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Abstract

Out-of-domain (OOD) intent classification is
an active field of natural language understand-
ing, which is of great practical significance for
intelligent devices such as the Task-Oriented
Dialogue System. It mainly contains two chal-
lenges: it requires the model to know what it
knows and what it does not know. This pa-
per investigates “overthinking” in the open-
world scenario and its impact on OOD intent
classification. Inspired by this, we propose a
two-birds-one-stone method, which allows the
model to decide whether to make a decision on
OOD classification early during inference and
can ensure accuracy and accelerate inference.
At the same time, to adapt to the behavior of
dynamic inference, we also propose a training
method based on ensemble methods. In ad-
dition to bringing certain theoretical insights,
we also conduct detailed experiments on three
real-world intent datasets. Compared with the
previous baselines, our method can not only
improve inference speed, but also achieve sig-
nificant performance improvements. Code is
publicly available.1

1 Introduction

With the increasing popularity of intelligent de-
vices such as the Task-Oriented Dialogue System
and the increasingly open environment they face, it
becomes more and more challenging to accurately
understand the intents behind the utterance of the
users, on one hand, it needs to ensure the accuracy
of In-domain (IND) intents, and on the other hand,
it needs to be able to effectively identify OOD in-
tent. These days, it has became a de facto standard
to take the semantic representation of the last layer
of finetuned Pre-train Models (PTMs) for intent
understanding (Zhang et al., 2021b; Zhou et al.,
2022). However, in the closed-world scenario (i.e.,

∗Corresponding author.
1https://github.com/zyh190507/Dynamic-Ensemble-for-

OOD

(a) Overthinking in BERT (b) Overthinking in ALBERT

Figure 1: Illustration of overthinking in the open-world
scenario. The model becomes more “confident” (Pred
Entropy decreases with the number of layers.), but the
ability to distinguish IND and OOD decreases (the dif-
ference is getting smaller). The results are obtained with
the test set of CLINC-SMALL.

training and test set come from the same distribu-
tion), previous studies have pointed out that PTMs
would be “overthinking” the semantic features of
the sample (Kaya et al., 2019; Zhou et al., 2020),
i.e., the representation of the sample may become
too complex after reaching the last layer through
multiple stacked transformer layers, thus affecting
the final decision of the model.

Naturally, in the open-world scenario (i.e., the
condition of the same distribution is not main-
tained), will the PTMs be “overthinking” the dif-
ference between IND and OOD intents? We want
to explore the evolution of the model’s ability to
distinguish IND and OOD through the forward pro-
cess of two widely used models BERT (Devlin
et al., 2019) and ALBERT (Lan et al., 2020).

To this end, we first attach extra Internal Classi-
fiers (ICs), which also are referred to as off-ramps,
between different internal transformer layers of the
model as shown in Figure 2 (a) and train these in-
ternal classifiers and all transformer layers in two
stages as suggested in Xin et al. (2020). The out-
puts of these classifiers are used to measure the
ability of different layers to distinguish between
IND and OOD, specifically, by comparing the con-
fidence (calculated by maximum softmax probabil-
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ity) or uncertainty (calculated by entropy) outputted
by each layer on In- and Out-of-domain samples.
Ideally, IND should be given higher confidence (or
lower uncertainty) than OOD, and a larger differ-
ence or gap suggests a stronger ability to distin-
guish between them.

The results are shown in Figure 1. There are two
types of curves in Figure 1, where the Pred Entropy
(red) refers to the entropy (average value) of the
sample output by the internal layers of the model,
which is used to measure the certainty in its output.
The curve of “Diff” shows the trend of the varia-
tion in the difference between the average values
of the confidence (blue, and the orange refers to
entropy) of all IND samples and OOD samples as
the number of layers increases. We observe that
with the increase of the number of layers, the model
becomes more “confident” (lower entropy in out-
put), but the ability to distinguish IND and OOD
decreases (the difference is getting smaller) after
reaching a certain peak.

The above experiments show that in the open-
world scenario, PTMs also would be “overthinking”
for the difference between IND and OOD. The
“overthinking” behavior of the model in different
scenarios also inspires us it is unnecessary to for-
ward the last layer to distinguish IND and OOD or
identify a specific class of IND during inference.
To this end, we design an inference strategy to let
the passed ICs dynamic ensemble and let these
ICs vote to determine whether the sample is IND or
OOD and whether they have enough confidence to
exit early (Section 3.2). Furthermore, we introduce
a training method that can adapt to the accurate
and accelerated behavior in the inference stage. On
the one hand, according to the theory of ensem-
ble methods, we can improve the accuracy of IND
recognition of the ensembled ICs by reducing the
redundancy between ICs to increase the diversity
among ICs during the training process. On the
other hand, we can reduce the open space risk by
regulating the recognition behavior of the adjacent
space of each training sample during the training
process to improve the OOD detection capability.

In addition to the theoretical explanation of the
reason for introducing the training method, we also
carry out detailed verification on three challeng-
ing intent datasets. The experiment shows that
our method can not only substantially improve the
accuracy, but also effectively accelerate inference.
We summarize our key insights and contributions

as follows: Firstly, we explore the “overthinking”
phenomenon of the model in the open-world sce-
nario and its impact on the discrimination between
IND and OOD. We hope that these explorations
can inspire follow-up studies. Secondly, we de-
sign a simple but effective inference strategy to
improve the model recognition ability and speed
up the model inference. At the same time, we
also introduce a novel training method to adapt the
inference strategy. Thirdly, detailed experiments
show that compared with the existing methods, our
proposed method can substantially improve the ac-
curacy but also effectively accelerate inference.

