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Abstract

Knowledge transfer can boost neural machine
translation (NMT), for example, by finetuning a
pretrained masked language model (LM). How-
ever, it may suffer from the forgetting prob-
lem and the structural inconsistency between
pretrained LMs and NMT models. Knowl-
edge distillation (KD) may be a potential so-
lution to alleviate these issues, but few studies
have investigated language knowledge trans-
fer from pretrained language models to NMT
models through KD. In this paper, we propose
Pretrained Bidirectional Distillation (PBD) for
NMT, which aims to efficiently transfer bidi-
rectional language knowledge from masked
language pretraining to NMT models. Its ad-
vantages are reflected in efficiency and effec-
tiveness through a globally defined and bidi-
rectional context-aware distillation objective.
Bidirectional language knowledge of the entire
sequence is transferred to an NMT model con-
currently during translation training. Specif-
ically, we propose self-distilled masked lan-
guage pretraining to obtain the PBD objective.
We also design PBD losses to efficiently distill
the language knowledge, in the form of token
probabilities, to the encoder and decoder of
an NMT model using the PBD objective. Ex-
tensive experiments reveal that pretrained bidi-
rectional distillation can significantly improve
machine translation performance and achieve
competitive or even better results than previous
pretrain-finetune or unified multilingual trans-
lation methods in supervised, unsupervised,
and zero-shot scenarios. Empirically, it is con-
cluded that pretrained bidirectional distillation
is an effective and efficient method for trans-
ferring language knowledge from pretrained
language models to NMT models.

1 Introduction

Initializing parameters by a pretrained masked lan-
guage model (LM) (Kenton and Toutanova, 2019)
is a knowledge transfer method widely applied
to natural language processing tasks. Following

its success, pretrained neural machine translation
(NMT) models have attracted more and more re-
search interest (Conneau and Lample, 2019; Song
et al., 2019; Liu et al., 2020; Li et al., 2022).

However, the pretrain-finetune paradigm may
suffer from potential issues. As is pointed out in He
et al. (2021), the finetuned model may forget some
critical language generation skills learned from the
pretraining phase. The catastrophic forgetting prob-
lem (Kirkpatrick et al., 2017; McCloskey and Co-
hen, 1989) commonly exists in transfer learning,
leading to overfitting to target domains. Hu et al.
(2022); Fang et al. (2022) also observe similar for-
getting problems in pretrained NMT tasks. Besides,
in the pretrain-finetune paradigm, model parame-
ters are initialized by a pretrained model; this re-
quires structure consistency (e.g., exact dimensions,
layers, attention heads, etc.) between the pretrained
LM and the NMT models to some extent. However,
a powerful but structurally inconsistent pretrained
LM may incorporate more language knowledge.

Knowledge distillation (KD) (Hinton et al.,
2015) may be a potential solution to alleviate these
issues, but few studies investigate language knowl-
edge transfer from pretrained language models to
NMT models by KD. Previous works use KD for
model compression (Gordon and Duh, 2020), or
data complexity reduction (Gu and Kong, 2021;
Zhou et al., 2019), or multilingual translation (Sun
et al., 2020; Tan et al., 2019). Zhou et al. (2022)
utilizes confidence-based knowledge distillation to
incorporate bidirectional global context into NMT
models.

In this paper, we propose Pretrained Bidirec-
tional Distillation (PBD) for NMT, which can al-
leviate the difference caused by pretraining (mask
language modeling, perturbed sentences) and MT
fine-tuning (full sentences) in the pretrain-finetune
paradigm and boost large-scale translation training.
In pretrained bidirectional distillation, language
knowledge acquired from pretraining is continu-
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Figure 1: Overall training flow of pretrained bidirec-
tional distillation for machine translation.

ously transferred to the NMT model. Knowledge
transfer runs through the training process to ad-
dress the forgetting problem. We deal with the
pretrained language knowledge by pretrained bidi-
rectional distillation objectives, which are the token
probabilities generated by the pretrained LM about
potential tokens matching a global context. The
pretrained bidirectional distillation objectives are
distilled to the encoder and decoder of an NMT
model. Therefore, there is no need to require struc-
ture consistency between pretrained LMs and NMT
models, and bidirectional distillation enriches the
NMT decoder with bidirectional semantic informa-
tion.

To guarantee the effectiveness and efficiency of
pretrained bidirectional distillation, we propose
self-distilled masked language pretraining, which
can generate globally defined and bidirectional
context aware token probabilities and use them as
the pretrained bidirectional distillation objectives.
“Globally defined” lets us obtain the full probabil-
ities of each token in a single forward pass, guar-
anteeing distillation effect and execution efficiency.
“Bidirectional context aware” distillation objectives
incorporate bidirectional language knowledge of
the whole sequence, guaranteeing effectiveness.

