
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 9600–9613

July 9-14, 2023 ©2023 Association for Computational Linguistics

Interpreting Positional Information in Perspective of Word Order

Xilong Zhang1, Ruochen Liu1∗, Jin Liu1, Xuefeng Liang1,2

1School of Artificial Intelligence, Xidian University, Xi’an, China
2Guangzhou Institute of Technology, Xidian University, Guangzhou, China

{xilongzhang,liujin_1}@stu.xidian.edu.cn
{ruochenliu,xliang}@xidian.edu.cn

Abstract

The attention mechanism is a powerful and ef-
fective method utilized in natural language pro-
cessing. However, it has been observed that this
method is insensitive to positional information.
Although several studies have attempted to im-
prove positional encoding and investigate the
influence of word order perturbation, it remains
unclear how positional encoding impacts NLP
models from the perspective of word order. In
this paper, we aim to shed light on this problem
by analyzing the working mechanism of the at-
tention module and investigating the root cause
of its inability to encode positional information.
Our hypothesis is that the insensitivity can be
attributed to the weight sum operation utilized
in the attention module. To verify this hypothe-
sis, we propose a novel weight concatenation
operation and evaluate its efficacy in neural ma-
chine translation tasks. Our enhanced experi-
mental results not only reveal that the proposed
operation can effectively encode positional in-
formation but also confirm our hypothesis.

1 Introduction

In recent years, attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015; Lin et al., 2017)
has made remarkable progress on a wide range
of natural language processing (NLP) tasks, such
as machine translation (Vaswani et al., 2017; Rad-
ford et al., 2018), question answering and language
inference (Devlin et al., 2019). It updates the con-
textual representation of a word by aggregating
information from other words in the context, en-
abling it capture the content-based relevance of
any two words, regardless of the distance between
them.

In contrast to widely used recurrent neural net-
works (RNNs) or convolutional neural networks
(CNNs), attention mechanism suffers from a no-
table disadvantage, i.e. its permutation invari-
ance (Yun et al., 2020). This limitation results in its

∗Corresponding author.

�� �

∑

��

⊙

(a) Weight Sum

�� �

��

⊕

⊙

(b) Weight Concatenation

Figure 1: Illustration of calculating the contextual rep-
resentation of xi with (a) weight sum (b) weight con-
catenation in Transformer’s attention layers. ai is the
attention score vector of xi over other words and V is
the value matrix. ⊙,

∑
, ⊕ are scalar multiplication,

vector sum and vector concatenation respectively. The
weight concatenation combines weighted elements in
accordance with the word order and linearly transforms
the output to its original dimensions. This process serves
to establish positional dependencies throughout a given
sequence.

failure to distinguish sequences with different word
orders. As a result, numerous studies have focused
on encoding positional information of a sequence
for the attention mechanism, such as learnable
fixed-length positional encoding (Gehring et al.,
2017), sinusoidal positional encoding (Vaswani
et al., 2017) and relative positional encoding (Shaw
et al., 2018). Typically, these methods assign posi-
tional embeddings to words at different positions
through vector addition in various indexing man-
ners, such as absolutely indexing and relatively
indexing. However, it remains unclear how the
attention mechanism incorporates positional infor-
mation into a sequence through the addition of
positional embeddings to word embeddings.

Besides, previous studies have probed the in-
fluence of word order perturbation on natural lan-

9600



guage understanding (NLU) tasks (Abdou et al.,
2022; Pham et al., 2021; Clouâtre et al., 2021) to
determine whether these tasks are sensitive to word
order. The findings indicate that some NLU tasks
do require word order information although others
do not. It should also be noted that word order
is particularly important for natural language gen-
erating (NLG) tasks, such as machine translation.
This is because metrics used to evaluate generated
results, such as BLEU (Papineni et al., 2002), are
sensitive to word order. Therefore, word order is a
critical aspect of natural language processing.

In linguistics, grammars can be viewed as ex-
planations for rules or principles of word or-
der (Hawkins, 1990) to some extent. Given a sen-
tence of arbitrary length, a set of positional embed-
dings can be seen as a group of distributed vectors
that represent temporal information (Elman, 1990),
namely word order in the context of language pro-
cessing. This insight motivates us to correlate po-
sitional information with word order, interpret po-
sitional information in perspective of word order,
and comprehend how word order impacts attention
models.

In this paper, we first examine how the attention
module of Transformer works and discover that its
weight sum operation (Figure 1(a)) is the reason
it struggles to encode positional information. Fur-
thermore, this sheds light on how the word order
impacts on NLP models, which means that the im-
pact is achieved by its connection with positional
information.

Based on this finding, we make further modifi-
cations to the attention module’s working mecha-
nism. Our goal is to implicitly encode positional
information in attention module, which we posit
is superior to explicit representation of positional
information, as suggested by Elman (1990). To be
more concrete, we devise a novel weight concate-
nation operation (Figure 1(b)) to calculate the final
contextual representation, as an alternative to the
weight sum operation (Figure 1(a)) in the attention
module. To test the effectiveness of this approach,
we evaluate the novel operation on the widely used,
big neural machine translation datasets, including
WMT 2014 English⇒German and WMT 2014
English⇒French. Our experimental results demon-
strate that the proposed operation is capable of
effectively encoding positional information for a
sequence, leading to consistently improved perfor-
mance and verifying our hypothesis.

