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Abstract

News reports about emerging issues often in-
clude several conflicting story lines. Individual
stories can be conceptualized as samples from
an underlying mixture of competing narratives.
The automated identification of these distinct
narratives from unstructured text is a funda-
mental yet difficult task in Computational Lin-
guistics since narratives are often intertwined
and only implicitly conveyed in text. In this
paper, we consider a more feasible proxy task:
Identify the distinct sets of aligned story actors
responsible for sustaining the issue-specific nar-
ratives. Discovering aligned actors, and the
groups these alignments create, brings us closer
to estimating the narrative that each group rep-
resents. With the help of Large Language Mod-
els (LLM), we address this task by: (i) Intro-
ducing a corpus of text segments rich in narra-
tive content associated with six different cur-
rent issues; (ii) Introducing a novel two-step
graph-based framework that (a) identifies align-
ments between actors (INCANT) and (b) ex-
tracts aligned actor groups using the network
structure (TAMPA). Amazon Mechanical Turk
evaluations demonstrate the effectiveness of
our framework. Across domains, alignment re-
lationships from INCANT are accurate (macro
F1 ≥ 0.75) and actor groups from TAMPA
are preferred over 2 non-trivial baseline models
(ACC ≥ 0.75).

1 Background and Motivation

Discussions about current events in public forums
involve consensus building, with the exchange of
beliefs and perspectives producing competing, of-
ten conflicting, narratives. A person reading these
discussions parses natural language and is able to
tease out and maintain representations of the var-
ious narratives, including the central actors, their
alignments, and the often-contrasting points-of-
view presented by the narratives. Replicating this
type of comprehension in machines by creating in-
terpretable, mathematical representations of narra-

tive structure is a field of continued computational
linguistics efforts (Bailey, 1999; Beatty, 2016). A
narrative is usually modeled as a narrative network
of actors (nodes) and their inter-actor relationships
(edges). This graph building is, however, a chal-
lenging aggregation task since the same narrative
can be expressed in natural language in several
ways. Conversely, a given text span can include
signatures of several underlying narratives.

It is worth noting that a coherent narrative usu-
ally features a small set of critical actors that
emerge through the give and take of online dis-
cussions and provides a distilled representation
of a particular world view. We refer to these key
sets of critical actors that are narratively aligned
to a shared worldview as “actor groups”. Peo-
ple reading or participating in the discussion, in
turn, support or even identify with these story actor
groups, ensuring the persistence of the narrative in
the discussion domain. Identifying these groups
of aligned actors is essential to defining the bound-
aries of a narrative, its current scope and, possibly,
its future viability (i.e. if people do not recognize
actor groups as central to a narrative, that group and
its constitutive members is likely to disappear over
time from the narrative space). We therefore con-
sider the detection of actor groups from text as an
accessible first step in the larger task of estimating
the total narrative structure.

Task: Discovering actor groups from text

Given a corpus of domain-specific free-
form text, construct a model to discover the
actor groups that undergird the disparate
narratives in that domain.

The task of identifying actor groups adds to a
growing body of computational linguistics work
that identifies salient features of the abstracted nar-
rative structure by exploiting the subtle contextual
clues available in free-form text: for instance, In-

8938



siders and Outsiders (Holur et al., 2022), Conspir-
atorial Actors (Shahsavari et al., 2020b), Supern-
odes and Contextual Groups (Tangherlini et al.,
2020), and inter-actor event sequencing (Shah-
savari et al., 2020a; Holur et al., 2021) (see Related
Works Sec. 2 for an extended discussion).
Discovering aligned actors as a means to con-
struct actor groups: A set of mutually aligned
actors forms an actor group. Alignment is subtly
implied via the inter-actor relationships – often a
VERB phrase – in free-range text: Consider, for
example, in the news domain of Gun Regulations
in the United States, a text segment:

{Republicans} −→ are funded by −→ the {NRA}

suggests {Republicans, NRA} are aligned. In con-
trast, another segment,

{Democrats} −→ laid out their anti- −→
{Second Amendment} credentials

implies that “Democrats” are opposed to the “Sec-
ond Amendment” and the two actors {Democrats,
Second Amendment} are disaligned. Tasking a
model to discover alignment relationships, a pro-
cess that comes quite naturally to humans, presents
two distinct computational challenges:
Prob-1 Understanding alignment requires hu-
man experience: The context traces in language
imply but do not explicitly state the alignment
between a pair of actors. From the sample text
concerning Gun Regulations, we observe that the
{NRA and Republicans} were aligned because the
NRA funded the Republican party; it is widely ac-
cepted in American politics that funding signals
support. In another text span, Democrats → en-
courage → Black women and men to vote indicates
{Democrats}, {Black women and men} are aligned
because encouragement is a form of validation.
These alignments are trivial to a reader – that offer-
ing money and emotional support imply alignment;
however, the entire set of phrases that convey align-
ment in natural language is infinite. Finding the
means to map these phrases onto a latent alignment
dimension is a fundamental challenge.

