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Abstract

Emotion-Cause Pair Extraction (ECPE) aims
to identify the document’s emotion clauses and
corresponding cause clauses. Like other rela-
tion extraction tasks, ECPE is closely associ-
ated with the relationship between sentences.
Recent methods based on Graph Convolutional
Networks focus on how to model the multiplex
relations between clauses by constructing dif-
ferent edges. However, the data of emotions,
causes, and pairs are extremely unbalanced, but
current methods get their representation using
the same graph structure. In this paper, we pro-
pose a Joint Constrained Learning framework
with Boundary-adjusting for Emotion-Cause
Pair Extraction (JCB). Specifically, through
constrained learning, we summarize the prior
rules existing in the data and force the model
to take them into consideration in optimiza-
tion, which helps the model learn a better repre-
sentation from unbalanced data. Furthermore,
we adjust the decision boundary of classifiers
according to the relations between subtasks,
which have always been ignored. No longer
working independently as in the previous frame-
work, the classifiers corresponding to three sub-
tasks cooperate under the relation constraints.
Experimental results show that JCB obtains
competitive results compared with state-of-the-
art methods and prove its robustness on unbal-
anced data.

1 Introduction

Emotion cause analysis aims to capture causal rela-
tionships between human emotions and their corre-
sponding causes, which has drawn extensive schol-
arly attention in recent years (Russo et al., 2011;
Neviarouskaya and Aono, 2013; Ghazi et al., 2015;
Gui et al., 2018). Emotion cause extraction (ECE),
first proposed by Lee et al. (2010), is a branch of
emotion analysis tasks. ECE aims at extracting
potential causes for given emotions. However, it
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requires emotions to be marked first, which limits
the applications in real-world scenarios. Hence,
Emotion-Cause Pair Extraction (ECPE) (Xia and
Ding, 2019) aims to extract all potential pairs
of emotions and corresponding causes simultane-
ously.

Early methods for ECPE are two-stage mod-
els (Xia and Ding, 2019), which predict emotions
and causes first and then filter out wrong pairs from
all possible pairs. Unfortunately, error propagation
happens frequently because the predictions in the
first stage directly affect the set of possible pairs in
the second stage. To this end, the previous work
adopts end-to-end frameworks (Ding et al., 2020b;
Cheng et al., 2020; Singh et al., 2021) instead of
two-stage models. These methods get the represen-
tation of emotions and causes separately and then
model the pair with them. The distance between
the pair of causes is also taken into account because
two distant clauses being an emotion-cause pair is
usually impossible.

With the rapid development of Graph Convo-
lutional Networks (Kipf and Welling, 2016; Def-
ferrard et al., 2016), many methods have started
to use graph structures to model the relations be-
tween clauses. For instance, RANKCP (Wei et al.,
2020) uses a fully-connected graph to propagate
information among clauses. At the same time, in-
tegrating a variety of edges while constructing the
graph also attracts scholarly attention. Currently,
the main issue in the field is how to model com-
plex relations with different edges. PairGCN (Chen
et al., 2020), for example, demarcates the kinds of
edges with the distance between clauses. Based
on the diverse representation of nodes of pairs
and clauses, PBJE (Liu et al., 2022) divides the
edges (e.g., emotion-emotion edges, emotion-cause
edges, emotion-pair edges, and so on) through dif-
ferent vertexes.

Moreover, owing to the relevance between pair
extraction, emotion extraction, and cause extrac-
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Figure 1: The diagram of the imbalance of a sample. The number of emotions and causes, the corresponding
relations between emotions and causes, and the number of true and false pairs are highly unbalanced.

tion, most studies adopt multi-task learning to
help the model learn a better representation of
pairs (Cheng et al., 2020; Wei et al., 2020; Chen
et al., 2020; Liu et al., 2022). However, the data
of emotions, causes, and pairs are extremely unbal-
anced, and current methods get their representation
using the same graph structure. As shown in Fig-
ure 1, most pairs are wrong samples, and only a
small number are real emotion-cause pairs. The
model can only gain limited knowledge from true
pairs because of the small amount, which makes
the learning process of ECPE difficult. Meanwhile,
there is a big difference between the amounts of
emotions and causes. An emotion clause can have
several causes, while one cause can only lead to
one emotion. The data imbalance limits represen-
tation layers and the classifiers’ learning process
and is usually ignored. Nearly all of the existing
methods regard ECPE as a simple binary classifi-
cation task and use the same networks (the same
encoder, the same graph structure, and so on) to
deal with pairs, emotions, and causes, which makes
the model unaware of the difference between emo-
tions and causes anywhere except for the labels.
Consequently, the imbalance has a tremendously
adverse effect on the representation of clauses and
classifiers’ decision boundaries.

