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Abstract
Document-level Event Causality Identification
(DECI) aims to recognize causal relations be-
tween events within a document. Recent stud-
ies focus on building a document-level graph
for cross-sentence reasoning, but ignore im-
portant causal structures — there are one or
two “central" events that prevail throughout the
document, with most other events serving as
either their cause or consequence. In this pa-
per, we manually annotate central events for a
systematical investigation and propose a novel
DECI model, CHEER, which performs high-
order reasoning while considering event cen-
trality. First, we summarize a general GNN-
based DECI model and provide a unified view
for better understanding. Second, we design an
Event Interaction Graph (EIG) involving the in-
teractions among events (e.g., coreference) and
event pairs, e.g., causal transitivity, cause(A, B)
∧ cause(B, C) ⇒ cause(A, C). Finally, we incor-
porate event centrality information into the EIG
reasoning network via well-designed features
and multi-task learning. We have conducted ex-
tensive experiments on two benchmark datasets.
The results present great improvements (5.9%
F1 gains on average) and demonstrate the ef-
fectiveness of each main component.

1 Introduction

Event Causality Identification (ECI) aims at identi-
fying causal relations between events within texts.
It is a fundamental NLP task and beneficial to vari-
ous applications, such as question answering (Shi
et al., 2021; Sui et al., 2022) and future event fore-
casting (Hashimoto, 2019; Bai et al., 2021). In
terms of the text length, events may occur within
the same sentence (SECI) or span across the en-
tire document (DECI). DECI is more practical than
SECI but suffers from the lack of clear causal indi-
cators, e.g., causal words because.

Recent DECI works often build a document-
level graph for cross-sentence reasoning, but ignore
important causal structures. Tran Phu and Nguyen

A large FIRE broke out at the Waitrose
supermarket in Wellington‘s High Street.

Half of the roof at the entrance of the
store collapsed during the blaze. It will
take a couple of days for repairs.

A man has been charged with arson
after an investigation over the fire.

coreference

causal relation

Figure 1: An example of DECI. Solid green lines denote
target causal relations and dashed yellow lines denote
coreference. FIRE is the central event in this document.

(2021) take events as nodes and extract linguis-
tic/discourse relations as edges. Then, they apply
Graph Neural Network (GNN) to enhance even-
t/node embeddings with their neighbors for final
causality prediction. To avoid noisy and exhaustive
relation extraction, ERGO (Chen et al., 2022) in-
stead takes each event pair as nodes and leverages
GNN on the relational graph for high-order causal
transitivity, e.g., cause(A, B) ∧ cause(B, C) ⇒
cause(A, C). However, some useful prior event rela-
tions such as coreference are discarded. Moreover,
we observe a causal information loss from docu-
ment to graph. Not all events are equally important.
There are one or two “central" events that prevail
throughout the document, and other events are ei-
ther to explain their cause or the consequence (Gao
et al., 2019). As shown in Figure 1, event FIRE is
the central event. It is mentioned several times (i.e.,
coreferences blaze and fire), causing almost all the
other events (e.g., collapsed and repairs).

In this paper, we propose to consider the above
causal structures while leveraging the reasoning
power of GNN. To do so, we highlight the follow-
ing questions:

• How to identify central events? Are they rec-
ognizable?
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• How to effectively consider such causal struc-
tures for cross-sentence reasoning?

To address the issues, we manually annotate
central events in the public dataset EventStory-
Line (Caselli and Vossen, 2017) and propose a
novel DECI model, Centrality-aware High-order
EvEnt Reasoning network (CHEER). We first
summarize a general GNN-based DECI model for
better understanding. Then, we design an Event
Interaction Graph (EIG) that involves interactions
between events and among event pairs (i.e., high-
order relations). Finally, we incorporate event cen-
trality information into the EIG reasoning network
via well-designed features and multi-task learning.

In specific, for the first challenge, we preserve
centrality information into event embeddings using
two measures: (i) position centrality to maintaining
the order of sentences where events are located, and
(ii) degree centrality that counts the number of prior
relations of each event. The motivation is that a cen-
tral event usually summarizes the main content at
the beginning and almost all the other events are rel-
evant to it. Then, we use the centrality-aware event
embeddings for central event prediction. Evalu-
ated on our central event annotations, we found
that this centrality modeling method is feasible and
effective, with potential for further improvement.

