
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 12044–12066

July 9-14, 2023 ©2023 Association for Computational Linguistics

Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval

John Wieting1, Jonathan H. Clark1, William W. Cohen1,
Graham Neubig2, and Taylor Berg-Kirkpatrick3

1Google DeepMind
2Carnegie Mellon University, Pittsburgh, PA, 15213, USA

3University of California San Diego, San Diego, CA, 92093, USA
{jwieting,jhclark,wcohen}@google.com, gneubig@cs.cmu.edu, tberg@eng.ucsd.edu

Abstract

Contrastive learning has been successfully used
for retrieval of semantically aligned sentences,
but it often requires large batch sizes and care-
fully engineered heuristics to work well. In
this paper, we instead propose a generative
model for learning multilingual text embed-
dings which can be used to retrieve or score sen-
tence pairs. Our model operates on parallel data
in N languages and, through an approximation
we introduce, efficiently encourages source sep-
aration in this multilingual setting, separating
semantic information that is shared between
translations from stylistic or language-specific
variation. We show careful large-scale compar-
isons between contrastive and generation-based
approaches for learning multilingual text em-
beddings, a comparison that has not been done
to the best of our knowledge despite the pop-
ularity of these approaches. We evaluate this
method on a suite of tasks including seman-
tic similarity, bitext mining, and cross-lingual
question retrieval—the last of which we intro-
duce in this paper. Overall, our Variational
Multilingual Source-Separation Transformer
(VMSST) model outperforms both a strong
contrastive and generative baseline on these
tasks.1

1 Introduction

Contrastive learning is the dominant paradigm for
learning text representations from parallel text (Her-
mann and Blunsom, 2014; Singla et al., 2018; Guo
et al., 2018; Wieting et al., 2019; Feng et al., 2022).
However, contrastive learning requires strong neg-
ative examples in the data and finding these nega-
tives can be expensive in terms of compute or man-
ual effort. In this paper, we propose a generative2

model for learning multilingual text embeddings
1Code and Flax-based T5X model checkpoint

available at https://github.com/google-research/
google-research/tree/master/vmsst.

2We mean generative both in terms of text generation and
as a statistical model of the joint probability distribution.

which encourages source separation, separating se-
mantic information that is shared between transla-
tions from stylistic or language-specific variation.
We find that by filtering this variation into separate
variables, performance of the remaining represen-
tations, that encode shared semantic information,
increases across all downstream tasks.

Through an approximation that greatly reduces
the memory footprint of our model, we scale our
model and train on 92 languages. We systemat-
ically compare our model, the Variational Multi-
lingual Source-Separation Transformer (VMSST)
to strong contrastive and generative baselines on a
suite of tasks including semantic similarity, bitext
mining, and question retrieval, which we introduce
for the cross-lingual setting, using the same train-
ing data and architecture. We show that our model
outperforms these models and is also competitive
with the state-of-the-art.

We analyze VMSST with careful ablations,
showing the contribution of each aspect of the
model to performance. We also show that even
at large batch sizes, the advantage over contrastive
learning remains, especially for large models. Fur-
thermore, we also find the learned embedding space
of our model to be smoother, making it less af-
fected by the “hubness problem” (Radovanovic
et al., 2010; Radovanović et al., 2010) in represen-
tation learning, and more suitable for large-scale
retrieval than the baseline methods.

To the best of our knowledge, this is the first
work to systematically compare generative and
contrastive models for learning multilingual em-
beddings on a large parallel corpus containing
many languages in a carefully controlled experi-
mental setup—despite the popularity of these ap-
proaches (Artetxe and Schwenk, 2019b; Yang et al.,
2020). We carry out these experiments with both
pretrained and randomly initialized models. The
comparison of objective functions is an important
research question due to the large amounts of multi-
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lingual text available to train models and the many
uses of these models in downstream tasks. To that
end, another contribution of this paper is showing
these comparisons and the surprising result that
contrastive objectives do not provide the overall
best accuracy on downstream tasks. Moreover, our
generative VMSST increasingly outperforms the
contrastive model when more layers are added and
when training with larger batches and more training
data, suggesting that as models continue to scale
in the future, this performance gap may continue
to increase further motivating the use of generative
approaches for learning multilingual text embed-
dings.

2 Related Work

There has been a number of approaches proposed
for learning bilingual and multilingual text embed-
dings. One popular approach is contrastive learn-
ing (Hermann and Blunsom, 2014; Singla et al.,
2018; Guo et al., 2018; Wieting et al., 2019; Feng
et al., 2022) where translation pairs are positive
examples and text from other pairs are used as neg-
ative examples. An alternative approach is to use a
neural machine translation objective, where the rep-
resentation from the hidden states of the encoder
is used as the sentence embedding (Espana-Bonet
et al., 2017; Schwenk and Douze, 2017; Artetxe
and Schwenk, 2019b). Other approaches include
multi-task learning approaches which often use
some type of contrastive learning of parallel text to
align representations among languages (Yang et al.,
2020; Goswami et al., 2021), cross-lingual pretrain-
ing (Chi et al., 2022), and model distillation from a
large pretrained multilingual model (Reimers and
Gurevych, 2020).

An alternative approach that is more closely re-
lated to our work is generative models that separate
the linguistic variation from the shared semantic in-
formation in translation pairs. Wieting et al. (2020)
considered this for bitext, with each language hav-
ing its own encoder and decoder parameters. This
approach however does not scale, since it is not fea-
sible to have thousands of encoders and decoders
if one wants to model all of the more than 7,000
languages in the world.

3 Model

The generative process of our underlying proba-
bilistic model and the computation graph of our
training objective procedure are depicted in Fig-
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Figure 1: The generative process of our model. Latent
variables, zli , modeling the variation xli specifically
due to language li, as well as a latent variable modeling
the common semantics, zsem, are drawn from a multi-
variate Gaussian prior. The observed translation in each
language is then conditioned on its language-specific
variable and zsem. In practice, we approximate this
model to make learning and inference tractable.

ure 1 and Figure 2 respectively. In the generative
story for VMSST, we first sample a semantic vari-
able zsem for the sentence. Then for each of the N
languages, we sample a language-specific variable
zli . Each latent variable z is sampled from a mul-
tivariate Gaussian prior N(0, Ik). These variables
are then fed into a decoder that samples each of
the N sentences in the translation set. Each ob-
served translation xli , is sampled conditioned on
zsem and its language variable zli . Because zsem
will be used to generate the sampled sentences in
all languages, we expect that this variable will en-
code semantic, syntactic, or stylistic information
that is shared in all of the translations. Conversely,
the language variables zli will handle language-
specific peculiarities or specific style differences
that are not central to the meaning of the transla-
tion and are therefore not contained in many of the
sentences. Concretely, the likelihood function of
our model can be written for a single N -way tuple
of translations x = (x1, ..., xN ):

p(x|zsem, zl1 , ..., zlN ) =
N∏

i

p(xi|zsem, zli)

In the next section, we discuss how this separa-
tion of information is encouraged during learning.
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4 Learning and Inference

We would like to train our model on a set of par-
allel sentences X consisting of M examples in N
languages and a collection of latent variables Z.
However, N -way parallel corpora are not avail-
able at the scale of bilingual text, and so we there-
fore approximate an N -way parallel corpus by
sampling translation pairs from a large pool of
pairs containing text in N languages. Therefore in
our model, X = {⟨x1li , x

1
lj
⟩, . . . , ⟨xMli , x

M
lj
⟩} and

Z = (⟨z1li , z
1
lj
, z1sem⟩, . . . , ⟨zMli , z

M
lj
, zMsem⟩).

We aim to maximize the likelihood of the ob-
served X with respect to the parameters of the
decoder θ, marginalizing over the latent vari-
ables Z. We follow established procedures for
this optimization problem from related latent vari-
able models like variational autoencoders (VAEs;
Kingma and Welling (2013)). Specifically, we
optimize a variational lower bound on the log
marginal likelihood, the evidence lower bound
(ELBO). ELBO introduces a variational approxima-
tion q(zsem, zli , zlj |xli , xlj ;ϕ) to the true posterior
of the model. The q distribution is parameterized
by encoders or inference networks with parame-
ters ϕ. ELBO can be optimized by gradient ascent
by using the reparameterization trick (Kingma and
Welling, 2013), which allows for the expectation
under q to be approximated through sampling in a
way that preserves backpropagation. The decoders
and encoders are discussed in further detail in Sec-
tion 5.