2 Background

2.1 Attention Mechanism
In this section, we provide a brief introduc-
tion about the attention mechanism in Trans-
former (Vaswani et al., 2017). To simplify, we
consider attention layers only with a single head
rather than multiple heads. Also, let s (·) denote
the softmax operator that performs softmax oper-
ation to each row of a matrix. By dropping the
residual connection (He et al., 2016) and the layer
normalization (Ba et al., 2016), the attention layer
can be generally formed as:

Attn (Q,K,V) = s
(
QK⊤/

√
dk

)
V , (1)

Q,K,V = XWQ,XWK ,XWV , (2)

where Q ∈ RL×dq ,K ∈ RL×dk ,V ∈ RL×dv are
packed queries, keys and values respectively, which
are results of affine transformation on the input.
X ∈ RL×d is the embedding result or the hidden
representation of previous layer with L being the
sequence length and d being the model dimension.
dq, dk, dv are the dimension of queries, keys and
values respectively, typically with dq = dk = dv.
WQ ∈ Rd×dq ,WK ∈ Rd×dk ,WV ∈ Rd×dv are
trainable linear projections.

To clearly show the integration of positional en-
codings in Section 2.2, only consider the contextual
result of a single word. Given the embedding result
or hidden representation X ∈ RL×d as input, the
i-th output of the attention mechanism, denoted as
oi, can be calculated as:

oi = s
(
qiK

⊤/
√
dk

)
V =

L∑

j=1

aijvj , (3)

where aij is the attention score of qi over kj and
calculated as:

aij =
exp

(
qik

⊤
j /

√
dk

)

∑L
j=1 exp

(
qik⊤

j /
√
dk

) . (4)

For convenience, define the function a (qi,K) :
Rdq × RL×dk → RL as:

a(qi,K) := s
(
qiK

⊤/
√
dk

)
. (5)

2.2 Positional Encoding Mechanism
To remove the permutation invariance con-
straint (Yun et al., 2020), various positional en-
codings have been proposed and they are usually
integrated into embedding layers (embedding-level)
or attention layers (attention-level).

9601



Embedding-Level Positional encodings at em-
bedding level are added to the embedding results
of a sequence, immediately following the embed-
ding layers. They are usually a set of predefined
or trainable vectors, indexed with absolute position
numbers. After that, the contextual representation
oi can be represented as:

oi = a (xi + bi,X+B) (X+B)WV , (6)

where bi ∈ Rd is the positional embedding for
the i-th word, B ∈ RL×d is the packed positional
embeddings for the whole sequence.

Attention-Level Positional encodings at atten-
tion level are based on an insight into the attention
mechanism. Since they are employed in attention
layers, they can access to both the query and the key.
This enables them to encode positional information
in a more complex manner, such as indexing with
the relative distance between the query and the key.
Taking relative positional encoding (Shaw et al.,
2018) as an example, the contextual representation
oi can be calculated as:

oi =
L∑

j=1

aij
(
vj + rvij

)
, (7)

aij = a(qi,kj + rkij) , (8)

where rkij , r
v
ij ∈ Rdk are trainable positional encod-

ings for the j-th key and j-th value respectively.
These encodings are indexed based on the distance
between xi and xj .

3 Analysis and Method

3.1 Correlation Between Positional Encoding
and Word Order

In this section, we first demonstrate that the atten-
tion mechanism of Transformer is permutation in-
variant and analyse the reason. After that, we show
how to correlate positional information with the
word order of a sequence and perform positional
encoding through preserving word order.

It is straightforward to obtain the permutation
invariance of attention mechanism in Transformer
from Equation (3). Given the input X ∈ RL×d and
the permutation matrix P ∈ RL×L, the permuta-
tion invariance constraint can be demonstrated as
follows:

oi = a (qi,PXWK) (PXWV )

= a (qi,XWK)P⊤PXWV

= a (qi,XWK)XWV , (9)

where s
(
XP⊤) = s (X)P⊤ and P⊤P = I are

used. From Equation (9), it is obvious that the con-
textual representation oi is invariant to whatever
permutation transformations applied to the input.

However, the permutation invariance constraint
does not generalize to RNNs and CNNs, which
compute the contextual representation in a dif-
ferent manner. Therefore, we may focus on the
way of computing the contextual representation in
the attention mechanism. We speculate that the
constraint is a result of the weight sum operation
in Equation (3). In other words, the weight sum in
the attention mechanism eliminates the positional
distinctions among words of a sequence.