For the second challenge, based on the general
GNN-based DECI model, our proposed EIG uni-
fies both event and event-pair graphs, so that we
can reason over not only available causal structures
but also high-order event relations. Particularly,
there are three types of edges. First, two event pair
nodes shall be connected if they share a common
event, so that their relational information can be
fused for transitivity. Second, we connect event
nodes to their corresponding event pair nodes to en-
hance event embeddings with high-order reasoning.
Moreover, the edge types will be further distin-
guished according to whether the event node is a
central event or not. Third, EIG is also scalable to
prior event relations (e.g., coreference) that connect
event nodes if available.

Our contributions can be summarized as follows:

• We propose to consider causal structures (i.e.,
event centrality and coreference) and manu-
ally annotate central events for investigation.

• We design an EIG and propose a novel DECI
framework CHEER for effective reasoning at
the document level.

• Extensive experiments on two benchmark
datasets validate the effectiveness of CHEER
(5.9% F1 gains on average).

2 Related Work

2.1 Sentence-level ECI

Early feature-based methods explore different re-
sources for causal expressions, such as lexical and
syntactic patterns (Riaz and Girju, 2013, 2014b,a),
causality cues or markers (Do et al., 2011; Hidey
and McKeown, 2016), temporal patterns (Ning
et al., 2018), statistical information (Hashimoto
et al., 2014; Hu et al., 2017), and weakly super-
vised data (Hashimoto, 2019; Zuo et al., 2021b).
Recently, some methods have leveraged Pre-trained
Language Models (PLMs) for the ECI task and
have achieved promising performance (Kadowaki
et al., 2019; Liu et al., 2020; Zuo et al., 2020).
To deal with implicit causal relations, Cao et al.
(2021) incorporate external knowledge from Con-
ceptNet (Speer et al., 2017), and Zuo et al. (2021a)
learn context-specific causal patterns from external
causal statements.

2.2 Document-level ECI

Following the success of sentence-level natural lan-
guage understanding, many tasks are extended to
the entire document, such as relation extraction
(Yao et al., 2019), natural language inference (Yin
et al., 2021), and event argument extraction (Ma
et al., 2022). DECI poses new challenges to cross-
sentence reasoning and the lack of clear causal
indicators. Gao et al. (2019) propose a feature-
based method that uses Integer Linear Program-
ming (ILP) to model the global causal structures.
DSGCN (Zhao et al., 2021) uses a graph inference
mechanism to capture interaction among events.
RichGCN (Tran Phu and Nguyen, 2021) constructs
an even graph and uses GCN (Kipf and Welling,
2017) to capture relevant connections. However,
noise may be introduced in the construction of
edges and the interdependency among event pairs
is neglected. ERGO (Chen et al., 2022) builds a re-
lational graph and model interaction between event
pairs. Although intuitive, some meaningful event
relations such as coreference are ignored. Com-
pared with them, CHEER could capture high-order
interactions among event pairs automatically while
being compatible with prior event relations. More-
over, we consider the centrality of events to conduct
global reasoning.
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Figure 2: An overview of our proposed Centrality-aware High-order Event Reasoning Network (CHEER).

3 Methodology

Given document D and all its events, DECI is to
predict whether there is a causal relation between
any two event mentions ei and ej in D. As shown in
Figure 2, our proposed CHEER includes four main
components: (1) Document Encoder to encode
the document and output contextualized represen-
tations of events; (2) Event Interaction Graph
that builds a graph including event nodes and event
pair nodes for document-level reasoning. (3) Event
Centrality Incorporation that incorporates event
centrality information through two aspects. (4)
EIG Reasoning Network that improves the qual-
ity of event and event pair representations by con-
ducting inference over EIG, and then combines two
types of node embeddings for final classification.

3.1 Document Encoder
Given document D = [xt]

LD
t=1 where D can be of

any length LD, the document encoder aims to out-
put the contextualized document and event repre-
sentations. Almost arbitrary PLMs can serve as
the encoder. In this paper, we leverage pre-trained
BERT (Devlin et al., 2019) as a base encoder to
obtain the contextualized embeddings. Following
conventions (Chen et al., 2022), we add special
tokens at the start and end of D (i.e., “[CLS]”
and “[SEP]”), and insert additional special tokens
“<t>” and “</t>”’ at the start and end of all the
events to mark the event positions. Then, we have:

H = [h1, h2, ..., hLD ] = Encoder([x1, x2, ..., xLD ]), (1)

where hi ∈ Rd is the output embedding of token xi.
Then, we use the embedding of the token “[CLS]”
for document representation and the embedding of
the token “<t>” for event representation.

