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Abstract

Nearly all general-purpose neural semantic
parsers generate logical forms in a strictly top-
down autoregressive fashion. Though such sys-
tems have achieved impressive results across a
variety of datasets and domains, recent works
have called into question whether they are ulti-
mately limited in their ability to composition-
ally generalize. In this work, we approach se-
mantic parsing from, quite literally, the oppo-
site direction; that is, we introduce a neural
semantic parsing generation method that con-
structs logical forms from the bottom up, be-
ginning from the logical form’s leaves. The
system we introduce is lazy in that it incre-
mentally builds up a set of potential seman-
tic parses, but only expands and processes the
most promising candidate parses at each gen-
eration step. Such a parsimonious expansion
scheme allows the system to maintain an ar-
bitrarily large set of parse hypotheses that are
never realized and thus incur minimal compu-
tational overhead. We evaluate our approach
on compositional generalization; specifically,
on the challenging CFQ dataset and three Text-
to-SQL datasets where we show that our novel,
bottom-up semantic parsing technique outper-
forms general-purpose semantic parsers while
also being competitive with comparable neural
parsers that have been designed for each task.

1 Introduction

Compositionality is inherent to natural language,
with the meaning of complex text or speech un-
derstood through the composition of constituent
words and phrases (Montague, 1973). For instance,
having observed the usage of phrases like "edited
by" and "directed by" in isolation, a human would
be able to easily understand the question "Was Toy
Story edited by and directed by John Lasseter?".
The ability to take individual components and com-
bine them together in novel ways is known as com-
positional generalization, and is a key feature of
human intelligence that has been shown to play a

significant role in why humans are so efficient at
learning (Lake et al., 2017).

Compositional generalization has been identified
as a major point of weakness in neural methods
for semantic parsing (Lake and Baroni, 2018; Hig-
gins et al., 2018). Accordingly, this deficiency has
been taken up as a challenge by the machine learn-
ing community, leading to a slew of methods (Liu
et al., 2021; Herzig et al., 2021; Gai et al., 2021)
and datasets (Keysers et al., 2019; Kim and Linzen,
2020) targeted towards compositional generaliza-
tion. However, while there has been progress in
determining factors that allow systems to composi-
tionally generalize (Furrer et al., 2020; Oren et al.,
2020), there yet remains gaps in our understanding
as to why these neural models fail.

In this paper, we posit that the failure of tradi-
tional neural semantic parsers to compositionally
generalize is in part due to how they build logical
forms. Most commonly, neural semantic parsers
treat parsing as an encoder-decoder problem, where
the decoder generates logical forms from the top
down in an autoregressive fashion (Dong and La-
pata, 2016; Xiao et al., 2016; Alvarez-Melis and
Jaakkola, 2017; Krishnamurthy et al., 2017; Dong
and Lapata, 2018). That is, these systems output
a linearization of the target logical form’s abstract
syntax tree, beginning from the root of the tree,
where the generation of each token is conditioned
on both the input text as well as the entire sequence
of previously generated tokens.

Such an entirely autoregressive decoding
scheme, wherein the production of each new token
is conditioned on all previously generated tokens,
could result in models that assume invalid depen-
dencies to exist between tokens and thus overfit
to their training data (as observed in (Qiu et al.,
2022; Bogin et al., 2022)). We hypothesize that
this overfitting problem would lessen the ability of
these models to generalize to unseen compositions.

Here we introduce an alternative decoding ap-
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(a) Top-down decoding (nodes drawn with dotted lines are those being generated)

(b) Bottom-up decoding (nodes drawn with dotted lines are those being generated)

Figure 1: Top-down versus bottom-up decoding strategies for the Geoquery question "What rivers are in s0?"

proach that eschews the top-down generation
paradigm, and instead uses a bottom-up mecha-
nism that builds upwards by combining entities
and subexpressions together to form larger subex-
pressions (Figure 1 demonstrates this distinction).
Unlike top-down approaches, our decoder gener-
ates logical forms by conditioning on only the rele-
vant subexpressions from the overall graph, hence
improving compositional generalizability.

Contributions: (a) We introduce a novel,
bottom-up semantic parsing decoder that achieves
strong results, specifically with respect to composi-
tional generalization. (b) We evaluate our approach
on CFQ (Keysers et al., 2019), three Text-to-SQL
(Finegan-Dollak et al., 2018) datasets, and Geo-
query (Zelle and Mooney, 1996), and find that
it outperforms general-purpose semantic parsers
while also being competitive with comparable neu-
ral parsers that have been designed for each task.
(c) We demonstrate the flexibility of our architec-
ture by testing our approach with multiple encoders,
showing that our architecture almost always leads
to a significant performance improvement. (d) We
show how the bottom-up paradigm can result in a
combinatorial explosion in the number of subex-
pressions created at each decoding step and pro-
pose a lazy evaluation scheme that mitigates this
by selectively expanding the logical form in a way
that minimizes computational overhead.