To sum up, previous models have biased rep-
resentation of clauses and decision boundaries be-
cause they neglect the imbalance of data, which mo-
tivated us to propose a Joint Constrained Learning
framework with Boundary-adjusting for Emotion-
Cause Pair Extraction (JCB). Following the lat-
est study of long-tail data, we focus on the learn-
ing process of representation layers and the deci-
sion boundaries of classifiers because they prove
to be the performance bottlenecks of unbalanced
data (Kang et al., 2019). Specifically, we first de-

sign a joint constrained learning framework en-
forcing some constraints by converting them into
differentiable learning objectives, which generates
more useful and learnable samples and alleviates
the problem of unbalanced data to some extent.
Moreover, in order to adjust the narrow decision
boundaries, we balance the predicting process by
enhancing and correcting results.

In summary, the contributions of this paper are
as follows: (1) Through a detailed analysis of the
existing methods, we point out the problems in
previous frameworks of ECPE. (2) We propose a
boundary-adjusted model with Joint Constrained
Learning. To the best of our knowledge, it is
the first time to solve the problem of unbalanced
data for ECPE. (3) We conduct experiments on the
ECPE benchmark corpus. Compared with those
strong baselines, the results demonstrate the effec-
tiveness of the boundary-adjusted model and the
Joint Constrained Learning in improving the pre-
diction performance.

2 Related Work

2.1 Unbalanced Data

Effectively modeling the unbalanced data in NLP
tasks remains challenging. Long-tail data, a typ-
ical example of unbalanced data, requires a deep
network model to simultaneously cope with imbal-
anced annotations among the head and medium-
sized classes and few-shot learning in the tail
classes. Similarly, ECPE is also highly unbalanced,
because of the small number of true pairs and
the enormous gap between the numbers of emo-
tions and causes. Early studies on re-balancing
data distribution focus on re-sampling and re-
weighting (Shen et al., 2016; Cao et al., 2019;
Buda et al., 2018; Chen et al., 2018; Liu et al.,
2019; Wang et al., 2017), which achieve limited
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successes due to overfitting. Some recent works
aim to decouple the learning process of represen-
tation and classifiers, which prove to be the per-
formance bottlenecks (Kang et al., 2019; Menon
et al., 2020; Tang et al., 2020; Wang et al., 2020b;
Li et al., 2020). Still, such a two-stage strategy re-
quires tedious hyper-parameter tuning to adjust the
boundaries initially learned by the classifier. Ac-
cordingly, we attempt to get better representation
with constrained learning and adjust the biased de-
cision boundaries with classifiers, which are always
ignored before.

2.2 Constrained Learning
Although data-driven methods provide a general
and tractable way for relation extraction, their per-
formance is still restricted by unbalanced and lim-
ited annotated resources. Early works suggest rela-
tions should be constrained by their logical proper-
ties (e.g., transitivity, symmetry, consistency, and
so on), which comply with by global inferences.
However, directly converting the constraints to logi-
cal reasoning leads to error propagation. Motivated
by the logic-driven framework (Li et al., 2019),
Wang et al. (2020a) proposes the constrained learn-
ing framework, where the declarative logical con-
straints are converted into differentiable functions
that can be incorporated into the learning objective
for relation extraction tasks. It aims to regularize
the model towards consistency with the logical con-
straints across the relations among data.

2.3 Emotion Extraction and Cause Extraction
Emotion Extraction and Cause Extraction are the
common auxiliary tasks for ECPE (Cheng et al.,
2020; Wei et al., 2020; Chen et al., 2020; Liu et al.,
2022). However, due to the imbalance of emo-
tions and causes, the decision boundaries are easily
turned to be biased. Consequently, there is a huge
gap in the final performance of Emotion Extraction
and Cause Extraction (the accuracy of Emotion Ex-
traction is always much higher than Cause Extrac-
tion). In this paper, we adopt the results of auxiliary
tasks to correct the biased decision boundaries.