Hence, to encode positional information for the
attention mechanism, we place emphasis on how to
keep the word order of a sequence when calculat-
ing the contextual representations of these words.
Following this way, we propose the weight con-
catenation operation as an alternative to the weight
sum operation. We denote the weight concatena-
tion of attention score ai ∈ RL and value matrix
V ∈ RL×dv as ai ⊕ V : RL × RL×dv → RLdv ,
which can be formally represented as:

ai ⊕V = [ai1v1 : ai2v2 : · · · : aiLvL] , (10)

where : represents the vector concatenation.
Then, the contextual representation oi can be

represented as:

oi = (ai ⊕V)Φ , (11)

where Φ ∈ RLdv×dv is a linear projection matrix.
In Equation (11), the value vectors are first

weighted by the corresponding attention scores and
then concatenated, followed by the linear projec-
tion Φ to reduce the dimension of the concate-
nated result to the original dimension. Since Equa-
tion (11) concatenates the weighted value vectors
exactly according to the word order of the sequence,
it is obvious that the attention mechanism is permu-
tation variant now, which can be shown as:

oi = (a (qi,PXWK)⊕ (PXWV ))Φ

=
(
a (qi,XWK)P⊤ ⊕P (XWV )

)
Φ

=
(
a (qi,XWK)P⊤ ⊕ (XWV )P

⊤
)
Φ

(12)

̸= (a (qi,XWK)⊕ (XWV ))Φ , (13)

where PX = XP⊤ is used. Equation (12) means
that the permutation transformation applied to the

9602



input gives rise to a change in the order of both the
attention scores and value vectors. Then the atten-
tion mechanism can not be permutation invariant
any longer (Equation (13)).

Therefore, the weight concatenation implicitly
encodes positional information for attention mecha-
nism. To sum up, the retention of the word order in-
formation prevents the positional information from
being lost during computing the contextual rep-
resentation, which correlates positional encoding
with the word order from a linguistic perspective.

3.2 Positional Kernels

As shown in Section 3.1, the weight concatenation
is proposed to eliminate the permutation invariance
constraint. However, practical space complexity
concerns arise with the weight concatenation since
it requires extending the dimension of each word
vector from dv to Ldv, given a sequence of length
L. Besides, we want to circumvent increasing time
complexity and utilize highly efficient parallel ma-
trix calculation on GPU. Fortunately, both of these
issues can be resolved through factoring the matrix
Φ as:

oi = (ai ⊕V)Φ =

L∑

j=1

aijvjϕj (14)

=
L∑

j=1

aij
(
vjϕj

)
= ai (V ⊗Φ) , (15)

where ϕj ∈ Rdv×dv , j ∈ {1, . . . , L} is a subblock
of Φ.

(
vjϕj

)
means vj is multiplied by ϕj first. ⊗

is the batched matrix multiplication that broadcasts
along the sequence length dimension of V and Φ.
V ⊗Φ can be defined as:

[V ⊗Φ]i := viϕi , (16)

where vi ∈ Rdv and ϕi ∈ Rdv×dv .
In Equation (14), we reshape the matrix Φ ∈

RLdv×dv as a tensor Φ ∈ RL×dv×dv , namely split-
ting Φ into a set of subblock ϕj ∈ Rdv×dv . Mul-
tiplying vj by ϕj first in Equation (15) makes it
possible to apply efficient parallel matrix multipli-
cation through tensor reshaping and broadcasting.
The highly efficient matrix form can be represented
as:

Attn (Q,K,V)

= s
(
QK⊤/

√
dk

)
(V ⊗Φ) . (17)

It is amazing that the attention mechanisms with
matrix blocks ϕj in Equation (17) are highly sim-
ilar to the existing positional encodings in Equa-
tions (6) and (7). Both are position-specific and ca-
pable of encoding positional information, however,
the way that they compute the contextual represen-
tation is totally different. Therefore, ϕj in Equa-
tion (15) can be regarded as a novel positional en-
coding strategy and we dub it as “positional ker-
nel”.

3.3 Positional Encoding Network
In this section, we integrate the proposed positional
kernels into Transformer and demonstrate the ex-
isting positional encodings as special cases of posi-
tional kernels, then develop two types of positional
encoding networks.

Recall that positional encodings (Vaswani et al.,
2017; Shaw et al., 2018) are typically integrated
into the model through adding positional embed-
dings to hidden representations, either in the em-
bedding layers or attention layers. Omitting trivial
distinctions, such as indexing manners, the result
of incorporating positional encodings can be uni-
formly represented as:

Hpe = X+M , (18)

where X ∈ RL×d is the input, M ∈ RL×d is the
positional encoding matrix and Hpe is the hidden
representation after applying the positional embed-
ding M.

Likewise, we apply the proposed positional ker-
nel tensor Φ ∈ RL×d×d to the embedding layers
or attention layers in the following manner:

Hpk = X⊗Φ . (19)

It can be proved that existing positional encod-
ings in Equation (18) can be regarded as special
cases of the method with positional kernels in Equa-
tion (19), which is established as the following
theorem:

Theorem 3.1. Let ϵ > 0, then for any given
X ∈ RL×d and M ∈ RL×d, there exists a
Φ∗ ∈ RL×d×d such that, for f (X) = X ⊗ Φ∗

and g (X) = X+M, ∥f (X)− g (X)∥2 ≤ ϵ.