Considering BERT’s original limits that it cannot
handle documents longer than 512, we leverage a
dynamic window mechanism to deal with it. Specif-
ically, we divide D into several overlapping spans
according to a specific step size and input them into
BERT separately. For the same event occurring in
different spans, we calculate the average of all the
embeddings of the corresponding token “<t>” to
obtain the final event representation hei for event i.

3.2 Event Interaction Graph

Our EIG could not only performs high-order in-
ference among event pairs but also be compatible
with prior event relations. Specifically, given all
the events of document D, we formulate EIG as:
G = {V, E}, where V is the set of nodes, E is the
set of edges. There are two types of nodes in V:
the nodes for a single event V1 and the nodes to
represent a pair of events V2. Each node in V2 is
constructed by combining any two events of D.

For global inference, we introduce three main
types of edges in E : (1) (Event pair) - (event pair)
edges E1 for two event pairs that share at least one
event, e.g., the green line of (FIRE, collapsed)-
(collapsed, repairs) in Figure 2, which is motivated
by the causal transitivity described in Introduction;
and (2) Event - (event pair) edges E2 for an event
pair and its corresponding two events, e.g., the pink
line of FIRE-(FIRE, collapsed) in Figure 2. (3)
Event - event edges E3 for prior event relations ob-
tained by external knowledge or tools (this type
of edge is optional). Take coreference edges as an
example (the yellow line of FIRE-fire in Figure 2),
they are helpful for causal reasoning, since there is
no causal relation between coreference events them-
selves. Moreover, coreference events shall have the
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same causal relations between other events, which
is so-called coreference consistency. Therefore,
both coreference consistency and causal transitivity
can be regarded as a kind of high-order reasoning.

3.3 Event Centrality Incorporation
Considering the centrality of events is based on
the motivation that the central event should play
a more important role in global inference. In this
section, we introduce two aspects for incorporat-
ing event centrality information into our model.
First, we propose centrality-aware event embed-
dings, which could be used to predict whether an
event is a central event. Obtained the contextual-
ized event embeddings hei output by the document
encoder, we perform the following two different
centrality encoding modules:

Position Centrality Encoding which assigns
each event an embedding vector cpos ∈ Rd ac-
cording to which sentence the event locates in the
document. We initialize the vector randomly for
each position. The motivation is central events of-
ten appear in the front of the document to summa-
rize the core gist. For example, in Figure 2, the first
sentence of the document outlines the main context
of story and contains the central event FIRE.

Degree Centrality Encoding which assigns each
event an embedding vector cdeg ∈ Rd according
to the degree of its corresponding event node in
EIG. We initialize the vector randomly for each
degree. Intuitively, central events are throughout
the document with many repeated mentions. Thus,
central events will have a greater degree. For exam-
ple in Figure 2, the degree of central event FIRE is
greater than that of event collapsed, due to it has
two coreference events blaze and fire.

As the centrality encoding is applied to each
event, we directly add it to the event contextualized
embeddings. Formally, for an event ei and its corre-
sponding embedding hei , the final centrality-aware
event embeddings is obtained by:

cei = hei + cpos(ei) + cdeg(ei), (2)

where cpos, cdeg are obtained by the position and
degree centrality encoding of ei, respectively.

Central Events Prediction and EIG Enhance-
ment Once obtained the centrality-aware event
embeddings, we use them to predict whether an
event is a central event: pei = f (ceiWc), where
f denotes the sigmoid function, Wc ∈ Rd×1 is

the parameter weight matrix. if pei is greater than
0.5, we will regard ei as a central event. Then, we
increase the type of edges in E : we further divide
the event - (event pair) edges into central event -
(event pair) edges E21 and normal event - (event
pair) edges E22, and so does the event-event edges.
In this way, the interaction of central events on EIG
could have more of a special influence.