3 Methodology

3.1 Task Definition
Given a document D consisting of n clauses
D = [s1, s2, ..., sn], ECPE aims to extract all the
emotion-cause pairs from D:

P = {..., (si, sj), ...} i, j ∈ [1, n] (1)

As for the auxiliary tasks, once an emotion-cause
pair (si, sj) is extracted, an emotion clause and its
corresponding cause are confirmed:

Y e
i =

{
1 if(si, sj) ∈ P

0 otherwise
(2)

Y c
j =

{
1 if(si, sj) ∈ P

0 otherwise
(3)

where Y e
i = 1 means the clause si is predicted

as an emotion clause. The prediction of Cause
Extraction is the same as Emotion Extraction.

3.2 Clause Encoder
Similar to RANKCP (Wei et al., 2020), we adopt
BERT and GCN to encode the clauses. Specifi-
cally, we feed the whole document D into BERT
and use the average pooling of the outputs corre-
sponding to each token as the representation of
clauses H = [h1, h2, ..., hn]. Then we construct
fully-connected graphs for emotions and causes.
The representation of clauses H is used to initial-
ize the emotion and cause nodes. As for the pair
nodes linking emotion and cause nodes, we con-
catenate the representation of their corresponding
emotions and causes and feed them into a linear
layer Linearpair. The output of Linearpair is then
used to initialize pair nodes.

H
(0)
E = [h

e(0)
1 , h

e(0)
2 , ..., he(0)n ]

H
(0)
C = [h

c(0)
1 , h

c(0)
2 , ..., hc(0)n ]

H
(0)
P = [h

p(0)
11 , h

p(0)
12 , ..., hp(0)nn ]

h
e(0)
i = h

c(0)
i = hi

h
p(0)
ij = Linearpair([hi;hj ])

(4)

where H
(0)
E , H

(0)
C , and H

(0)
P indicate the initial

representation of emotion nodes, cause nodes, and
pair nodes. [.; .] is concatenation.

Following the previous framework, we divide
the edges R into the pair-clause edge, clause-clause
edge, and global edge. The details about the con-
struction of graphs are explained in Appendix A.
Given a node v, the process of convolution is de-
fined as:

h(t+1)
v = (W (t)h(t)v + b(t))

+
1

|N(v)|
∑

r∈R

∑

z∈N(v)

(W (t)
r h(t)z + b(t)r ) (5)
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Figure 2: The illustration of our model. The clause encoder outputs the representations of emotions, causes, and
pairs which Joint Constrained Learning further optimizes. In the stage of boundary adjusting, emotion-oriented
features and cause-oriented features are aligned, and the better classifier (FE) is used to guide the final prediction.

where W (t), b(t), W (t)
r , and b

(t)
r are learnable pa-

rameters. N(v) is the neighbors of v and h
(t)
v is the

t-layer representation of node v.
By stacking K layers of GCN, the output of the

last layer H(K)
E , H(K)

C , and H
(K)
P are finally used

as the representation of emotions, causes, and pairs.

H
(K)
E = [e1, e2, ..., en]

H
(K)
C = [c1, c2, ..., cn]

H
(K)
P = [p11, p12, ..., pnn]

ei = h
e(K)
I ci = h

c(K)
I pij = h

p(K)
ij

(6)

3.3 Joint Constrained Learning

Given the properties of emotion-cause pairs from
the document, we define several learning objectives
to regularize the model with logical constraints. In-
spired by Wang et al. (2020a), we specify three
types of constraints: Annotation Constraint (unary
constraint), Asymmetry Constraint (binary con-
straint), and Contrastive Constraint(triplet con-
straint).

3.3.1 Annotation Constraint
Annotation Constraint is a unary constraint. For
labeled pairs, we expect the model to predict what
annotations specify. As shown in Figure 2, (s1, s2),
(s1, s3), and (s5, s4) are labeled as emotion-cause
pairs. If we feed their representations p12, p13, and
p54 into the pair classifier FP , their corresponding
probabilities yp12, yp13, and yp54 should be predicted
to be high. As a result, the annotation constraint
loss LA is defined as:

LAnnotation =
∑

(si,sj)∈P̂
−log(ypij) (7)

where P̂ are all the pairs labeled as emotion-cause
pairs.