Remark 3.2. We provide the detailed proof of The-
orem 3.1 in Appendix A.1. To sum up, given
the input X ∈ RL×d and positional encodings
M ∈ RL×d, there exists a set of corresponding
positional kernels ϕj ∈ Rd×d, j ∈ {1, . . . , L},

9603



such that f (X) = X⊗Φ can closely approximate
g (X) = X+M. Therefore, the existing positional
encodings (Equation (18)) can be regarded as spe-
cial cases of the proposed positional kernels (Equa-
tion (19)).

To integrate the positional kernel into Trans-
former and make it work well, we further develop
the corresponding Positional encoding Network
(PosNet) at attention level and embedding level.

Attention-Level In a manner similar to Shaw
et al. (2018), we apply the positional kernel to at-
tention layers to preserve positional information.
Given the input X ∈ RL×d and positional kernel
tensor Φ ∈ RL×dk×dk , the attention mechanism
with PosNet can be represented as follows:

Attn (Q,K,V)

= s
(
QK⊤/

√
dk

)
PosNet (V;Φ) , (20)

where PosNet (·) is the function of the proposed
PosNet, which can be formed as:

PosNet (X;Φ) = σ (X⊗Φ) , (21)

where σ (·) is the non-linear activation function.

Embedding-Level The equivalent implementa-
tion of the weight concatenation in Equation (15)
makes it possible to match vj with ϕj , which en-
lightens us to apply the proposed positional kernel
to the embedding layer. Besides, inspired by the
feed forward network (FFN) in Transformer, we
also use two linear projections to transform the
input to a desired low-dimensional representation
space (Yun et al., 2020). Given the embedding re-
sult X ∈ RL×d and the positional kernel tensor Φ,
the output of PosNet can be formally represented
as:

PosNet (X;Φ) = σ (XW1 ⊗Φ)W2 , (22)

where W1 ∈ Rd×d1 and W2 ∈ Rd2×d are train-
able linear projections. Φ ∈ RL×d1×d2 and we use
d1 = d2 < d to alleviate the increase of parameter
counts.

Residual Connection and Dropout The identity
term in the proof of Theorem 3.1 (Appendix A.1)
indicates that it is also helpful to retain the origi-
nal information, i.e. X in Equations (21) and (22).
This form exactly corresponds to the residual con-
nection (He et al., 2016), which can facilitate the

training of the network. Hence, the residual con-
nection is employed to wrap PosNet modules, both
at embedding level and attention level. Then, Equa-
tions (21) and (22) can be reformed as:

PosNet (X;Φ) = σ (X⊗Φ) +X , (23)

PosNet (X;Φ) = σ (XW1 ⊗Φ)W2 +X .
(24)

Apart from the residual connection, the
dropout (Srivastava et al., 2014) is also applied
to the output of PosNet modules as a regularizer
and immediately followed by the residual connec-
tion, which is also inspired by the delicate design
of Transformer. The dropout rate of the PosNet is
independent from that of Transformer. The illus-
tration of applying the PosNet to Transformer is
available in Appendix A.3.

4 Experiments

4.1 Experimental Setup
Datasets The proposed methods are evaluated on
the widely used machine translation benchmarks,
including WMT 2014 English⇒German (En-De)
and WMT 2014 English⇒French (En-Fr), with
about 4.43 million and 35.76 million parallel sen-
tence pairs for training respectively. For both lan-
guage pairs, the newstest2013 dataset is used as the
validation set and the newstest2014 dataset as the
test set.

Model In all experiments, English, German and
French datasets are tokenized via the scripts in
Moses (Koehn et al., 2007). For all language pairs,
the byte pair encoding (BPE) compression algo-
rithm (Sennrich et al., 2016) is employed to reduce
the size of the vocabulary and enable the model to
translate rare and unknown tokens. The vocabulary
size is set to 40,000 for both En-De and En-Fr trans-
lation tasks. The Adam algorithm (Kingma and Ba,
2015) is used as the optimizer with β1 = 0.9, β2 =
0.98, ϵ = 10−9. The label smoothing (Szegedy
et al., 2016) is adopted as well, with ϵls = 0.1.

We implement all methods on top of
FAIRSEQ (Ott et al., 2019) and follow its
preprocessing and training instructions on neural
machine translation. We take advantage of efficient
half-precision floating point (FP16) arithmetic
for both the training and evaluation stage. To
maintain approximately 25,000 source tokens
and 25,000 target tokens in each training batch
as Vaswani et al. (2017), we limit the number of

9604



System Approach
En-De En-Fr #Params

(En-De)/MBLEU ChrF++ BLEU ChrF++

reported
SAPE 27.3 - 38.1 - -
RPE 26.8 - 38.7 - -

this work

w/o PE 13.49 43.99 22.59 51.45 63.08
SAPE 27.48 53.97 40.46 62.09 63.08
LAPE 24.34 52.15 39.75 61.50 64.13
RPE 27.07 53.65 40.61 62.26 63.37
Adaptive-T5 27.02 53.53 40.36 62.08 63.08
PosNet-Attn 23.12 49.91 36.14 59.17 64.11
PosNet-Embed 27.68 54.05 40.81++ 62.33++ 66.49

Table 1: Machine translation results of Transformer base model, in terms of BLEU and ChrF++ for WMT 2014
En-De and En-Fr on newstest2014 test set. In Tables 1 and 2, ‘++’/‘+’ after scores indicates that the proposed
method is significantly better than the corresponding baseline method (SAPE) at significance level p < 0.05/0.10.

