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Abstract

Natural language is ambiguous. Resolving am-
biguous questions is key to successfully answer-
ing them. Focusing on questions about images,
we create a dataset of ambiguous examples. We
annotate these, grouping answers by the under-
lying question they address and rephrasing the
question for each group to reduce ambiguity.
Our analysis reveals a linguistically-aligned on-
tology of reasons for ambiguity in visual ques-
tions. We then develop an English question-
generation model which we demonstrate via
automatic and human evaluation produces less
ambiguous questions. We further show that the
question generation objective we use allows the
model to integrate answer group information
without any direct supervision.1

1 Introduction

The ability to ask questions allows people to effi-
ciently fill knowledge gaps and convey requests;
this makes questions a natural interface for interact-
ing with digital agents. Visual question answering
(VQA) models more specifically seek to answer
questions about images, which can be useful in a
variety of settings, such as assistive tech (Bigham
et al., 2010). A number of datasets have been pro-
posed for training VQA models, including VQAv2
(Goyal et al., 2017), VizWiz (Gurari et al., 2018),
and GQA (Hudson and Manning, 2019). Such
datasets are not only useful for training – they rep-
resent the aggregate judgements of speakers on a
variety of factors, including ambiguity.

Ambiguity is a core feature of natural language,
and can exist at all levels of linguistic analysis
(Piantadosi et al., 2012). In the context of data
annotation, ambiguity often leads to disagreement
between annotators. Given that the data resulting
from crowdsourced annotation projects is typically
used in a categorical fashion to train and evaluate

1Code and data: https://github.com/esteng/
ambiguous_vqa

daisy hydrangea

What	species	of	
flowers	are	these?

What	color	of	flowers	
are	these?

VQA	Q:	What	kind	of	flowers	are	these?
Answers

purple

Group	1 Group	2

Underlying	Questions

Figure 1: An ambiguous visual question from our
dataset. Answers are grouped by the underlying ques-
tion they answer, and the question is rephrased for each
group. Answers within a group do not necessarily match,
but do answer the same question.

models, annotator disagreements are problematic.
Past work has often looked at detecting and re-
solving disagreements from the perspective of trust
(Hovy et al., 2013), where some annotators are as-
sumed to be more or less trustworthy. However,
in the case of ambiguity, an annotator’s honest ef-
fort might still lead to disagreement; in such cases,
collecting more annotations can fail to establish a
consensus. This differs from disagreements arising
as a result of mistakes and cheating, where gath-
ering more annotations would effectively outvote
low-quality annotations. Ambiguity in the context
of questions presents a particularly rich problem:
firstly, from a formal point of view, question seman-
tics are an area of active development and debate
(Ginzburg, 2010); this makes empirical accounts of
questions particularly useful. Secondly, questions
are increasingly relevant to natural language pro-
cessing (NLP) research. Many NLP tasks are cast
as question-answering (QA), including a growing
number of tasks which can be cast as few-shot QA.
Against this backdrop, we aim to document and de-
scribe ambiguities in VQA as well as to introduce
a model for resolving them.

Our main contributions are:
1. We examine how ambiguity appears in the

VQAv2 data by constructing a dataset of
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1,820 annotated visual image-question-answer
triples. For each question, we ask annotators
to re-group answers according to the underly-
ing question they answer, and to rewrite ques-
tions to unambiguously correspond to that
group. An example from our dataset can be
seen in Fig. 1. For the ambiguous VQA ques-
tion given at the top, annotators group exist-
ing answers into two topical groups (species
and color). Then, for each group, annotators
rewrite the original question such that it could
be answered by answers from the correspond-
ing group, but not from other groups.

2. We create an ontology of causes for linguis-
tic ambiguity based on the PropBank ontol-
ogy (Kingsbury and Palmer, 2002; Gildea and
Palmer, 2002; Palmer et al., 2005), and anno-
tate our data with these causes.

3. We develop a visual question generation
model which learns to rewrite questions;
we validate this model with the re-grouped
answers and re-written questions from our
dataset. Our model can be used to cluster
answers into their groups without any super-
vision for answer groups.

2 Ambiguity in VQA

In the VQAv2 annotations, each image has multiple
questions, with each question being redundantly an-
swered by up to 10 annotators. This redundancy is
crucial for our annotations, as it provides us with
multiple judgments per question, some of which
may indicate ambiguity. We define ambiguous ex-
amples as ones where annotators are responding to
different underlying questions. Note that this defini-
tion is not exhaustive, as it relies on the annotations;
an example could be ambiguous but have few anno-
tations, resulting in complete agreement between
annotators. We contrast this definition with visual
underspecification and uncertainty, which are cat-
egorized by a lack of visual information needed
to answer a question, rather than ambiguity about
what the question is. These can appear simultane-
ously, e.g. in Fig. 3 where there is both ambiguity
and underspecification.

Fig. 2 gives an example of underspecification,
as the information being queried is absent in the
image and must be inferred. Past efforts examin-
ing reasons for annotator disagreement in VQA
have addressed this distinction: Bhattacharya et al.
(2019) introduce a dataset of 45,000 VQA exam-

not	visible

VQA	Q:	Where	is	the	
white	wine	bottle?

Answers

empty

Figure 2: A visually underspecified question.
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harley	davidson

honda

VQA	Q:	What	make	of	
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dirt	bike

dirtsuzuki

blue	and	white

Figure 3: An underspecified and ambiguous question.

ples annotated with reasons for disagreement, in-
cluding ambiguity and lack of visual evidence as
two separate categories. In practice, however, many
examples labeled as ambiguous (such as Fig. 2) are
cases of underspecification or unambiguous ques-
tions paired with visually ambiguous images. We
use the ambiguous examples from Bhattacharya
et al. (2019) as a starting point for our dataset.