3.3.2 Asymmetry Constraint
Asymmetry Constraint is a binary constraint.
Asymmetry is a basic property of ECPE because
emotion-cause is a unidirectional relationship. For
instance, (s5, s4) is an emotion-cause pair in Fig-
ure 2. Given that, s5 is an emotion clause, and
(s5, s4) is the corresponding cause but not vice
versa. In other words, once a sample (si, sj) has
an emotion-cause relation, the pair in its symmetric
position (sj , si) will certainly not have the same
relation, which is the asymmetry. Given that, the
predictions of (si, sj) and (sj , si) are expected to
be quite different. Applying the transformation
to the negative log space as before, we have the
asymmetry loss:

LAsymmetry =
∑

(si,sj)∈P̂
log(ypji)− log(ypij) (8)

In previous works, models adopt the same struc-
ture to deal with emotions and causes, which makes
the models unaware of the difference between emo-
tions and causes anywhere except for the labels.
Consequently, the probability of the pairs in sym-
metric positions is easily predicted to be high. In
this paper, the asymmetry loss helps the model
learn more knowledge from minimal true pairs.
Specifically, the model can clearly distinguish the
emotions and causes in optimization. Here we
aim to make the distinction between emotions and
causes more clearly, but not the distinction between
true and false pairs.

It is worth noting that there are some cases
whose emotion and cause are the same clause.
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These samples are on the diagonal of the pairs ma-
trix, where symmetric pairs are themselves. There-
fore, they do not affect the calculation of the asym-
metry loss.

3.3.3 Contrastive Constraint
Contrastive Constraint is a triplet constraint. As
shown in Figure 1 and Figure 2, for part of the sam-
ples, a one-to-many relationship exists between
emotions and causes. Inspired by Clustering, we
regard the representation of each pair as a clus-
ter center. First, we initialize the cluster centers
with the average pooling of the emotion-cause pairs
with the same emotion. And then, we randomly
sample the representation of the other pairs as the
negative pairs, which means the negative pairs can
come from either the wrong pairs or the emotion-
cause pairs with different emotions. Similar to Con-
trastive learning, the representation of true pairs is
supposed to be close to their cluster centers and
far away from the negative pairs. Considering the
computing cost, we use the triplet margin loss in-
stead of the standard loss functions in contrastive
learning. The contrastive loss is defined as:

LContrastive =
1

|P̂ |
∑

(si,sj)∈P̂
max(d(pij , centeri)

− d(pij , xij) + γ, 0)
(9)

where d(., .) means the Euclidean distance between
two representations. centeri is the cluster center of
emotion i. xij is the representation of the negative
pair to sample (si, sj). γ is the hyperparameter of
the margin.

3.4 Boundary Adjusting
Due to the unbalanced data and relationships, the
emotion classifier usually behaves much better than
the cause classifier. Inspired by the two-stage ap-
proach for the long-tail distribution, we design an
alignment strategy to take advantage of the clas-
sifier output to favor a more balanced prediction.
Such an alignment strategy exploits the prior class
and data input for learning class decision boundary,
which avoids tedious hyperparameter tuning.

There is a dyadic relation between Emotion Ex-
traction and Cause Extraction, for they hold infor-
mative clues to each other. For example, as demon-
strated in Figure 2, s4 is the corresponding cause of
s5, which means the cause s4 leads to the emotion
s5 but not the other emotion s1. According to that,
we expect the emotion-oriented features and the

cause-oriented features to exchange helpful infor-
mation. Taking Cause Extraction as an example,
we define the semantic relation between H

(K)
C and

H
(K)
E as:

mij = (ci)
T × ej

ci ∈ H
(K)
C ej ∈ H

(K)
E

ME2C
ij =

exp(mij)∑n
k=1 exp(mik)

(10)

For ci in Cause Extraction, we can obtain the
valuable clues UE2C from Emotion Extraction by
applying a weighted sum of semantic relations to
all ej in Emotion Extraction:

UE2C = [uE2C
1 , uE2C

2 , ..., uE2C
n ]

uE2C
i =

n∑

j=1

(ME2C
ij · ej)

(11)

The clues UC2E can be obtained similarly.
Based on the structure of the residual network, we
add the useful clues UE2C from Emotion Extrac-
tion to the original cause-oriented features H

(K)
C

as the final features for Cause Extraction. And then
we feed them into the cause classifier FC to get the
prediction Y C = [Y c

1 , Y
c
2 , ..., Y

c
n ]:

HC = H
(K)
C +ReLU(We2cU

E2C + be2c)