Approach
En-De En-Fr

BLEU ChrF++ BLEU ChrF++

SAPE 28.4 - 41.0 -
RPE 29.2 - 41.5 -

SAPE 28.92 54.86 42.45 63.59
RPE 28.77 54.69 42.25 62.41
PosNet 29.23++ 55.12++ 42.66+ 63.70

Table 2: Machine translation results of Transformer big
models, in terms of BLEU and ChrF++ for WMT 2014
En-De and En-Fr on newstest2014 test set.

tokens in each batch to 4096 and accumulate the
gradients of 8 batches for each update (Ott et al.,
2018). We re-implement all compared methods
and keep experimental sets same for these methods
to ensure a consistent and fair comparison. We run
all experiments with NVIDIA RTX3090 24 GB
GPU cards.

Evaluation We employ beam search with a beam
size of 4 and a length penalty a = 0.6. We evaluate
the performance of models with both the common
used BLEU (Papineni et al., 2002) and recently pro-
posed ChrF++ (Popović, 2017; Marie et al., 2021),
which shows better correlation with human judg-
ments. Besides, we perform statistical significance
test with bootstrap resampling (Koehn et al., 2003).

Compared Methods Compared positional en-
coding methods mainly include

• w/o PE: without any positional encoding, to
provide another reference of positional encod-

ing ability besides the baseline,
• SAPE: sinusoidal absolute positional encod-

ing (Vaswani et al., 2017),
• LAPE: learnable absolute positional encoding,

to evaluate the effect of trainable positional
encoding,

• RPE: relative positional encoding (Shaw et al.,
2018),

• Adaptive-T5: adaptive version of T5’s relative
positional encoding (Wu et al., 2021),

• PosNet-Attn: attention-level PosNet (Sec-
tion 3.3),

• PosNet-Embed: embedding-level PosNet
(Section 3.3).

We provide the relevant codes and scripts1 of
our experiments, which is helpful to reproducibility.
Besides, the datasets2 used in our experiments are
all publicly available.

4.2 Results
Experimental results are shown in Tables 1 and 2
and Figure 2. We make the following observations:

Strong Baseline To isolate the impact of differ-
ent positional encoding strategies from any other
unrelated factors, such as the underlying implemen-
tation detail and experimental configuration, we
re-implement the baseline model (SAPE) and other
compared methods. In comparison to the reported
result (Vaswani et al., 2017), the reproduced base-
line result achieves better performance, especially

1https://github.com/vesterchang/
interpret_positional_encoding

2https://www.statmt.org/wmt14/index.
html

9605

https://github.com/vesterchang/interpret_positional_encoding
https://github.com/vesterchang/interpret_positional_encoding
https://www.statmt.org/wmt14/index.html
https://www.statmt.org/wmt14/index.html


100

120

140

160

180

200

220

T
im
e/
m
s

Figure 2: Time consumed by Transformer base model
with different positional encoding methods to forward
the same manual batch 10 times. AT5 is short for
Adaptive-T5.

on the WMT 2014 En-Fr translation task. This
indicates that the system in this work is a strong
baseline.

Positional Information is Critical To assess the
significance of positional information, we conduct
experiments on Transformer without any positional
encodings (w/o PE). As a result, the performance
decreases drastically. This suggests that positional
information is critical for Transformer, which relies
solely on the position insensitive attention mecha-
nism.

Performance of PosNet The proposed ap-
proaches achieve competitive performance or sta-
tistically significant improvement over the baseline.
Specifically, PosNet-Attn outperforms the w/o PE,
indicating that it effectively encodes positional in-
formation, although it is worse than the baseline.
However, the PosNet-Embed achieves better perfor-
mance in terms of both BLEU and ChrF++ than the
baseline on both of WMT 2014 En-De and En-Fr
translation tasks. This demonstrates the superior-
ity of the PosNet-Embed in encoding positional
information.

Comparison with Other Methods In order to
make a direct and fair comparison with other po-
sitional encoding methods (LAPE and RPE), we
re-implement them and evaluate them with new
metric, i.e. ChrF++. For RPE, we follow the config-
uration in Shaw et al. (2018). As shown in Table 1,
both LAPE and RPE are worse than PosNet-Embed
on both BLEU and ChrF++, which demonstrates
that the PosNet-Embed encodes the positional in-
formation better again.

Computation Complexity of Different Methods
To evaluate the computation complexity of differ-
ent positional encoding methods, we manually con-

26.27 

26.22 

25.99 

26.29 

25.90

26.00

26.10

26.20

26.30

32 64 96 128

B
L

E
U

dim

Figure 3: Effect of the dimension dp of embedding-level
PosNet, evaluated on the validation dataset.

struct a batch of samples and only perform the
forward stage with Transformer base model since
the model with different positional encoding meth-
ods would perform different numbers of decoding
steps in practical translation scenario. We perform
the forward stage with the same batch 10 times and
record the time consumed by the model. As shown
in Figure 2, all methods exhibit similar time com-
plexity, with the exception of the RPE and AT5,
which is obviously more time-consuming.