In contrast to variational autoencoders, which
have only a single latent variable for each exam-
ple, we have three in our model for each example.
To encourage source separation, we make several
independence assumptions for q and factor it into
three terms:

q(zsem, zli , zlj |xli , xlj ;ϕ) =
q(zsem|xli , xlj ;ϕ)q(zli |xli ;ϕ)q(zlj |xlj ;ϕ)

Lastly, we note that the ELBO contains a KL
term that acts to regularize the latent variables. In
our model, the KL term encourages zsem, zli , and
zlj to be close to a zero-centered Gaussian prior.
The KL term thus encourages source separation,
as encoding information shared by the translation
pair in the shared variable results in only a single
penalty from the KL loss, while encoding the infor-
mation separately in the language-specific variables

unnecessarily doubles the overall cost. In effect, we
can view these language-specific latent variables as
collecting information that cannot be captured in a
common semantic space, separating it out from the
variables collecting shared semantic information
that we use for downstream tasks.

Objective Function. The overall objective func-
tion for VMSST consists of consists of two terms,
the first being ELBO as described earlier:

ELBO = Eq(ZS ,ZL|X;ϕ)[log p(X|ZS , ZL; θ)]−
KL(q(ZS , ZL|X;ϕ)||p(ZS ; θ)p(ZL; θ))

where ZS is the collection of semantic variables,
while ZL is the collection of language variables.

The second term, which we found necessary for
strong performance, is the sum of p(xli |µsemlj

)

and p(xlj |µsemli
) which can be interpreted as sam-

ples from the mean of the posterior distribution
using semantic variables generated from both input
sentences. When training variational objectives,
where the model ignores the latent variables and
the learned posterior remains close to the prior. Ex-
amples of other approaches to address these issues
include: (Yang et al., 2017; Kim et al., 2018; Xu
and Durrett, 2018; He et al., 2019). We weight the
ELBO by λ giving the total objective as:

∑

(xli
,xlj

)∈X
p(xli |µsemlj

) + p(xlj |µsemli
) + λELBO

Therefore, our objective resembles translation
with a weighted source-separation term. We show
the effectiveness of this formulation compared to
a pure translation objective in our experiments in
Section 6.

5 Architecture

Our architecture is an encoder-decoder model,
where the encoder produces a single representa-
tion that is fed into the decoder. Cross-attention
between the encoder and decoder is not used, there-
fore the decoder has no full sequence visibility and
more pressure is applied on the encoder to create
a semantically meaningful representation. Specif-
ically, we follow the approach of Wieting et al.
(2020) which uses a Transformer (Vaswani et al.,
2017) encoder-decoder model, where the sentence
embeddings are used in two places: at each layer
of the decoder in place of cross-attention and in the
computation of the logits.
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Figure 2: The computation graph for the variational lower bound used to train VMSST. The text for languages li
and lj , with their respective language embeddings, are fed into the encoder acting as their inference networks. The
text is also fed into the semantic inference network which is a separate encoder. The output of these networks are
the language variables zli and zlj and semantic variable zsem. Each language-specific variable is then concatenated
to zsem and used by a single shared decoder to reconstruct the input sentence pair.

Decoder Architecture. The decoder models
p(xli |zsem, zli ; θ) for each language i (see right
side of Figure 2). The inputs to the decoder are the
language-specific variable zli and the semantic vari-
able zsem, which are concatenated and used to con-
dition the decoder to generate the reconstruction of
the observed text xli . We use a single decoder for
all languages.

Encoder Architecture. The encoders play an im-
portant role in the source separation as well as
inference as detailed below.

In order to motivate the separation of the linguis-
tic and semantic information we split the encoder
into two parts, only sharing the embedding table.
We use one of these encoders to be the semantic
inference network, which produces the semantic
variable. The other encoder represents the N lan-
guage inference networks and produces the lan-
guage variables for each language. These inference
networks are shown on the left side of Figure 2.
We mean-pool the hidden states followed by a lin-
ear projection to produce each variable from the
encoders.

The semantic inference network, which models
q(zsem|xli , xlj ;ϕ), is a multilingual encoder that
encodes each language. For each translation pair,
we alternate which of the two parallel sentences is
fed into the semantic encoder within a batch for
the ELBO term in the objective. Since the seman-
tic encoder is meant to capture language agnostic
semantic information, its outputs for a translation

pair should be similar regardless of the language
of the input sentence. We use the mean of the se-
mantic encoder as the sentence representation for
downstream tasks.

6 Experiments

6.1 Constructing the Training Data
We follow Artetxe and Schwenk (2019b) in con-
structing our training data. However, since the
exact data is not publicly available, we expect
their may be small differences due to random sam-
pling and different dataset versions. More specifi-
cally we sample our data from Europarl,3 United
Nations (Rafalovitch and Dale, 2009),4 OpenSub-
titles2018 (Lison et al., 2018),5 Global Voices,6

Tanzil,7 and Tatoeba v2021-07-22.8

We sample the same amount of data as was done
in Artetxe and Schwenk (2019b), detailed in Ap-
pendix C. The only deviation being that we take
care to not include any Tatoeba test data in our train-
ing data. Our final corpus has nearly 216 million
training examples, slightly less than 220 million
reported in Artetxe and Schwenk (2019b). We use
both English and Spanish as pivot languages, so
each pair includes at least one English or Span-
ish sentence, and we use approximately the same

3http://opus.nlpl.eu/Europarl.php
4https://opus.nlpl.eu/UN.php
5http://opus.nlpl.eu/OpenSubtitles.php
6https://opus.nlpl.eu/GlobalVoices.php
7https://opus.nlpl.eu/Tanzil.php
8https://opus.nlpl.eu/Tatoeba.php
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amount of data for each language. We note that we
only have training data for 92 languages instead of
the 93 in Artetxe and Schwenk (2019b) due to not
having training data for Aymara (ay).

6.2 Evaluation

We evaluate on three tasks: semantic similarity, bi-
text mining and question retrieval. While the first
two are commonly used to evaluate multilingual
sentence embeddings, we introduce question re-
trieval in this paper. As can be seen by our results,
we found question retrieval to be somewhat uncor-
related to either of the latter two. For each task,
we use a collection of different datasets, detailed
below.

Semantic Textual Similarity The goal of the
semantic textual similarity tasks is to predict the
degree to which sentences have the same meaning
as measured by human judges. The evaluation
metric is Pearson’s r × 100 with the gold labels,
which is convention for these tasks.

We make a distinction between two seman-
tic similarity evaluations, English-only and cross-
lingual. For the English-only evaluation, we fol-
low Wieting et al. (2016) by averaging the yearly
performance on 2012–2016 SemEval Semantic
Textual Similarity (STS) shared tasks (Agirre et al.,
2012, 2013, 2014, 2015, 2016). More specifically,
for each year of the competition, we average the
Pearson’s r × 100 for each dataset in that year,
and then finally average this result for each year
of the competition. For the cross-lingual evalua-
tion we use the cross-lingual STS tasks from Se-
mEval 2017 (Cer et al., 2017). This evaluation
contains Arabic-Arabic, Arabic-English, Spanish-
Spanish, Spanish-English, and Turkish-English
STS datasets. These datasets were created by trans-
lating one or both pairs of an English STS pair
into Arabic (ar), Spanish (es), or Turkish (tr). We
average Pearson’s r × 100 for these datasets.

Bitext Mining For bitext mining, we use the
Tatoeba dataset introduced in Artetxe and Schwenk
(2019b) and the 2018 Building and Using Par-
allel Corpora (BUCC) shared bitext mining
task (Zweigenbaum et al., 2018).