Y C = FC(HC)
(12)

where We2c and be2c are learnable parameters.
Similarly, we can get the prediction of Emotion

Extraction Y E = [ye1, y
e
2, ..., y

e
n]. As explained

above, the performance of the emotion classifier is
quite strong, which can be helpful in adjusting the
decision boundary of the pair classifier FP . Having
the emotion predictions, we train an embedding
layer EMBe to encode the emotional information
in Pair Extraction. Finally, we concatenate the
emotion-aware representation of pairs and the cor-
responding representations of emotions and pairs
as the features for FP :

Y P = FP (HP )

HP = [p11, p12, ..., pnn]

pij = WpReLU(pij + EMBe(Y
e
i )) + bp

pij ∈ H
(K)
P

(13)

where Wp and bp are learnable weights and biases
of the linear pair classifier FP .
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3.5 Optimization
The loss function for the input documents D con-
sists of the loss of auxiliary tasks and the loss of
constrained learning:

L = Lemotion + Lcause + LAnnotation

+ αLAsymmetry + βLContrastive

Lemotion = − 1

|D|
∑|D|

i=1
Ŷ e
i log yei

Lcause = − 1

|D|
∑|D|

i=1
Ŷ c
i log yci

(14)

where α and β are hyperparameters. Ŷ e
i and Ŷ c

i

are emotion and cause label of clause si.

4 Experiments

We conduct extensive experiments to verify the
effectiveness of our proposed model JCB. In this
section, we attempt to answer the following ques-
tions: RQ1: Does JCB perform better than existing
methods? RQ2: Are the constrained learning and
boundary-adjusted mechanism the key factors af-
fecting the performance? RQ3: How do they work
in optimization? RQ4: How does JCB perform on
more unbalanced data?

4.1 Datasets and Preprocessing
To evaluate the effectiveness of our model, we
conduct experiments on the Chinese benchmark
dataset released by Xia and Ding (2019). The cor-
pus consists of 1,945 Chinese documents from the
SINA news website. As shown in Table 1, the data
is extremely unbalanced. For example, emotion-
cause pairs account for about 0.4% of all the pos-
sible pairs. On the other hand, an emotion clause
can have several causes, while one cause can only
lead to one emotion.

Following the preprocessing of previous works,
we set a relative distance constraint |i− j| ≤ 3. Us-
ing the relative distance constraint directly affects
the degree of data imbalance, and we discuss it in
Section 4.6. To make a fair comparison, we use the
10-fold cross-validation and split the data as Xia
and Ding (2019) did. As for the evaluation metrics,
we adopt the precision, recall, and F-score on three
tasks: Emotion Extraction, Cause Extraction, and
Pair Extraction.

4.2 Experimental settings
We implement JCB based on Transformers (Wolf
et al., 2020) and adopt BERT-base-Chinese (Devlin

Item Number Percentage(%)
documents 1,945 100

-w/ 1 EC pair 1,746 89.8
-w/ 2 EC pairs 177 9.1
-w/ 3 EC pairs 22 1.1

pairs 490,367 100
-EC pairs 2,167 0.4

-non EC pairs 488,200 99.6

Table 1: Detailed dataset statistics.

Config Value
Device GeForce RTX 3090

Platform Pytorch 1.8.0
Backbone BERT-base-Chinese
Dimension 768
Batch Size 4

Epochs 50
Learning Rate 2e-5

Warmup Proportion 0.1
Dropout 0.2

K 1
α 0.15
β 0.5

Table 2: Detailed experimental configs.

Figure 3: The fluctuation of performance when relative
distance changes.

et al., 2018) as the backbone. Clauses in the same
document are concatenated and fed into the clause
encoder, while each document in a batch is encoded
separately. The setups of our experiments are listed
in Table 2. We set α and β to 0.15 and 0.5 and
conduct experiments on GeForce RTX 3090. Some
documents have too many clauses and words, so
we set the batch size to 4 and use a sliding window
to deal with words exceeding the limit, which helps
reduce the demands for large GPU resources.
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We compare our models with current strong base-
lines, including:ECPE-2D (Ding et al., 2020a),
TransECPE (Fan et al., 2020), RankCP (Wei
et al., 2020), PairGCN (Chen et al., 2020), ECPE-
MLL (Ding et al., 2020b), UTOS (Cheng et al.,
2021), MTST-ECPE (Fan et al., 2021), and
PBJE (Liu et al., 2022). Among them, RankCP,
PairGCN, and PBJE use BERT+GCN as the
clause encoder, which is similar to ours. ECPE-
MLL, UTOS, and MTST-ECPE convert ECPE to
a sequence labelling task or a multi-label classifi-
cation task. Different from them, each task of our
approach is a binary classification. More details
about these methods are listed in Appendix B.