Furthermore, we conduct an analysis of the
GPU memory consumption of the Transformer
base model with different methods on the WMT
2014 En-De and En-Fr tasks. This is done to deter-
mine their relative space complexity. The results of
this analysis can be found in Appendix A.2, which
demonstrate that all methods exhibit comparable
space complexity, except for RPE, which consumes
more GPU memory on the WMT 2014 En-Fr task.

Scaling to Transformer Big We also implement
these methods in the Transformer big model to
observe the performance when scaling to big mod-
els. As shown in Table 2, the reproduced SAPE
and RPE achieve competitive or better results in
terms of BLEU compared with their reported re-
sults (Vaswani et al., 2017; Shaw et al., 2018). Be-
sides, the PosNet-Embed achieves better perfor-
mance than other methods, especially its statisti-
cally significant improvement on most results with
significance level 0.05/0.10.

5 Discussion

Effect of Positional kernel’s dimension As
stated previously in Equation (22), the positional
kernel tensor Φ has the shape of L× d1 × d2. In
practice, we use d1 = d2 = dp. To further in-
vestigate the effect of the dimension dp, we con-
duct experiments on PosNet-Embed with a series
of varying dp and evaluate the performance of dif-

9606



0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

2 5 8 11 14 17 20 23 26 29

Δ
C
h
rF

n

(a) n-gram chr F2 + 2-gram word F2

0.04

0.06

0.08

0.10

0.12

0.14

1 2 3 4 5 6 7 8

Δ
C
hr
F

n

(b) 6-gram chr F2 + n-gram word F2

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8

Δ
B
L
E
U

n

(c) n-gram word precision

Figure 4: Performance gap of Transformer base model with the proposed method over the baseline method on
WMT14 En-De with different character or word n-grams in (a) (b) ChrF and (c) BLEU.

ferent dp with the BLEU score. Figure 3 shows
the result of ablation experiment on the validation
dataset, i.e. the newstest2013 dataset. Notably,
dp = 96 has a detrimental effect on the perfor-
mance of PosNet-Embed and dp = 128 with the
best performance. Thereby, we conduct the ex-
periments on the PosNet-Embed in Table 1 with
d1 = d2 = 128. Besides, we use d1 = d2 = 256
for the Transformer big model, which is just twice
the size of the base model.

Evaluation with different n-grams The default
evaluation setup is 6-gram character F2 and 2-
gram word F2 for ChrF++, 4-gram word precision
for BLEU. However, since the PosNet preserves
positional information through concatenating the
weighted value vectors, it is intriguing what the
performance is when evaluating with coarser-grain
unit. Therefore, to observe the performance supe-
riority of the proposed method on coarser grain,
we evaluate the performance gap of PosNet-Embed
over SAPE on WMT14 En-De with different n-
grams. Specifically, we test the ChrF with n-gram
character F2 and 2-gram word F2 (1 ≤ n ≤ 30),
the ChrF with 6-gram character F2 and n-gram
word F2 (1 ≤ n ≤ 8), and the BLEU with n-
gram word precision (1 ≤ n ≤ 8) respectively. As
shown in Figure 4, it is amazing that the perfor-
mance superiority of the PosNet-Embed over the
SAPE consistently enlarges as the evaluating grain
becomes coarser, i.e. bigger n-gram character or
word. We speculate that this is attributable to the
weight concatenation of PosNet since the concate-
nation operation promotes the model to capture the
whole context precisely according to the word order
of a sequence, which preserves the coarser-grained
feature.

6 Related Work

Since Transformer relies solely on the atten-
tion mechanism, it is position-insensitive to se-
quences with different word orders in the ab-
sence of positional encodings. Many studies at-
tempt to utilize various positional encodings to in-
ject the sequence’s positional information into the
model. Typically, embedding-level positional en-
codings (Vaswani et al., 2017; Devlin et al., 2019;
Gehring et al., 2017) build positional dependencies
via adding positional encodings to embedding re-
sults. In addition, attention-level positional encod-
ings (Shaw et al., 2018; Raffel et al., 2020; Huang
et al., 2020; Wu et al., 2021) usually capture posi-
tional information based on an analysis of attention
mechanisms and leverage delicate indexing man-
ners, such as the relative distance to the querying
word. However, it is unknown why the attention
mechanism of the Transformer is position agnos-
tic and what the working principle behind these
positional encodings is.

There has been increasing interest in understand-
ing and explaining how these positional encodings
construct positional dependencies for a sequence.
The proof in Yun et al. (2020) suggests that the
key of eliminating Transformer’s permutation in-
variance is to quantify the embedding results to
distinct intervals, which ensures a one-to-one map-
ping. Wu et al. (2021) analysed and improved the
scalar relative positional encoding of T5 (Raffel
et al., 2020) from a probabilistic perspective and
took it as a prior distribution. The difference is that,
in this work, we associate the positional informa-
tion with the word order of a sequence, providing
a novel linguistic perspective on positional encod-
ing. Furthermore, we propose a new and effective
positional encoding mechanism. We perform the

9607



comparison of different positional encoding meth-
ods and the results are in Tables 1 and 2 except
that the theoretical positional encoding scheme in
the proof of Yun et al. (2020) doesn’t work well in
practice and thus are not reported.