The Tatoeba dataset consists of 100–1000 pairs
of data aligned to English for 112 languages. The
accuracy for Tatoeba can be computed in two
ways, depending if English is the target language
or source language. We compute accuracy using

cosine similarity in both directions for all 112 lan-
guages (19 are unseen in the training data) and
average this score for all languages.

The goal of the BUCC task is to find the gold
aligned parallel sentences given two corpora (one
being very large) in two distinct languages. Lan-
guages are aligned with English and consist of Ger-
man (de), French (fr), Russian (ru), and Chinese
(zh). Typically, only about 2.5% of the sentences
are aligned. Following Schwenk (2018), we eval-
uate on the publicly available BUCC data. This
involves scoring all pairs between the source target
sentences and finding the optimal threshold that
separates the data. Using the threshold, we can
compute the precision, recall, and F1 of the align-
ments. We report F1 × 100 in our results.

We compare two different approaches for find-
ing the sentence alignments. In the first, BUCC
(cosine), we compute the cosine similarity between
the non-English source sentences and the English
target sentences, selecting the highest scoring En-
glish sentence as the match. In the second, BUCC
(margin), we follow Artetxe and Schwenk (2019a)
and use a margin-based scoring approach, where
the final score of a sentence pair is both a function
of the score between the pair and the scores of each
sentence with its nearest neighbors. To compute
this margin score, we divide the cosine similarity
for source sentence si and target sentence ti by
the sum of the scores of the four nearest neighbors
of si with the target sentences and the sum of the
scores of the four nearest neighbors of ti with the
source sentences.

Margin-based scoring is designed to alleviate
the “hubness problem” (Radovanovic et al., 2010;
Radovanović et al., 2010) where the neighborhood
around embeddings in a high-dimensional space,
like in sentence embeddings, have many neighbors
in common. These neighbors can displace the cor-
rect mapping in the ordering, hurting performance.

Question Retrieval For our question retrieval
evaluation, we report the accuracy (R@1) on the
test sets of Natural Questions (NQ) (Kwiatkowski
et al., 2019) and the Multilingual Knowledge Ques-
tions and Answers (MKQA) (Longpre et al., 2021).
We use the the Probably Asked Questions dataset
(PAQ) (Lewis et al., 2021) as a knowledge base
from which we look up the nearest neighbor of
each question in the NQ and MKQA test sets using
cosine similarity. PAQ is a very large resource of 65
million automatically generated question-answer
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pairs. This is a zero-shot evaluation without any
NQ supervised data.9

Overall Score We consolidate all of these evalua-
tions into a score, as a way to get a sense of overall
performance since different models favor different
evaluations. While we are averaging different met-
rics (accuracy, Pearson’s r, and F1), we justify this
as they do have the same scale,10 and a simple av-
erage gives a way for us to see overall performance.
Our score is the average of six subtasks, two sub-
tasks for each of semantic similarity, bitext mining,
and question retrieval: English semantic similarity,
cross-lingual semantic similarity, Tatoeba, BUCC
(we average performance of the cosine and margin
based scoring), NQ, and MKQA.

6.3 Baselines

We compare VMSST against two strong baselines,
which have been used extensively in the literature.

The first baseline is CONTRASTIVE, where we
use contrastive learning with the other sentences
in the batch (“in-batch negative sampling”) as neg-
ative examples (Sohn, 2016). CONTRASTIVE is
computed as the average of computing p(si|ti) and
p(ti|si) for source sentence si and target sentence
ti, and their respective representations si and ti
where the first term uses all the other targets as
negatives and the second use all of the other source
sentence as negatives. Specifically,

p(si|ti) = exp(si · ti) /
∑

j∈B
exp si · tj

p(ti|si) = exp(si · ti) /
∑

j∈B
exp ti · sj

loss = − 1

2|B|
∑

(si,ti)∈B
log p(si|ti) + log p(ti|si)

where B is a minibatch. This version of contrastive
learning has been used in representation learning
for retrieval (DPR, Karpukhin et al., 2020), visual
tasks (SimCLR, Chen et al., 2020) and image/text
tasks (CLIP, Radford et al., 2021). There are other
variations of this loss (Qian et al., 2019), and other

9This is opposed to the formulation in the original paper
where a model based on BART Large (Lewis et al., 2020a) was
fine-tuned using a RAG-like objective (Lewis et al., 2020b)
on the NQ training data in a model the authors call RePAQ.
RePAQ, without using a reranker achieves an accuracy of 41.2
on NQ.

10Technically Pearson’s r can be negative, but this does not
happen in our evaluations.

contrastive losses like triplet loss (Weston et al.,
2010) which has been used for learning text embed-
dings, but we leave a comparison of contrastive ob-
jectives for learning multilingual text embeddings
for future work.

The second baseline is BITRANSLATION, where
we use a translation objective to learn the represen-
tation Espana-Bonet et al. (2017); Schwenk and
Douze (2017); Artetxe and Schwenk (2019b).

We also explore an alternative to the VMSST,
VMSST CONTRASTIVE, by incorporating a con-
trastive loss to use in a multitask setting. Again,
we weight the contribution of the VMSST loss by
λ.

6.4 Experimental Settings

We explore three different settings for each of four
objective functions we consider. We use the Trans-
former architecture for all settings. Specifically, we
explore a 6 layer encoder-decoder model, a 24 layer
encoder-decoder model, and a 24 layer encoder-
decoder initialized with the Multilingual T5 (mT5)
Large (Xue et al., 2021). We set the dimension of
the embeddings and hidden states for the encoders
and decoders to 1024. The mT5 Large model inher-
ently has embedding and hidden state dimensions
of 1024. For all models, we use the mT5 vocabu-
lary, which is derived from sentencepiece (Kudo
and Richardson, 2018). The vocabulary consists
of 250,000 tokens and was learned from multilin-
gual variant of the C4 dataset called mC4 which
includes 101 languages.

For optimization, we use Adafactor (Shazeer and
Stern, 2018). We use the same learning rate sched-
ule as Vaswani et al. (2017), i.e., the learning rate
increases linearly for 4,000 steps, after which it is
decayed proportionally to the inverse square root of
the number of steps. We set the peak learning rate
to be 0.001, and we train our models for 100,000
steps total. We use a batch size of 2048 and set the
maximum sequence length of our model to 32 for
all experiments.

We use a dropout rate of 0.1 for CONTRASTIVE

models and no dropout for BITRANSLATION,
VMSST CONTRASTIVE (with the exception of
the randomly initialized 24 layer model which used
0.1), and VMSST. For VMSST, we anneal the
KL term so that it increased linearly for 1,000,000
updates.

For VMSST, we set λ, the weight on the
VMSST ELBO loss term, to be 0.025 for the pre-
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Model Sem. Sim. Bitext Mining Quest. Retrieval Score
Eng. XL XL (s.) XL (d.) Tatoeba BUCC (c.) BUCC (m.) NQ MKQA

Random Init. (6 Layer)
CONTRASTIVE 65.5 66.8 73.3 62.4 63.1 66.2 84.0 34.1 17.6 53.7
BITRANSLATION 69.6 63.9 71.6 58.7 53.3 62.1 81.2 37.4 19.2 52.5
VMSST CONTRASTIVE 65.7 66.3 73.0 61.9 63.2 65.8 84.3 34.1 17.7 53.7
VMSST 70.1 67.4 75.1 62.2 58.7 73.7 85.9 37.3 20.1 55.6

Random Init. (24 Layer)
CONTRASTIVE 64.4 64.6 71.6 60.0 62.7 64.3 83.7 32.8 16.0 52.4
BITRANSLATION 71.2 68.1 74.6 63.8 57.4 70.8 86.9 38.2 21.6 55.9
VMSST CONTRASTIVE 68.2 69.7 75.5 65.9 64.8 58.5 84.1 36.9 18.9 55.0
VMSST 71.1 71.7 77.7 67.7 61.4 78.7 89.0 38.3 22.3 58.1