Extensive experiments are conducted on widely
used benchmark datasets. In a supervised scenario,
the proposed method achieves +2.7 and +8.5 ab-
solute average BLEU improvement using the uni-
fied multilingual translation model and pretrain-
finetune paradigm, respectively. And our model
obtains 19.28 and 16.55 average BLEU in unsuper-
vised and zero-shot scenarios, respectively, outper-

Algorithm 1 Pretrained Bidirectional Distillation
for NMT
Require: language model LM , NMT model TM ,

unlabeled LM data DLM , parallel data DTM

1: Initialize LM by random
2: for each X ∈ DLM do
3: Get loss L ← λLΩ + LΘ ▷ Equ 1,4
4: Update LM ← BACKPROP(L, LM)
5: end for
6: Initialize TM by random or pretraining
7: for each (X,Y ) ∈ DTM do
8: Get translation loss Lce ← TM(X,Y )
9: Forward pass PΩ ← LM({X,Y })

10: Get loss L ← Lce + Le + Ld ▷ Equ 8,10
11: Update TM ← BACKPROP(L, TM)
12: end for
13: return TM

forming previous models.
To summarize, our contributions are as follows:

• We propose pretrained bidirectional distilla-
tion to investigate language knowledge trans-
fer from pretrained language models to NMT
models.

• We propose self-distilled masked language
pretraining to support concurrently computing
full token probabilities of the full sequence.

• We conduct extensive experiments to verify
the effectiveness of our methods and achieve
competitive or even better performance than
previous pretrain-finetune or unified multilin-
gual translation methods in supervised, unsu-
pervised, and zero-shot scenarios.

2 Pretrained Bidirectional Distillation

Figure 1 and Algorithm 1 illustrate the overall flow
of the proposed Pretrained Bidirectional Distilla-
tion (PBD) for machine translation. It consists of
two processes: (1) Self-distilled masked language
pretraining takes unlabeled LM training data as in-
put and optimizes a token reconstruction loss and
a self-distillation loss. The produced self-distilled
LM has the advantage of generating the full prob-
ability prediction of all input tokens in one pass
rather than only the masked tokens as in previ-
ous masked LMs. This ensures the efficiency of
pretrained bidirectional distillation in the second
process. (2) Translation training with PBD losses
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Figure 2: Overall architecture of the self-distilled masked language model. The input can be a pair of parallel
sentences or a monolingual sequence; a parallel example is shown here. Pcontext, Ptarget, and Pmask denote the context,
target, and masked part, respectively. S̃ = {wt|wt ∈ Pcontext} is the context.

trains a standard Encoder-Decoder NMT model us-
ing parallel data but enhances it with extra PBD
losses. The PBD losses are jointly optimized with
the standard translation loss, and pretrained lan-
guage knowledge in the form of full token proba-
bilities generated by the pretrained LM is distilled
to the encoder and decoder of the NMT model. We
will introduce these two processes in detail in the
following sections.

2.1 Self-distilled Masked Language
Pretraining

This paper proposes self-distilled masked language
pretraining to obtain the pretrained bidirectional
distillation objective for NMT models. Pretrained
masked language models predict a token proba-
bility distribution over the vocabulary for each
masked position, and these token probabilities indi-
cate the potential tokens matching the context. Our
assumption is that these token probabilities contain
specific language knowledge and can be transferred
to NMT models. Thus, we consider these token
probabilities as the distillation objective.

However, in our preliminary experiments, we
discovered that the token probabilities predicted
in non-masked positions often tend to focus too
much on real tokens, which fails to accurately re-
flect the long-tailed distribution of potential tokens.

In standard masked language pretraining, only a
small percentage (typically 15%) of tokens can be
masked. This limitation prevents us from efficiently
achieving the full distillation objective that reflects
the long-tailed distribution for each position of an
input sequence in a single forward pass. To obtain
a globally defined distillation objective, we adopt
self-distillation, in which the token probabilities in
non-masked positions are learned from the corre-
sponding masked positions.

Figure 2 illustrates the overall architecture of
the proposed self-distilled masked language model,
which follows the widely used masked language
model framework (Kenton and Toutanova, 2019;
Conneau and Lample, 2019) with some modifica-
tions to its architecture: (1) The target tokens to
be predicted have two types: masked tokens and
real tokens. (2) The input sequence is partitioned
into three parts to avoid exposing information be-
tween masked tokens and real tokens. (3) Masked
and real tokens have different prediction heads and
loss functions. The following subsections elabo-
rate on the architecture of the self-distilled masked
language model.