3 Data

To properly study linguistic ambiguity in VQA, we
collect a dataset of ambiguous examples, which rep-
resents a resource for categorizing and analyzing
ambiguous questions and contains 1,820 answers
to 241 image-question pairs. The data contains an-
swers grouped by their underlying questions; there
are 629 rewritten underlying questions. Our dataset
is intended for evaluating models and for perform-
ing analysis, not for training.

The size of the ambiguous subset of VQA
from Bhattacharya et al. (2019) prohibits our re-
annotating the whole dataset, so we create a subset
of data that is likely to be linguistically ambigu-
ous. First, we sort the annotations into a priority
queue using several heuristics. To merge synony-
mous answers (e.g. “cat”, “the cat”, “feline”) we
embed each answer into continuous space using
GloVe embeddings (Pennington et al., 2014), mean-
pooling across words for multi-word answers and
apply K-means (MacQueen, 1967; Lloyd, 1982) to
the resulting embeddings, iteratively increasing the
number of clusters k. Examples are scored by com-
bining the K-means inertia score with a penalty for
each additional cluster, trading off cluster coher-
ence and having as few clusters as possible. These
are subsequently sorted by how balanced their clus-
ters are – balanced clusters are more likely to be
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ambiguous, as unbalanced clusters are often a result
of a single bad annotation. We remove yes-no ques-
tions with only “yes” and “no” answers, as they
answer the same question. Note that we do not in-
clude questions from GQA (Hudson and Manning,
2019) in our dataset. Because GQA questions were
generated from a grammar rather by annotators,
we do not expect there to be as much ambiguity.
Furthermore, GQA questions are not part of the
labeled data from Bhattacharya et al. (2019).

3.1 Annotation Interface

We introduce a new annotation interface for re-
grouping answers and re-writing questions (cf. Ap-
pendix C). We present the annotators with the ques-
tion, image, and answers; answers are pre-grouped
based on the GLoVe K-means cluster assignments
and are drag-able. Each answer cluster is paired
with an editable text-box containing the original
question. For each example, annotators have 3
tasks: first, they must decide whether the answers
provided in the example correspond to different
questions, or whether they all answer the same
underlying question, i.e. whether the question is
ambiguous or not. If an example is identified as
being ambiguous, the second task is to re-group
annotations by the question they answer. Each an-
swer can be dragged into the appropriate cluster or
deleted if it is spam; new clusters can also be cre-
ated, and empty clusters can be deleted. Annotators
were instructed to cluster answers by their underly-
ing question, not by whether they are semantically
similar. For example, antonyms like “good” and
“bad” may be grouped into the same answer cluster.
Finally, in the third task, annotators were asked to
minimally edit the question corresponding to each
created cluster, such that the new question uniquely
corresponds to that cluster of answers. Instruc-
tions were presented to the annotators in text and
video format. A local pilot with two vetted annota-
tors was run to collect data for filtering annotators
on Amazon MechanicalTurk (MTurk). A further
MTurk pilot was run and only annotators with high
agreement to the local annotators were allowed to
participate in further annotation. Note that the local
annotators were unfamiliar with the goals of the
project (i.e. not the authors) and paid by time, not
by number of annotations. See Appendix B for de-
tails on the crowdsourcing process, including wage
information. At least one author manually vetted
all ambiguous examples, discarding noisy exam-

ples and editing questions for fluency. Examples
were eliminated if the question could not be an-
swered from the corresponding image (e.g. Fig. 2),
or if the image had one or fewer viable responses.
Edited questions were changed only to improve the
grammaticality of the rephrased questions; their
content was left unedited.

3.2 Statistics
Of the 1,249 examples run through MTurk, an-
notators skipped 942, identifying 307 as ambigu-
ous. After cleaning these examples we have 241
unique image-question combinations, correspond-
ing to 629 unique rewritten questions (including
the examples from the pilot.) Each rewritten ques-
tion is paired with 1-9 unique answers (mean: 2.9) –
note that questions can have only one answer, since
each example has multiple rewritten questions. We
split our data into 30 dev questions and 211 test
questions.

3.3 Inter-annotator Agreement
We measure agreement on two levels: to what ex-
tent annotators identified the same examples as
ambiguous, and the overlap between clusters of an-
swers. Note that perfect inter-annotator agreement
cannot be expected. Given that the examples we are
interested in were ambiguous to the original set of
VQAv2 annotators, with some seeing one reading
over another, it is likely that some of the annotators
in our task would also see only one reading.

Ambiguity agreement is defined as the percent-
age of examples two annotators both marked as be-
ing ambiguous. This number is averaged across an-
notator pairs. In the local pilot, the annotators had
a pairwise ambiguity agreement score of 79.5%. In
the MTurk pilot, 5 annotators had a mean pairwise
score of 73.5% with a standard deviation of 6.0%
(min 62.5%, max 80.0%). Note that we obtained
redundant annotations only for the local and MTurk
pilot HITs, and not the main data collection HIT.

The cluster agreement between two annotators
is defined as the F1 score between the clusters
of answers produced. Since the clusters are not
aligned a priori, we use the Hungarian algorithm
(Kuhn, 1955) to find a maximum overlap bipartite
matching between clusters from each annotator and
then compute the F1 score between aligned clus-
ters. These scores are averaged across annotator
pairs. The local pilot cluster agreement score was
92.2, and the MTurk pilot’s score was 88.4, with a
standard deviation of 6.0 (min 77.1, max 94.6%).
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Category Property PropB. Description Ex.