Pretrained (24 Layer)
CONTRASTIVE 73.3 74.7 76.0 73.9 85.1 74.3 93.7 40.2 27.6 64.2
BITRANSLATION 74.0 78.0 79.8 76.8 78.2 85.9 91.9 40.9 29.6 64.9
VMSST CONTRASTIVE 73.4 75.4 76.7 74.6 85.4 74.6 93.7 40.3 27.9 64.4
VMSST 74.6 79.1 81.5 77.5 81.1 87.8 92.5 40.8 29.9 65.9

Table 1: Experimental results for VMSST and VMSST CONTRASTIVE and our baselines CONTRASTIVE and
BITRANSLATION. We evaluate on semantic similarity, bitext mining, and question retrieval. For semantic similarity
we separate the evaluations into English-only, cross-lingual, cross-lingual but with the same language (XL (s.) ar-ar
and es-es) and cross-lingual using different languages (XL (d.), ar-en, es-en, and tr-en). Results are reported as the
average Pearson’s r × 100 across datasets. For bitext mining we evaluate on Tatoeba and BUCC, with BUCC split
between using cosine similarity or using a margin approach (Artetxe and Schwenk, 2019a). Results are reported as
accuracy ×100 for Tatoeba and F1 × 100 for BUCC. For question retrieval, we evaluate retrieval accuracy ×100
using PAQ as a question knowledge base on the NQ and MKQA datasets. Finally, we compute a score to summarize
quality over these evaluations.

trained models, and 0.1 when training from ran-
domly initialized parameters. For VMSST CON-
TRASTIVE, we set it to .0005 for the pretrained
and 6 layer settings and 0.001 for the randomly
initialized 24 layer setting.

6.5 Results

The results of our experiments are shown in Ta-
ble 1. Overall, VMSST has the best performance
for all three experimental settings and the best per-
formance on each task on average, with the excep-
tion of Tatoeba. In fact, for NQ question retrieval
with a pretrained model, it performs nearly to that
of the model trained specifically for this task on
NQ data from Lewis et al. (2021) which has an ac-
curacy of 41.2. VMSST and BITRANSLATION are
especially strong when using more layers, which is
not the case for CONTRASTIVE which declines in
performance when moving from 6 to 24 layers. In
fact at 24 layers, BITRANSLATION performs better
on average than CONTRASTIVE. Perhaps for even
larger models, the gap between contrastive and gen-
erative models will increase. We also see that CON-
TRASTIVE seems to benefit more from pretrain-
ing than VMSST and BITRANSLATION, which
could possibly be due to VMSST re-purposing
and adding additional randomly initialized param-

eters to the decoder. Perhaps different pretraining
strategies using this modified decoder would re-
solve these differences. We also see that VMSST
CONTRASTIVE has negligible improvement over
CONTRASTIVE which was unexpected —that is, a
traditional contrastive loss does not improve fur-
ther on top of generative loss of VMSST. We leave
the exploration of different strategies of combining
these approaches to future work.

It is also interesting to observe the stark perfor-
mance difference for different tasks. Bitext min-
ing tasks like Tatoeba, and BUCC (m.) for the
pretrained 24 layer model, favor CONTRASTIVE,
while semantic similarity, BUCC (c.) and ques-
tion retrieval favor VMSST, suggesting some fun-
damental difference in these tasks favoring CON-
TRASTIVE. An examination of the Tatoeba and
BUCC data shows that there are paraphrases in the
test set, but accounting for these does not seem to
meaningfully explain this performance difference.

Lastly, we see that VMSST outperforms CON-
TRASTIVE on the BUCC task with cosine simi-
larity, though the results between the two models
are closer when using margin. This suggests that
the “hubness problem” (Radovanovic et al., 2010;
Radovanović et al., 2010) where the neighborhood
around embeddings in a high-dimensional spaces
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have many neighbors in common, is less of an is-
sue when learning embeddings with VMSST. This
smoother embedding space may also contribute to
the stronger results VMSST has on the question
retrieval tasks.

6.6 Comparison to Related Work

Prior work on learning multilingual embeddings
has explored a variety of models utilizing different
strategies and using difference source and types
of training data. However, comparing approaches
is difficult as they differ in many factors that are
crucial to performance: training data, model size,
architecture, vocabulary, training time, and evalu-
ation datasets. Complicating matters further, even
the metric used in evaluation for the same dataset,
the distance measure used between embeddings for
the same dataset, and the specific subsets of the
evaluation datasets used can be different.

The main goal of this paper is to compare con-
trastive and generative losses systematically and
uniformly, on the same data, metrics and underly-
ing architecture. However, we also emphasize that
the best systems we compare are competitive with
the current state-of-the-art. Hence, in this section
we compare VMSST to published results of other
models on semantic similarity and the Tatoeba and
BUCC bitext mining tasks. We primarily compare
against five models which have the strongest multi-
lingual results in the literature: mUSE (Yang et al.,
2020), LASER (Artetxe and Schwenk, 2019b),
XLM-R (NLI/STS-B) and XLM (Para.) (Reimers
and Gurevych, 2020), and LaBSE (Feng et al.,
2022).

For semantic similarity, we include Spearman’s
ρ in order to compare to work that solely uses this
correlation metric. We use cosine as the similarity
measure for all models in these evaluations.11 The
results are shown in Table 2.

For Tatoeba, we compare to methods that have
evaluated on all 112 languages, which excludes
mUSE as it was only trained on 16 language pairs.
The results are shown in Table 3. Baselines results
are taken from Reimers and Gurevych (2020).

For BUCC, we include results on the train-
ing sets using the margin retrieval methods from
Artetxe and Schwenk (2019b). The results are

11Note that mUSE and LaBSE report results using the angle
as the metric instead of its cosine for semantic similarity tasks,
but as they do not evaluate on these specific datasets, we
include the results from Reimers and Gurevych (2020) for
comparison which uses cosine similarity.

Model XL XL (s.) XL (d.)

mUSE 79.5 81.7 78.1
LASER 69.0 74.3 65.5
XLM-R (NLI/STS-B) 79.0 81.7 77.2
XLM-R (Para.) 82.4 82.9 82.1
LaBSE 72.4 74.9 70.7

VMSST 79.4 81.9 77.7

Table 2: Comparisons to related work on cross-lingual
semantic similarity. Results are reported in Spearman’s
ρ × 100. XL contains all 5 datasets, where XL (s.)
contains only those where the languages are the same
(ar-ar, es-es), and XL (d.) contains those datasets where
the languages are different (ar-en, es-en, and tr-en). Note
that models in this table are not trained on the same data;
for instance LaBSE was trained on substantially more
parallel data and XLM-R (Para.) was trained using a
large English paraphrase corpus in addition to parallel
data.

Model Tatoeba

LASER 65.5
XLM-R (Para.) 67.1
LaBSE 83.7

VMSST 81.1

Table 3: Comparisons to related work on Tatoeba. Re-
sults are reported as accuracy ×100, averaging the xx-
>en and en->xx directions. Note that models in this
table are not trained on the same data; for instance
LaBSE was trained on substantially more parallel data
and XLM-R (Para.) was trained using a large English
paraphrase corpus in addition to parallel data.

shown in Table 5. Baselines results are taken
from Artetxe and Schwenk (2019b); Reimers and
Gurevych (2020).

While VMSST does not have the best per-
formance relative to models from the literature
on any single task, it does have the best overall
performance if one averages the results for each
task.12 While these models share much in common,
namely using parallel text and some type of pre-
training or pretrained model, there are differences
in the exact data and models used, among other
confounding variables. For instance, LaBSE used
training data consisting of six billion parallel pairs
across languages and was also trained on mono-
lingual text using a masked language modelling
objective. XLM-R (Para.) makes use of a 50 mil-
lion example paraphrase corpus for distillation. In
contrast, our setup most closely follows LASER,
using an approximation of the 220M example par-
allel data used to train their model.