Prob-2 Alignment is transitive across a nar-
rative network: Alignment between one pair
of actors has the capacity to influence the align-
ment across other actor pairs in a process that
echoes the well-known feature of Structural Bal-
ance Theory (Cartwright and Harary, 1956; Davis,
1967): a friend of a friend is a friend while an
enemy of an enemy is a friend, etc. In the Gun

Regulations domain, the pair of alignment rela-
tionships: “Democrats → sought to ban → the
“NRA” (disalignment) and “the Republicans →
supported → the NRA” (alignment) jointly implies
that {Democrats, Republicans} are disaligned, de-
spite the absence of a direct relationship conveying
alignment between them. Consider a third disalign-
ment: “the NRA → opposed → a gun safety law”.
Since, {NRA, a gun safety law} are disaligned
and {NRA, Democrats} are disaligned, according
to transitivity, it follows that {Democrats, a gun
safety law} are aligned. Therefore, modeling this
transitivity requires unifying alignment constraints
across disparate contexts and text spans.

2 Our Approach and Related Work

Computational efforts to address Prob-1 model
human experience by adapting pre-trained large
language models (PLM). These models demon-
strate considerable semantic awareness in several
well-known NLP tasks (a product of the knowledge
embedded in the exhaustive training corpora); Se-
mantic Role Labeling (SRL) (Zhang et al., 2022),
Question-Answering (QA) (Liu et al., 2019a), Sen-
timent Analysis (SA) (Yin et al., 2020), and Lan-
guage Generation (LG) (Floridi and Chiriatti, 2020)
for instance, all make use of pre-training to boost
performance.

The transitivity requirement in Prob-2 is often
addressed by fine-tuning PLMs on biased datasets
containing implicit transitivity constraints (Holur
et al., 2022; Liu et al., 2019a). Fine-tuning weights
encourages generalization across data samples.
However, these fine-tuned models are dataset-
specific and must be retrained for every encoun-
tered domain: an expensive and time-intensive task.
Alternative approaches use models that are trained
to generate an external representation of the do-
main, often in the form of a network (Yu et al.,
2022). The network structure enables higher-order
consensus insights.

The semantic awareness exhibited by PLMs mo-
tivate the adoption of a transfer learning approach
to extract alignment implicit in text segments. In
our work, this is facilitated by Question-Answering
(QA) (see Sec. 2.1) that outputs an alignment net-
work specific to a conversation domain: the net-
work is a joint representation of individual pair-
wise alignment relationships between actors (IN-
CANT). Actor groups are identified by exploiting
this network structure (TAMPA).
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Figure 1: System overview - Actor subgroups for two opposing narratives identified in the do-
main of Gun Regulations: Provided a corpus of news articles (left), our approach identifies the likely
{actor, question template, answer} alignment relationships that constitute the inter-actor network (right). From here,
TAMPA, a custom message-passing algorithm, computes rich actor representations using the alignment score along
the edges, and partitions the actors into groups that maintain the individual narratives.

The task of discovering aligned actor groups has
strong parallels to identifying homophily between
users on social media platforms (Khanam et al.,
2022). Homophily refers to the tendency for indi-
viduals to interact more frequently with those who
share similar beliefs and attitudes. Identifying ho-
mophilic user groups involves exploiting latent fea-
tures in the social media with which the users inter-
act; for example, Šćepanović et al. (2017) identifies
user cohorts on Twitter by profiling their engage-
ment with political parties; meanwhile Del Tredici
et al. (2019) utilizes the neighborhood of a user
within a social network to enable inter-user com-
parison. Our work extends these ethnographic ef-
forts to the narrative landscape: we identify groups
of actors that feature in the narrative using the
contextual alignment clues present in the language.

2.1 Alignment modeling using
question-answering

Recent Natural Language Understanding (NLU)
models have implemented a Question-Answering
(QA) framework to replicate the iterative process of
knowledge acquisition in humans (He et al., 2015;
Gutman Music et al., 2022). This framework aims
to identify template answer spans that populate a
latent knowledge graph, and several network al-
gorithms are applied to infer long-range relation-
ships on this network with multi-hop reasoning
and link prediction (Diefenbach et al., 2018; Buck
et al., 2017). Similarly, narrative theorists have pro-
posed that questions clarify a narrative’s “fillers” or
facets (Bailey, 1999). Therefore, a QA-approach
to model alignment, an essential facet of narrative
structure, should be effective.
Crowdsourcing question templates for align-

ment retrieval: Deciphering alignment relation-
ships requires asking specialized questions: for
example, a reader knows that for a person-actor
(phrase), we can identify its alignment constraints
by asking: whom the {phrase} supports, whom the
{phrase} opposes, whom the {phrase} works with,
what the {phrase} protects/threatens etc. Typical
Question Generation (QG) task setups involve pre-
dicting the optimal question given a {context} or
{context,answer} tuple (Xiao et al., 2020; Pan et al.,
2019); we propose a simple yet effective model to
recommend alignment-oriented questions.