Property-
based

Location LOC Asks about an object’s location. B.2.1
Time TMP Asks about the time of an event or the time a picture was taken. B.2.2
Kind N/A Ask about what kind of something an object is. B.2.3

Dynamic

Cause CAU Ask for the cause of an event. B.3.1
Purpose PRP Ask for the purpose of an event. B.3.2
Goal GOL Ask for the goal (location or person) of an object or event. B.3.3
Direction DIR Ask for the path being taken by an object. B.3.3
Manner MNR Ask in what manner an event is happening. B.3.4

Pragmatic
and
Other

Multiple N/A Ask annotators to choose one of multiple options. B.4.1
Grouping N/A Ask annotators to group multiple items. B.4.2
Uncertainty N/A Contain visual uncertainty, especially for questions about events. B.4.3
Mistake N/A These involve bad answers or bad questions/images. B.4.4

Table 1: Ontology of reasons why examples are ambiguous. Examples and details in Appendix B.

3.4 Ambiguity Ontology

After collecting the data, we observed that there
were multiple groups within the ambiguous ex-
amples, corresponding to the factors that made a
question ambiguous. We manually annotated all
ambiguous examples according to the following
linguistically-grounded ontology, which is largely
aligned to PropBank roles (Kingsbury and Palmer,
2002; Gildea and Palmer, 2002; Palmer et al.,
2005). The ontology is divided broadly into 3 cate-
gories. Property-based questions typically have to
do with objects with multiple properties, and relate
to partition question semantics (Groenendijk and
Stokhof, 1984); more information can be found
in Appendix B.1. Dynamic questions are about
dynamic properties of objects or events. Finally,
pragmatic ambiguities mainly relate to ambiguity
in inferring the intention of the questioner, includ-
ing choosing which element of the the world is
most salient. Each category contains several sub-
categories – these are summarized in Table 1 and
described in-depth in Appendix B.

Fig. 4 shows the frequency of each category in
our data, with the most common categories being
location, kind, and multiple options, and shows
the frequency with which pairs of categories co-
occur (excluding pairs that only co-occur once).
Several categories co-occur frequently, indicating
higher-order ambiguity (i.e. ambiguity between
what type of question is being asked). For example
cause and purpose often co-occur; this indicates
that they are often confused for each other, with
some annotators providing answers consistent with
a cause interpretation and others with a purpose
interpretation. Furthermore, that they do not al-
ways co-occur indicates that ambiguity exists even
within one interpretation.
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Figure 4: (Top) Frequency of each category. (Bottom)
Co-occurrence frequency of each category (excluding
frequencies ≤ 1). Some categories are highly correlated,
indicating higher-order ambiguity.

4 Model

The data collected in Section 3 consists of questions
rewritten according to their answer clusters. We
develop a visual question generation (VQG) model
which takes in answers and images and produces
questions. After confirming the performance of the
VQG model for generation generally, we evaluate
the performance of a VQG model with respect to
the answer clusters in our dataset. Specifically, we
examine how the model can be used for clustering
answers within an answer group together. Given
that the answer clusters are based on the underlying
question the answer is answering, we hypothesize
that a good VQG model should not only learn to
generate questions with a high similarity to the ref-
erence questions, but learn input representations
that contain answer group information. Note that
this information would have to emerge in an unsu-
pervised fashion, as we do not provide any answer
group information during training.

We present a simple model for VQG consisting
of a pre-trained vision-language encoder followed
by a pretrained text-to-text encoder-decoder model.
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The encoder embeds an image and an answer into
a shared representation space; the decoder pro-
duces a text question conditioned on this shared
representation. We use ViLT (Kim et al., 2021) as
our vision-language encoder. ViLT is a pre-trained
fully transformer-based 87.4M-parameter model.
The available ViLT model fine-tuned for VQA was
trained on the entirety of the VQAv2 training data;
since the annotations for Bhattacharya et al. (2019)
come from the training set, our annotations also
are sourced from the VQAv2 training set. To avoid
test-set leakage, we fine-tune our own version of
ViLT on a modified training set that excludes our
annotations. Our input to ViLT is the image Ii
and a text answer ai from the set of answers for
instance i, Ai. To generate text, we feed the output
of ViLT to a pre-trained T5-base encoder-decoder
model (Raffel et al., 2020) with ∼ 220M parame-
ters, accessed via Huggingface Transformers (Wolf
et al., 2020). We replace the T5 embedding layer
with the output of our ViLT encoder, and train the
model using all answers in the dataset with “yes”
or “maybe” confidence ratings. We use categorical
cross-entropy loss computed against the original
question Qi as our loss function. Note that the
question Qi is taken directly from the VQAv2 data,
which we refer to as “original data” – we do not
train on the annotations collected in Section 3.

4.1 Lexical Constraints

Underspecification is a major challenge in VQG
evaluation: given an image and an answer, there is
often an intractably large set of questions that could
have generated the answer. For example, in Fig. 1,
the answer “purple” could also correspond to the
question, “What color is the bottle’s base?" Further-
more, even when the question is about the same
topic, there are often a large number of semanti-
cally identical ways to phrase the question which
may have very different surface forms. This poses
a problem for surface-level evaluation metrics like
BLEU. Finally, in our task of rephrasing questions,
similarity is not a perfect predictor of quality. At
one extreme, if the model generated the original
question, it would receive a perfect similarity score
when evaluated against the original question, but
be as ambiguous as before. At the other extreme, as
illustrated in the preceding example, a model may
generate a valid question conditioned on the answer
that has no relation to the original question’s intent.