12The average performance for VMSST is 84.3, versus
82.6 for LaBSE, and 79.3 for XLM-R (Para.)
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Model Sem. Sim. Bitext Mining Quest. Retrieval Score
Eng. XL XL (s.) XL (d.) Tatoeba BUCC (c.) BUCC (m.) NQ MKQA

Random Init. (24 Layer)
VMSST 71.1 71.7 77.7 67.7 61.4 78.7 89.0 38.3 22.3 58.1

VMSST (fact.) 67.3 69.9 76.3 65.7 63.0 77.9 90.4 37.3 21.5 57.2
VMSST (4 enc.) 71.2 70.2 76.6 66.0 60.8 77.7 88.5 38.4 22.0 57.6
VMSST (12L dec.) 71.1 70.9 77.4 66.7 61.2 78.4 88.8 38.0 22.2 57.8
VMSST (1L dec.) 71.0 71.2 77.0 67.4 63.0 79.4 89.1 38.7 22.8 58.5

VMSST (no KL) 70.7 68.7 76.2 63.7 56.9 70.8 86.6 37.8 21.5 55.7
VMSST (1 enc.) 70.6 69.4 76.7 64.6 60.0 77.0 87.8 38.4 21.4 57.0
VMSST (no enc. l.e.) 71.2 69.8 76.1 65.5 61.2 78.7 88.9 38.2 22.0 57.7
VMSST (no dec. l.e.) 70.8 70.7 76.7 66.7 60.9 77.4 88.6 38.3 21.8 57.6

Table 4: Ablations of VMSST. We investigate ablations involving factorization of the decoder projection layer
(fact.), using 4 language encoders instead of 1 (4 enc.), using 12 layer (12L dec.) and 1 layer (1L dec.) decoders,
using no KL term (no KL), using only a single encoder for both language and semantic variables (1 enc.), and using
no encoder language embeddings (no enc. l.e.) or no decoder language embeddings (no dec. l.e.).

Model de-en fr-en ru-en zh-en Avg.

mUSE 88.5 86.3 89.1 86.9 87.7
LASER 95.4 92.4 92.3 91.2 92.8
XLM-R (NLI/STS-B) 86.8 84.4 86.3 85.1 85.7
XLM-R (Para.) 90.8 87.1 88.6 87.8 88.6
LaBSE 95.9 92.5 92.4 93.0 93.5

VMSST 94.3 91.0 91.8 92.8 92.5

Table 5: Comparisons to related work on BUCC in
accuracy ×100 using the margin approach from Artetxe
and Schwenk (2019a). Note that models in this table are
not trained on the same data; for instance LaBSE was
trained on substantially more parallel data and XLM-R
(Para.) was trained using a large English paraphrase
corpus in addition to parallel data.

7 Analysis

In this section, we analyze VMSST with additional
experiments. We give a high-level overview in this
section and put details and results in Appendix A.

We first investigate different ablations of the
model. We analyzed aspects such as factorizing
the projection layer, using weaker decoders, using
4 language-specific encoders instead of 1, remov-
ing the KL term, using a single encoder for the
semantic and language embeddings, and removing
the language embeddings from the encoder and
from the decoder.

Secondly, we analyze the effect of the parameter
sharing approximation in VMSST, where we train
a full model with separate encoders and decoders
for each language. This experiment uses data in 4
languages to make this experiment tractable. We
found the performance to be similar enough that
we can say the approximation holds, but there does
remain a small gap. We hypothesize however, that
this performance gap will shrink as the number of
layers of the model increases.

Thirdly, we evaluate the performance of zero-
shot bitext mining on languages that were unseen in
the training data. We find significant improvement
in this setting over the baseline BITRANSLATION.
Since BITRANSLATION can be seen as an abla-
tion of VMSST, we see that the source-separation
loss especially helps with generalization to new
languages.

Lastly, we investigate the impact of batch size
on performance, comparing VMSST with CON-
TRASTIVE. It is common knowledge that con-
trastive models learn better representations when
given harder negative examples, and bigger batch
sizes increases the chances of finding these harder
negatives. We experiment with batch sizes of 4096
and 8192, for both the 6 layer and 24 layer ran-
domly initialized versions of CONTRASTIVE and
VMSST. We find that both models improve when
trained with larger batches, with the very best
model being the 24 layer VMSST.

8 Conclusion

We present VMSST, a generative massively multi-
lingual text embedding model trained to separate
semantic information from language-specific in-
formation. VMSST also outperforms strong con-
trastive and generative baselines on a variety of
tasks. There are several avenues for future work
including alternative pretraining objectives that bet-
ter fit the use case of the decoder, explore incor-
porating monolingual data into the generative ob-
jective, investigate synergy between VMSST and
contrastive methods as they seem to specialize in
different tasks, and lastly scale up to bigger mod-
els, more data, and languages to further investigate
VMSST versus contrastive methods.
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Limitations

Some of our experiments, specifically those in the
ablations with large batch sizes, required signif-
icant computational resources. We trained these
models on Google Cloud TPUv3 Pod slice with
128 chips for a few days. This experiment is impor-
tant, as otherwise there would be questions on how
the models compare at large batch sizes where con-
trastive models are known to work better. Due to
training costs and in the interest of open research,
we will open source our code and model check-
points for the community to use and build upon.

Secondly, VMSST and BITRANSLATION re-
quire decoding which which means they need more
memory for the decoder and are slower during train-
ing. However one advantage of these models is
that they can be trained with gradient checkpoint-
ing greatly reducing their memory requirements,
which cannot be used for the contrastive models
as that would reduce the effective batch size for
finding negative examples. Moreover, during in-
ference, there is no difference in the memory or
speed requirements in CONTRASTIVE, BITRANS-
LATION, or VMSST as only a single encoder is
used in inference and there is no decoding.
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Appendices accompanying “Beyond
Contrastive Learning: A Variational
Generative Model for Multilingual
Retrieval”

A Analysis

A.1 Model Ablations

In this section, we investigate different ablations
of VMSST. The ablations are shown in Table 4.
We start from the 24 layer randomly initialized
VMSST, and change it to see how certain hyper-
parameters and model choices affect performance.

Our first experiment, VMSST (fact.) investi-
gates what happens if we simply factor the final
projection layer of the decoder. This can save a lot
of memory in the model, as that projection layer
is 3 × d × V where d is the hidden state dimen-
sion size and V is the size of the vocabulary.13 If
we factor the projection layer, we can reduce the
space to d × V + 3d × d. In practice, this saves
about 509 million parameters for our 24 layer mod-
els. However from the first row in Table 4, we see
that this small change has a significant effect on
performance, weakening results on semantic simi-
larity and question retrieval tasks and strengthening
results on bitext mining tasks.

In our second ablation, VMSST (4 enc.), we
spread the model capacity of the language-specific
encoder to 4 encoders, instead of the single encoder
in our previous experiments. We allocate the lan-
guages randomly to the different encoders. We find
that this doesn’t improve results, perhaps because
the 24 layer model has sufficient capacity to model
all of the languages in one shared encoder. We
could allocate languages to encoders based on lan-
guage families, and perhaps this could fare better,
but we leave that for future work.

Prior work (Wieting et al., 2020) shows that, a
decoder that is weaker (i.e. less layers) can lead
to stronger embeddings. This effect is presumably
because there is more pressure on the sentence em-
bedding to fully and clearly capture the semantics
since it cannot rely on a strong decoder to fill in
gaps. We found that that using a weaker single
layer decoder (1L dec.), does indeed seem to im-
prove performance. We also tried a 12 layer ab-
lation (12L dec.), but that seemed to not have a
significant improvement in the results.

13We multiply by 3 because we have three embeddings, the
hidden state, the language-specific vector, and the semantic
vector.

The last four ablations investigate different mod-
elling choices. In the first we eliminate the KL
term (no KL), which has the most significant ef-
fect on performance, especially on cross-lingual
tasks. In the second ablation, we use a single en-
coder instead of the twin encoders (1 enc.), one for
semantic embeddings and one for language embed-
dings, we find that this has a modest overall effect
on performance. Lastly, we eliminate the language
embeddings. First we remove the language embed-
ding inputs to the decoder (no enc. l.e.), then we
experiment by removing the input language em-
beddings to the language-specific encoder (no dec.
l.e.). We find these language embeddings have a
smaller than expected impact on performance, per-
haps because the large capacity of the decoder can
ascertain the language being input or decoded.