4.3 RQ1: Does JCB perform better than
existing methods?

Table 3 shows the experimental results of JCB com-
pared with others on three tasks. The overall results
indicate the effectiveness of JCB. We can find that
the performance of JCB is excellent on all tasks,
which almost exceeds all the existing methods, es-
pecially on the main task - Pair Extraction. The
precision P and recall R may not be the best of
all but are still quite competitive compared with
state-of-the-art methods.

It is noteworthy that the improvement of the
main task mainly comes from the excellent per-
formance of Cause Extraction. Compared with
RankCP (whose clause encoder is similar to ours),
the F1 of Emotion Extraction of our model is
slightly less, but the results of Pair Extraction (the
main task) and Cause Extraction are much higher,
which proves the constrained learning and the guid-
ance of the Emotion Extraction help the model get
a better representation of causes. The performance
of the emotion and cause classifiers is balanced to
achieve better results.

4.4 RQ2: Are the constrained learning and
boundary-adjusted mechanism the key
factors affecting the performance?

The results of the ablation study are shown in Ta-
ble 4. Apparently, constrained learning has a pro-
found effect on performance. The performance of
Pair Extraction dramatically drops when remov-
ing constrained learning. Meanwhile, the F1 of
Emotion Extraction is stable whereas that of Cause
Extraction decreases sharply. Therefore, we con-
clude that the degradation of performance of the
main task is mainly due to the fall of Cause Ex-
traction. It also proves that constrained learning

helps the model better represent pairs and causes.
In comparison, Asymmetry Constraint has a more
significant impact on Cause Extraction, while Con-
trastive Constraint has a more remarkable effect on
Pair Extraction. We assume that Asymmetry Con-
straint distinguishes between emotions and causes
more clearly, which facilitates the performance on
the sample-scarce tasks (Pair Extraction and Cause
Extraction). On the other hand, Contrastive Con-
straint mines the information of the emotion-cause
pairs with the same emotion, which is important
for Emotion Extraction.

Otherwise, boundary adjusting somewhat solves
the problem of biased decision boundaries. All
three tasks are affected while removing boundary
adjustments, especially Pair Extraction. It should
be noted that both emotion and cause clues play an
essential role in clues alignment. Removing each
of them may not cause considerable fluctuations in
Emotion Extraction but will eventually lead to the
bad performance of the main task. We speculate
that unbalanced ablation makes the amounts of
information flow to encoders in a different manner,
so the performance imbalance is intensified.

4.5 RQ3: How do the constrained learning
and boundary-adjusted mechanism work
in optimization?

We observe the final output and plot heat maps
to verify how JCB achieves the anticipation. We
make a comparison with PBJE - the strongest one
of the previous models. PBJE uses the same graph
structure to encode emotions and causes, so the dis-
tinction between the pairs symmetric along the di-
agonal of the matrix is not very clear. Consequently,
PBJE is easily misled to extract the right ones from
these symmetric pairs. However, due to Asymme-
try Constraint, JCB has a more asymmetric output
(Figure 4(a)). On the other hand, Contrastive Con-
straint enables JCB to distinguish the difference
among pairs with different emotions. In this way,
JCB can get more differentiated results when fac-
ing documents containing two or more true pairs
(Figure 4(b)). Moreover, there are usually several
possible emotion or cause clauses, and mismatches
occur frequently among them. As shown in Fig-
ure 4(c), after boundary-adjusting (clues alignment
and emotion guidance), JCB allocates higher scores
for pairs with truly-matched emotions and causes.
Relatively, the pairs on the wrong intersection of
mismatched emotion lines and cause lines are as-
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Models Pair Extraction Emotion Extraction Cause Extraction
P R F1 P R F1 P R F1