2.1.1 Input Representation

Let S denote an input sequence, and it may be a
monolingual text S = {X} = {x1, · · · , xn} or
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Figure 3: Example of a contextual mask matrix. Blue
/ green / orange grids denote query tokens attending to
key tokens in the context part Pcontext / target part Ptarget
/ mask part Pmask respectively, grey grids are masked
out.

the concatenation of a pair of parallel sentences
S = {X,Y } = {x1, · · · , xn, y1, · · · , ym}. Ac-
cording to the random masking scheme, the in-
put sequence consists of non-masked positions and
masked positions (typically 15%). Specifically, as
is shown in Figure 2, a portion of positions (in this
case, the 3rd, 7th, and 8th positions) have corre-
sponding [MASK] tokens appended at the end of the
sequence. Therefore, we split the complete input
sequence into three parts: the context part Pcontext
which is used as the known context; the masked
part Pmask which is used to reconstruct the real to-
kens; and the target part Ptarget in which tokens are
the real tokens corresponding the masked part, and
they are pretended to be unknown when predicting
token probabilities.

The corresponding position embeddings, lan-
guage type embeddings, and a special [MASK] to-
ken embedding are summed to form the input repre-
sentations in Pmask. And, the input representations
in Ptarget and Pcontext are the sum of the correspond-
ing position embeddings, language type embed-
dings, and the real token embeddings.

2.1.2 Contextual Mask Matrix
In the masked token reconstruction task, the real
token should be kept unknown to the correspond-
ing masked position. Besides, the hidden state at
the masked position is also needed to be invisi-
ble to the corresponding target position in the for-
ward pass because the predicted probability at the
masked position is the learning objective of the
corresponding target position (i.e., avoiding super-

vised information leaking). Since the backbone of
the masked language model is an attention-based
Transformer encoder, the visibility of tokens can
be controlled by a contextual mask matrix. As is
illustrated in Figure 3, the contextual mask matrix
controls that each token can attend to itself and the
tokens in Pcontext. It means that the context S̃ is set
to S̃ = {wt|wt ∈ Pcontext} for all the three parts
Pmask, Ptarget and Pcontext.

2.1.3 Pretraining Loss
We adopt different loss functions for the masked
part and the target part. In the masked part, the
language model learns to reconstruct the masked
tokens. At each position of the target part, our
model pretends not to have known the real token
and predicts the potential tokens matching the con-
text. Specifically, the probabilities of the potential
tokens are learned to approximate the token recon-
struction probabilities at the corresponding masked
positions. This is because the token reconstruc-
tion probabilities are the predicted probabilities of
potential tokens at the masked positions.

Let S̃ = {wi|wi ∈ Pcontext} denote the context
token set, S̄ = {wi|wi ∈ Ptarget} denote the target
token set, ti denote the token at position i. The
masked token reconstruction task defines the pre-
training objective LΘ as minimizing the negative
log-likelihood of target tokens as below.

LΘ = − logPΘ(S̄|S̃) ≈ −
∑

wi∈S̄
logPΘ(ti = wi|S̃)

(1)

in which the token reconstruction probability PΘ

is defined in the masked part and is computed by a
prediction head Θ.

PΘ(ti = wi|S̃) =
exp(hΘ

i
T
e(wi))∑

w∈V exp(hΘ
i
T
e(w))

(2)

hΘ
i = gelu(h

′
i

T
WΘ + bΘ) (3)

where we use h
′
i to represent the hidden state of the

last layer of a Transformer encoder at the masked
position i, WΘ ∈ RD×D and bΘ ∈ RD are learn-
able parameters of the prediction head Ω, D is the
dimension, e(w) ∈ RD denotes the embedding of
token w, and V represents the vocabulary.

A self-distillation approach is adopted here to
learn the potential tokens’ probabilities. The loss
LΩ is defined by optimizing the KL divergence
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between the probability distribution of token recon-
struction and the probability distribution of poten-
tial tokens. It is equivalent to

LΩ = −
∑

i∈Ptarget

∑

w∈V
PΘ(ti = w|S̃) logPΩ(ti = w|S̃)

(4)

in which the probability of potential tokens PΩ is
defined in the non-masked positions and is com-
puted by a prediction head Ω.

PΩ(ti = w|S̃) = exp(hΩ
i
T
e(w))

∑
w∈V exp(hΩ

i
T
e(w))

(5)

hΩ
i = gelu(hT

i WΩ + bΩ) (6)

where hi denotes the hidden state at the non-
masked position i.