Our QG model prioritizes questions conditioned
on the NER tag – such as person (PER), or
organization (ORG) – of an encountered actor
in text. Following an approach similar to He
et al. (2015), we crowdsource a basis set of
question templates (q) and associated alignment
score zq ∈ {−1,−0.25,−0.1,+0.1,+0.25,+1}
for each NER tag from N = 5 annotators in the
en_US locale. zq = −1 indicates that the {phrase}
actor span in q and the resulting answer are dis-
aligned; a score zq = +1 suggests strong align-
ment. Popular templates (freq > 2) chosen by
annotators are presented in Tab. 1) along with the
mode alignment score.
Transfer learning through Question-Answering:
We reorient the comprehension abilities of Trans-
formerQA (Liu et al., 2019b), a RoBERTa-large
QA PLM trained on the SQuAD dataset (Rajpurkar
et al., 2016), to map free-form text relationships
to alignment constraints (see Prob-1). For an en-
countered actor s in a text segment x, we identify
its NER tag (Honnibal et al., 2020) and associated
question templates qs. {phrase} is replaced by s
to create a coherent question. Typical QA models
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NER Tag Question Templates

GPE Who or what was at {phrase}? (0.1), What
event took place in or at {phrase}? (0.1)

ORG

Who or what did {phrase} support? (1.0),
Who or what did {phrase} oppose? (-1.0),
Who worked at {phrase}? (0.25), Where
was the {phrase} located? (0.1), Who or
what did the {phrase} save? (1.0), Who or
what did the{phrase} threaten? (-1.0)

PERSON

Where did {phrase} work? (0.25), Who or
what did {phrase} work with? (0.1), Who
or what did {phrase} oppose? (-1.0),
Where was{phrase} located? (0.1), Who or
what did {phrase} support? (1.0)

LAW

What did {phrase} enforce? (1.0), Who or
what did {phrase} prosecute? (1.0), Who
wrote {phrase}? (1.0), Who or what did
{phrase} threaten? (-1.0), Who or what
did {phrase} support? (1.0)

NORP

Who or what did {phrase} work
with? (0.1), Who or what did {phrase}
oppose? (1.0), Who or what did {phrase}
support? (1.0)

MONEY

What was {phrase} spent on? (1.0), Where
or to whom did the {phrase} go? (0.1),
Where or from whom did the {phrase}
come from? (0.1)

PRODUCT What was {phrase} used for? (0.1)
FAC/EVENT Who or what was at {phrase}? (0.1)
LOC What event took place at {phrase}? (0.1)

Table 1: Question templates specific to each NER
tag: Each row contains the frequent question templates
(and alignment scores) particular to an entity’s NER tag.
During runtime, the {phrase} span is replaced by an
encountered entity that has a matching NER tag.

learn parameters ϕ such that p(t|s, qs;x, ϕ) is max-
imized, where t is the correct answer/answer span
within x. The set of {subject, question, answer} tu-
ples form the alignment network (see Section 4.1).

3 Data Collection

News reports are a fertile ground for exploring the
formation of opposing narratives and their atten-
dant actor groups since, for any domain, these ac-
counts contain fragments of the various emergent
perspectives, the actors aligned with each narra-
tive and the contrast between potentially opposing
sides. While individual news articles may favor
one narrative perspective over another, a large cor-
pus of articles concerning a single event or issue
may, in the aggregate, capture a wide range of these
conflicting (sub)narratives. We use a bootstrapped
weakly-supervised process to assemble a corpus of
such articles particular to a domain C:
1. Assemble search terms: A small set of 5− 10
core terms and phrases associated to Ci is manually
curated (see Table 2 for domains and seeds);

2. Discover news articles: We use GDELT, a

Sample Domain Seed Terms

Roe v. Wade
roe v wade, abortion, pro-life,
pro-choice, clarence thomas,
planned parenthood

Gun Regulations
ban on assault weapons, second
amendment, gun control, gun
rights, mass shooting

War in Ukraine invasion of ukraine, ukraine-russia
war, ukraine, russia, kherson, mccarthy

Vaccine Hesitancy
vaccine hesitancy, vaccine skepticism,
vaccine resistance, vaccine refusal,
vaccine mandate

Recession Fears
inflation, inflation rate, inflation rates,
recession fears, recession, food prices,
layoffs, gas prices, OPEC

Immigration
us-mexico border, asylum seekers,
immigrants, border wall, visa
applications, migrants

Table 2: Seed terms used for identifying domain-
specific news articles: Each phrase is searched within
the GDELT news database and the top articles that
match the search terms are scraped using Beautiful-
Soup (Richardson, 2007) for processing.

Google Jigsaw-powered open real-time news in-
dexing service1, that pulls recent news articles that
match each search term. The search is limited to
the en_US locale and to articles published within
the last 90 days. GDELT was scraped on Nov 11,
2022. Returned articles are cleaned and common
acronyms are resolved2.