2 Related Work

Our work is related to two types of research: OOD
Intent Classification and Early Exiting.
OOD Intent Classification is also known as OOD
detection. Such research can be roughly divided
into two categories according to whether additional
OOD samples are introduced (or synthesized) in
the training process: supervised (The training set
contains additional OOD samples) and unsuper-
vised (there are no additional OOD samples in the
training set). Since supervised methods require
a large number of time-consuming OOD samples
and the constructed OOD samples cannot cover all
OOD classes, this work focuses on unsupervised
methods.

Scheirer et al. (2012) articulate open space risk
as the optimization objective of the task through
establishing a constrained optimization. Open-
Max (Bendale and Boult, 2016) models the output
of the penultimate layer of the network as a specific
distribution (Weibull Distribution) for OOD detec-
tion. MSP (Hendrycks and Gimpel, 2017) uses the
confidence (maximum softmax probability) of the
network to distinguish IND and OOD. DOC (Shu
et al., 2017) connects N binary classifiers at the end
of the network for OOD classification. LCML (Lin
and Xu, 2019) introduces Margin loss to learn more
discriminative semantic features to facilitate OOD
detection. ADB (Zhang et al., 2021b) reduces open
space risk by introducing adaptive boundaries for
each IND class. Lin et al. (2021) extract image
features by virtue of projecting the complexity of
the images onto the network layers to construct
an OOD detector in the domain of computer vi-
sion. Xu et al. (2021) use all the intermediate rep-
resentations of pre-trained transformers to build
an OOD detector. SCL (Zeng et al., 2021) learns
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to adapt to downstream detection features by con-
trastive learning paradigms. KNN-CL (Zhou et al.,
2020) further improves the learned semantic fea-
tures by constraining positive and negative sam-
ples in contrastive learning. Different from the
existing work, our method can dynamically decide
whether to exit early without going through the
whole model during inference, which speeds up the
speed of inference and effectively guarantees the
accuracy of recognition.

Early Exiting It is considered an effective way
to accelerate the speed of inference of large pre-
trained language models (Xin et al., 2020; Zhou
et al., 2020; Liu et al., 2020; Sun et al., 2021).
The mechanism allows samples to exit from some
internal layers of the model in advance to accel-
erate the inference process of the model without
losing accuracy as much as possible. However,
the existing research on Early Exiting is based on
the closed-world scenario. In this work, based on
further elaborating the manifestations of the “over-
thinking” phenomenon in the open-world scenario,
we introduce the Early Exiting mechanism into the
open-world scenario to help improve the model’s
ability to distinguish IND and OOD while acceler-
ating the inference of the model.

3 Proposed Method

3.1 Training Objective
We attach an internal classifier to each layer of
BERT to enable early exiting. Denote Zl as the out-
put distribution generated by the Internal Classifier
(IC) in the l-th layer (lowercase zl to represent the
feature of a specific input sample at layer l), Z1:l as
the joint output of internal classifier from the first
layer to the l-th layer, φ as Inference (ensemble)
strategy.
Training ICs as an Ensemble Before that, we
need to solve a concern. Since the training set
only has data with IND samples, will be trained on
this training set to lead to the model overfit to the
training data and damage the detection of OOD?
Fortunately, Vaze et al. (2021) show that it will not
damage or even improve the recognition of IND,
and even help detect OOD.

Therefore, to accelerate inference without losing
accuracy, we only need to ensure the decision made
by the ensemble constructed by the passed l ICs
can be accurate enough in IND samples, i.e., our
objective is to optimize: min p(φ(Z1:l) ̸= Y ), Y
is the ground truth label. Based on previous stud-

ies (Fano, 1961; Hellman and Raviv, 1970), the
decision error has the following upper bound:

p(φ(Z1:l) ̸= Y ) ≤ Ent(Y )− I(Z1:l;Y )

2
, (1)

where Ent(Y ) is the entropy of random variable Y.
I(Z1:l;Y ) indicates mutual information between
Z1:l and Y . According to the upper bound (1), we
can optimize decision error by maximizing I . How-
ever, due to the exponential combinatorial property
of possible value Z and Y , it is extremely difficult
to calculate I(Z1:l;Y ) directly. We decompose
I(Z1:l;Y ) to obtain a computable lower bound as
suggested in Zhou and Li (2010); Sun et al. (2021):

I(Z1:l;Y ) ≥
l∑

i=1

I(Zi;Y )

︸ ︷︷ ︸
Lrel

−
l∑

i=2

I(Zi;Z1:i−1)

︸ ︷︷ ︸
Lred

, (2)

where
∑l

i=1 I(Zi;Y ) represents the sum of mu-
tual information between Zi and Y , referred to
relevancy, which is utilized to establish the bound
of the internal classifier.

∑l
i=2 I(Zi;Z1:i−1) is de-

fined as redundancy, assessing the interdependence
among classifiers. A diminished value indicates an
elevated scope of dissimilitude among classifiers.