A.2 Testing the Parameter Sharing in
VMSST

Parameter sharing was needed in order efficiently
perform source separation on N languages. Specif-
ically we collapsed the language encoders into a
single encoder and we collapsed the decoders into a
single decoder. The VMSST approximates having
N language encoders by using an input embedding
to indicate the language being considered. The
same strategy is applied with the decoders as well,
with the first input token to the decoder indicating
the language to be generated.

In this section, we investigate what effect this
parameter sharing has on VMSST by using N
encoders and decoders (full enc, full dec.). We
experiment with 6 layer Transformer encoders and
4 languages Spanish, English, Arabic, and Turkish
in order to keep the experiments tractable as in this
setting we have 5 encoders and 4 decoders. The
results are shown in Table 6.

The results indicate that the approximation ap-
pears to hold, as VMSST is much closer to the
full model than BITRANSLATION, which is an ab-
lation of VMSST without the source separation.
However, there is still a gap between the full en-
coder/decoder of VMSST and VMSST. We hy-
pothesize however, that as the number of layers
of the model increases, this performance gap also
shrinks. The extra capacity of these layers will
allow for the model to separate language-specific
variations without having separate parameters for
each language. Evidence for this hypothesis is in
Table 4 where having the language variation shared
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Model Sem. Sim. Bitext Mining Quest. Retrieval Score
Eng. XL Tatoeba NQ MKQA

- - ar-en ar-ar es-en es-es tr-en ar es tr - ar es tr

Random Init. (6 Layer) - ar, en, es, tr
CONTRASTIVE 68.6 81.7 68.5 68.3 64.8 69.7 97.9 88.2 98.1 36.4 24.6 13.0 22.6 58.1
BITRANSLATION 69.0 82.4 63.1 57.8 58.7 67.3 97.6 84.3 96.4 37.8 25.4 12.2 21.1 57.0
VMSST 70.6 83.1 65.9 63.1 62.1 68.8 97.9 84.9 97.2 38.1 27.2 14.4 24.1 58.5
VMSST (full enc., full dec.) 70.3 82.3 65.6 60.0 62.8 67.9 98.4 87.9 97.8 39.0 27.2 14.7 24.2 58.7

Table 6: Comparison of VMSST with a variation that has no parameter sharing, VMSST (full enc., full dec.). We
experiment on 4 languages, so we have 5 encoders and 4 decoders.

amongst 4 encoders instead of 1 actually appears
to weaken performance overall.

A.3 Zero-Shot Bitext Mining

The Tatoeba dataset contains parallel sentence pairs
of English with 112 languages. Our model is
trained using 93 of these languages, and there-
fore there are 19 languages we can use for a zero-
shot evaluation of bitext mining. Table 8 summa-
rizes the results of this zero-shot evaluation for
the two generation objectives, BITRANSLATION

and VMSST considered in this paper. The re-
sults are shown in Table 8. We also compute ∆
which is the difference between the performance
gap of VMSST and BITRANSLATION on the seen
and unseen languages. From the results, we see
that VMSST does even better than BITRANSLA-
TION on unseen languages than unseen languages.
Since BITRANSLATION can be seen as an abla-
tion of VMSST, i.e. VMSST without the source-
separation loss, we see that the source-separation
loss especially helps with generalization to new
languages.

A.4 Effects of Batch Size

Lastly, we investigate how VMSST compares to
CONTRASTIVE as batch size increases. It is com-
mon knowledge that contrastive models learn better
representations when given harder negative exam-
ples. Since we are using in-batch negatives in our
contrastive baseline, the increased batch size in-
creases the chances of encountering harder nega-
tive examples and will generally increase perfor-
mance up to the point where the negatives become
false. Furthermore. bigger batch sizes are known
to also improve results in models using the Trans-
former architecture, presumably due to less noisy
gradients, which would improve the results of both
CONTRASTIVE and VMSST. It is important to
note that using bigger batch sizes, means seeing

more examples (100,000 steps at a batch size of
2048 is about 1 pass through the data). However,
parallel data is so numerous that training to con-
vergence on the available data is not very practical.
Therefore, these experiments do not separate out
the gains from using a bigger batch size versus
seeing more training data, but we argue that is not
an important distinction to make due to the sheer
amount (billions of pairs) of parallel data available.

We experiment with batch sizes of 4096 and
8192, double and quadruple the 2048 used in all
experiments up to this point, for both the 6 layer
and 24 layer randomly initialized versions of CON-
TRASTIVE and VMSST. All models are trained
again for 100,000 steps. The results are shown in
Table 7.

From the results, we see that for the 6 layer
model, increasing the batch size equalizes VMSST
and CONTRASTIVE overall, however each per-
forms better at different tasks. CONTRASTIVE

has better performance on Tatoeba, XL semantic
similarity, and BUCC with margin (Artetxe and
Schwenk, 2019a), where VMSST has better per-
formance on English semantic similarity, BUCC
with cosine similarity, and the retrieval tasks. For
the 24 layer variations, VMSST is better at every
task, with the exception of Tatoeba, and has the
highest overall score of any model in the table. The
24 layer CONTRASTIVE variation does not perform
as well as the 6 layer version at any batch size, in
contrast to VMSST where the 24 layer model al-
ways outperforms the 6 layer variation.

B Full Experimental Results

We include full results for our models using the
pre-trained mT5 large checkpoint. We evaluate on
English semantic similarity, Cross-lingual semantic
similarity, question retrieval, and bitext mining.
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Model B. Size Sem. Sim. Bitext Mining Quest. Retrieval Score
Eng. XL XL (s.) XL (d.) Tatoeba BUCC (c.) BUCC (m.) NQ MKQA

Random Init. (6 Layer)

CONTRASTIVE
2048 65.5 66.8 73.3 62.4 63.1 64.7 82.9 34.0 17.6 53.5
4096 67.5 69.3 75.4 65.3 66.0 71.5 87.0 35.3 19.2 56.1
8192 69.4 71.6 76.8 68.1 68.6 76.2 89.4 36.4 20.9 58.3

VMSST
2048 70.1 67.4 75.1 62.2 58.7 72.6 84.7 37.2 20.2 55.4
4096 70.2 67.4 75.3 62.1 58.5 73.1 86.0 38.2 20.3 55.7
8192 71.4 70.9 76.6 67.1 61.8 77.9 88.0 39.0 22.4 58.1

Random Init. (24 Layer)

CONTRASTIVE
2048 64.4 64.6 71.6 60.0 62.7 62.8 82.5 32.8 16.0 52.2
4096 66.6 68.6 75.1 64.3 65.7 70.9 86.8 34.7 18.1 55.4
8192 68.0 70.2 76.2 66.2 67.7 74.2 88.3 35.2 19.4 57.0

VMSST
2048 71.1 71.7 77.7 67.7 61.4 78.4 87.8 38.3 22.3 58.0
4096 72.0 72.1 77.7 68.3 62.9 81.0 89.7 38.7 23.5 59.1
8192 72.7 74.1 79.0 70.8 64.1 82.0 90.2 39.0 24.3 60.1

Table 7: Comparison of CONTRASTIVE and VMSST using different batch sizes during training.

Model Tat. (seen) Tat. (unseen) ∆

Random Init. (6 Layer)
BITRANSLATION 59.3 24.0 -
VMSST 64.4 30.6 1.5

Random Init. (24 Layer)
BITRANSLATION 82.6 56.5 -
VMSST 84.9 62.2 3.4

Pretrained (24 Layer)
BITRANSLATION 63.7 26.5 -
VMSST 67.3 32.6 2.5

Table 8: Results on languages seen during training
(seen) and languages that were not seen during training
(unseen) on the Tatoeba dataset.