We believe there are sufficient actors who are
influential in swaying consensus opinion and are
unlikely to change their pairwise alignments dur-
ing the 3-month window. This stabilizes the per-
formance of the inter-actor alignment framework
TAMPA (see Sec. 4.2.1) as indicated by our re-
sults. The proposed framework also enables iden-
tifying actors that switch sides during the observa-
tion time window: such actors are positioned by
the framework at the outskirts of the core aligned
actor groups enabling us to discover the multitude
of groups to which they are aligned. For exam-
ple, we find that in the Ukraine War domain, many
Republicans were aligned to Russia (Fig. 4). How-
ever, Mitt Romney, a moderate Republican, aligns
weakly with Ukraine.

The 6 evaluated domains in Tab. 2 have signif-
icantly different time frames, ranging from long-
standing debates such as Roe v. Wade to more
recent events like the War in Ukraine. These do-
mains also involve a diverse set of actors, range in
scope from national issues like Gun Regulations to
global concerns like Recession Fears, and are uni-

1www.gdeltproject.org
2https://aspe.hhs.gov/common-acronyms
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Ci AC SC WC |Xi| |V | |E|
Roe v. Wade 633 15K 363K 6882 4646 5641
Gun Regulation 693 17K 405K 7942 5044 5413
War in Ukraine 774 21K 508K 20940 9248 12769
Vax. Hesitancy 483 13K 337K 6386 4245 4180
Recession Fears 1182 26K 585K 12150 6248 6745
Immigration 690 16K 388K 7706 5933 6923

Table 3: Data statistics: AC, SC, WC are the article,
sentence, word counts respectively for each evaluated
news domain. The number of articles correlate to the
popularity of a domain and the seed terms in real-time
online GDELT news feeds (from Table 2). Node and
edge counts are reported for INCANT networks.

versally recognized as contentious, with multiple
viewpoints to consider.

Segmenting the long-form text: Transformer-
based models accept a limited token length of
context. We split the news articles into smaller
segments while retaining many long-range co-
reference dependencies:
1. Auto-regressive coreference resolution:
Each news article is sentence-tokenized
{s1, s2, . . . , sN}. The auto-regressive seq-2-
seq module greedily resolves references in a
sliding window k = 5 {si, . . . , si+k} using
a Transformer model trained on OntoNotes
5.0 (Lee et al., 2018). The enriched sentences
{ŝi, ŝ2, . . . , ŝi+k} replace the original set, and
the process is repeated after moving the window
by a stride s = 2. The updated sequence is
{ŝ1, ŝ2, . . . , ŝN}.

2. Segment with overlap: A moving win-
dow of length l = 3 and stride d = 2 parti-
tions {ŝ1, ŝ2, . . . , ŝN} into fragmented shorter se-
quences to retain sufficient contextual information
per segment for inference with downstream Trans-
former models while remaining computationally
feasible at scale.

In this way, we construct X , the set of l-segment
spans extracted from news articles specific to do-
main C. Data statistics for the specific Cis evalu-
ated in this work are presented in Table 3.

4 Methods

4.1 INCANT: The INter-aCtor Alignment
NeTwork

We estimate the inter-actor alignment network
G(V,E) by identifying the set of relationship tu-
ples R that comprise G. Recall from Section 2.1
that every relationship r ∈ R is of the form
{s, qs, t} The INCANT network estimation pro-
cess f parameterized by θ estimates the likelihood

of each alignment relationship r := {s, qs, t} given
a text segment x:

p(s,qs, t|x, θ) =
p(t|s, qs;x, θ)︸ ︷︷ ︸

C

p(qs|s;x, θ)︸ ︷︷ ︸
B

p(s|x, θ)︸ ︷︷ ︸
A

. (1)

{A} p(s|x, θ): the likelihood of choosing node (ac-
tor) s from x. Named Entities (NE) present in x
are eligible source nodes and equally likely;

{B} p(qs|s;x, θ) := p(qs|NER(s);x, θ): the like-
lihood of choosing a question template qs from
source node s to potential target t: recall that a
question template’s eligibility is conditioned on the
NER tag of s;

{C} p(t|s, qs;x, θ): the standard Question-
Answering (QA) inference task covered in
Section 2.1.

For a given text span x, let the set of potential
alignment relationships be Φx. |Φx| = NE(x)×
|Q| where NE(·) is the set of named entities in x
(representing the set of potential source nodes) and
Q is the set of all question templates. fθ assigns a
likelihood score to each relationship in Φx. Those
relationships whose likelihood exceeds a threshold
λ (= 0.7) are eligible for constructing the align-
ment network Gx; the aggregated domain-specific
alignment network G = ∪x∈XGx.
G is a signed, multi-edge, directed alignment

network. Note that target actors, as opposed to
source actors, need not be named entities. We
apply processing steps to G prior to actor group
identification: (a) The alignment score zq corre-
sponding to each question qs is used as the edge
weight (see Tab. 1); (b) Multiple directed edges
between a node pair are collapsed into a single
undirected edge and the edge weights are averaged;
(c) Actors with sparse connectivity (degree = 1)
are ignored; and (d) The GCC of G is used for
further evaluation. Steps (c) and (d) together help
to highlight the alignment subnetwork that features
the most prominent narratives in the domain. The
resulting weighted graph is termed the INCANT
network particular to domain C and denoted by
Ĝ. INCANT network relationships are evaluated
using Amazon Mechnical Turk (AMT) (see Tab. 4
for results and Appendix Sec. B for instructions).