Following Sun et al. (2021), relevancy(Lrel) and
redundancy(Lred) can be defined as −Lce(zi, y)
and −minj<i Lce(zi, zj) respectively. Therefore,
the objective to be optimized as follows:

Lz = −(Lrel − Lred) (3)

= α
L∑

i=1

Lce(zi, y)− β
L∑

i=2

min
j:j<i

Lce(zi, zj),

(4)

where Lce is standard cross-entropy loss. zi is the
internal representation of the input in layer i, and
y is its real label. The α and β represent hyperpa-
rameters for optimization.
Reduce Open Space Risk There is no prior knowl-
edge about OOD as mentioned earlier, we cannot
directly optimize the objective of OOD. Previous
research (Scheirer et al., 2012; Zhou et al., 2022)
has proved that the ability of the model to detect
OOD can be also improved indirectly by reduc-
ing the open space risk. Therefore, in addition to
the above effective training paradigms, we also
propose a way to reduce open space risk. Fol-
lowing Scheirer et al. (2012); Bendale and Boult
(2016), open space risk can be defined as:

RO(f) =

∫
O f(x)dx∫
S f(x)dx

, (5)
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Figure 2: Overview of our proposed method. (a) The training objective consists of two parts of losses: Relevancy
loss (red line), is used to give the bound of the internal classifiers. Redundancy loss (green line), is used to measure
the interdependence between classifiers. (b) During inference, the ensemble composed of the passed classifiers
jointly votes to decide whether to exit early or continue to move forward. See text for details.

where O is the open space, f is a measurable func-
tion that f(x) = 1 (or f(x) > 1) for IND intents,
otherwise f(x) = 0 (or f(x) <= 0), S is whole
semantic space containing the open space O.

Using training samples (IND samples) X , open
space (Bendale and Boult, 2016) can be further de-
fined as O = S−⋃

z∈X σ(z), σ(z) is the minimum
semantic space around the feature z.

RO(f)(↓) =
∫
O f(x)dx∫
S f(x)dx

=

∫
S−⋃

σ(z) f(x)dx∫
S f(x)dx

= 1−
∫
⋃

σ(z) f(x)dx∫
S f(x)dx

= 1−
X∑

z

∫
σ(z) f(x)dx(↑)∫

S f(x)dx

(6)
According to Eq.(6), to reduce the open space

risk, only need to increase
∫
σ(z) f(x)dx. Intu-

itively, according to the definition of f , we only
need to make the semantic space around the input
feature z be recognized as IND as far as possible.
However, even in the infinitesimal space enclos-
ing z, there exist a boundless number of sample
points. As such, we select representative sample z̃
that are hard to be differentiated by the classifier to
make their labels consistent with the label of z (i.e.,
recognized as IND). Inspired by adversarial exam-
ples (Zhu et al., 2020), z̃ is satisfied the following
requirements:

z̃ = z + τ∗, τ∗ = argmax
∥τ∥≤ε

Lz+τ . (7)

Final finetune Objective By bringing z̃ into Eq.(4),

we can get the loss Lz̃:

Lz̃ = α̃

L∑

i=1

Lce(z̃i, y)− β̃

L∑

i=2

min
j<i

Lce(z̃i, z̃j).

(8)

The final finetune objective as follows:

Lobj = Lz + Lz̃. (9)

An overview of the whole training process can refer
to Figure 2(a).

3.2 Inference Strategy
During inference, each internal classifier through
which the input sample xi passed will give a cor-
responding prediction, the prediction of the l-th
internal classifier Ŷl as follows:

Ŷl =

{
OOD, G(zli) < θl,

argmaxk∈[K]Hk(z
l
i), G(zli) ≥ θl.

, (10)

where G is the scoring function (LOF (Breunig
et al., 2000) is used in this paper) whose value is
used to distinguish IND (>= θl) and IND (< θl). zli
is the feature of xi as layer l. H is softmax function.
K is the number of IND intents.

The final decision is determined by the joint
vote of all the internal classifiers which the sample
has passed through. Only when a certain class
(OOD or specific IND class) reaches or exceeds the
preset threshold, the model will specify the class
as the final result and early exit. At l-th layer, the
inference strategy generalizing Sun et al. (2021) is
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as follows:

φ(Ŷ1:l) =
maxk∈H

{∑l
j=1 I(Ŷj = yk)

}

lγ
, (11)

where H is the set including IND categories and
OOD (H=[K] ∪ {OOD}), γ ∈ [0, 1) is a hyper-
parameter. When φ(Ŷ1:l) is greater than a certain
threshold, the sample exits at the current l-th layer
and is given an IND label (i.e., k) or recognized as
OOD. See Figure 2(b) for the inference.

4 Experiments

4.1 Datasets
To verify the effectiveness and universality of our
proposed method, we conducted exhaustive experi-
ments on three widely used intent datasets. These
datasets are summarized as follows:
CLINC-FULL (Larson et al., 2019) is a very pop-
ular dataset, which encompasses a broad range of
intents, totaling 150 across 10 domains. The entire
dataset consists of 22500 in-domain samples and
1200 Out-of-domain samples.
BANKING (Casanueva et al., 2020) is a kind of
dataset about the banking business, with 77 cate-
gories. The data is characterized by the imbalance
of samples in different categories. The training set,
validation set, and test set contain 9003, 1000, and
3080 samples respectively.
StackOverflow (Xu et al., 2015) is a dataset about
programming languages released by Kaggle.com.
The dataset is subdivided into 20 categories and
has 20000 samples. The number of samples in the
training set, validation set, and test set is 12000,
2000, and 6000 respectively. The detailed statistics
of datasets are listed in Table 1.