The overall loss integrates LΩ and LΘ by
weighted summation.

L = λLΩ + LΘ (7)

in which λ is a hyper-parameter.

2.1.4 Inference
In inference, there is no masked position for the
input sequence S, and the probabilities of any po-
tential token w at each position i can be computed
as PΩ(ti = w|S). We consider these probabilities
as the pretrained bidirectional distillation objective
for NMT models.

2.2 Pretrained Bidirectional Distillation Loss
In this paper, the knowledge learned from the afore-
mentioned self-distilled mask language model is
transferred to an NMT model using the pretrained
bidirectional distillation loss. Specifically, we con-
catenate the source and target sentence without
masking to form an input sequence to the self-
distilled LM, and obtain the full probability pre-
diction PΩ from the LM as the pretrained bidirec-
tional distillation objective, which is distilled to
a NMT model by optimizing the KL divergence
between the pretrained bidirectional distillation ob-
jective PΩ and its corresponding predictions from
an intermediate layer of the encoder or decoder.

The distillation loss of the encoder is as follows.

Le=−
∑

t

∑

w

PΩ(xt=w|X,Y ) logPe(xt=w|X)

(8)
Pe = softmax(Hl

e ·ET ) (9)

Here, we use X and Y to denote the sentence in
source and target language, respectively, and xt
denotes the t-th position of X . w is a word in the
vocabulary V . Hl

e ∈ R|X|×D represents the hidden
states of an intermediate layer l of the encoder.
E ∈ R|V |×D is the token embedding matrix. We
reuse the token embedding matrix, therefore, the
pretrained bidirectional distillation won’t add any
extra parameters. The t-th row and w-th column of
the probability matrix Pe is the value of Pe(xt =
w|X).

Similar distillation loss is applied to the decoder.

Ld=−
∑

t

∑

w

PΩ(yt=w|X,Y) logPd(yt=w|X,Y<t)

(10)
Pd = softmax(Hl

d ·ET ) (11)

where yt denotes the t-th position of the target sen-
tence, and we use Hl

d to represent the hidden states
of an intermediate layer l of the decoder. Note
that these distillation losses are jointly optimized
with the standard translation loss when the NMT
training.

The pretrained bidirectional distillation objective
is not only globally defined but also bidirectional
context aware (i.e., bidirectional language knowl-
edge of the complete source and target sentence).
Therefore, it is a challenging task to approximate
the pretrained bidirectional distillation objective
for the encoder and decoder given only a source
sentence or given the source and partial target sen-
tence, but it is reasonable since the source sentence
has complete semantics information. On the other
hand, the challenging task may force the NMT
model to learn global language knowledge from
the self-distilled LM. It can enrich the NMT de-
coder with bidirectional semantic information, as
using future information is important for machine
translation.

3 Experiments

We primarily study the proposed pretrained bidi-
rectional distillation by conducting experiments on
supervised, unsupervised, and zero-shot multilin-
gual machine translation scenarios.

3.1 Experimental Setup

3.1.1 Language Model Pretraining
Datasets We use the parallel dataset PC32 (Lin

et al., 2020) and the monolingual dataset MC24
provided by Pan et al. (2021). PC32 contains 32
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En-Fr En-Tr En-Es En-Ro En-Fi
Avg △wmt14 wmt17 wmt13 wmt16 wmt17

→ ← → ← → ← → ← → ←
bilingual
Transformer-6 (Lin et al., 2020) 43.2 39.8 - - - - 34.3 34.0 - - -
Transformer-12 (Liu et al., 2020) 41.4 - 9.5 12.2 33.2 - 34.3 36.8 20.2 21.8 -

unified multilingual
Multi-Distillation (Tan et al., 2019) - - - - - - 31.6 35.8 22.0 21.2 -
m-Transformer (Pan et al., 2021) 42.0 38.1 18.8 23.1 32.8 33.7 35.9 37.7 20.0 28.2 31.03
mRASP w/o finetune (Lin et al., 2020) 43.1 39.2 20.0 25.2 34.0 34.3 37.5 38.8 22.0 29.2 32.33 +1.30
mRASP2 (Pan et al., 2021) 43.5 39.3 21.4 25.8 34.5 35.0 38.0 39.1 23.4 30.1 33.01 +1.98
PBD-MT (Ours) 43.9 41.5 20.7 26.3 35.1 35.4 38.8 40.5 24.5 31.0 33.77 +2.74

Table 1: Performance of our model and competing approaches in the surprised translation scenario. We denote the
pretrained bidirectional distillation MT model as PBD-MT. Tokenized BLEU is reported. For En→Ro direction, we
report the BLEU score after removing Romanian dialects as in Pan et al. (2021).