4.2 From INCANT networks to actor groups
Given an INCANT network Ĝ(V̂ , Ê), we identify
the actor groups that constitute the distinct narra-
tives. This task is represented by a partitioning of
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Ĝ: we identify fmap : V̂ → C, where c ∈ C is
a subset of actors c ⊂ V̂ . The narrative subnet-
work for c contains those edges est ∈ Ê where
{s, t} ∈ c.

4.2.1 TAMPA: Transitive Alignment via
Message PAssing

We describe a framework to construct numerical
actor representations that can be compared using a
distance measure and clustered. In the context of
an INCANT network Ĝ, the actor representation
learning task translates to learning node embed-
dings. We denote the embedding for node s by
hs ∈ RD (D = 3). These embeddings are tuned
such that our distance measure, the cosine distance,
d(s, t) = 1 − hs·ht

||hs||||ht|| , d ∈ [0, 2], is small for
aligned actors, and large for opposing ones. Solve:

min
h1,...,h|V̂ |

∑

{v1,v2}∈V̂
d(v1, v2)× w(v1, v2), (2)

where wv1,v2 is the alignment score between
v1, v2. Solving Eq. 2 directly is intractable since
we do not have the alignment constraint between
every pair of actors: Ĝ is data-driven and not fully-
connected. To overcome this, we describe a mes-
sage passing approach to inferring alignment im-
plicit in the network structure. Similar message
passing approaches have been shown to be success-
ful in refining node embeddings in the context of
co-occurrence networks derived from text (Pujari
and Goldwasser, 2021).

Learning graph node embeddings using mes-
sage passing: The transitive nature of alignment
(see Prob-2) allows us to define an effective
alignment score z̃v1,v2 between any pair of actors
{v1, v2} by considering a random walk (Bondy
et al., 1976) from v1 to v2: for a walk of length L,
{v1, t1, t2, . . . , v2},

z̃v1,v2 = γL−1 × (zv1zt1zt2 . . . zv2). (3)

γ is a discount factor that takes into account the
length of the walk in influencing the alignment be-
tween v1 and v2. Averaging z̃v1,v2 across several
random walks provides an estimate of the effective
alignment. z̃ approximates w from Eq. 2. There-
fore, we can now minimize:

min
h1,...,h|V̂ |

∑

{v1,v2}∈V̂
d(v1, v2)× z̃v1,v2 . (4)

Since the loss function in Eq. 4 is non-convex
but smooth, we solve for an optimal solution using

Figure 2: Convergence plots for TAMPA for different
domains: The update magnitudes reach 0 and the loss
function from Eq. 4 converges to an optimal value. See
Appendix A.1 for training details.

an iterative method: in every iteration, we sample
N random walks per node and the node embedding
update is computed using the gradient of the empir-
ical loss. See Appendix Sec. A.1 for details of the
parameter gridsearch. Actor groups are generated
by clustering TAMPA-trained node embeddings via
HDBSCAN (McInnes et al., 2017).

5 Evaluation and Discussion

To assess the effectiveness of our framework, we
use a two-step evaluation approach. First, we rate
the quality of the alignment relationships in the
INCANT networks. Second, we evaluate the actor
groups generated by TAMPA. It is important to note
that the inter-actor relationship quality directly im-
pacts the quality of the resulting actor groups. For
further reference, we have attached the codebase
and supplemental network files. You can access
them in our repository at the following link:3.

5.1 INCANT alignment relationships
correlate to human perception

Tab. 4 summarizes the performance of alignment re-
lationship extraction with respect to ground truth la-
beling performed by MTurk workers (on a random
subset of alignment relationships). Details about
the labeling setup are provided in Appendix Sec. B.
The accuracy, as well as the precision, recall and F1
scores (macro) are high (> 0.75), suggesting good
correspondence between the two label sets. Note
that in addition to demonstrating that INCANT re-
lationships are accurate, this high performance is
indicative of the ability of our QA templates to
generalize across domains: The crowd-sourced QA
templates in Tab. 1 are not domain-dependent, and
yet appear to yield high-fidelity inter-actor align-
ment relationships for all six evaluated domains.

3Repository: https://osf.io/px3v6

8943

https://osf.io/px3v6


Domain ACC↑ PM↑ RM↑ F1M↑
Roe v. Wade 0.822 0.797 0.809 0.802
Gun Regulations 0.890 0.872 0.883 0.877
War in Ukraine 0.802 0.793 0.777 0.783
Vaccine Hesitancy 0.843 0.829 0.824 0.826
Recession Fears 0.837 0.778 0.879 0.800
Immigration 0.877 0.860 0.857 0.859

Table 4: AMT Task 1: Performance of alignment re-
lationship identification: AMT workers are presented
a binarized classification task of identifying whether
a pair of actors are aligned or disaligned given input
context x. The QA model’s predictions are compared to
this groundtruth. Workers label a random subset of 1642
samples. The reported precision (P ), recall (R), and F1
scores are macro values to account for class imbalance.