4.2 Baselines
We compare with the following mainstream OOD
intent classification methods: Softmax, MSP
(Hendrycks and Gimpel, 2017), DOC (Shu et al.,
2017), SEG (Yan et al., 2020), LMCL (Lin and
Xu, 2019), OpenMax (Bendale and Boult, 2016),
ADB (Zhang et al., 2021b), SCL (Zeng et al., 2021),
KNN-CL (Zhou et al., 2022). The above baselines
are described in detail in Related Work (Section 2).

For a fair comparison, BERT is the backbone net-
work of all methods (The other backbone is also ex-
plored in Appendix C). We supplement the results
of ADB (Zhang et al., 2021b), SCL(GDA+LOF)
and KNN-CL (Zhou et al., 2022) based on their

released codes, which are considered the state-of-
the-art OOD classification methods at present, on
three datasets. The other baselines adopt the results
reported in respective papers.

4.3 Evaluation Metrics
We follow the metric adopted in previous
work (Zhang et al., 2021b; Zeng et al., 2021; Zhou
et al., 2022) and regard all OOD classes as a single
rejected class. Accuracy and F1-score are calcu-
lated in the same way as Zeng et al. (2021); Zhou
et al. (2022). F1-IND and F1-OOD represent
macro F1-score values of IND and OOD classes re-
spectively. To measure the overall effectiveness of
the model, we also calculate the accuracy score and
macro F1-score on all classes (including all IND
and OOD classes) and denote them as ACC-ALL
and F1-ALL respectively.
For the efficiency savings of the inference, we fol-
low the settings in the research literature about
early exit (Xin et al., 2020; Zhou et al., 2020; Liu
et al., 2020; Sun et al., 2021). The specific calcula-
tion is as follows:

Speedup =

∑L
l=1 L×Nl∑L
l=1 l ×Nl

, (12)

where L represents the number of layers, Nl is the
number of samples which exit at layer l.

4.4 Experimental Setting
Similarly, following the previous work (Zhang
et al., 2021b; Zhou et al., 2022), after splitting the
dataset into the training set, validation set, and test
set, we randomly retain 25%, 75% of the whole
intent classes as IND classes and the remaining as
OOD class. At the same, the samples with OOD
class are excluded from the training set and pre-
served in the test set. All datasets undergo in the
same processing to ensure the absence of OOD
samples in the training set. For each configuration,
we conduct at least three rounds of experiments
with different random seeds and report the final
average value.

We employ the widely adopted BERT model
(bert-uncased, 12-layer transformer) provided
by the Huggingface Transformers2. We fine-
tune the model with the most commonly recom-
mended hyperparameters. We adopt AdamW opti-
mizer (Loshchilov and Hutter, 2019) and try learn-
ing rate in {1e-5, 2e-5, 5e-5, 5e-6}, the training

2https://github.com/huggingface/transformers
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Dataset Classes |Training| |Validation| |Test| Vocabulary Length (Avg.)

CLINC-FULL (Larson et al., 2019) 150 15100 3100 5500 8288 8.32
BANKING (Casanueva et al., 2020) 77 9003 1000 3080 5028 11.91
StackOverflow (Xu et al., 2015) 20 12000 2000 6000 17182 9.18

Table 1: Statistics of CLINC-FULL, BANKING and StackOverflow datasets. || denotes the total number of
utterances. Length indicates the average length of each utterance in the dataset.

batch size in {16, 32}, the epochs 30 or 50. We
fix the α and α̃ as 1.0, and fix the β and β̃ as 0.1.
We choose LOF (density-based and independent of
the assumption of any distribution) as our detection
method. According to Zhou et al. (2022), there is
no distance to calculate LOF (Breunig et al., 2000)
that is more advantageous than others. In this paper,
we choose Cosine distance to calculate LOF. We
use the same method as suggested in Zhou et al.
(2022) to select the threshold of LOF by validation
set. In addition, we also conduct experiments on
other detection methods, such as KNN (Sun et al.,
2022), to verify the generality and effectiveness of
our method. All experiments are conducted on the
NVIDIA GeForce RTX 3090 Graphical Card with
24G graphical memory.

4.5 Main Results
Table 2 shows the comparison between our method
and baselines on BANKING and StackOverflow
datasets, while the comparison between our method
and baselines on CLINC-FULL is shown in Table 3.
We highlight the best of all methods in bold. On
the whole, our method can effectively improve the
speed of inference on the premise of ensuring the
accuracy of IND and OOD recognition.

Firstly, we observe the results in Table 2. We
notice that our method performs particularly well
on the BANKING dataset. With a speed-up ratio of
more than 2 times, our method can not only ensure
the accuracy of IND recognition but also effectively
detect OOD, which fully demonstrates our method
is both fast and good. The same phenomenon oc-
curs in the comparison of the Stackoverflow and
CLINC-FULL (Table 3) datasets. Under different
settings, we exceed the existing baselines in all
indicators. At the same time, We also maintain
excellent inference efficiency.