ECPE-2D 72.92 65.44 68.89 86.27 92.21#1 89.10 73.36 69.34 71.23
TransECPE 77.08 65.32 70.72 88.79 83.15 85.88 78.74 66.89 72.33
PairGCN 76.92 67.91 72.02 88.57 79.58 83.75 79.07 68.28 73.75
UTOS 73.89 70.62 72.03 88.15 83.21 85.56 76.71 73.20 74.71
MTST-ECPE 75.78 70.51 72.91 85.83 80.94 83.21 77.64 72.36 74.77
RankCP 71.19 76.30#1 73.60 91.23#1 89.99 90.57#1 74.61 77.88#2 76.15
ECPE-MLL 77.00 72.35 74.52 86.08 91.91#2 88.86 73.82 79.12#1 76.30
PBJE 79.22#1 73.84 76.37#2 90.77#2 86.91 88.76 81.79#1 76.09 78.78#2

JCB 79.10#2 75.84#2 77.37#1 90.77#2 87.91 89.30#2 81.41#2 77.47 79.34#1

Table 3: Experimental results of on ECPE benchmarks. The best result is in red, and the second is in blue.

Models Pair Extraction Emotion Extraction Cause Extraction
P R F1 P R F1 P R F1

JCB 79.10 75.84 77.37 90.77 87.91 89.30 81.41 77.47 79.34
-w/o Asymmetry Constraint 78.82 74.13 76.34 90.91 87.20 88.99 80.71 75.79 78.11
-w/o Contrastive Constraint 76.83 75.42 76.05 88.72 87.54 88.08 80.02 77.23 78.54
-w/o Constrained Learning 76.31 74.37 75.26 90.45 88.71 89.53 79.58 76.34 77.88
-w/o Emotion Clues 78.93 74.38 76.55 91.16 87.77 89.41 81.02 76.18 78.50
-w/o Cause Clues 79.20 74.44 76.67 91.01 87.49 89.16 81.28 76.33 78.66
-w/o Clues Alignment 79.64 73.46 76.38 91.30 86.62 88.87 81.45 75.25 78.19
-w/o Emotion Guidance 78.20 75.50 76.76 90.80 88.29 89.50 80.67 76.98 78.74
-w/o Boundary Adjusting 78.32 74.32 76.19 90.86 87.49 89.10 81.17 76.36 78.61
Clause Encoder (BERT+GCN) 73.01 76.23 74.44 89.17 88.77 88.92 77.25 78.21 77.62

Table 4: The results of the ablation study on the benchmark corpus for the main task and auxiliary tasks.

(a) Label: (s3, s2). (b) Label: (s1, s0) and (s8, s7). (c) Label: (s1, s2).

Figure 4: The heat maps of the output of PBJE (left graphs) and JCB (right graphs). The deeper color means the
higher confidence. Three subfigures show asymmetric output, differentiated output, and accurate match of JCB
compared with PBJE.

signed with lower scores. More cases are listed in
Appendix C.

4.6 RQ4: How does JCB perform on more
unbalanced data?

Figure 3 shows the fluctuation of their performance
when relative distance changes. The performance
of Rankcp is sensitive to the relative distance, while
PBJE and JCB remain stable. There is not a strictly
negative correlation between the performance and
the relative distance Z. A small relative distance
means fewer pairs to classify. Still, it also might

Models Pair Extraction
P R F1

RankCP 64.26(6.93↓) 66.94(9.36↓) 65.49(8.11↓)
PBJE 78.41(0.81↓) 71.31(2.53↓) 74.66(1.71↓)
JCB 78.93(0.17↓) 71.68(4.16↓) 75.09(2.28↓)

Table 5: The results of RankCP, PBJE, and JCB without
the relative distance constraint.

filter out some right ones. The value of Z affects
the degree of data imbalance and the final results.

To evaluate the performance of JCB on more
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unbalanced data, we remove the relative distance
constraint (which makes the data more unbalanced
for more false pairs). In Table 5, compared with
RankCP, whose clause encoder is similar to ours
(BERT+GCN), the performance of JCB is not sig-
nificantly influenced when dealing with all the pos-
sible pairs without preprocessing. As for PBJE, it is
less affected, and we conclude that it is because of
balancing the information flow while constructing
the graph. The experimental result proves the effect
of imbalance on performance and the robustness of
our model on more unbalanced data.