2 Representing Logical Forms

Our parser is intended to be task-agnostic, with as
few as possible assumptions made regarding the

particular formalism (e.g., SQL, SPARQL, etc.)
a logical form may instantiate. We assume only
that we have access to a vocabulary V that defines
the set of all symbols a logical form could be con-
structed from (with no restrictions imposed as to
the label or arity of any particular symbol) and that
the logical form is given as an s-expression.

S-expressions are a representation formalism
that expresses trees as nested lists (e.g., (count
$0 (river:t $0)) as a query for the ques-
tion "How many rivers are there?"). Their use dates
back to the earliest days of artificial intelligence
research (McCarthy, 1983) as the main unit of pro-
cessing of the LISP programming language (Mc-
Carthy, 1978). In this work, their main purpose
is to simplify the structure of logical forms into
binary trees. Importantly, the transformation of
logical forms into s-expressions requires no knowl-
edge beyond the syntax of the target formalism.

Traditionally, logical forms are generated as
trees; however, we instead represent them as di-
rected acyclic graphs (DAGs). This is a logically
equivalent representation that is created by collaps-
ing all identical subtrees into a single subgraph that
maintains connections to each of the original par-
ent nodes. Figure 2a provides an example of how
an s-expression would initially be converted into a
tree representation, while Figure 2b shows how two
overlapping trees would be merged into a single
DAG form. Within a graph all nodes will either
have 1) one argument and a label drawn from the
vocabulary of symbols V or 2) two arguments and
connect an incomplete list (its left argument) with
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(a) Internal conversion of the logical form (count $0
(river:t $0)) into a tree-based s-expression for the ques-
tion "How many rivers are there?"

(b) DAG representation of an s-expression where identical
subtrees have been mapped to the same nodes

Figure 2: Preprocessing graph transformations

a complete list (its right argument). The nodes with
two arguments will always use a special pointer
symbol “·” as their label.

As the final preprocessing step, each log-
ical form is wrapped in a special root s-
expression. For instance, the logical form (count
$0 (river:t $0)) would become (root
(count $0 (river:t $0))). This step
provides a signal to the model to stop generating
new extensions to the logical form. During de-
coding, only those s-expressions that begin with a
root token may be returned to the user.

3 Model

Given a question Q, our method is tasked with pro-
ducing a graph representation G of a logical form
using symbols drawn from a vocabulary V . At the
highest level, our approach follows the traditional
encoder-decoder paradigm. It first parses the in-
put with a neural encoder (e.g., LSTM (Hochreiter
and Schmidhuber, 1997)) to produce real-valued
vector representations for each word in Q. Those
representations are then passed to a neural decoder,
which iteratively takes decoding actions to gener-
ate G. Our approach is agnostic to the choice of
encoder, and thus in the following sections we will
describe only the decoding process.

An important desideratum of this work was archi-
tectural simplicity. Thus, when using a pretrained

Figure 3: Nodes in G originating from generation ac-
tions (yellow) and from pointer actions (blue).

large language model as the base to our approach,
(e.g., T5 (Raffel et al., 2019)), the model was left
largely as is. None of the modifications described
in the following sections involve changes to the
internal parameters or architecture of the neural
model itself (i.e., all additions are kept to the out-
put layer). Consequently, when our approach is
instantiated with a pretrained language model, that
model is applied entirety off-the-shelf.

3.1 Decoding Actions

At each step of decoding, our system executes ei-
ther a generation action or a pointer action. Gen-
eration actions take a single node from G and add
it as the argument to a new node with a label
drawn from V . Pointer actions instead take two
nodes from G and add them both as arguments to
a new node with a special pointer symbol “·” as
its label. The division of decoding into generation
and pointer actions is adapted from (Zhou et al.,
2021a,b), which proposes this scheme to drive a
transition-based AMR parser. Key to note is that
both action types will result in a new node being
generated that has as arguments either one or two
already-existing nodes from G, i.e., a bottom-up
generation process. Figure 3 illustrates the out-
comes of both action types.