On closer observation, we find that when the
acceleration significantly increases, the effect also
significantly improves, such as in BANKING and
Stackoverflow(75%) datasets, and when the accel-
eration slows down, the effect also slows down,
such as in CLINC-FULL(25%). This seems to

(a) Performance of Different Layers (b) Performance of Different Layers

(c) Distribution of Exiting Samples (d) Distribution of Exiting Samples

Figure 3: Plots showing (Top) Performance of Different
Layers and (Bottom) Distribution of Exiting Samples
in (BANKING-25% (left) and BANKING-75%(right)).
The Top shows the comparison of F1-ALL between
each layer of the model and our method. The Bottom
shows the distribution of exiting samples over the layers.

show that the later the decision of the model is
made, the closer the effect will be to the last level.
This also verifies the necessity of introducing dy-
namic decision-making. The model itself can make
decisions independently without needing to rely
on the last layer to make decisions. We also con-
duct experiments with other backbone networks,
see Appendix C for results.

5 Analysis

5.1 A Closer Look at Internal Layers
Performance of Different Layers To better and
more effectively show the effect of our method in a
more fine-grained way, we have shown the perfor-
mance of each layer of the model and the result of
our method as shown in Figure 3(a)(b). First of all,
we observe a more general form of “overthinking”.
After an internal layer of the model reaches the
best performance, the performance begins to fluctu-
ate, or even begins to decline(Figure 3(a)). At the
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Methods
BANKING StackOverflow

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

25%

MSP 43.67 50.09 41.43 50.55 1.00× 28.67 37.85 13.03 42.82 1.00×
DOC 56.99 58.03 61.42 57.85 1.00× 42.74 47.73 41.25 49.02 1.00×
OpenMax 49.94 54.14 51.32 54.28 1.00× 40.28 45.98 36.41 47.89 1.00×
Softmax 57.88 58.32 62.52 58.10 1.00× 46.17 50.78 42.52 51.83 1.00×
LMCL 64.21 61.36 70.44 60.88 1.00× 47.84 52.05 49.29 52.60 1.00×
SEG 51.11 55.68 53.22 55.81 1.00× 47.00 52.83 46.17 54.16 1.00×
SCL+GDA 83.87 67.94 89.44 66.81 1.00× 82.29 70.92 88.99 67.44 1.00×
SCL+LOF 84.05 74.86 89.01 74.12 1.00× 80.10 78.51 84.45 77.32 1.00×
ADB† 81.37 74.28 86.66 73.62 1.00× 86.69 79.24 90.93 76.91 1.00×
KNN-CL† 86.26 78.19 90.64 77.53 1.00× 92.46 86.96 95.03 85.35 1.00×
Ours 89.000.98 80.351.51 92.700.66 79.701.56 2.41× 93.090.64 87.041.05 95.520.43 85.351.19 1.40×

75%

MSP 75.89 83.60 39.23 84.36 1.00× 72.17 77.95 33.96 80.88 1.00×
DOC 76.77 83.34 50.60 83.91 1.00× 68.91 75.06 16.76 78.95 1.00×
OpenMax 77.45 84.07 50.85 84.64 1.00× 74.42 79.78 44.87 82.11 1.00×
Softmax 78.20 84.31 56.90 84.78 1.00× 77.41 82.28 54.07 84.11 1.00×
LMCL 78.52 84.31 58.54 84.75 1.00× 72.33 78.28 37.59 81.00 1.00×
SEG 78.87 85.66 54.43 86.20 1.00× 80.83 84.78 62.30 86.28 1.00×
SCL+GDA 79.86 85.14 64.49 85.5 1.00× 80.88 84.79 68.83 85.86 1.00×
SCL+LOF 81.56 86.97 65.05 87.35 1.00× 80.92 83.98 71.71 84.79 1.00×
ADB† 79.61 84.66 64.69 85.01 1.00× 81.11 84.40 72.26 85.21 1.00×
KNN-CL† 82.69 87.18 71.17 87.46 1.00× 83.77 86.75 74.65 87.56 1.00×
Ours 85.200.88 88.980.38 74.942.16 89.230.35 1.64× 84.761.96 87.611.14 75.584.57 88.400.91 1.71×

Table 2: OOD classification outcomes at 25% and 75% IND class rates on BANKING and StackOverflow. We attain
the results of ADB (Zhang et al., 2021b) and KNN-CL (Zhou et al., 2022) through running their released codes.
Other baselines are retrieved from Zhou et al. (2022). All reported results are percentages (except SPEEDUP) and
the average over different seeds. The subscripts refer to corresponding standard deviations.