Central Events Annotation We manually anno-
tate central events on the public dataset EventSto-
ryLine to investigate the effect of centrality. In
specific, we annotate central events considering the
following rules: (1) the central events should be the
focus of the story; (2) almost all other events de-
scribed in the document should be related to it; (3)
the coreference of central events will be regarded
as central events, too; (4) on the premise of express-
ing the main content of the document correctly and
completely, the number of central events should be
as small as possible. According to the rules, we
have three annotators to complete the task. Each
document was annotated by two junior annotators
independently. If the answers of the two annota-
tors were inconsistent, a senior annotator checked
the answers and made the final decision. The aver-
age inter-annotator agreement is 86.4% (Cohen’s
kappa). For 258 documents of EventstoryLine, we
get 352 central events, of which 166 documents
have one central event, 90 documents have two
central events, and only 2 documents have three
central events (these documents have more than
30 sentences and introduce several independent
events). Then, we use the labels to train the model
to predict central events:

L1 = −
∑

ei∈D
log(pei). (3)

More analysis can be seen in Section 4.5.

3.4 EIG Reasoning Network

In this section, we first describe a general GNN-
based DECI model, then instantiate our implemen-
tation by considering causal structures. Finally, we
provide a unified view for better understanding and
discussing existing models.

A General GNN-based DECI Model To predict
whether there is a causal relation between events
ei and ej , we concatenate “[CLS]” embeddings
of the document, the event features zi, zj , event
pair features zk, and define the probability of being
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causal relation as follows:

pei,j = f ([h[CLS]||zi||zj ||zk]Wp) , (4)

where f denotes the softmax function, ∥ denotes
concatenation, Wp is the parameter weight ma-
trix. Event-related features are typically initial-
ized with contextualized embeddings via PLM in
Section 3.1 and enhanced through L-layer GNN
reasoning. The l-th layer takes a set of node em-
beddings Z(l) ∈ RN×din as input, and outputs a
new set of node embeddings Z(l+1) ∈ RN×dout ,
where N = |V1|+ |V2| is the number of nodes, din
and dout are the dimensions of input and output
embeddings, respectively. Formally, the output of
the l-th layer for node vi can be written as:

z
(l+1)
i = σ


∑

j∈Ni

g
(
z
(l)
i , z

(l)
j

)

 , (5)

where σ denotes non-linearity, Ni denotes the set
that contains all the first-order neighbors of vi, g de-
notes how to aggregate neighborhood information.
By stacking multiple layers L, multi-hop reasoning
could be reached.

EIG Reasoning Network Instantiation

Event & Event-pair Features For an event node
ei, we directly take the centrality-aware event em-
beddings for its initialization:

z
(0)
i = ceiWt, vi ∈ V1, (6)

where 0 denotes the initial state for the following
neural layers, Wt ∈ Rd×2d is a parameter weight
matrix to make event nodes be the same size as the
following event pair nodes for efficient computing.

As for an event pair node (ei, ej) → vk, we
concatenate their corresponding two contextualized
event embeddings as the event pair node features:

z
(0)
k = [hei∥hej ], vk ∈ V2, (7)

EIG Reasoning It is intuitive that different types
of edges represent various semantics contributing
differently to the causality prediction. To handle
this heterogeneity issue, EIG Reasoning Network
incorporates the edge features with a self-attention
mechanism during aggregation. Specifically, let
T denote the number of edge types in EIG. We
incorporate the edge features and learn a scalar
γt (1 ≤ t ≤ T ) for each different type of edge to
measure their importance:

γt = rtWr, (8)

where rt ∈ R1×d is the edge feature specified by
the edge type t, Wr ∈ Rd×1 is parameter vector
according to t. In this way, we could adaptively ad-
just the interaction strength between two adjacent
nodes by weighing different types of connections
with γt. γt will be automatically learned.

Figure 2 illustrates an example of the entire pro-
cess of CHEER (here we take a sub-graph of EIG
for brevity). Different colors of edges indicate dif-
ferent connection types in EIG. Edges with the
same color (i.e., the same edge type) will use the
same γt. Each layer has its own set of γ(l)t . Then
we could instantiate the aggregation function g as:

g
(
z
(l)
i , z

(l)
j

)
= f(γ

(l)
t + α

(l)
ij )(z

l
jW

(l)
v ), (9)

where f denotes the softmax function, W(l)
v ∈

Rdin×dout is the parametwer weight matrix. αij

is computed by a shared self-attention mecha-
nism (Vaswani et al., 2017) to measure the im-
portance of neighbor j to i, where Wq,Wk ∈
Rdin×dout are parameter weight matrices:

αij =
(ziWq)(zjWk)