We attempt to tackle this problem by including

positive lexical constraints from the original ques-
tion in our decoding process. In a normal VQG
setting, this would be impossible, since it requires
the question at test time. However, in our setting,
where the goal is to rephrase visual questions, we
can assume access to questions. To generate a
question on the same topic as the original, we use
fast lexically-constrained decoding (Post and Vi-
lar, 2018) with disjunctive positive constraints (Hu
et al., 2019) during test decoding (+c in Table 2).
We extract all contiguous noun spans from the ques-
tion using Spacy’s part-of-speech tagger (Honnibal
and Montani, 2017); these are added as disjunctive
positive beam search constraints so that the output
contains at least one span. For example, without
constraints, the question “Where are the people sit-
ting?” (answer: “park”) is rewritten “What kind
of park is this?”, while with constraints the model
predicts “Where are the people?”

4.2 Baselines

Due to the difference in our train and validation
data as well as our use of constraints, our results are
not directly comparable to previous VQG models.
We instead compare our model to two baselines:
“no image” (-v) and “no answer” (-t), where we
give our model only the answer and only the image,
respectively. These ablations verify our model’s
integration of multimodal information.

4.3 Training

We use the VQAv2 training set for training, exclud-
ing the examples we annotated, which came from
the train split. Since the answers for the VQA test
split are not public, we use the validation data for
testing and validation. We take 2, 000 questions
pairs for validation and hold out the remaining
∼ 21K for testing. Each model was trained to
convergence, measured by 5 consecutive epochs
without BLEU score improvement, on four NVidia
Quadro RTX 6000 GPUs; training took about 40
hours per model. All models were trained with the
same hyperparameters (cf. Appendix D).

5 Visual Question Generation

Before analyzing performance on our dataset, we
verify that the question-generation model we pro-
posed is able to generate reasonable questions
for the dataset more broadly. Here, we follow
past work in reporting several string-based metrics:
BLEU (Papineni et al., 2002), CIDEr (Vedantam
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et al., 2015), Rouge-L (Lin, 2004) scores. We also
report BertScore (Zhang et al., 2019).

Model BLEU-4 CIDEr ROUGE-L BERT

iVQA∗ 0.21 1.71 0.47 N/A
VT5-v 0.22 1.51 0.45 0.93

VT5-v+c 0.21 1.82 0.47 0.93
VT5-t 0.16 1.00 0.32 0.92

VT5-t+c 0.18 1.51 0.38 0.92
VT5 0.27 1.98 0.48 0.94

VT5+c 0.26 2.21 0.50 0.94

Table 2: Test performance of the VQG model and base-
lines. Our model is able to integrate multimodal infor-
mation and produce high-similarity questions.

Table 2 shows the test performance of the mod-
els tested, with and without constrained decoding.
We see that the proposed generation model outper-
forms both baselines by a wide margin, indicating
that it is successfully integrating information from
both modalities. Furthermore, we see that in all
cases, constraints improve performance; this is un-
surprising, since the constraints force the model to
include more of the reference question’s n-grams.
Finally, we include the performance of the iVQA
model from Liu et al. (2018) in this table; however,
we stress that the numbers are not directly com-
parable, since the training and evaluation data is
different. Nevertheless, they help assert that our
model is within the correct range for VQG.

5.1 Model as an Annotator

In Section 3 we measured the inter-annotator agree-
ment between annotators for clustering. We now
compare the model predictions to these annotations
with the same metric. Specifically, we measure
how well the model’s answer clusters align with an-
notated clusters, assuming access to the number of
clusters given by the annotators. While this is a lim-
iting assumption, it lets us evaluate to what degree
the model’s representations are useful in grouping
answers, independently of whether the clustering
algorithm can infer the right number of clusters.
We hypothesize that the VQG loss will result in
answer representations for answers to the same un-
derlying question being more similar than answer
representations for different underlying questions.

In order to obtain clusters from model represen-
tations, we use the K-means algorithm to group
model representations of each answer ai ∈ Ai.
We then compare the F1 overlap between clusters
produced by the model (and different clustering
baselines) to the clusters produced by annotators

Method Avg. P Avg. R Avg. F1
Human∗ 88.6 91.7 88.4
Random 64.9 70.4 59.4
Perfect P 100.0 50.6 61.1
Perfect R 63.4 100.0 76.3
GloVe initial 98.4 64.3 72.4
ViLT + K-means 65.9 68.6 60.1
VT5 + K-means 81.9 84.0 79.0

Table 3: Clustering metrics; Human results included for
indirect comparison only.

using the method detailed in Section 3. We com-
pare against several simple baselines. The random
baseline randomly assigns answers to K clusters.
The perfect precision baseline puts each answer
in a separate cluster, leading to perfect precision
but poor recall. The perfect recall baseline clus-
ters all of the answers together, leading to perfect
recall but poor precision. We also take the initial
clustering of GloVe vectors with K-means, using
an incrementally increasing K, as described in Sec-
tion 3, as a baseline. For a more direct comparison,
we extract the frozen pre-trained ViLT representa-
tion for the answer tokens and use mean pooling
to combine them into a single vector per answer,
clustering them with K-means for the ViLT+K-
means baseline. Note that the ViLT representation
is frozen and not trained for VQG. This baseline is
contrasted with the VT5 + K-means system, where
we extract mean-pooled answer token representa-
tions from the final layer of our VQG encoder and
use these for clustering with K-means. Gains over
the ViLT baseline reflect the benefits of the VQG
loss combined with the T5 encoder pre-training.