Methods
CLINC-FULL(25%) CLINC-FULL(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

MSP 66.60 51.20 73.20 50.62 1.00× 73.41 81.81 57.83 82.02 1.00×
DOC 64.43 44.60 71.08 43.91 1.00× 74.63 78.63 64.62 78.76 1.00×
OpenMax† 68.50 61.99 75.76 61.62 1.00× 76.80 73.16 76.35 73.13 1.00×
Softmax 76.50 67.74 83.04 67.34 1.00× 86.26 89.01 83.12 89.61 1.00×
LMCL 68.57 62.42 75.61 62.01 1.00× 84.59 88.21 80.42 88.28 1.00×
SEG 72.86 65.44 79.90 65.06 1.00× 81.92 86.57 76.12 86.67 1.00×
ADB† 87.59 77.19 91.84 76.80 1.00× 86.32 88.53 83.92 88.58 1.00×
SCL+GDA‡ 82.82 66.26 60.95 66.41 1.00× 83.14 84.93 84.82 84.94 1.00×
SCL+LOF‡ 86.77 74.42 76.44 74.37 1.00× 81.55 84.04 78.57 84.09 1.00×
KNN-CL‡ 92.11 82.04 95.07 81.69 1.00× 88.18 90.11 86.00 90.15 1.00×
Ours 92.380.26 82.820.28 95.240.19 82.480.29 1.12× 89.320.83 91.030.46 87.411.18 91.060.47 1.67×

Table 3: OOD classification results at 25% and 75% IND classes rates on CLINC-FULL. ‡ signifies the results are
not furnished by SCL and KNN-CL, and we procure them through running their disclosed codes. The baselines
with † are retrieved from (Zhang et al., 2021b), and the remaining baselines are derived from Zhan et al. (2021).
All reported results are percentages (except SPEEDUP) and the average over different seeds different seeds. The
subscripts refer to corresponding standard deviations.

same time, the early exit mechanism introduced in
our method (orange) can effectively alleviate “over-
thinking” and ensure accuracy.
Distribution of Exiting Samples Figure 3(c)(d)
further shows the distribution of exiting samples
in detail. We can observe that most samples can
exit in advance and maintain high accuracy. Fig-
ure 3(c)(d) further verify the effectiveness of our
method, which can not only make samples exit
early but also ensure the accuracy of intent recog-
nition.

5.2 Importance of Training Methods
In this section, we explore the effectiveness of
our training strategy. We compare different train-
ing methods with our method on the premise of
keeping the inference strategy unchanged. Average
(AVG.) refers to directly adding the losses of the
internal classifiers as the training objective. Joint
follows the training method in Zhou et al. (2020)
and adds a weight coefficient to the loss of each
layer. Ensemble is proposed by Sun et al. (2021)
and divides the training loss into two parts, taking
into account not only the relevance but also the
diversity between different layers. See Appendix A
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% Methods
Banking Stack. Clinc

ACC. F1 ACC. F1 ACC. F1

25
Avg. 87.18 77.83 91.78 85.30 89.84 78.89
Joint 87.72 78.37 89.82 83.59 89.30 78.45
Ensemble 88.14 78.89 90.32 82.68 90.64 79.80

Ours 89.00 80.35 93.09 87.04 92.38 82.82

75
Avg. 83.37 87.31 82.86 86.09 85.75 88.00
Joint 82.97 87.20 82.71 86.21 85.93 88.20
Ensemble 83.21 87.35 82.97 85.94 87.55 89.62

Ours 85.20 88.98 84.76 87.61 89.32 91.03

Table 4: Comparison results with different training
methods. F1 is the F1-score for all classes. Detailed per-
formance and discussion are available in Appendix A.
All reported results are the average over different seeds.

% Methods
Banking Stack. Clinc

ACC. Speed ACC. Speed ACC. Speed

25
Random 84.93 1.83× 83.10 1.84× 87.18 1.84×
Concat. 87.06 1.00× 91.88 1.00× 91.29 1.00×
Pabee 87.47 2.04× 92.47 1.27× 91.37 1.59×
Ours 89.00 2.41× 93.09 1.40× 92.38 1.12×

75
Random 82.28 1.83× 80.67 1.84× 86.39 1.84×
Concat. 82.94 1.00× 83.33 1.00× 87.87 1.00×
Pabee 84.58 1.90× 84.19 1.70× 88.51 2.14×
Ours 85.20 1.64× 84.76 1.71× 89.32 1.67×

Table 5: Comparison results with different inference
strategies on different datasets. ACC. is the accuracy
for all classes. Detailed performance and discussion are
available in Appendix B. All reported results are the
average over different seeds.

for specific expressions of different training ob-
jectives. Our training methods are shown in Sec-
tion 3.1. The comparison results are presented in
Table 4. It can be seen from the table that our
method can better adapt to the strategy adopted in
inference. The comparison with Ensemble also
shows the importance of reducing open space risk
(Section 3.1) in our method. Detailed performance
and discussion are the available in Appendix A.

5.3 Effect of Inference Strategy
In this section, we try to shed light on the effective-
ness of our dynamic ensemble inference strategy.
Under the same training strategy, we compare our
strategy with other different inference strategies.
Random means to the sample randomly early ex-
its from a layer (the selection of layers follows
uniform distribution). Concat. refers to concate-
nating the output representations of the internal

layers, and takes the concatenated representation
as the final representation. This approach is based
on the previous research (Clark et al., 2019) that
different layers of the model can capture the seman-
tics of different levels of samples, and the fusion
of different semantic representations may lead to
better representation. Pabee is a widely used in-
ference strategy proposed by Zhou et al. (2020).
Refer to Appendix B for more details on strategies.
The comparison results are presented in Table 5,
from which it can be concluded that our inference
strategy can achieve better results on each dataset.
Detailed performance and discussion are available
in Appendix B.