7 Conclusion

Positional encoding is a critical issue for
Transformer-like models. However, it has not been
explored how positional encoding builds positional
dependencies for a sequence. In this paper, we
analyse the working manner of the attention mod-
ule and find that its weight sum operation leads to
the failure to encode positional information. Then,
we modify the attention module with a proposed
novel weight concatenation operation, following
the guideline of retaining positional information
according to the word order of a sentence. The
modification correlates a sequence’s word order
with positional information, thus shedding light
on how the word order impacts on NLP models.
Competitive experimental results substantiate our
hypothesis.

Limitations

In this paper, we present a novel approach to re-
move the permutation invariance of the attention
module. Specifically, we propose a weight con-
catenation operation that exactly follows the word
order of a sentence, leading to an increase in di-
mensionality and the introduction of affine transfor-
mations aimed at reducing it. Hence, the effect of
increased parameter counts cannot be well isolated.
While our preliminary experiments show that an
increase in the number of parameter counts does
not necessarily enhance the experimental results,
we acknowledge the increased complexity resulting
from direct concatenation and, thus, have utilized
the equivalent form of the proposed operation in
practice. In the future, we aim to explore alter-
native operations that implicitly encode positional
information based on word order, without resorting
to affine transformations, to replace the weight sum
operation of the attention module.

Acknowledgments

This work was supported by the Provincial Natu-
ral Science Foundation of Shaanxi of China (No.
2019JZ-26). We acknowledge all the anonymous
reviewers for their valuable comments and sugges-
tions.

References
Mostafa Abdou, Vinit Ravishankar, Artur Kulmizev, and

Anders Søgaard. 2022. Word order does matter and
shuffled language models know it. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6907–6919, Dublin, Ireland. Association for
Computational Linguistics.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Louis Clouâtre, Prasanna Parthasarathi, Amal Zouaq,
and Sarath Chandar. 2021. Demystifying neural lan-
guage models’ insensitivity to word-order. CoRR,
abs/2107.13955.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 1243–1252. PMLR.

John A. Hawkins. 1990. A parsing theory of word order
universals. Linguistic Inquiry, 21(2):223–261.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xi-
ang. 2020. Improve transformer models with better
relative position embeddings. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 3327–3335, Online. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

9608

https://doi.org/10.18653/v1/2022.acl-long.476
https://doi.org/10.18653/v1/2022.acl-long.476
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2107.13955
http://arxiv.org/abs/2107.13955
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/https://doi.org/10.1207/s15516709cog1402_1
https://proceedings.mlr.press/v70/gehring17a.html
https://proceedings.mlr.press/v70/gehring17a.html
http://www.jstor.org/stable/4178670
http://www.jstor.org/stable/4178670
https://doi.org/10.18653/v1/2020.findings-emnlp.298
https://doi.org/10.18653/v1/2020.findings-emnlp.298
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 127–133.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos
Santos, Mo Yu, Bing Xiang, Bowen Zhou, and
Yoshua Bengio. 2017. A structured self-attentive sen-
tence embedding. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Benjamin Marie, Atsushi Fujita, and Raphael Rubino.
2021. Scientific credibility of machine translation re-
search: A meta-evaluation of 769 papers. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7297–7306, Online.
Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation. In
Proceedings of the Third Conference on Machine
Translation, Volume 1: Research Papers, pages 1–9,
Belgium, Brussels. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Thang Pham, Trung Bui, Long Mai, and Anh Nguyen.
2021. Out of order: How important is the sequen-
tial order of words in a sentence in natural language
understanding tasks? In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1145–1160, Online. Association for Computa-
tional Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Junshuang Wu, Richong Zhang, Yongyi Mao, and Jun-
fan Chen. 2021. On scalar embedding of relative po-
sitions in attention models. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(16):14050–
14057.

9609

https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://aclanthology.org/N03-1017
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/2021.acl-long.566
https://doi.org/10.18653/v1/2021.acl-long.566
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
http://www.aclweb.org/anthology/W18-6301
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.findings-acl.98
https://doi.org/10.18653/v1/2021.findings-acl.98
https://doi.org/10.18653/v1/2021.findings-acl.98
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N18-2074
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17654
https://ojs.aaai.org/index.php/AAAI/article/view/17654


Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat,
Sashank Reddi, and Sanjiv Kumar. 2020. Are
transformers universal approximators of sequence-
to-sequence functions? In International Conference
on Learning Representations.

Martin Zinkevich. 2003. Online convex programming
and generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th International Conference on
Machine Learning, pages 928–936. AAAI Press.