Table 3 shows the clustering results. We see that
VT5+K-means outperforms all baselines in F1, in-
dicating that the representations learned via a VQG
objective contain answer-group information. This
is surprising, as the objective here does not directly
optimize for answer groups; for a given training
example (Ii, ai, Qi), there is a single reference out-
put Qi for all answers, regardless of the group they
are in. However, the grouping information might
be found in the dataset more broadly; when consid-
ering multiple examples with similar answers, an-
swers in the same group may correspond to similar
questions, leading them to be closer in representa-
tion space and thus in the same K-means cluster. In
other words, the encoder representation for a given
answer, having been trained across many similar
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questions and answers, is more similar within an
answer group than across groups.

6 Human Evaluation

The metrics in Section 5 suggest that our model
holds promise as a method for rephrasing ambigu-
ous questions; Table 2 indicates that the model
produces fluent questions conditioned on images
and answers, and Table 3 shows that the model con-
tains some of the requisite information for rewriting
questions according to the answer clusters from hu-
man annotators. However, these automated metrics
fall short of providing a full picture of the qual-
ity of rewritten questions, especially because, as
mentioned before, it is not clear that similarity is a
monotonic measure of success in our case. Thus,
we conduct a human evaluation of 100 rewritten
questions, specifically testing whether rephrased
questions (from annotators and from the model)
are less ambiguous than their original counterparts
from the VQA dataset.

6.1 Methods
Our evaluation paradigm presents annotators with
an 3-way ordinal decision (“yes”, “maybe”, “no”),
rating whether an answer is appropriate given an
image and question. We sample 100 examples from
our dataset; each example is paired with 3 ques-
tions: annotator-generated, model-generated, and
original (from the VQAv2 dataset). The model-
generated questions are taken from the VT5 model
with constraints. For each image-question pair,
we obtain 2 answers – one from the answer group
corresponding to the rewritten question, and a dis-
tractor answer from a different answer group, as de-
termined by the human annotations. In other words,
for the example from Fig. 1, one non-distractor in-
stance in the evaluation HIT would be the image,
the question “What species of flowers are these?",
and the answer “daisy”, while the distractor in-
stance would have the answer “purple”. We would
also have these two answers paired with the ques-
tion “What kind of flowers are these?". An am-
biguous question should be rated as acceptable for
both answers (the actual and distractor), while a
question rephrased to be less ambiguous should be
rated as acceptable for the actual answer but not for
the distractor answer, which corresponds to a dif-
ferent underlying question. Annotators were paid
0.04 per annotation for a total of 600 annotations,
or ∼ $16 per hour, and did not participate in the
main annotation task.

VQA2.0 Human Model
Question Type

0

25

50

75

100
% Acceptable by Question Type

Actual Distractor

location kind manner cause
Ambiguity Type

0

25

50

75

100
% Acceptable by Ambiguity Type (Model Questions)

Figure 5: Percentage of answers rated as acceptable
for each question type (annotator-rewritten, model-
rewritten, original). Error bars represent bootstrapped
95% confidence intervals. Rewritten questions are less
ambiguous (distractor rated as unacceptable) than their
original counterparts. Model questions are generally
less ambiguous across ambiguity categories.

6.2 Results and Analysis

Fig. 5 shows the percentage of answers rated as ac-
ceptable (“yes” as opposed to “maybe” and “no”)
across different conditions. The original, unedited
question shows no significant difference between
the actual and distractor answer, as measured by
McNemar’s test (McNemar, 1947). This is ex-
pected, given that both answers (e.g. “daisy” and
“purple”) were given by annotators in the original
dataset to the original question, and thus are both
likely to be viewed as acceptable. Both types of
edited questions, on the other hand, show a signifi-
cant difference between the actual answer and dis-
tractor answer, indicating that questions rephrased
by annotators and by the model more specifically
select answers from one answer group over, i.e.
they are less ambiguous with respect to the answer
group. The fact that the questions predicted by the
model show only a small drop is promising, as it
indicates that the model outputs are fluent and faith-
ful to the original topic. Nevertheless, the model’s
questions are rated as slightly less acceptable than
the human questions, indicating room for improve-
ment. In the bottom of Fig. 5 we see the percentage
broken out by ambiguity type for the four most fre-
quent types; here, we plot only the model-predicted
sentences. We see that across most types there is a
drop, with model outputs being rated as acceptable
with the true answer, but not with the distractor.
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7 Discussion

While there are many competing accounts of ques-
tion semantics, a general consensus maintains that
the analysis of questions requires an analysis of
the dialogic context in which they exist (Ginzburg,
2010). This differs substantially from the VQA
domain, where questions are being posed and an-
swered outside of a dialogue. Specifically, an-
notators are asked to answer questions in a sin-
gle attempt, with no recourse to follow-up ques-
tions or interactions. One umbrella reason for dis-
agreement and ambiguity in this setting that we
have not explored in our analysis is guided by
the Question-Under-Discussion (QUD) framework
(Roberts, 1996), which frames a dialogue as a se-
ries of moves around asking and resolving QUDs.
In the setting we explore, much of the disagree-
ment seems to be driven by annotators disagreeing
on which QUD to resolve with their response to
the question; it is possible that having additional
context would reduce the disagreement between
annotators by providing additional information. In-
deed, the presence of contextual information is a
key reason given by Piantadosi et al. (2012) for the
existence of ambiguity in communication systems
like natural language: if a listener can reasonably
be expected to reconstruct a speaker’s intended
meaning from the speaker’s utterance combined
with the prior context, then the speaker does not
have to specify the (redundant) contextual informa-
tion in their utterance, lowering their effort. Given
the artificial nature of the VQA annotation setting,
with one set of annotators producing questions and
another answering them in a single turn, it is unsur-
prising that ambiguities arise.