Figure 4: Effect of combining our method and KNN
(Orange). The baseline is the result of KNN-CL
(Blue) (Zhou et al., 2022).

5.4 Compatible with Other Detection
methods?

In the above experiments and analysis, we have
been using LOF (Breunig et al., 2000) as the OOD
detection method (also known as a scoring func-
tion) and proved the effectiveness of our method
based on it. To verify the generality of our pro-
posed method proposed, i.e., whether it is com-
patible with other detection methods, we try an-
other widely used distance-based OOD detection
method–KNN (see (Sun et al., 2022) for details).
After replacing it with KNN, we compare it with
KNN-CL. As shown in Figure 4, our method also
achieve better results in different datasets, which
further proves the generality of our method.

6 Conclusion

In this paper, we explore whether the model would
be overthinking in the open-world scenario and
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demonstrate how to affect the discrimination be-
tween IND and OOD. On this basis, we propose a
two-birds-one-stone method, i.e., during inference,
let the model independently choose whether to exit
early without going to the last layer, which not only
ensures the accuracy of recognition but also accel-
erates the speed of inference. At the same time,
we also introduce a training method that can adapt
to the dynamic inference of the model. Detailed
experiments and analysis show that our method
can not only accelerate inference but also establish
substantial improvements.

Limitations

To further inspire the follow-up work, we summa-
rize our limitations as follows: 1) We only pre-
liminarily reveal the overthinking phenomenon in
the open-world scenario, and explore how to mit-
igate and utilize it during inference. We do not
continue to conduct more in-depth research on the
broader forms of overthinking in the open-world
scenario and do not explore whether there are dif-
ferences in its performance in different models. In
addition, whether it can be solved or alleviated by
other ways, such as training methods. 2) From the
results of Sections 5.2, 5.3 and the corresponding
Appendix A, B, it seems that there is room for fur-
ther improvement in the speedup of our method.
We leave how to achieve the best accuracy-speed
trade-offs to subsequent research. 3) We have pre-
liminarily verified that our method can be compat-
ible with more detection algorithms and models,
and look forward to exploring more methods and
models.
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Method Loss

Avg.
∑L

i=1 Li
ce

Joint
∑L

i=1 i·Li
ce∑L

i=1 i

Ensemble
∑L

i=1 Li
ce − λ

∑L
i=2minj<i Lij

ce

Table 6: Comparison of different training methods. See
Section 3.1 for our training method.

A More Results on the Comparison of
Training Methods

In this section, we will show more detailed results
of the comparison of different training strategies.
First, we list the detailed training objectives in Ta-
ble 6. Then, In Table 7, Table 8 and Table 9, we
show the detailed comparison results of our meth-
ods and different training strategies on CLINC,
BANKING and StackOverflow datasets. From
the above comparison, we can find that our train-
ing strategy is not only effective but also general,
which achieves better results in all datasets. From
the comparison, our method seems to have room
for improvement in the acceleration of inference,
and we leave how to achieve better accuracy-speed
trade-offs to subsequent research.

B More Results on the Comparison of
Inference Strategy

In this section, we will show more detailed results
of the comparison of different inference strategies.
First, Let us review these strategies again. Random
means to the sample randomly early exits from a
layer, i.e., randomly select a layer of BERT accord-
ing to the uniform distribution, and then the sample
early exits from this layer. Concat. refers to con-
catenating the output representations of the internal
layers and takes the concatenated representation as
the final representation. This approach is based on
the previous research (Clark et al., 2019) that differ-
ent layers of the model can capture the semantics
of different levels of samples, and the fusion of dif-
ferent semantic representations may lead to better
representation. Pabee is a widely used inference
strategy proposed by Zhou et al. (2020) and makes
a decision according to whether the predictions of
the just passed continuous k (called patience) clas-
sifiers (not all classifiers) are consistent, see Zhou
et al. (2020) for details. Then, In Table 10, Table 11
and Table 12, we show the detailed comparison re-
sults of our methods and different inference strate-
gies on BANKING, CLINC, and StackOverflow
datasets.

From the above comparison in tables, we can
find that our inference strategy can achieve better
results in all datasets. The speed-up ratio of Ran-
dom is fixed around the 1.84× because the average
number of exit layers of each sample is fixed equal
to 6.5 in Random strategy so the speed-up ratio
is about 12/6.5 ≈ 1.846. Concat. requires the
output representation of all layers of the model, so
it does not speed up (1.00×). At the same time, we
find that the Pabee strategy can also achieve good
results (compared with KNN-CL in the Table 2 and
Table 3), which also verifies the generality of the
overtaking phenomenon and the rationality of mak-
ing a decision early, which is in line with our ex-
pectations. We also observe that our method seems
to have room for the acceleration of inference, and
we leave how to achieve the best accuracy-speed
trade-offs to subsequent research.

C Compatible with Other Backbone?