T

√
dout

. (10)

As shown in Figure 2, the above process can be
organized as a matrix multiplication to compute
representations for all the nodes simultaneously
through a weighted adjacency matrix. Denote Aij

as the (i, j)-element of the binary adjacency matrix
A, Aij is 1 if there is an edge between nodes vi and
vj or 0 otherwise. We could compute each entry of
the edge-aware adjacency matrix as follows, where
δij = f(γ

(l)
t + α

(l)
ij ) is the normalized weight:

A
′(l)
ij = δijAij , (11)

Figure 2 shows that the corresponding neighbor
node features are aggregated with different weights
according to δij to obtain the representation of the
target node. Finally, the node representations of
layer l can be obtained by:

Z(l+1) = σ
(
A

′(l)Z(l)W(l)
v

)
. (12)

3.5 Training
Following ERGO (Chen et al., 2022), we adopt the
focal loss (Lin et al., 2017) to alleviate the false-
negative issue (i.e., the number of negative samples
during training far exceeds that of positives). We
adopt the β-balanced variant of focal loss, which
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introduces a weighting factor β in [0, 1] for the
class “positive” and 1− β for the class “negative”.
The loss function L2 can be written as:

L2 = −
∑

ei,ej∈D
βei,j (1− pei,j )

τ log(pei,j ), (13)

where τ is the focusing hyper-parameter, β is a
weighting hyper-parameter and its value is related
to the ratio of positive and negative samples.

Besides, we find that predicting causal and coref-
erence relations jointly brings benefits. A support
point for this is that these two types of relations are
mutually exclusive. Thus, we leverage the coref-
erence information and perform a ternary classi-
fication training, i.e., to predict the label of each
sample as a causal relation class, a coreference re-
lation class, or no relation class (negative samples).

The final loss function combines event central-
ity and causality learning, where λ is a hyper-
parameter:

L = λL1 + L2, (14)

3.6 A Unified View of GNN-based DECI
Methods

CHEER is a general framework that first constructs
a document-level graph, then incorporates event
centrality, and finally conducts reasoning on the
graph. In this section, we discuss the difference
between CHEER and previous GNN-based DECI
methods. Note that only CHEER considers joint
training, and we do not discuss loss function here.

(1) RichGCN (Tran Phu and Nguyen, 2021) has
only event nodes and uses vanilla GCN’s aggre-
gation function: g

(
z
(l)
i , z

(l)
j

)
= zljW

(l)
v . By re-

moving: i) event centrality incorporation, ii) event
pair nodes and their relevant edges, iii) edge fea-
tures and self-attention mechanism, CHEER could
degenerate into RichGCN’s framework.

(2) DSGCN (Zhao et al., 2021) has only
event nodes and uses a combination of GCNs:
g
(
z
(l)
i , z

(l)
j

)
=

∑K
k=1 αkz

l
jW

(l,k)
v , where αk de-

notes a feature filter. By removing: i) event cen-
trality incorporation, ii) event pair nodes and their
relevant edges, iii) edge features and modifying g
accordingly, CHEER is scalable to DSGCN.

(3) ERGO (Chen et al., 2022) has only event-
pair nodes and performs self-attention aggregation:
g
(
z
(l)
i , z

(l)
j

)
= f(α

(l)
ij )(z

l
jW

(l)
v ). By removing i)

event centrality incorporation, ii) event nodes and
their relevant edges, and iii) edge features, CHEER
could degenerate into ERGO’s framework.

Therefore, by modifying the event centrality in-
corporation, the construction of EIG, and the aggre-
gation function, CHEER can degenerate into differ-
ent GNN-based DECI methods, and thus provide a
unified view for better document-level reasoning.