5 Conclusion

This paper summarizes existing ECPE methods,
indicating that almost all of them ignore the bi-
ased representation of clauses and decision bound-
aries due to data imbalance. We propose a Joint
Constrained Learning framework with Boundary-
adjusting and conduct massive experiments on the
ECPE benchmark dataset. The remarkable per-
formance demonstrates the effectiveness of our
method for learning better representations of un-
balanced samples and adjusting biased decision
boundaries. We expect our work will direct more
scholarly attention to solutions to the problem of
unbalanced data in information extraction.

Limitations

In this paper, we conduct experiments only on
the Chinese benchmark dataset due to the lack
of English datasets and comparisons of related
methods. Moreover, the model is based on BERT-
base-Chinese, so the maximum input length is con-
strained to less than 512. However, the numbers
of words in some long documents exceed the limit,
so we use a sliding window to deal with the prob-
lem. Otherwise, some documents having too many
clauses require large GPU resources after aligning
and padding. Limited by the memory capacity, we
have to set a small batch size.
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(a) Label: (s2, s1). (b) Label: (s3, s2). (c) Label: (s15, s14).

Figure 5: Asymmetric output of JCB (right graphs) compared with PBJE (left graphs).

(a) Label: (s3, s3) and (s5, s5). (b) Label: (s6, s5) and (s8, s7).

Figure 6: Differentiated output of JCB (right graphs) compared with PBJE (left graphs).

(a) Label: (s6, s6). (b) Label: (s7, s6). (c) Label: (s7, s6).

Figure 7: Accurate match of JCB (right graphs) for emotions and causes compared with PBJE (left graphs).

Models Pair Extraction
P R F1

k = 1 79.10 75.84 77.37
k = 2 78.27 73.16 75.58
k = 3 76.99 72.67 74.7

Table 6: The decrease of performance with the increase
of k.

A Details about the construction of
graphs.

We divide the nodes V into emotion nodes, cause
nodes, and pair nodes, which are initialized as the
output of BERT (H(0)

E , H(0)
C , and H

(0)
P ). Based on

that, the edges R are divided into pair-clause edges
and clause-clause edges. In experiments, we also
use global edges. These edges connect the global
node (initialized as the average of the output of
BERT) and the other nodes, which helps preserve
global information.

The general form of k-layer GCN with the set
of edges R is listed in Formula 5. However, after
parametric searching, we set k to 1 because we find
the performance tends to drop with the increase of
k (as shown in Table 6). When k is bigger than
1, the features of nodes from different groups may
be over-mixed and indistinguishable. Besides, it
has more learnable parameters, which easily brings
about over-fitting.

B Details about the current ECPE
methods.

In experiments, we compare our models with the
current strong baselines, including:

ECPE-2D (Ding et al., 2020a): Use 2D trans-
former to get 2D representation and model the in-
teractions of different emotion-cause pairs.

TransECPE (Fan et al., 2020): Based on tran-
sition, convert the task into a parsing-like directed
graph construction procedure.

RankCP (Wei et al., 2020): Utilize the fully-
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connected graph to model the relationships be-
tween clauses and rank all the possible pairs in
a document.

PairGCN (Chen et al., 2020): Construct a graph
with pair nodes and define different edges accord-
ing to the relative distance.

ECPE-MLL (Ding et al., 2020b): Employ two
collaborative frameworks for emotions and causes
and apply multi-label learning to them.

UTOS (Cheng et al., 2021): Convert the task
into sequence labelling, which tackles the error
propagation.

MTST-ECPE (Fan et al., 2021): Similar to
UTOS, design a multi-task sequence tagging frame-
work but refine the tag distribution.

PBJE (Liu et al., 2022): Construct a graph for
each task and balance the information flow among
them.

C Case study.

As mentioned in Section 4.5, JCB has a more asym-
metric and differentiated output and behaves better
when more than one true pair needs to be extracted.
Given several possible emotions and causes, JCB
can precisely match them. Figure 5, Figure 6, and
Figure 7 show the comparison of PBJE and JCB in
three scenarios. Asymmetry Constraint helps JCB
get a more asymmetric output so that the model will
not be confused facing symmetric pairs any longer.
Contrastive Constraint enables JCB to distinguish
the difference among pairs with different emotions
and find the similarity between pairs with the same
ones. This way, JCB behaves better in documents
with multiple emotion-cause pairs. Moreover, the
boundary-adjusting mechanism solves the problem
of mismatch to some extent. The pairs on wrong in-
tersections of mismatched emotion lines and cause
lines are assigned with low scores, and the right
ones are enhanced by emotions and given higher
scores.
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