At the start of decoding our approach initializes
two objects, G as the empty graph and a set of can-
didate actions A = {⟨ ( , ∅, 1⟩}. The first action
of A will always be to generate the left parenthesis,
which is the start to every s-expression in G. Each
decoding step begins by extending G with actions
drawn from A and ends with a set of new candidate
actions being added to A.

The key to our approach lies in its lazy evalu-
ation scheme, wherein actions that create nodes
are generated at each decoding step, rather than
the nodes themselves. This allows our model to
strongly restrict how G expands at each decoding
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Figure 4: A generation action from A that, when selected
and executed, adds a node with label $0 to G

step, with our approach being able to build up a
large set of unexecuted actions representing can-
didate logical forms that are never processed with
resource-intensive neural components and thus in-
cur very little computational overhead.

3.2 Candidate Selection

Each element a ∈ A is a tuple a = ⟨v,A, pa⟩
consisting of: 1) a symbol v drawn from our vocab-
ulary V , 2) an ordered list of arguments A, where
each member of A is a node in G, and 3) a probabil-
ity pa reflective of the model’s confidence that this
candidate should be part of the final returned output.
Adding a candidate a = ⟨v,A, pa⟩ to G simply in-
volves creating a new node labeled v within G that
has directed edges connecting the node to each
argument in A, as Figure 4 demonstrates.

Our model is equipped with a selection function
that will select and remove members of A to add to
G. In the experiments of this paper, our selection
function chooses all elements of A with a probabil-
ity above a certain threshold κ (e.g., κ = 0.5) or,
if no such options exist, chooses the single highest
probability option from A.

3.3 Graph Encoding

For our neural model to make predictions, it must
first convert the newly generated nodes into real-
valued vector representations. The decoder of our
model largely follows the design of T5 (Raffel
et al., 2019), i.e., a transformer (Vaswani et al.,
2017) using relative positional encodings (Shaw
et al., 2018), but with modifications that allow it
to process graph structure. As most equations are
the same as those detailed in the original T5 work,
we will only describe the differences between our
model and theirs.

Throughout the remainder of this section, we

Figure 5: Reversed post-order traversal-based position
assignment relative to a newly generated node (colored
in green). The number assigned to each node is the
index of the position bias (e.g., 0 would be assigned to
bias b0, 1 would be assigned to bias b1, etc.)

will define a frontier F to refer to the set of nodes
generated by actions in A that were selected during
the current round of decoding. Each element of F
is first assigned a vector embedding according to its
label. The embedding is then passed through the de-
coder to produce real-valued vector representations
for each node. In order to capture the structure of G
with the transformer, our model makes use of two
types of information within the attention modules
of each layer of the decoder.

First, within the self-attention module, a node
n ∈ G may only attend to its set of descendants,
i.e., only the nodes contained within the subgraph
of G rooted at n. This has the effect that the re-
sultant encoding of a node is a function of only
its descendants and the original text. Second, for a
pair of nodes ni and nj for which an attention score
is being computed (e.g., ni is the parent of nj), the
positional encoding bias bij used to represent the
offset between ni and nj is assigned according to
a reverse post-order traversal of the descendants
of node ni. That is, bij is selected according to
where nj is positioned in a post-order traversal of
the subgraph of G rooted at ni. Figure 5 provides
an example of this ordering scheme for a particular
node.

This assignment strategy effectively linearizes
the graph rooted at ni and has the added property
that each descendant of ni will be assigned a unique
position bias with respect to ni. This is also a some-
what analogous encoding as to what is done for
standard seq-to-seq models. To see the similarity,
consider a "linear" graph (e.g., a sequence); the
encoding for each node is exactly that given by a
distance-based positional encoding (Shaw et al.,
2018) (e.g., used by T5).
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Figure 6: The embeddings of nodes in the frontier F and
the embeddings of symbols in the vocabulary V being
used to construct new generation actions

3.4 Action Generation
Once the decoder has processed each node, our
approach will have a set of node embeddings
{h1, h2, . . . h|F |}. To produce the set of decoding
actions, our model executes two operations (one for
each action type). The first operation proposes a
set of generation actions (a brief depiction of this is
given in Figure 6). For a node ni and symbol v with
embedded representations hi and hv, respectively,
this involves computing

p
(v)
i = σ

(
h⊤i hv + b

)

where b is a bias term and σ is the sigmoid function.
The value p(v)i can be interpreted as the independent
probability (independent of all other action prob-
abilities) that G should contain a node with label
v ∈ V that has ni as an argument. For each v ∈ V ,
A is extended as A = A ∪ {

〈
v, ⟨ni⟩ , p(v)i · pni

〉
},

where pni refers to the probability of the original
action that generated ni.