4 Experiments

4.1 Experimental Setup

Datasets Details We evaluate CHEER on two
widely used datasets. EventStoryLine (version
0.9) (Caselli and Vossen, 2017) contains 22 topics,
258 documents, and 5,334 events. Among them,
1,770 intra-sentence and 3,885 inter-sentence event
pairs are annotated with causal relations. Follow-
ing Gao et al. (2019), we group documents ac-
cording to their topics. Documents in the last two
topics are used as the development data, and docu-
ments in the remaining 20 topics are employed
for 5-fold cross-validation. Causal-TimeBank
(Mirza, 2014) contains 184 documents and 6,813
events. Among them, 318 event pairs are anno-
tated with causal relations. Following Tran Phu
and Nguyen (2021), we employ 10-fold cross-
validation and only evaluate ECI performance for
intra-sentence event pairs because the number of
inter-sentence event pairs in Causal-TimeBank is
quite small (i.e., only 18 pairs). EventStoryLine
provides ground-truth event coreference chains, but
Causal-TimeBank does not. To solve this, we have
preprocessing steps on Causal-TimeBank. We first
perform pre-training on EventStoryLine, and then
use the pre-trained model to extract coreference
data for Causal-TimeBank. We also use the Stan-
ford CoreNLP toolkit (Manning et al., 2014) for
a supplement. After the preprocessing steps, we
add event-event coreference edges E3 to EventSto-
ryLine and Causal-TimeBank. We perform a joint
training in Section 3.5 on EventStoryLine. In eval-
uation, we only report and compare the prediction
results of causal relations with baselines.

Implementation Details We set the dynamic
window size in Section 3.1 to 256, and divide docu-
ments into several overlapping windows with a step
size of 32. We implement our method based on the
Pytorch version of Huggingface Transformer (Wolf
et al., 2020). We use uncased BERT-base (Devlin
et al., 2019) as the document encoder. We optimize
our model with AdamW (Loshchilov and Hutter,
2019) using a learning rate of 2e-5 with a linear
warm-up for the first 8% steps. We apply layer nor-
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malization (Ba et al., 2016) and dropout (Srivastava
et al., 2014) between the EIG reasoning network
layers. We clip the gradients of model parameters
to a max norm of 1.0. We perform early stopping
and tune the hyper-parameters by grid search based
on the development set performance: dropout rate
∈ {0.1, 0.2, 0.3}, focusing parameter τ ∈ {0, 1,
2, 3}, weighting factor β ∈ {0.25, 0.5, 0.75}, loss
weight λ ∈ {0.1, 0.2}. Our model is trained on an
NVIDIA RTX 2080 GPU with 24GB memory.

Evaluation Metrics We adopt Precision (P), Re-
call (R), and F1-score (F1) as evaluation metrics,
same as previous methods (Tran Phu and Nguyen,
2021) to ensure comparability.

4.2 Baselines

We compare our proposed CHEER with various
state-of-the-art SECI and DECI methods.

SECI Baselines (1) KMMG (Liu et al., 2020), a
mention masking generalization method using ex-
tenal knowledge. (2) KnowDis (Zuo et al., 2020),
a knowledge-enhanced distant data augmentation
method to alleviate the data lacking problem. (3)
CauSeRL (Zuo et al., 2021a), which learns context-
specific causal patterns from external causal state-
ments. (4) LearnDA (Zuo et al., 2021b), which
uses knowledge bases to augment training data.
(5) LSIN (Cao et al., 2021), which constructs a
descriptive graph to leverage external knowledge.

DECI Baselines (1) OP (Caselli and Vossen,
2017), a dummy model that assigns causal re-
lations to event pairs. (2) LR+ and LIP (Gao
et al., 2019), feature-based methods that construct
document-level structures and use various types of
resources. (3) BERT (our implementation) a base-
line method that leverages dynamic window and
event marker techniques. (4) RichGCN (Tran Phu
and Nguyen, 2021), which constructs a document-
level interaction graph and uses GCN to capture rel-
evant connections. (5) ERGO (Chen et al., 2022),
which builds a relational graph and model inter-
action between event pairs. We compare with its
BERT-base implementation for fairness. Due to
DSGCN (Zhao et al., 2021) does not provide re-
sults on benchmark datasets and does not release
codes, we do not compare with it here.

4.3 Overall Results

Since some baselines can not handle the inter-
sentence scenarios in EventStoryLine, and the

Model EventStoryLine Causal-TimeBank

P(%) R(%) F1(%) P(%) R(%) F1(%)

OP 22.5 98.6 36.6 - - -
LR+ 37.0 45.2 40.7 - - -
LIP 38.8 52.4 44.6 - - -

KMMG[◦] 41.9 62.5 50.1 36.6 55.6 44.1
KnowDis[◦] 39.7 66.5 49.7 42.3 60.5 49.8
LSIN[◦] 47.9 58.1 52.5 51.5 56.2 53.7
LearnDA[◦] 42.2 69.8 52.6 41.9 68.0 51.9
CauSeRL[◦] 41.9 69.0 52.1 43.6 68.1 53.2