B.1 Semantic Similarity

For English semantic similarity, we use the Se-
mEval semantic textual similarity (STS) tasks from
2012 to 2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016) as was done initially for sentence embed-
dings in (Wieting et al., 2016). As our test set, we
report the average Pearson’s r over each year of
the STS tasks from 2012-2016 as is convention
in the top part of Table 9. However, some recent
work, like Reimers and Gurevych (2019) computed
Spearman’s ρ over concatenated datasets for each
year of the STS competition. To be consistent with
these works, we also include evaluations using this
approach in the bottom part of Table 9. One other
difference between these two ways of calculating
the results is the inclusion of the SMT dataset of
the 2013 task. When computing the results us-
ing Pearson’s r, this dataset is included, but when

computing the results using Spearman’s ρ, it is not
included.

For cross-lingual semantic similarity and seman-
tic similarity in non-English languages, we eval-
uate on the STS tasks from SemEval 2017. This
evaluation contains Arabic-Arabic, Arabic-English,
Spanish-Spanish, Spanish-English, and Turkish-
English datasets. The datasets were created by
translating one or both pairs of an English STS
pair into Arabic (ar), Spanish (es), or Turkish (tr).
Following convention, we report results with Pear-
son’s r for all systems, but also include results in
Spearman’s ρ in Table 10.

B.2 Question Retrieval

For our question retrieval evaluation, we report the
accuracy (R@1) on the test sets of Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) shown in
Table 11 and the Multilingual Knowledge Ques-
tions and Answers (MKQA) (Longpre et al., 2021)
shown in Table 12. We use the the Probably Asked
Questions dataset (PAQ) (Lewis et al., 2021) as a
knowledge base from which we look up the nearest
neighbor of each question in the NQ and MKQA
test sets using cosine similarity.

B.3 Bitext Mining

For bitext mining, we use the Tatoeba dataset in-
troduced in Artetxe and Schwenk (2019b) and the
2018 Building and Using Parallel Corpora (BUCC)
shared bitext mining task (Zweigenbaum et al.,
2018).

The Tatoeba dataset consists of 100-1000 pairs
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Model English Semantic Similarity

2012 2013 2014 2015 2016

CONTRASTIVE 69.7 61.1 76.4 81.4 77.7
BITRANSLATION 69.1 63.6 76.4 81.0 79.9
VMSST CONTRASTIVE 70.2 61.6 76.5 81.3 77.5
VMSST 70.5 64.3 76.5 81.6 80.1

CONTRASTIVE 68.0 74.9 69.1 79.9 76.9
BITRANSLATION 70.7 77.9 72.2 81.8 79.7
VMSST CONTRASTIVE 68.4 75.1 69.2 80.2 76.8
VMSST 72.7 77.9 72.7 82.1 79.2

Table 9: Full results on English STS. In the first part of the table, we show results, measured in Pearson’s r × 100,
for each year of the STS tasks 2012-2016 as well as the average performance across all years. In the second part, we
evaluate based on the Spearman’s ρ × 100 of the concatenation of the datasets of each year with the 2013 SMT
dataset removed following (Reimers and Gurevych, 2019).

Model Cross-Lingual Semantic Similarity

ar-ar ar-en es-es es-en tr-en

CONTRASTIVE 72.4 72.2 72.7 74.2 79.7 81.0 71.7 72.0 77.2 77.0
BITRANSLATION 75.6 76.0 77.0 78.6 84.0 84.8 76.2 77.2 77.3 77.5
VMSST CONTRASTIVE 73.2 73.1 73.5 75.1 80.2 81.3 72.4 72.4 77.8 78.0
VMSST 77.6 78.1 78.5 78.8 85.5 85.7 77.0 77.4 77.0 77.0

Table 10: Full results on Cross-Lingual STS. We report results using both Pearson’s r×100 and Spearman’s ρ×100
across datasets, where Pearson’s r × 100 is the first column for each language pair and Spearman’s ρ× 100 is the
second column.

Model NQ

CONTRASTIVE 40.2
BITRANSLATION 40.9
VMSST CONTRASTIVE 40.3
VMSST 40.8

Table 11: Full results on question retrieval on the NQ
data. We evaluate retrieval accuracy ×100 using PAQ
as a question knowledge base.

of data aligned to English for 112 languages. The
accuracy for Tatoeba can be computed in two
ways, depending if English is the target language
or source language. We compute accuracy using
cosine similarity in both directions for all 112 lan-
guages (19 are unseen in the training data) and
average this score for all languages.

The goal of the BUCC task is to find the gold
aligned parallel sentences given two corpora (one
being very large) in two distinct languages. Lan-
guages are aligned with English and consist of
German (de), French (fr), Russian (ru), and Chi-
nese (zh). Following Schwenk (2018), we eval-
uate on the publicly available BUCC data. This
involves scoring all pairs between the source target

sentences and finding the optimal threshold that
separates the data. Using the threshold, we can
compute the precision, recall, and F1 of the align-
ments. We report F1 × 100 in our results.

We compare two different approaches for find-
ing the sentence alignments. In the first, BUCC
(cosine), we compute the cosine similarity between
the non-English source sentences and the English
target sentences, selecting the highest scoring En-
glish sentence as the match. In the second, BUCC
(margin), we follow Artetxe and Schwenk (2019a)
and use a margin-based scoring approach.

C Full Training Data

We follow Artetxe and Schwenk (2019b) in con-
structing our training data, sampling data from Eu-
roparl,14, United Nations (Rafalovitch and Dale,
2009),15 OpenSubtitles2018 (Lison et al., 2018),16,
Global Voices,17 Tanzil,18 and Tatoeba v2021-07-

14http://opus.nlpl.eu/Europarl.php
15https://opus.nlpl.eu/UN.php
16http://opus.nlpl.eu/OpenSubtitles.php
17https://opus.nlpl.eu/GlobalVoices.php
18https://opus.nlpl.eu/Tanzil.php
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22.19

The only deviation from their data sampling
approach is that we take care to not include any
Tatoeba test data in our training data. Our final
corpus has nearly 216 million training examples,
slightly less than 220 million reported in Artetxe
and Schwenk (2019b). We use both English and
Spanish as pivot languages, so each pair includes at
least one English or Spanish sentence, and attempt
to use approximately the same amount of data for
each language if possible. We note that we only
have training data for 92 languages instead of the
93 in Artetxe and Schwenk (2019b) due to not hav-
ing training data for Aymara (ay). The full amount
of English and Spanish parallel data used for each
of the 92 languages is reported in Table 15.

19https://opus.nlpl.eu/Tatoeba.php
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Model MKQA
Language ar da de en es fi fr he hu it ja km

CONTRASTIVE 21.4 30.4 29.2 33.2 30.4 27.7 30.0 24.4 26.9 29.4 24.2 23.6
BITRANSLATION 19.4 30.8 30.5 29.8 28.7 29.7 28.0 30.3 27.5 27.9 26.2 23.4
VMSST CONTRASTIVE 24.6 32.0 30.5 33.4 31.6 29.8 30.9 27.9 28.9 31.0 27.3 24.9
VMSST 21.4 32.1 32.5 31.5 30.3 31.3 30.0 31.9 29.9 30.0 29.9 25.9

Language ko ms nl no pl pt ru sv th tr vi zh

CONTRASTIVE 22.0 30.5 29.4 33.2 30.4 27.7 30.0 24.8 27.5 29.6 24.6 24.2
BITRANSLATION 19.4 30.8 30.9 30.0 29.2 30.2 28.1 30.4 28.0 28.3 26.9 23.7
VMSST CONTRASTIVE 25.3 32.3 30.6 33.4 31.5 30.1 31.0 28.1 29.9 31.1 27.7 24.9
VMSST 22.0 32.4 32.8 31.6 31.0 31.6 30.4 32.2 30.4 30.2 30.4 26.2

Table 12: Full results on question retrieval on the MKQA data. We evaluate retrieval accuracy ×100 using PAQ as a
question knowledge base.