Figure 3: INCANT subnetwork in the Gun Regula-
tions domain: A subnetwork of 14 high-degree nodes
that focuses on a debate about the “second amendment”.
Right-leaning nodes – such as “ron desantis”, “donald
trump” – support (blue) an unbridled interpretation of
the amendment, whereas left-leaning nodes – such as
“joe biden” and “democrats” oppose (red) such an in-
terpretation while supporting (blue) a ban on assault
weapons.

An INCANT subnetwork for the Gun Regula-
tions domain is presented in Fig. 3. An actor’s NER
tag corresponds to node color, and the question tem-
plate responsible for an alignment relationship is
displayed along the edge. The color intensity of
each edge – blue (aligned) or red (disaligned) –
is proportional to the corresponding question tem-
plate’s score (see Tab. 1)4.

Actor alignments are immediately observed:
“donald trump” and “ron desantis” are aligned as
both actors support the “second amendment”, and
live and campaign in the same state (“florida”).
Alignments are transitive: {maga republicans,
biden} and {biden, the second amendment} are
disalignments suggesting maga republicans, sec-
ond amendment are aligned. TAMPA automates
this discovery process.

Figure 4: Actor groups are well-separated in the em-
bedding space: Each heatmap contains pairwise cosine
distances between node embeddings for high-degree
actors forming TAMPA actor groups in each evaluated
domain. Actors belonging to the same group are listed
consecutively (demarcated). The dark diagonal blocks
imply that intra-actor group cosine distances are small
(purple). In contrast, the inter-actor group distances are
large (yellow). One can manually verify that each actor
group corresponds to a distinct narrative (see Fig. 5).

5.2 Evaluating actor groups discovered by
TAMPA

We first visualize whether the actor groups returned
by HDBSCAN are well-separated in the embed-
ding space. As seen in Fig. 4, even the simple
measure of pairwise cosine distance is able to sep-
arate the clusters. We perform human evaluation
(using AMT workers) to evaluate the quality of the
actor groups with respect to two baselines.
B1 Community detection: We construct commu-
nities in the INCANT network Ĝ by using the Lou-
vain algorithm (Blondel et al., 2008). Recall that
the nodes correspond to actors and each edge cor-
responds to the question template connecting a pair

4All INCANT networks are in the OSF database.
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of actors. The alignment scores from Tab. 1 are
used as the weights along the edges;

B2 Naïve density-based clustering: Density-
based clustering methods such as HDBSCAN can
identify clusters provided an adjacency matrix that
contains the pairwise distance metric (> 0) be-
tween every pair of points. We use the alignment
scores for existing edges (similar to B1) and re-
place absent distance values (missing edges in the
INCANT network) with a small positive value (2).
We replace negative values (between disaligned
actors) with a large positive value (10).

In a blind survey, MTurk workers choose the
best of three partitionings – B1, B2 and TAMPA –
of actors into groups. Labeling setup details are dis-
cussed in Appendix Sec. B. Results are presented in
Tab. 5: MTurk workers chose TAMPA actor groups
to others (baseline ACC = 0.33).
Why do we need TAMPA?

Recall that TAMPA was designed to general-
ize inter-actor alignments beyond the sparse set of
direct relationships available in the INCANT net-
works (sparsity of relationships indicated in Tab. 3).
To illustrate TAMPA’s operation, we consider the
following example involving an actor group iden-
tified from the Recession Fears domain (narrative
description in italics):

{federal reserve, jerome powell, new york, janet
yellen}→ treasury moves to curb inflation;

In the corresponding INCANT network Ĝ, there
is no direct link between two familiar actors “Janet
Yellen” and “Jerome Powell”. This is not surprising
since our question templates only involve single en-
tities and do not account for multi-entity question,
such as “Where have both Janet Yellen and Jerome
Powell worked together?”. The message-passing
scheme in TAMPA addresses precisely this limita-
tion by approximating alignment relationships tran-
sitively. Consider two alignments that are present
in the INCANT network:
» “Janet Yellen” (PER) → Who does {phrase} sup-
port? → “the Federal Reserve” ∧
» “Jerome Powell” (PER) → Where did {phrase}
work? → “the Federal Reserve”

Observe that in these constraints, single-entity
QA conveys alignment information with a shared
tertiary entity: Yellen *supports* the Federal Re-
serve and Jerome Powell *works* at the Federal
Reserve. TAMPA’s message-passing algorithm is
incentivized to iteratively refine Yellen and Pow-
ell’s node representations to be close to that of the

Domain ACC
Roe v. Wade 0.68
Gun Regulations 0.93
War in Ukraine 0.93
Vaccine Hesitancy 0.76
Recession Fears 0.85
Immigration 0.92

Table 5: AMT Task 2: Performance of TAMPA actor
group partitioning vs. B1,B2 baselines: AMT workers
choose the best partitioning of the top 25 actors (by
degree) among the 3 models. AMT instructions are
presented in the Appendix Sec. B.