A Appendix

A.1 Proof of Theorem 3.1

Proof. To make the proof clear and concise, take
into account only the individual word xi. The cor-
responding positional embedding and positional
kernel are mi and ϕi. Let’s ignore the subscript
i which indexes position for simplification if no
confusion is possible and then f (·) and g (·) can
be represented as:

f (x) = xϕ , (25)

g (x) = x+m . (26)

Then, to obtain the conclusion, we reconstruct the
ϕ as ϕ

′
+ I, which exactly corresponds to the

widespreadly used and effective residual connec-
tion (He et al., 2016). Then,

f (x) = x
(
ϕ

′
+ I

)
= xϕ

′
+ x . (27)

The l2 norm is

∥f (x)− g (x)∥2 =
∥∥∥xϕ′

+ x− x−m
∥∥∥
2

(28)

=
∥∥∥xϕ′ −m

∥∥∥
2

(29)

Then, we only need to find a ϕ
′∗ such that, for

ϵ > 0,
∥∥∥xϕ′∗ −m

∥∥∥
2
≤ ϵ.

Let’s take into account the following optimiza-
tion problem:

min
ϕ

′

∥∥∥xϕ′ −m
∥∥∥
2

(30)

Since we adopt stochastic gradient method to train
the network, it is straightforward that if h (x) =∥∥∥xϕ′ −m

∥∥∥
2

is convex, then we can obtain a ϕ
′∗

such that
∥∥∥xϕ′∗ −m

∥∥∥
2
≤ ϵ (Zinkevich, 2003).

Therefore, we have only to prove h (x) is convex.

For any x1,x2 ∈ Rd,

h (x2)− h (x1)− ⟨∆h (x1) ,x2 − x1⟩ (31)

=
∥∥∥x2ϕ

′ −m
∥∥∥
2
−
∥∥∥x1ϕ

′ −m
∥∥∥
2

−

(
x1ϕ

′ −m
)
ϕ

′⊤
∥∥∥x1ϕ

′ −m
∥∥∥
2

(x2 − x1)
⊤ (32)

=
∥∥∥x2ϕ

′ −m
∥∥∥
2

−

(
x1ϕ

′ −m
)(

x2ϕ
′ −m

)⊤

∥∥∥x1ϕ
′ −m

∥∥∥
2

(33)

Since
[∥∥∥x2ϕ

′ −m
∥∥∥
2
·
∥∥∥x1ϕ

′ −m
∥∥∥
2

]2

=

[(
x1ϕ

′ −m
)(

x2ϕ
′ −m

)⊤]2
, (34)

then
∥∥∥x2ϕ

′ −m
∥∥∥
2
·
∥∥∥x1ϕ

′ −m
∥∥∥
2

−
(
x1ϕ

′ −m
)(

x2ϕ
′ −m

)⊤

≥ 0 . (35)

Therefore

h (x2)− h (x1)− ⟨∆h (x1) ,x2 − x1⟩ ≥ 0 ,
(36)

namely

h (x2) ≥ h (x1) + ⟨∆h (x1) ,x2 − x1⟩ . (37)

Now, we have proved that h (x) is convex. Thus,
after training for certain steps with proper learning
rate setting, we can obtain a ϕ

′∗ such that, for
ϵ > 0,

∥∥∥xϕ′∗ −m
∥∥∥
2
≤ ϵ. It is easy to generalize

the proof above when taking into account the whole
sequence, i.e. X ∈ RL×d.

A.2 GPU Memory Consumption
The results of GPU memory consumption is pre-
sented in Table 3. A lower GPU memory consump-
tion translates to reduced space complexity, which
is a desirable trait.

A.3 Illustration of the PosNet
The illustration of applying the PosNet to Trans-
former is presented in Figure 5.

9610

https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
http://www.aaai.org/Library/ICML/2003/icml03-120.php
http://www.aaai.org/Library/ICML/2003/icml03-120.php


Embedding

PosNet

Input

(a) Embedding Layer

Weight Sum

Q K V

PosNet

α

(b) Attention Layer

Dropout & Add

Positional Kernels

X

�

��

��

(c) Embdding-level PosNet

Figure 5: Illustration of applying the PosNet to (a) embedding layer and (b) attention layer. (c) illustrates embedding-
level PosNet. Attention-level PosNet is identical to embedding-level PosNet, excluding W1 and W2. α is the
attention score and σ is the non-linear activation function.

Approach En-De/GB (↓) En-Fr/GB (↓)

w/o PE 6.3 9.4
SAPE 6.4 9.4
LAPE 6.4 9.4
RPE 6.8 10.6
Adaptive-T5 6.4 9.4
PosNet 6.8 9.6

Table 3: GPU Memory Consumption of Transformer
base model with different methods on WMT 2014 En-
De and En-Fr tasks.

9611



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8

�7 A2. Did you discuss any potential risks of your work?
no risks

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
abstract,1

�3 A4. Have you used AI writing assistants when working on this paper?
quillbot, a system providing writing assistance, check grammar mistakes and typo, 1-8

B �3 Did you use or create scientific artifacts?
4

�3 B1. Did you cite the creators of artifacts you used?
4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
datasets and tools used in this paper are widely used and publicly available

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
datasets and tools used in this paper are widely used and publicly available

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
datasets and tools used in this paper don’t include private information or offensive content

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
datasets and tools used in this paper are widely used and publicly available, detailed documentations
are available on the corresponding website.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9612

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9613