Lang-Pairs En-Kk En-Tr En-Et En-Fi En-Lv En-Cs En-De En-Fr Avg
Source WMT19 WMT17 WMT18 WMT17 WMT17 WMT19 WMT19 WMT14
Size 91k(low) 207k(low) 1.94M(medium) 2.66M(medium) 4.5M(medium) 11M(high) 38M(extr-high) 41M(extr-high)
Direction → ← → ← → ← → ← → ← → → →
Direct (Vaswani et al., 2017) 0.2 0.8 9.5 12.2 17.9 22.6 20.2 21.8 12.9 15.6 16.5 30.9 41.4 17.1
mBART (Liu et al., 2020) 2.5 7.4 17.8 22.5 21.4 27.8 22.4 28.5 15.9 19.3 18.0 30.5 41.0 21.2
mRASP (Lin et al., 2020) 8.3 12.3 20.0 23.4 20.9 26.8 24.0 28.0 21.6 24.4 19.9 35.2 44.3 23.8
CeMAT (Li et al., 2022) 8.8 12.9 23.9 23.6 22.2 28.5 25.4 28.7 22.0 24.3 21.5 39.2 43.7 25.0
PBD-MT w/ finetune (Ours) 8.4 15.9 23.4 24.5 22.5 29.4 24.2 29.7 22.2 26.1 21.8 40.4 44.3 25.6

Table 2: Comparison with models using the pretrain-finetune paradigm. NMT models initialized by multilingual
training are finetuned in each direction. Language pairs of different data sizes from low-resource to extremely
high-resource are investigated. Tokenized BLEU is reported.

English-centric language pairs1, and MC24 con-
sists of monolingual text in 24 languages2. We fol-
low the original data preprocessing, data sampling,
tokenization, and vocabulary by directly download-
ing the datasets3 released by Pan et al. (2021), thus
we can have a relatively fair comparison to our pri-
mary baselines, such as mRASP (Lin et al., 2020),
mRASP2 (Pan et al., 2021) and CeMAT (Li et al.,
2022). When pretraining, the source and target sen-
tences are concatenated, and substituted synonyms
are not masked. The masking ratio is 20%.

Settings We adopt a 12-layer Transformer-based
language model with 768 dimensions and 12 at-
tention heads. The language model is trained on
8 Nvidia A100 GPUs for 1M steps using Adam
optimizer. On each GPU, the number of tokens
in each batch is at most 32K. The learning rate is
set to 0.0001, and polynomial decay scheduling is
used with a warm-up step of 10000. The hyper-
parameter λ in Equ 7 is 0.5, and the dropout rate is
set to 0.1. See appendix for more details.

1En, Af, Ar, Be, Bg, Cs, De, El, Eo, Es, Et, Fi, Fr, Gu, He,
Hi, It, Ja, Ka, Kk, Ko, Lt, Lv, Mn, Ms, Mt, My, Ro, Ru, Sr, Tr,
Vi, Zh

2Bg, Cs, De, El, En, Es, Et, Fi, Fr, Gu, Hi, It, Ja, Kk, Lt,
Lv, Ro, Ru, Sr, Tr, Zh, Nl, Pl, Pt

3https://github.com/PANXiao1994/mRASP2

3.1.2 Machine Translation Training

Datasets For training multilingual translation
models, we reuse the parallel dataset PC32 and
monolingual dataset MC24, consistent with Pan
et al. (2021). We follow the experimental settings
in CeMAT (Li et al., 2022) for finetuning experi-
ments. Language pairs of various data sizes from
WMT are used for finetuning, and the dataset infor-
mation is shown in Table 2. For evaluating unified
multilingual models, we use the evaluation datasets
from WMT, IWSLT, and OPUS-100 (Zhang et al.,
2020) following mRASP2 (Pan et al., 2021).