The second operation proposes a set of pointer
actions using an attention mechanism. For a pair
of nodes

〈
ni, nj

〉
with embedded representations

hi and hj , respectively, this is computed as

qi = W (q)hi, kj = W (k)hj

p
(j)
i = σ

(q⊤i kj√
d

+ b
)

where W (q), W (k) are learned matrices, b is a bias
term, d is the dimensionality of the embeddings,
and σ is the sigmoid function. Like before, p(j)i

can be thought of as the independent probability
that G will contain a node that has ni as its left
argument and nj as its right argument. For each
pair ⟨ni, nj⟩ ∈ (F×G)∪(G×F ) (where F∪G is a
slight abuse of notation to write the union between
F and the set of nodes within G), we update the set
of actions A = A∪{

〈 · , ⟨ni, nj⟩ , p(j)i ·pni ·pnj

〉
},

where pni and pnj refer to the probabilities of the
original actions that generated ni and nj .

It is important to note the combinatorial nature of
generating new actions. At each round of decoding,
the number of actions could grow by O(|F | · |V |+
|F | · |G|). While it is certainly possible to restrict
the number of actions added to A (e.g., by adding
only the top-k actions), the set still grows extremely
quickly.

A key feature to our decoding scheme is that
it does not actually build and embed the graphs
for a particular action until that action is executed.
Because each action maintains the probability of
its source actions, our model is effectively explor-
ing via Dijkstra’s algorithm, where the frontier F
includes all actions yet to be executed. This con-
trasts with previous works, e.g., (Rubin and Berant,
2021), which are greedier in that they keep a fixed
beam with new nodes that are added and embed-
ded on each round and all nodes outside this beam
being discarded (our approach does not need to
discard these nodes since they have no significant
cost until they are executed).

3.5 Terminating Decoding
Decoding terminates when an s-expression begin-
ning with the root token is generated (refer to
the end of Section 2 for an example). In order
to ensure the highest probability s-expression is
returned, decoding only terminates if the final ac-
tion’s probability is also the highest amongst all
yet-unselected actions in A. Upon generating the
root s-expression, only the subgraph of G rooted
at the newly generated node is returned. Thus,
though the the size of G may grow to be quite
large, not every element of G is returned.

3.6 Training
Training our model is as efficient as other standard
transformer-based models, i.e., a single parallel
operation that processes the entire graph and com-
putes all action probabilities simultaneously. Ad-
ditionally, the memory footprint of our model is
practically equivalent to the underlying transformer
used to initialize its parameters (e.g., T5).
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(SELECT (count *) (WHERE
(directed_by M0 M1)
(directed_by M0 M2)
(edited_by M0 M1)
(edited_by M0 M2)
(prod_companies M0 M1)
(prod_companies M0 M2)))

Figure 7: S-expression for the CFQ question "Was M0
produced, directed, and edited by M1 and M2"

The loss function used to train our model is a
cross-entropy-based loss. Recall that both gener-
ation and pointer action probabilities are the out-
put of a sigmoid function. Letting Q be the input
question, P be the set of positive actions (i.e., ac-
tions needed to generate the gold-annotation logical
form), and N be the set of negative actions (i.e.,
actions not needed to generate the gold-annotation
logical form), the objective is written as

L =
∑

n∈P
log pθ(n|Q) +

∑

n∈N
log 1− pθ(n|Q)

where the conditional probabilities pθ(n|Q) are
the sigmoid-constrained outputs of generation (see
Section 3.4) and θ is the set of model parameters.

While P is fixed and finite, the set N is clearly
unbounded. In this work, we construct N from a
small set of both generation and pointer actions.
For each node n ∈ G, we add negative generation
actions for each symbol v ∈ V that is not the label
of a parent of n. For negative pointer actions, we
add actions for each pair of nodes in G that do not
have a common parent.

4 Experiments

In our experiments, we aimed to answer the fol-
lowing questions: 1) is bottom-up a more effective
decoding paradigm than top-down with respect to
compositional generalization and 2) how well does
our approach generalize to different domains and
formalisms. To answer these questions, we eval-
uated our approach on several datasets: 1) CFQ
(Keysers et al., 2019), 2) the SQL versions of
Geoquery (Zelle and Mooney, 1996), ATIS (Dahl
et al., 1994), and Scholar (Iyer et al., 2017), each
of which were curated by (Finegan-Dollak et al.,
2018), and 3) the version of Geoquery (Zelle and
Mooney, 1996) used by (Dong and Lapata, 2016;
Kwiatkowski et al., 2011) which maps questions

to a variant of typed lambda calculus (Carpenter,
1997). To save space, we provide all hyperparame-
ters used for our experiments in the appendix.