Similarly, the rewritten questions from our
dataset and our rewriting model can be framed
as questions specifying which QUD is being re-
solved by a given answer. This is especially true
of property-based questions, where the QUD influ-
ences which property is used to partition the space
of possible answers (cf. Appendix B.1).

7.1 Limitations

Our primary limitation is the size of our collected
dataset; we have collected a quality dataset which
we demonstrated is useful for analysis, but which
is too small for training large-scale neural models.
However, Section 5 indicates that a training-size
dataset may not be necessary, as our question gener-
ation model is capable of capturing answer groups

without explicit supervision. Another limitation
on our dataset is the relative subjectivity of the
task; in completing the annotation, we found that
identifying ambiguity and isolating the different
underlying questions often involves a Gestalt shift.
Once an interpretation of the question is chosen, it
becomes increasingly hard to see any other. This
makes the annotation task subjective; where one
annotator might see ambiguity leading to multiple
valid answers, another might see one correct an-
swer group and a number of invalid ones. Thus,
the annotations in our dataset represent a high pre-
cision subset (rather than a high-recall subset) of
all the possible ambiguous datapoints. This sub-
jectivity also risks introducing annotator bias (in-
cluding the author’s own biases) into the data; we
acknowledge that the vetting steps by the authors
may have compounded this further. We are also
limited by the quality of the underlying data. Our
dataset builds on the VQAv2 dataset (Goyal et al.,
2017) and the annotations from Bhattacharya et al.
(2019), both of which were large-scale annotation
efforts intended for training. Due to their scale,
individual datapoint quality is often quite low; this
was one factor contributing to the need for post-hoc
cleaning in the annotation process.

7.2 Future Work

In addition to addressing these limitations, we leave
exploiting the rewriting model to future work. In
Table 2 and Fig. 5 we demonstrated that our ques-
tion rephrasing model works well for producing flu-
ent questions that reduce ambiguity. Furthermore,
in Table 3 we showed that the model’s represen-
tations contain information about the underlying
question being asked, even though this information
is not directly present in the training data and we
do not include any supervision from our dataset.
Future work could examine utilizing the rephras-
ing model in a search-engine environment, where
users are actively querying about images. Given an
ambiguous question identified and a set of answers
to it from a VQA model, our model could be used
to rephrase the question according to each answer.
Just as a presenter will often rephrase a question
from the audience, the model might present the user
with the rephrased question it is actually answering,
which would result in better interpretability. This
improved interpretability might teach users how to
interact with the model.
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8 Related Work

8.1 Ambiguity
Ambiguity in question-answering has been ex-
plored in the past: Min et al. (2020) introduce
AmbigQA, a dataset of ambiguous open-domain
questions paired with disambiguated rewrites. Our
dataset differs in its domain: we address visual
questions. Additionally, many of the ambiguities
in AmbigQA are a result of background knowledge
and changing dynamics. This is further explored
by Zhang and Choi (2021), who introduce Situ-
atedQA, a dataset of context-dependent questions
and answers. In contrast, because VQA questions
are closed-domain (i.e. they are typically about an
image, not the world in general) the ambiguities we
explore are more often a result of the language used
in the question, rather than background knowledge
of the annotator. Ambiguity has also been explored
in natural language inference (NLI): Pavlick and
Kwiatkowski (2019) explore annotator disagree-
ment on NLI examples, finding ambiguity to be
one source of disagreement.

8.2 Disagreement in VQA
After the introduction of VQA datasets such as
VQAv2 (Goyal et al., 2017) and VizWiz (Gu-
rari et al., 2018), several papers focused on de-
scribing and diagnosing annotator disagreement
in VQA. One line of work with deep ties to ours
focuses on modeling annotator disagreement. Gu-
rari and Grauman (2017) and Yang et al. (2018)
present models for predicting annotator disagree-
ment, which they use to reduce annotation cost.
They both offer preliminary explorations of the fea-
tures of high-disagreement questions. Bhattacharya
et al. (2019) explore the reasons for disagreement
in greater depth, annotating ∼ 45, 000 examples
for the reason of disagreement; one of the possi-
ble reasons for disagreement is ambiguity. We use
these in our collection (cf. Section 3). However, the
data labelled as ambiguous in Bhattacharya et al.
(2019) covers a range of phenomena, including
visual ambiguity and underspecification, whereas
our focus is specifically on linguistic ambiguity in
visual questions.

8.3 Visual Question Generation
Our work also relates to visual question genera-
tion (VQG). While VQG was first introduced as a
task of generating unconstrained questions about
images (Mora et al., 2016; Mostafazadeh et al.,

2016), subsequent work has explored condition-
ing on images and answers to produce questions,
as in Liu et al. (2018). Li et al. (2018) propose
to generate questions as a dual auxiliary task for
VQA, and Shah et al. (2019) use cycle consistency
between generation and answering for improving
VQA. Some past work has conditioned on partial
answer information: Krishna et al. (2019) condition
on answer categories rather than full answers, and
Vedd et al. (2022) present a latent variable model
which allows answers to be imputed at test-time.
Terao et al. (2020) condition on answer-distribution
entropy; in a similar vein to our work, Terao et al.
focus on VQG for ambiguous questions. How-
ever, Terao et al. define ambiguity according to
the entropy of their trained model and rely on user-
specified entropy values for inference; we define
it in a model agnostic way, according to features
of the input. They also do not distinguish between
linguistic and visual ambiguity.