Settings We follow the model configurations
used in CeMAT (Li et al., 2022) to train a
Transformer-big (Vaswani et al., 2017) size NMT
model, which will compare with models using the
pretrain-finetune paradigm. And for a fair compari-
son, a larger NMT model with 12 encoder layers
and 12 decoder layers is trained to compare with
unified multilingual models. The contrastive loss
is used in training a unified multilingual model
due to its importance to zero-shot translation (Pan
et al., 2021). Other training hyper-parameters are
referred to from the open-source implementation
of mRASP2. For pretrained bidirectional distilla-
tion losses, the intermediate layer to be distilled
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Ar Zh NI
X→Ar Ar→X X→Zh Zh→X X→NI NI→X

m-Transformer 3.7 5.6 6.7 4.1 2.3 6.3
mRASP2 5.3 17.3 29.0 14.5 5.3 6.1
PBD-MT (Ours) 5.8 18.9 32.7 13.2 5.1 6.4

Fr De Ru Avg of all
X→Fr Fr→X X→De De→X X→Ru Ru→X

m-Transformer 7.7 4.8 4.2 4.8 5.7 4.8 5.05
mRASP2 23.6 21.7 12.3 15.0 16.4 19.1 15.31
PBD-MT (Ours) 26.3 25.2 11.6 16.4 16.9 20.1 16.55

Table 3: Performance of unified multilingual MT models in zero-shot translation directions. De-tokenized BLEU
is computed using sacreBLEU on the OPUS-100 test set. The table summarizes 30 translation directions of 6
languages, and each reported BLEU score is an average of 5 directions.

is set to the antepenultimate layer of the encoder
and decoder. Note that global distillation doesn’t
introduce extra parameters, and our model has the
same size as the major baselines.

3.2 Supervised Translation

We trained a unified multilingual NMT model
with pretrained bidirectional distillation. As is
shown in Table 1, our proposed PBD-MT clearly
outperforms previously published approaches and
achieves new state-of-the-art performances in most
translation directions. It achieves +0.76 average
BLEU improvement over mRASP2, which vali-
dates the effectiveness of the proposed pretrained
bidirectional distillation.

In addition, we investigate the effect of pre-
trained bidirectional distillation on the pretrain-
finetune paradigm. Specifically, we adopt PBD
losses on the encoder and decoder when finetuning.
As we can see in Table 2, PBD-MT achieves better
or competitive performance compared to previous
pretrain-finetune models. It is noteworthy that no
matter the unified model or the pretrain-finetune
model, the improvement in X→En directions is
more significant than that of En→X directions. We
conjecture that English sentences are much more
than other languages, thus the pretrained LM has a
better understanding of English language.

3.3 Unsupervised and Zero-Shot Translation

Table 3 summarizes the performance of unified mul-
tilingual models on a zero-shot translation scenario.
Although the training data only consists of English-
centric parallel sentences, multilingual NMT mod-
els show promising performance on zero-shot trans-
lation. Compared with mRASP2, PBD-MT further
boosts the translation quality in most zero-shot di-

En-Nl En-Pt En-Pl
Avgiwslt2014 opus-100 wmt20

→ ← → ← → ←
m-Transformer 1.3 7.0 3.7 10.7 0.6 3.2 4.42
mRASP 0.7 10.6 3.7 11.6 0.5 5.3 5.40
mRASP2 10.1 28.5 18.4 30.5 6.7 17.1 18.55
PBD-MT (Ours) 10.7 29.6 18.1 31.4 7.0 18.9 19.28

Table 4: Performance of unified multilingual MT mod-
els in unsupervised translation scenario. These transla-
tion directions are not seen in the PC32 training dataset.
Tokenized BLEU is reported.

rections, achieving a +1.24 average gain. Besides,
we evaluate the unified multilingual models in un-
supervised translation directions, and the results are
shown in Table 4. For PBD-MT, positive results
are observed in all translation directions but one
direction, and the average BLEU score increases
by a +0.73 point. These results validate the posi-
tive effects of the proposed pretrained bidirectional
distillation not only on supervised scenario but also
zero-shot and unsupervised scenarios.

3.4 Non-autoregressive NMT

This section contains additional results for non-
autoregressive translation (NAT) experiments.
Specifically, we use a Transformer-big size fully
NAT (Gu and Kong, 2021) as the base model. The
model is initialized by a pretrained multilingual
PBD-MT model and trained using a CTC loss as in
Gu and Kong (2021). Because the decoder in the
NAT model has upsampled length, for simplicity,
we only adopt the encoder PBD loss when NAT
training. Table 5 shows the performance of our
model and other pretrained NAT models. Consis-
tent BLEU gains are obtained by our PBD-NAT,
validating its effectiveness.
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WMT14
En→De De→En

Transformer (Vaswani et al., 2017) 28.0 32.7

Mask-Predict (Ghazvininejad et al., 2019) 26.1 29.0
mRASP (Lin et al., 2020) 26.7 29.8
Fully NAT (Gu and Kong, 2021) 26.5 30.5
CeMAT (Li et al., 2022) 27.2 29.9
PBD-NAT (Ours) 27.7 31.2

Table 5: Pretrained bidirectional distillation in non-
autoregressive translation (NAT) scenario. PBD-NAT
denotes initializing a fully NAT model (Gu and Kong,
2021) by multilingual PBD-MT and training it with the
encoder PBD loss and NAT loss. Tokenized BLEU is
reported.