Domain PERM INCANT pKS ↓
µ ± CI IQ µ ± CI ↑ IQ ↓

Gun Reg... 0.64 ± 0.03 0.30 0.84 ± 0.02 0.12 8e-31
Immig... 0.66 ± 0.03 0.31 0.80 ± 0.03 0.15 3e-08
Recess... 0.66 ± 0.02 0.31 0.82 ± 0.03 0.14 6e-19
Roe v... 0.59 ± 0.03 0.36 0.81 ± 0.02 0.15 5e-10
Ukraine... 0.60 ± 0.02 0.33 0.72 ± 0.02 0.21 4e-15
Vax. Hes... 0.76 ± 0.03 0.17 0.84 ± 0.03 0.13 4e-05

Table 6: Silhouette scores – INCANT vs PERM: µ:
The mean Silhouette score across nodes, CI: 95%ile
confidence interval, IQ: inter-quartile range, pKS: p-
value of the KS-test. These metrics indicate TAMPA
creates more distinct clusters in INCANT than PERM.

Federal Reserve, and effectively construct a strong
alignment relationship between the pair:

=⇒ “Janet Yellen”, “Jerome Powell” are aligned.

5.3 Ablation Study: Performance of TAMPA
as a function of INCANT network
structure

TAMPA relies on the network structure of Ĝ to
model the effective alignment between every pair
of nodes. We evaluate the extent of this depen-
dence by constructing a modified network baseline,
PERM: Ĝ edges are shuffled while maintaining
a constant average node degree. Performance of
TAMPA on the INCANT network is compared to
the PERM baseline by: (a) Evaluating the sepa-
ration of actor group clusters using unsupervised
metrics; and (b) Visualizing the generated actor
groups. As for (b), the random edge shuffling pre-
dictably worsens the quality of actor groups since
the ground truth alignment information is inten-
tionally corrupted (see Fig. 6 in the Appendix for
examples).

For (a), we compute the Silhouette score his-
togram (Rousseeuw, 1987) ∈ [−1, 1] after clus-
tering TAMPA-trained node embeddings for both
INCANT and PERM: a node’s score correlates
to its membership strength within its actor group.
Strength is computed using the pairwise cosine
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Figure 5: Distinct narrative networks identified from
actor groups in the Gun Regulations domain: The
2 encircled groups are derived by applying TAMPA to
the INCANT network in Fig. 3. Directed inter-actor
relationships (in grey) are verb-phrases identified in
news reports between actor pairs. The narrative network
on the left promotes the expansion of gun rights; the
network on the right seeks to regulate those rights.

distance between the trained embeddings. In
Tab. 6, the distribution statistics for the INCANT vs.
PERM networks are compared: pKS, the p-value of
the Kolmogorov-Smirnov (KS) test (Hodges, 1958)
compares the shape of the INCANT vs. PERM
histogram distributions. p < 0.05 implies the null
hypothesis is false, i.e the two Silhouette score dis-
tributions are not identical. Within each distribu-
tion, we compute the mean µ, confidence interval
(CI) and the interquartile range (IQ) (Whaley III,
2005): INCANT networks consistently produce
a larger µ (close to 1) and smaller IQ, evidence
of a score distribution that skews toward 1, and
indicative of better separated clusters.

6 Concluding Remarks

In this work, we propose a novel approach for iden-
tifying aligned actors and actor groups from the
mixture of latent narratives that undergird domain-
conditioned free-form text. The success of our
approach is evaluated using both qualitative (see
Figs. 3,4 and 5) and quantitative (see Tabs. 4,5 and
6) evidence. We show in Fig. 5 that these groups
can be used to assemble corresponding narrative
networks that convey “my side, your side and the
evidence” supporting each side.

When these narrative networks are viewed
jointly, we observe a struggle for narrative dom-
inance. In many cases, the tactics proposed in
one narrative to counter external threats become
threats in and of themselves in other narratives. For
instance, in Fig. 5, the relationship tuple “biden
administration” → looking to pass → “a ban on
assault weapons” (top right) is a strategy to counter
gun violence, a threat. Conversely, this same strat-
egy is perceived as a threat by gun rights activists.

This example highlights the complexity of the nar-
rative landscape and how the same inter-actor rela-
tionship can take on distinct, often conflicting roles,
depending on the side we choose.