9 Conclusion

We have presented a dataset of ambiguous VQA
questions, annotated with reasons why they are
ambiguous, as well as answers grouped by the un-
derlying disambiguated question they are answer-
ing. We then introduced a model for rephrasing
ambiguous questions according to their answers,
finding that the model, which is trained purely on
visual question generation, is able to recover infor-
mation about the underlying question. We validate
both our dataset and model using automatic and
human evaluations, where we find that both reduce
question ambiguity.
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A Crowdsourcing

To collect a set of vetted data, a pilot task (or HIT)
was run. A local annotator was paid $15 for one
hour of annotation time (including watching the
instruction video). The same annotations were then
annotated by one of the authors. During this phase,
the authors themselves ensured that there was no
personally identifiable or offensive material in the
data. From this data, we generated a set of exam-
ples for a pilot HIT to be run on Amazon’s Mechan-
icalTurk (MTurk).

To identify high-quality MTurk annotators, we
ran pilot HIT of 41 examples from the local anno-
tations, with 28 examples marked as ambiguous in
the pilot and 13 examples marked as unambiguous
(e.g. skipped). Workers were restricted to be lo-
cated in the US. The annotations were presented
sequentially, so that annotators had to complete all
41 examples to complete the HIT. Annotators were
paid $0.10 per example and received a 100% bonus
for completing all examples ($8 per HIT, roughly
$16 per hour of annotation).

From the pool of MTurk annotators who com-
pleted the pilot, we identified the top annotators.
We then presented them with 850 examples in a
non-sequential format, where each annotator could
do as many as desired. No examples were flagged
as offensive in this stage. Two annotators com-
pleted the task, which paid $0.10 per example, with
an $8 bonus for every 300 examples. This corre-
sponded to roughly $16 per hour.

B VQA Ambiguity Ontology

B.1 Question Semantics

Formal semantics often focuses on variants of truth-
conditional semantics, where knowing the meaning
of an utterance is equated to knowing the condi-
tions that would make the utterance true (Davidson,
1967). This account handles propositions well;
however, evaluating the truth conditions of ques-
tions, an equally central feature of human language,
seems more challenging. A rich literature has ex-
plored the meaning of questions (Hamblin, 1958;
Belnap and Steel, 1976; Groenendijk and Stokhof,
1984, i.a.); for the purposes of this overview, we
will briefly touch on one proposal which is of partic-
ular relevance to several categories outlined in Sec-
tion 3.4. Under the partition semantics proposed by
Groenendijk and Stokhof (1984), the meaning of a
question is a set of utterances which partition the

set of possible worlds. This is best illustrated with
an example: assuming there were only two people
in the whole universe (“John” and “Mary”), then
the meaning of the question “Who walks?” is the
partition induced by the propositions “Only John
walks”, “Only Mary walks”, “Both walk”, “Nei-
ther walks”. Each cell in the partition contains all
possible worlds where the proposition is true, i.e.
the “John walks” cell might contain a world where
he walks outside, or on a treadmill, or one where
the moon is made of cheese.

This proposal will describe a core feature of one
type of disagreement we find. In certain cases,
different answerers may have a different set of
propositions in mind, leading to incompatible par-
titions. For example, given a picture of a blue
children’s tshirt, the question, “What kind of shirt
is this” might be answered with “blue”, “child’s”,
or “small”. In each of these cases, the partition
function may be different, i.e. the “blue” answer is
given as opposed to other colors, while the answer
“child’s” stands against “adult”. In these cases, dif-
ferent partition functions define different sets of
alternatives, leading to a variety of answers.

B.2 Property-based

Property-based ambiguities stem from annotators
choosing to report different properties of objects
or events with multiple properties. As mentioned,
these relate closely to Groenendijk and Stokhof
(1984)’s question semantics, where the meaning of
a question is defined as a partition over possible
worlds, and where different meanings would result
in different partitions. For example, in Fig. 8, the
annotator who says “white” is partitioning accord-
ing to colors (e.g. “white sweater” as opposed to
“blue sweater” or “black sweater”) while the annota-
tor who says “long sleeve” is partitioning possible
worlds according sleeve style.

There are three sub-classes of property-based
ambiguities: location, kind, and time.

B.2.1 Location

Location maps to the PropBank tag ARGM-LOC.
Answers here typically differ in terms of frame-of-
reference, tracking with the observations of Viethen
and Dale (2008). (Back to table)
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Figure 6: Question: Where is the fan? Answers: “on
table”; “[l]eft side of counter in kitchen”

B.2.2 Time
This category maps to the PropBank tag
ARGM-TMP. Answers often differ in terms of gran-
ularity and frame-of-reference (e.g. “morning”,
“breakfast time”, “8am”). (Back to table)

Figure 7: Question: What time of day is it? Answers:
“morning”; “4 o’clock”

B.2.3 Kind
These do not map to PropBank, and ask about what
type or kind of something an object is. Answers
differ in terms of property class chosen. (Back to
table)

Figure 8: Question: What kind of top is she wearing?
Answers: “white”; “button up to”; “sweater”; “long
sleeve”

B.3 Dynamic

Dynamic questions are typically about properties
of dynamic objects or events. Annotators often
disagree on the type of question being asked (e.g.
cause vs. purpose), as well as the underlying ques-

tion within a type. These questions commonly
correspond to “why” and “how” questions.