Model BLEU △
Transformer (Vaswani et al., 2017) 27.3
Multi-300k (Zhou et al., 2022) 27.9 +0.6
CBBGCA (Zhou et al., 2022) 28.3 +1.0
PBD-MT 29.1 +1.8

w/o Encoder PBD loss Le 28.8 +1.5
w/o Decoder PBD loss Ld 28.3 +1.0

Table 6: Ablation study and pretrained bidirectional
distillation on bilingual translation models. Tokenized
BLEU is evaluated in the WMT14 En→De direction.

3.5 Model Analysis
3.5.1 Ablation Study
In order to evaluate the individual contribution of
model components, we conduct an ablation study.
We train a self-distilled LM and Transformer-base
(Vaswani et al., 2017) size bilingual NMT models
on the WMT14 English-German dataset, and re-
port the results in Table 6. Compared with the stan-
dard bilingual Transformer and confidence-based
KD (Zhou et al., 2022), PBD-MT significantly im-
proves the performance, which verifies the effec-
tiveness of pretrained bidirectional distillation on
bilingual NMT. Without the PBD loss on the en-
coder or decoder, the BLEU scores degrade to some
extent, and the decoder PBD loss has more impact
than the encoder PBD loss. The results prove the
necessity of both pretrained bidirectional distilla-
tion losses.

3.5.2 Quantitative Analysis
To investigate the contribution of self-distillation
on LM which generates globally defined distilla-
tion objectives in a single forward pass, a quantita-
tive analysis is conducted here. Figure 4 illustrates
the results. For execution efficiency, we compare
marginalizing over multiple masks with the self-
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Figure 4: Efficiency of global distillation (GD) with
multiple masks or self-distilled (SD) LM. And perfor-
mance in WMT14 En→De direction against distillation
with different mask ratios.

distillation on LM. For example, masking 10% to-
kens each time results in 10 LM forward passes to
generate the full distillation objectives. As we can
see, the design of self-distilled LM significantly ac-
celerates the execution speed than multiple masks.
For the distillation effect, we compare distillation
on partial tokens with global distillation. The red
lines show that 20% is a relatively reasonable pro-
portion for partial distillation, and as the mask ratio
increases, the performance degrades. Masking too
many tokens increases the uncertainty for the LM.
The best performance is achieved by global distil-
lation, verifying the superiority of globally defined
distillation objectives.

3.5.3 Visualization
We conduct a behavior analysis to understand
which tokens are considered more certain in con-
texts by the self-distilled language model. In this
experiment, instead of softmax, we use sigmoid to
compute a scalar probability in the prediction head
Ω. Figure 5 visualizes the predicted self-distilled
token probabilities on randomly sampled sentences.
In this experiment, no token is masked; thus, the
token probabilities represent the tokens’ matching
degree and certainty in the complete bidirectional
context. As we can see, verbs, articles, conjunc-
tions, and prepositions are roughly of higher prob-
abilities, while nouns, adverbs, and adjectives are
harder to be predicted. It can be concluded that the
syntactic structure is more regular, and meaningful
words are more changeable.

4 Related Works

4.1 Masked Language Pretraining

Kenton and Toutanova (2019) propose BERT, a
pre-trained masked language model (MLM), which
succeeds in capturing the syntactic and semantic
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As  of  2015 ,  the total student enrollment was 34  

##9 . The ethnic makeup of the school was 34 . 4 % 

White , 30 . 7 % Hispanic

Mandy lay sprawled on the floor on her scattered 

beach bag contents , the open container of milk  

g ##lug ##ging white across the ceramic tile .

Eva wasn ’ t sure what to do first . She thought about 

calling or text ##ing Julian , but she didn ’ t know 

how to start the conversation

Figure 5: Example of the self-distilled token probabil-
ities on randomly sampled sentences. The darker the
color, the higher the probability value.

meaning of contextualized texts by large-scale self-
supervised pretraining. Recent researches explore
and strengthen BERT. XLNet (Yang et al., 2019)
addresses the issue of pretrain-finetune discrep-
ancy simultaneously considering bidirectional con-
texts by a permutation language modeling objective.
RoBERTa (Liu et al., 2019) exhaustively explores
the pretraining setup, such as data processing, train-
ing task, hyper-parameters, etc., to boost the model.
ELECTRA (Clark et al., 2019) trains a discrimina-
tor to detect replaced tokens, which are substituted
by an MLM generator, and improve the model’s
efficiency. Due to space limitations, we can not
elaborate on BERT variants. Sun et al. (2022);
Naseem et al. (2021); Min et al. (2021) surveyed
the pre-trained language models.