BERT[◦] 47.8 57.2 52.1 47.6 55.1 51.1
RichGCN[◦] 49.2 63.0 55.2 39.7 56.5 46.7
ERGO[◦] 49.7 72.6 59.0 58.4 60.5 59.4

CHEER[◦] 56.9 69.6 62.6 56.4 69.5 62.3

Table 1: Models’ intra-sentence performance on
EventStoryLine and Causal-TimeBank, the best results
are in bold and the second-best results are underlined.
[◦] denotes models that use pre-trained BERT-base en-
coders. Overall, CHEER outperforms previous SOTA
methods with a significant test at the level of 0.05.

Model Inter-sentence Intra + Inter

P(%) R(%) F1(%) P(%) R(%) F1(%)

OP 8.4 99.5 15.6 10.5 99.2 19.0
LR+ 25.2 48.1 33.1 27.9 47.2 35.1
LIP 35.1 48.2 40.6 36.2 49.5 41.9

BERT[◦] 36.8 29.2 32.6 41.3 38.3 39.7
RichGCN[◦] 39.2 45.7 42.2 42.6 51.3 46.6
ERGO [◦] 43.2 48.8 45.8 46.3 50.1 48.1

CHEER[◦] 45.2 52.1 48.4 49.7 53.3 51.4

Table 2: Model’s inter and (intra+inter)-sentence per-
formance on EventStoryLine.

number of inter-sentence event pairs in Causal-
TimeBank is quite small (i.e., only 18 pairs). Thus
we report the results of intra- and inter-sentence
settings separately.

Intra-sentence Evaluation From Table 1, we
can observe that: (1) CHEER outperforms all the
baselines by a large margin on both datasets, which
demonstrates its effectiveness. (2) Compared with
feature-based methods OP, LR+, and LIP, models
using PLMs far boost the performance, which ver-
ifies that BERT could extract useful text features
for the ECI task. We notice that OP achieves the
highest Recall on EventStoryLine, which may be
due to simply assigning causal relations by mim-
icking the textual order. This leads to many false
positives and thus a low Precision.

Inter-sentence Evaluation From Table 2, we can
observe that: (1) CHEER greatly outperforms all
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Model Intra Inter Intra
+ Inter

CHEER 62.6 48.4 51.4
w/o event centrality 60.3 46.3 49.3
w/o edge features 61.4 47.6 50.4
w/o coref 60.8 46.9 50.1

Table 3: F1 results of ablation study on EventStoryLine.

the baselines under both inter- and (intra+inter)-
sentence settings. This demonstrates that CHEER
can make better document-level inferences via our
effective modeling over EIG. (2) the overall F1-
score of the inter-sentence setting is much lower
than that of the intra-sentence, which shows the
challenge of DECI where events scatter in the doc-
ument without clear causal indicators. Specifically,
the BERT baseline could achieve competitive per-
formance under the intra-sentence setting. How-
ever, it performs much worse than LIP, RichGCN,
ERGO, and CHEER under inter-sentence settings,
which indicates that a document-level structure
or graph helps capture the global interactions for
causal relation prediction.

4.4 Ablation Study

To analyze the effect of each main component
proposed in CHEER, we consider evaluating the
following ablated models on the EventStoryLine
dataset. As shown in Table 3: (1) Effect of Event
Centrality (w/o event centrality), which removes
event centrality incorporation introduced in Sec-
tion 3.3. Removing event centrality leads to in-
formation loss from the document to the graph.
The performance degradation proves our contribu-
tion to preserving the event centrality information.
(2) Effect of Edge Features (w/o edge features),
which does not incorporate the edge features in
Section 3.4 and thus the learnable scalar γt is re-
moved in aggregation function. We can see that re-
moving the edge-aware scalar clearly decreases the
performance, which validates the necessity of cap-
turing the semantic information of different edge
features in EIG. (3) Effect of Coreference (w/o
coref), which removes the E3 edges in EIG and
does not use the ground-truth coreference chains
as auxiliary training labels. The results indicate
that the prior coreference information is helpful for
the DECI task and supports us to unify event and
event-pair graphs.

Figure 3: DECI performance of using different ways
of event causality incorporation and the according F1
results of central event prediction.

4.5 Event Centrality Investigation

We further analyze the role of central events in the
DECI task and the effect of our incorporation ways.