B.3.1 Cause
Maps to ARGM-CAU. These ask for the cause of
an event. Since cause and purpose are often am-
biguous (Chapman and Kučerová, 2016) annotators
may differ here, and since cause is often under-
specified from a static image, annotators may im-
pute different causes. Even when causes are not
imputed, annotators often may choose one of mul-
tiple causes, or report causes at different levels of
granularity. (Back to table)

Figure 9: Question: Why is this blue and green? An-
swers: “it’s vegetables”; “cold”; “photosynthesis”; “gar-
den”

B.3.2 Purpose
maps to ARGM-PRP. Purpose questions ask for the
purpose of an event, and share their features with
the cause examples. (Back to table)

Figure 10: Question: What is the netting for? Answers:
“baseball”; “ball”; “protect public”; “protect spectators”;
“safety”; “don’t get hit by ball”;

B.3.3 Goal and Direction
Goal maps to ARGM-GOL and asks for the even-
tual goal (location or person) of an object or event.
When the goal is a person, it is often the person who
benefits from an action. Goals are often imputed,
and can often be ambiguous with direction. Di-
rection maps to ARGM-DIR and asks for the path
being taken by an object. This is often ambiguous
with goal, and is also often imputed or dependent
on the frame-of-reference. (Back to table)
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Figure 11: Question: Where is the bus going? Answers:
“station”; “around corner”

B.3.4 Manner

Manner maps to ARGM-MNR and asks in what man-
ner an event is happening. Manner questions can
be ambiguous with cause questions. (Back to table)

Figure 12: Question: How is the plane flying? Answers:
“low”; “engines”; “in air”

B.4 Pragmatic/Other

Pragmatic ambiguities are typically characterized
by an underspecified question which requires the
answerer to infer a preference on the part of the
questioner. For example, in the “Multiple Options”
ambiguity, there are several valid responses, and
different answerers might infer that different op-
tions are more or less salient to the questioner.
None of the pragmatic ambiguities are aligned with
PropBank.

B.4.1 Multiple Options

A common source of disagreement is when anno-
tators are asked to choose one of multiple options.
For example, a question like “what color is X?”
when X has multiple colors will often result in a
variety of answers. Here, the ambiguity is with
respect to the inferred intent of the questioner; the
answerer must infer which option is most salient to
the questioner. (Back to table)

Figure 13: Multiple options ambiguity example. Ques-
tion: What team is the man holding the bat playing for?
Answers: “matadors”; “yankees”

B.4.2 Grouping

Grouping ambiguity often co-occurs with multi-
ple options, and involves grouping several options;
different annotators may include or exclude items
from their groups. (Back to table)

Figure 14: Question: What is on the right of the picture?
Answers: “sky posts”; “mountain”; “electric tower, ski
pole, and mountain top”;

B.4.3 Uncertainty

Many examples contain visual uncertainty, espe-
cially for questions about events, which are inher-
ently hard to capture in a static image. (Back to
table)

Figure 15: Uncertainty example. Question: Where is
the white wine bottle? Answers: “not visible”; “empty”

B.4.4 Annotator mistakes

Some annotators provide bad or unreasonable an-
swers to questions. (Back to table)
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Figure 16: Annotator mistake. Question: How high is
the water? Answers: “2-3 inches”; “rain water”

B.4.5 Bad question/bad image

Some questions are nonsensical and some images
are extremely low quality, making answering any
question about them impossible. (Back to table)

Figure 17: Bad image or data. Question: Which bird
looks about to take off the ground? Answers: “middle
bird”; “left 1”

C Interface

Fig. 18 shows the annotation interface used to col-
lect the dataset. Answers are drag-able objects
and can be moved across columns. New answer
groups can be added. Questions are auto-populated
with the original question and then edited by the
annotator. Skipping opens up a text box with an
auto-populated reason (“All answers to the same
question”) that can be edited.

D Hyperparameters

Models were trained with the AdamW optimizer
(Loshchilov and Hutter, 2018) using a learn rate
of 1e − 4 with linear weight decay of 0.01. The
learn rate followed a linear warmup schedule with
4, 000 warmup steps. The batch size was set to 32
per GPU, leading to an effective batch size of 128.
As fine-tuning ViLT for VQG had no substantial
impact, we freeze the ViLT encoder during training.

E Validation Performance

Table 4 shows the validation performance for all
metrics reported in Table 2. Trends mirror those
seen in the test data.

F License

Code and data will be released under an MIT li-
cense.
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Figure 18: The annotation interface.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L METEOR BERT

iVQA∗ 0.43 0.33 0.26 0.21 1.71 0.47 0.21 N/A
VT5-v 0.47 0.31 0.22 0.16 1.05 0.42 0.41 0.93
VT5-t 0.39 0.21 0.14 0.10 0.48 0.29 0.30 0.91
VT5 0.53 0.37 0.28 0.22 1.51 0.46 0.47 0.94
VT5-v+c 0.47 0.30 0.21 0.15 1.33 0.43 0.45 0.93
VT5-t+c 0.42 0.25 0.17 0.12 0.95 0.34 0.38 0.92
VT5+c 0.53 0.37 0.27 0.21 1.73 0.47 0.50 0.94

Table 4: Validation performance of the VQG model and baselines. Our model is able to integrate visual and textual
information and output questions with high similarity to reference questions.
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