Limitations

Key limitations are listed: (a) Inter-actor networks
(from Sec. 4.1) are structured representations of
the input data. Since the dataset is assembled on-
demand from GDELT, the recall of information
given a particular domain depends on its popular-
ity at that time. (b) The TAMPA message passing
algorithm (from Sec. 4.2.1) is iterative and con-
verges to a local optimum that may perform poorly
with human evaluation for particular domains. (c)
The various Transformer models – COREF (from
Sec. 3), NER, QA (from Sec. 2.1) – can occasion-
ally produce false positive results. The autoregres-
sive coreference resolution in particular occasion-
ally fails to resolve long-range dependencies across
segments, which in turn decreases the recall of
nodes and edges from the data. (d) The end-to-end
model is only validated for the en_US locale since
the Transformer models utilized in the work are
most performant in English and many conversation
domains are country-specific. (e) In the TAMPA
algorithm, actors with a higher degree in Ĝ are asso-
ciated to a higher quality of node embeddings since
there are more inter-actor alignment constraints. (f)
TAMPA uses HDBSCAN as a clustering algorithm:
as with any unsupervised ML algorithm, some clus-
ters are more diffuse than others.

Ethics Statement

Process: The datasets used in this analysis were
obtained from GDELT, an open-access platform
that indexes world news. The scraped dataset is
provided in a processed network format, after best-
in-class removal of Personally Identifiable Infor-
mation (PII). Data and codebases are accessible
in the OSF repository (https://osf.io/px3v6/).
Future Use: The resulting alignment networks gen-
erated by our framework are a representation of the
datasets identified on-demand from GDELT. If the
sources from GDELT are/or become highly biased
to specific news sources, the resulting networks
would become biased as well. In this case, the
addition of more data sources might be necessary.
Additionally, use of this tool in an unmoderated
fashion may inhibit free-speech, profile social me-
dia users and empower surveillance efforts.
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A TAMPA

A.1 Training details

Node embeddings are randomly initialized (h ∈
RD, D = 3). The length of each random walk N
is 10 and γ = 0.95. Batch size b = 10 (the number
of random walks considered per node per iteration),
number of iterations M = 20K. We apply simu-
lated annealing during the learning process: nodes
are randomly perturbed with probability h = 1− i

M .
Parameter set is presented in Table 7.

Parameter Values
D 2,3,5,10
N 3,10,50
b 2,10,30,
M 5K,10K,20K

Table 7: Parameter settings for the message passing
algorithm: Optimal choices (by the loss value after
convergence) are in bold.

A.2 TAMPA on PERM baseline

See Tab. 7 for the hyperparameters considered for
the message passing algorithm TAMPA. The best
parameter set is in bold. Models were trained on a
64-core server with 2 TITAN RTX GPUs running
Question-Answering and Co-reference Resolution
in tandem. Training time per domain does not
exceed 1.5 hours.
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Figure 7: Instructions provided prior to annotator
sign-up: Eligible MTurk workers sign-up for this task
after reading this introductory information block de-
scribing the annotation task and payment information.

B Instructions to Amazon Mechanical
Turk workers

For both Amazon Mechanical Turk
(AMT) tasks described below, work-
ers were required to be Masters-granted
(https://www.mturk.com/help), present
in the en_US locale. Surveys were hosted
on-prem and LabelStudio (Tkachenko et al.,
2020-2021) was used for creating the survey
templates. The post-processed datasets are
available for download from the OSF repos-
itory (https://osf.io/px3v6/?view_only=
b9223fba3e3d4fbcb7ba91da70565604) and are
meant for research use with CC BY 4.0 licensing.
Workers were paid $5 for 45 minutes of annotation
time. Our estimated time-to-completion was 25
minutes. An overview of the 2 labeling tasks
were presented up front to annotators on the AMT
platform (see Fig. 7).

B.1 AMT Task 1: Evaluating the quality of
alignment relationships

In Fig. 8, we show a snapshot of the instructions
presented to MTurk workers to classify a pair of
actors present within a context window of text as
aligned or disaligned. Each worker was allowed
to label at most 50 samples of the dataset and was
allotted 2 hours for the survey. Annotated sam-
ples from each worker were randomly sampled and
manually verified to ensure quality.

B.2 AMT Task 2: Evaluating the quality of
actor groups

MTurk workers are given a preliminary survey
to guarantee that they possess sufficient domain
knowledge in order to accurately identify the ac-
tors that form the actor groups, and to evaluate

Figure 8: Labeling instructions for MTurk workers
for identifying alignment between actor pairs: The
collected labels are compared to the binarized question
template scores zs > 0 in our model. The performance
scores are presented in Tab. 4.

whether the actors belonging to each group believe
in similar worldviews given the conversation do-
main. To increase an MTurk worker’s chances of
being able to identify the actors, we pre-select the
top-K = 25 actors (by degree) from Ĝ and their
corresponding actor groups. Clustering was per-
formed using the N = 100 highest-degree nodes
from Ĝ. Fig. 9 shows the instructions provided to
the MTurk workers. Once again, annotated sam-
ples from each worker were randomly sampled to
ensure quality. In total, annotators labeled 240 sam-
ples – 40 per domain.
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Figure 9: Labeling instructions for MTurk workers
for choosing B1, B2, or TAMPA as the best model for
actor group partitioning: Workers chose one of three
partitioning as the best grouping of the top K = 25
actors (by degree). Performance scores are presented in
Tab. 5. Observe that in this example, the actor groups in
Choice 3 – the TAMPA- generated groups – are more
semantically coherent than the other options.
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