Model Cosine Margin

de fr ru zh de fr ru zh

CONTRASTIVE 84.6 81.3 66.6 64.4 96.2 93.7 92.1 93.0
BITRANSLATION 90.1 85.5 84.1 84.1 93.6 90.3 91.3 92.4
VMSST CONTRASTIVE 84.8 81.9 67.4 64.4 96.1 93.6 92.1 92.9
VMSST 91.5 86.8 86.7 86.1 94.3 91.0 91.8 92.8

Table 13: Full results on BUCC. We report results using both cosine similarity and the margin approach from
(Artetxe and Schwenk, 2019a). Results are reported as F1 × 100.
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Language afr amh ang ara arq arz ast awa aze bel ben ber bos bre bul cat

CONTRASTIVE 97.6 94.9 66.8 95.0 61.8 86.1 91.3 74.0 95.8 96.8 92.4 80.4 97.5 47.2 96.4 97.8
BITRANSLATION 94.8 84.2 42.9 94.0 42.0 80.3 80.3 56.3 91.3 95.0 91.0 72.6 96.8 18.9 95.3 96.8
VMSST CONTRASTIVE 97.4 93.5 70.5 94.7 64.2 85.7 90.9 76.0 95.8 97.2 92.8 81.6 97.3 47.9 96.2 97.8
VMSST 95.6 88.1 53.4 94.6 50.2 84.7 86.2 64.3 93.5 95.6 91.9 79.0 97.0 26.1 95.8 97.0

Language cbk ceb ces cha cmn cor csb cym dan deu dsb dtp ell epo est eus

CONTRASTIVE 86.1 62.3 98.3 44.9 97.5 35.1 67.8 57.6 97.3 99.6 75.4 18.9 97.4 98.6 98.6 96.9
BITRANSLATION 78.0 48.8 97.3 33.6 95.6 18.4 48.6 37.0 96.0 99.3 53.1 8.3 95.8 98.3 97.8 94.8
VMSST CONTRASTIVE 86.9 63.7 98.2 44.2 97.7 37.6 69.8 56.4 97.2 99.6 76.9 20.3 97.2 98.4 98.8 97.1
VMSST 83.7 52.8 97.9 38.0 96.4 23.3 56.1 43.0 96.8 99.2 63.2 10.2 97.0 98.2 98.2 95.4

Language fao fin fra fry gla gle glg gsw heb hin hrv hsb hun hye ido ile

CONTRASTIVE 90.3 98.0 96.4 88.2 58.4 80.4 98.6 52.1 93.8 98.1 98.5 80.1 98.4 96.2 93.0 92.8
BITRANSLATION 78.2 97.8 95.8 80.1 35.6 60.6 96.8 44.9 93.0 96.4 96.8 58.6 96.4 95.2 87.9 86.7
VMSST CONTRASTIVE 91.0 98.2 96.6 87.9 55.7 79.5 98.6 53.8 93.7 98.0 98.4 82.4 98.2 96.1 94.4 93.1
VMSST 82.6 98.0 96.0 83.5 39.4 62.7 97.4 50.4 93.8 97.5 97.5 68.9 96.8 94.7 91.9 90.2

Language ina ind isl ita jav jpn kab kat kaz khm kor kur kzj lat lfn lit

CONTRASTIVE 96.8 97.0 97.0 96.6 74.1 98.3 71.7 95.6 92.8 87.8 95.2 76.3 17.4 89.9 83.6 98.2
BITRANSLATION 94.9 95.2 96.3 96.2 62.9 96.8 60.8 93.9 86.1 85.4 92.5 60.5 8.8 83.9 74.6 97.5
VMSST CONTRASTIVE 97.2 96.9 97.1 96.6 76.1 98.6 73.3 96.2 92.3 87.5 95.8 76.0 17.8 89.8 84.1 98.1
VMSST 96.4 95.8 96.8 96.8 69.5 97.2 67.3 95.8 87.7 86.3 93.5 67.7 11.7 86.5 79.0 97.8

Language lvs mal mar max mhr mkd mon nds nld nno nob nov oci orv pam pes

CONTRASTIVE 98.0 98.5 94.5 73.1 30.8 97.6 94.4 90.5 98.1 96.5 98.5 80.5 77.9 66.5 14.0 95.5
BITRANSLATION 97.0 98.2 95.0 58.1 22.1 96.0 85.8 80.7 96.7 92.3 97.4 70.6 66.5 47.5 8.5 93.0
VMSST CONTRASTIVE 98.1 98.5 94.6 72.5 29.5 98.0 95.0 92.1 98.0 97.0 98.3 80.5 78.0 67.4 14.6 95.7
VMSST 97.5 98.3 95.0 63.6 26.8 96.4 89.8 84.5 97.3 93.5 97.6 76.3 72.1 55.9 9.9 94.5

Language pms pol por ron rus slk slv spa sqi srp swe swg swh tam tat tel

CONTRASTIVE 74.3 99.0 95.9 98.0 95.3 98.0 97.0 99.1 98.6 96.6 97.5 76.8 77.4 92.7 92.0 98.1
BITRANSLATION 62.1 97.2 95.7 97.6 95.0 97.4 96.3 98.8 98.1 95.6 96.8 48.7 67.1 90.9 82.8 96.2
VMSST CONTRASTIVE 76.9 98.9 96.1 98.1 95.5 98.2 97.0 99.2 98.6 96.5 97.5 73.2 77.6 92.8 92.0 97.6
VMSST 69.6 98.2 95.8 97.6 94.8 97.8 96.9 98.6 98.2 95.8 97.3 59.8 69.2 92.8 86.2 97.4

Language tgl tha tuk tur tzl uig ukr urd uzb vie war wuu xho yid yue zsm

CONTRASTIVE 96.0 97.8 44.6 98.9 66.3 76.1 96.0 95.4 78.9 98.2 54.0 93.5 74.6 92.3 94.1 98.0
BITRANSLATION 91.7 97.0 30.3 98.2 43.8 54.4 95.2 91.8 64.3 97.4 33.3 88.7 59.5 82.8 90.8 96.0
VMSST CONTRASTIVE 96.4 98.2 47.5 98.9 64.4 77.6 96.3 95.4 78.3 98.4 54.5 93.8 75.7 92.6 94.1 97.8
VMSST 93.0 97.5 38.7 98.8 56.7 64.1 95.5 93.5 68.7 97.9 37.7 91.0 63.7 86.0 93.0 96.6

Table 14: Full results on Tatoeba. We report results as accuracy ×100.
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Language af am ar ay az be ber bg

Training Pairs 77,772 101,613 7,907,914 0 291,925 6,330 142,061 4,834,661

Language bn br bs ca cbk cs da de

Training Pairs 1,148,461 34,472 4,166,739 895,940 1,623 5,429,060 7,767,119 8,707,293

Language dtp dv el en eo es et eu

Training Pairs 1,064 98,320 6,601,989 4,913,379 447,622 4,913,379 5,093,003 1,432,979

Language fi fr ga gl ha he hi hr

Training Pairs 7,785,493 8,935,842 1,112 391,824 134,775 4,046,554 358,907 3,911,368

Language hu hy ia id ie io is it

Training Pairs 5,256,214 8,194 12,048 4,326,151 2,445 3,181 2,712,556 8,468,538

Language ja ka kab kk km ko ku kw

Training Pairs 3,981,886 360,136 26,460 6,172 3,266 2,566,495 98,733 3,463

Language kzj la lfn lt lv mg mhr mk

Training Pairs 614 27,515 6,096 3,629,769 2,119,995 537,953 69 4,037,896

Language ml mr ms my nb nds nl oc

Training Pairs 867,026 52,340 3,288,492 4,802 9,694 6,263 8,346,102 730

Language pl ps pt ro ru sd si sk

Training Pairs 5,407,190 32 8,276,190 4,814,046 9,416,934 98,412 1,016,660 5,094,752

Language sl so sq sr sv sw ta te

Training Pairs 5,099,577 98,976 3,619,914 3,977,191 7,680,683 201,379 150,023 42,877

Language tg th tl tr tt ug uk ur

Training Pairs 135,245 3,849,777 34,829 5,854,059 132,273 101,989 1,687,685 844,052

Language uz vi wuu yue zh

Training Pairs 148,860 3,905,401 929 4,525 7,636,488

Table 15: Full training data for each language. The total number of pairs is the sum of using English and Spanish as
pivot languages.
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