4.5.1 Role of Central Events
In Figure 3, the histograms represent the F1 results
of CHEER under intra/inter/intra+inter settings on
EventStoryLine. Three different groups represent
three different ways of event causality incorpora-
tion, and the lines represent F1 results of central
events prediction under three ways: (1) w/o event
centrality, which removes the event centrality in-
corporation introduced in Section 3.3; (2) CHEER,
the original incorporation way; (3) w/ g-t central
events, which preserves centrality-aware event em-
beddings as event node features initialization but
uses ground-truth central event labels to distinguish
edge types. It can be seen that the F1 result of
our central event classification reaches nearly 80%,
which is feasible and still has space for improve-
ment. We also observe that compared with using
ground-truth labels, the inaccuracy of event cen-
trality prediction limits the performance of DECI.
Nevertheless, the performance of event centrality
prediction could be higher by using more advanced
encoding methods.

4.5.2 Case Study
In this section, we conduct a case study to further
illustrate an intuitive impression of CHEER and
choose the SOTA baseline ERGO for comparison.
In Figure 3, we show a piece of text with five events,
where quake is the central event (with a corefer-
ence earthquake) We notice that: (1) ERGO cannot
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(quake, destroying)

(quake, die)(die, destroying)

quake destroying

(quake, destroying)

(quake, die)(die, destroying)

quake destroying

‘Several die’ in south Iran quake
Novemer 27 , 2005
A powerful earthquake has hit southern Iran, destroying
several villages and killing at least three people and
injuring others , according to reports.

CHEERERGOGTEvent PairNo.

YesYesYes(quake, die)1

NoNoNo(die, destroying)2

YesNoYes(quake, destroying) 3

YesNoYes(earthquake, die)4

0.28
0.12

0.17 0.080.12 0.10

0.14
0.09

… …

Figure 4: A case study of CHEER.

achieve the coreference consistency (No.1 and 4
event pairs), but CHEER could solve this explicitly
by introducing prior relations and joint training. (2)
ERGO could suffer from the false negative issue
(No.3 event pair). For example when (quake, de-
stroying) receives positive prediction from (quake,
die) but negative prediction from (die, destroying),
it tends to think the transitivity does not hold and
outputs a wrong prediction. In contrast, CHEER
blocks the propagation over these misleading paths
by making central events take effect. 3) In the bot-
tom graph, we visualize the normalized weights δ
of Equation (11) with (left part) and without event
centrality information (right part). For clarity, we
only show some main nodes and edges here. We
could see that when there is no event centrality
incorporation, the δ values of neighboring nodes
to (quake, destroying) are relatively even, which
makes its prediction disturbed by negative paths,
i.e., information from (die, destroying) node. When
the event centrality is incorporated, (quake, destroy-
ing) pays more attention to the paths where central
events are involved, i.e., quake node and (quake,
die) node. Therefore, CHEER can learn more from
such informative neighbors for the DECI task.

5 Conclusion

In this paper, we propose a novel centrality-aware
high-order event reasoning network (CHEER) to
conduct global reasoning for DECI. We first sum-
marize a general GNN-based DECI model and pro-
vide a unified view for better understanding. Then
we design an Event Interaction Graph (EIG) that
involves prior event relations and high-order inter-
actions among event pairs. Finally, we incorpo-

rate event centrality via well-designed features and
multi-task learning. Extensive experiments show a
great improvement of CHEER for both intra- and
inter-sentence ECI on two benchmark datasets. Fur-
ther analysis demonstrates the effectiveness of each
main component.

Limitations

Although our modeling of event centrality is feasi-
ble and effective, there is still space for improve-
ment. The performance of event centrality pre-
diction could be higher by using more advanced
encoding methods.

Besides, it is meaningful to further explore the
interactions among various types of event relations.
Existing datasets only cover limited relation types
at once, and many works focus on the identification
of causal relations alone. In this paper, although
we further consider the effect of coreference rela-
tions and perform joint classification, there are still
some other relations that can be explored, such as
temporal relations, subevent relations, etc.
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number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4.1 Experimental Setup

C �3 Did you run computational experiments?
4 Experiments

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.1 Experimental Setup

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.3 Overall Results

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4.1 Experimental Setup

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
3.3 Event Centrality Incorporation

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
3.3 Event Centrality Incorporation

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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