4.2 Pretrained Machine Translation
As far as pretrained machine translation is con-
cerned, a lot of powerful deep learning approaches
have been introduced. For instance, XLM (Con-
neau and Lample, 2019) introduces the cross-
lingual language model pretraining and get sig-
nificant improvements on unsupervised and super-
vised NMT. MASS (Song et al., 2019) adopts the
encoder-decoder framework to reconstruct a sen-
tence fragment. mBART (Liu et al., 2020) can be
directly finetuned by pretraining a complete model.
mRASP (Lin et al., 2020) and mRASP2 (Pan et al.,
2021) improve NMT by using code-switching strat-
egy and contrastive learning. CeMAT (Li et al.,
2022) utilizes a bidirectional decoder to improve
the representation capability.

4.3 Language Knowledge Distillation
Knowledge distillation is an effective technique for
model compression and was first proposed by Hin-
ton et al. (2015), in which knowledge is transferred

from a teacher model to a student model. Sanh
et al. (2019) distill a BERT-base model (Kenton and
Toutanova, 2019) into smaller models by defining
loss on the pre-trained predictions, which results in
a task-agnostic pretraining distillation. Turc et al.
(2019) conduct exhaustive analyses about the ini-
tialization of students in a task-specific setting, they
show that students initialized by pretraining are
better than that initialized from a truncated teacher
(Sun et al., 2019; Sanh et al., 2019). Jiao et al.
(2020); Wang et al. (2020, 2021); Choi et al. (2022)
make assumptions about the student and teacher
architectures and investigate aligning layer repre-
sentations as well as attention matrices. Zhou et al.
(2022) utilizes confidence-based knowledge distil-
lation to incorporate bidirectional global context
into NMT models.

5 Conclusion

In this paper, we proposed the pretrained bidirec-
tional distillation to investigate language knowl-
edge transfer from pretrained language models to
NMT models by knowledge distillation. The pro-
posed approach has the advantages of distillation
effectiveness and efficiency, and achieves new state-
of-the-art performance in supervised, unsupervised,
and zero-shot multilingual translation experiments.
The model analysis also shows that the proposed
self-distilled language model is critical to gener-
ating globally defined distillation objectives. In
the future, we will do more research on optimizing
the self-distilled language model and pretrained
bidirectional distillation losses.

Limitations

The pretrained bidirectional distillation transfers
language knowledge through the NMT training
process, a limitation of this method is that a com-
putational overhead is introduced during training.
Specifically, there is an extra language model for-
ward pass to generate the pretrained bidirectional
distillation objectives. Although we significantly
reduce the computational overhead by designing a
self-distilled language model, the overhead cannot
be completely avoided. Fortunately, most compu-
tations stem from back-propagation when model
training, and the introduced computational over-
head only affects training time. Once the training
is completed, the NMT has an identical inference
cost as regular translation models.
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A LM Pretraining Details

We follow consistent pretraining configurations for
bilingual and multilingual language models. Ta-
ble 7 lists detailed hyper-parameters we used in
pretraining.

Hyper-parameters Value
Number of layers 12
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Dropout 0.1
Attention dropout 0.1
Warmup steps 10k
Peak learning rate 1e-4
Batch size 256k
Max sequence length 512
Mask ratio 20
Clip norm 1.0
Weight decay 0.01
Max steps 1M
Learning rate decay Linear
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Weight of loss term λ 0.5

Table 7: Hyper-parameters used for pretraining.
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B NMT Training Details

Table 8 lists detailed hyper-parameters we used in
NMT model training.

Hyper-parameters Big Big12
Encoder layers 6 12
Decoder layers 6 12
Hidden size 1024 1024
FFN inner hidden size 4096 4096
Attention heads 16 16
Embeddings Shared Shared
Dropout 0.1 0.1
Attention dropout 0.1 0.1
Activation dropout 0.1 0.1
Label smoothing 0.1 0.1
Warmup steps 3k 3k
Peak learning rate 1e-3 1e-3
Max sentences 512 512
Batch size 8K 8K
Update frequency 50 50
Number of workers 8 8
Max sequence length 256 256
Weight decay 0.01 0.01
Clip norm 10 10
Max steps 300k 300k
Learning rate decay Linear Linear
Adam ϵ 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98

Table 8: Hyper-parameters used for NMT training.
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