In Section 5.4, we have verified that our method
could be compatible with other detection methods.
In this section, we explore whether our method can
adapt to other Backbones. Taking ALBERT (Lan
et al., 2020) as an archetype, we compare our
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Methods CLINC-FULL(25%) CLINC-FULL(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

Avg. 89.84 78.89 93.57 78.49 1.62× 85.75 88.00 83.29 88.04 3.18×
Joint 89.30 78.45 93.19 78.05 1.31× 85.93 88.20 83.52 88.24 1.38×
Ensemble 90.64 79.80 94.13 79.42 1.81× 87.55 89.62 85.28 89.66 1.64×
Ours 92.38 82.82 95.24 82.48 1.12× 89.32 91.03 87.41 91.06 1.67×

Table 7: Detailed comparison results with different training methods in CLINC dataset.

Methods BANKING(25%) BANKING(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

Avg. 87.18 77.83 91.42 77.12 2.37× 83.37 87.31 72.61 87.57 2.79×
Joint 87.72 78.37 91.82 77.66 2.03× 82.97 87.19 71.61 87.47 2.48×
Ensemble 88.14 78.89 92.11 78.19 2.50× 83.21 87.35 71.75 87.63 2.79×
Ours 89.00 80.35 92.70 79.70 2.41× 85.20 88.98 74.94 89.23 1.64×

Table 8: Detailed comparison results with different training methods in BANKING dataset.

Methods StackOverflow(25%) StackOverflow(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

Avg. 91.78 85.30 94.59 83.44 3.00× 82.86 86.09 72.93 86.96 2.66×
Joint 89.82 83.59 93.16 81.68 2.36× 82.71 86.21 71.86 87.17 2.47×
Ensemble 90.31 82.68 93.64 80.49 2.24× 82.97 85.94 73.70 86.75 2.38×
Ours 93.09 87.04 95.52 85.35 1.40× 84.76 87.61 75.58 88.40 1.71×

Table 9: Detailed comparison results with different training methods in StackOverflow dataset.

Methods BANKING(25%) BANKING(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

Random 84.93 75.21 89.84 74.44 1.83× 82.28 86.74 69.72 87.04 1.83×
Concat. 87.06 77.70 91.37 76.99 1.00× 82.94 87.00 72.05 87.26 1.00×
Pabee 87.47 78.94 91.60 78.27 2.04× 84.58 88.59 73.24 88.86 1.90×
Ours 89.00 83.35 92.70 79.70 2.41× 85.20 88.98 74.94 89.23 1.64×

Table 10: Detailed comparison results with different inference strategies on BANKING dataset.

Methods Stackoverflow(25%) Stackoverflow(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

Random 83.10 75.99 88.37 73.51 1.84× 80.67 84.11 69.02 85.11 1.84×
Concat. 91.88 85.43 94.69 83.58 1.00× 83.33 86.05 74.89 86.79 1.00×
Pabee 92.47 86.49 95.07 84.77 1.27× 84.19 87.20 74.58 88.04 1.70×
Ours 93.09 87.04 95.52 85.35 1.40× 84.76 87.61 75.58 88.40 1.71×

Table 11: Detailed comparison results with different inference strategies on Stackoverflow dataset.

Methods CLINC-FULL(25%) CLINC-FULL(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

Random 87.18 71.78 92.11 71.23 1.84× 86.39 88.49 84.00 88.53 1.84×
Concat. 91.29 81.23 94.51 80.87 1.00× 87.87 89.79 85.73 89.83 1.00×
Pabee 91.37 79.64 94.71 79.23 1.59× 88.51 90.16 86.69 90.19 2.14×
Ours 92.38 82.82 95.24 82.48 1.12× 89.32 91.03 87.41 91.06 1.67×

Table 12: Detailed comparison results with different inference strategies on CLINC dataset.

method with the comparable baseline methods. The
comparison results are shown in Table 13, which
demonstrate that our method can also obtain im-

provements while accelerating inference. We es-
tablish preliminary exploration and left research on
other models for future work.
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Methods
BANKING(25%) BNAKING(75%)

ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP ACC-ALL F1-ALL F1-OOD F1-IND SPEEDUP

MSP 42.25 50.40 39.72 50.97 1.00× 74.91 82.50 39.41 83.24 1.00×
DOC 76.80 70.46 82.50 69.83 1.00× 77.92 83.05 64.98 83.36 1.00×
OpenMax 76.91 65.42 83.41 64.47 1.00× 42.66 30.11 45.98 29.83 1.00×
Softmax(LOF) 80.30 72.93 85.81 72.25 1.00× 79.36 84.39 65.47 84.72 1.00×
LMCL 79.74 72.34 85.35 71.66 1.00× 79.27 83.85 66.49 84.15 1.00×
ADB 85.01 60.67 90.82 59.09 1.00× 53.77 55.44 51.00 55.52 1.00×
(K+1)-way 67.63 63.94 73.81 63.42 1.00× 80.49 85.66 64.41 86.02 1.00×
KNN-CL‡ 84.50 75.42 89.41 74.68 1.00× 80.10 85.61 64.29 85.98 1.00×
Ours 87.85 79.08 91.87 78.41 2.33× 81.63 86.70 67.09 87.04 2.51×

Table 13: OOD classification outcome comparisons employing ALBERT. We procure the KNN-CL outcome through
running the codes released in Zhou et al. (2022) (replace the backbone with ALBERT), and the results of the
remaining baselines are attained by running the codes released in Zhang et al. (2021a) (replace the backbone with
ALBERT). All reported results are percentages (except SPEEDUP) and the average over different seeds.
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