using the same policy model. Specifically,
we provide two cases for proofs found in the Lean
formal environment shown in Fig.6 and Fig.7. As
well as two cases for proofs found in the Isabelle
formal environment shown in Fig.8 and Fig.9.

12643

Figure 6: An example proof in Mathlib. Our approach DT-Solver manages to find a proof for the theorem
lipschitz_with.comp in 58.1 seconds. While with best-first search, a premature ‘Failed’ result is return after only
15 seconds, knowing that the time budget for proving one theorem is 300s.

Figure 7: An example proof in Mathlib. For this example, we see that both DT-Solver and best-first search
successfully find a proof for the theorem indicator_eventually_eq, under a duration of similar scale. DT-Solver
achieves a higher on-track-rate (24.0%) than that of best-first search (15.4%).

Figure 8: An example proof in Isabelle. While the best-first search counterpart returns a premature ‘Failed’ result
under only 3.12 seconds, our DT-Solver finds a two-step proof under 14 seconds with a high on-track-rate.

Figure 9: An example proof in Isabelle. Similar to the results in Fig.7, both approaches successfully find a proof
while DT-Solver manages to achieve a higher OTR than best-first (62.0% > 50%).

12644

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6

�3 A2. Did you discuss any potential risks of your work?
Section 6

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�3 A4. Have you used AI writing assistants when working on this paper?
I use chatGPT and use it to polish the language of my paper and correct the grammar error. This
happens in section 4.2.3 and section 4.3

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
References

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section A.3

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section A.3

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section A.3

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section A.3.2

C �3 Did you run computational experiments?
Section A.3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section A.3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12645

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section A.3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section A.3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12646