Our main experiments investigating composi-
tional generalization were performed on the CFQ
and Text-to-SQL datasets. In CFQ, the distribution
of train and test data in each split is designed to
exhibit maximum compound divergence (MCD)
(Keysers et al., 2019). In the MCD setting, data is
comprised of a fixed set of atoms, i.e., the primi-
tive elements to a question. But while each atom
is observed in training, the compositions of atoms
between train and test sets will vary significantly
(an example of a CFQ question is provided in Fig-
ure 7). In the Text-to-SQL datasets, the train and
test sets are constructed by using separate template
splits (Finegan-Dollak et al., 2018; Herzig et al.,
2021), where the train and test sets have questions
involving different SQL query templates.

4.1 Dataset-Specific Processing

Task-specific representations and encoding
schemes are very common with state-of-the-art
approaches for compositional generalization (Shaw
et al., 2021). Most often, such approaches will
transform the target logical form to better reflect
some characteristic of the input text. For instance,
with CFQ, systems will transform their target
logical forms into a query that closely aligns with
the list-heavy syntactic structure of CFQ questions
(Liu et al., 2021; Herzig et al., 2021; Jambor and
Bahdanau, 2021; Furrer et al., 2020).

As our objective was to determine the effec-
tiveness of our bottom-up technique for general-
purpose semantic parsing, we avoided any trans-
formation that involved task-specific knowledge
about the input text. For the Text-to-SQL and Geo-
query datasets, we performed no processing of the
inputs or outputs beyond the transformation of in-
put logical forms into s-expressions. For CFQ, we
found it necessary to apply two preprocessing steps.
First, to mitigate the number of candidate logical
forms proposed, only one WHERE clause was al-
lowed to be generated during decoding. Second,
we observed that, because we restricted the num-
ber of WHERE clauses generated, our method often
prematurely ended generation. Thus, we found it
useful to add any completed s-expression (i.e., s-
expressions ending with the ) token) to the WHERE
clause of the final logical form.
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Method MCD1 MCD2 MCD3 MCD Avg.

Dynamic Least-to-Most Prompting (Drozdov et al., 2022) 94.3 95.3 95.5 95.0
LEAR (Liu et al., 2021) 91.7 89.2 91.7 90.9
LIR+RIR (T5-3B) (Herzig et al., 2021) 88.4 85.3 77.9 83.8
Grounded Graph Decoding (Gai et al., 2021) 98.6 67.9 77.4 81.3
HPD (Guo et al., 2020) 79.6 59.6 67.8 69.0
LIR+RIR (T5-base) (Herzig et al., 2021) 85.8 64.0 53.6 67.8
T5-11B-mod (Furrer et al., 2020) 61.6 31.3 33.3 42.1
LAGR (Jambor and Bahdanau, 2021) 57.9 26.0 20.9 34.9

T5-3B (Herzig et al., 2021) 65.0 41.0 42.6 49.5
T5-base (Herzig et al., 2021) 58.5 27.0 18.4 34.6
Edge Transformer (Bergen et al., 2021) 47.7 13.1 13.2 24.7
Evolved Transformer (Keysers et al., 2019) 42.4 9.3 10.8 20.8
Universal Transformer (Keysers et al., 2019) 37.4 8.1 11.3 18.9
Transformer (Keysers et al., 2019) 34.9 8.2 10.6 17.8
LSTM (Keysers et al., 2019) 28.9 5.0 10.8 14.9

LSP (Ours)
+ T5-base 88.7 57.7 43.8 63.4
+ LSTM Encoder 73.0 29.5 23.1 41.9

Table 1: Performance across different splits of the CFQ dataset. Those systems leveraging CFQ-specific algorithms
or representations are grouped in the top half of the table, while those systems in the bottom half are domain general

Method ATIS Geoquery Scholar

Seq2Seq ♣ 32.0 20.0 5.0
GECA ♢ 24.0 52.1 –
Seq2Seq ♠ 28.0 48.5 –
Transformer ♠ 23.0 53.9 –
Seq2Seq+ST ♠ 29.1 63.6 –
Transformer+ST ♠ 28.6 61.9 –
SpanBasedSP □ – 82.2 –

Baseline (T5-base) ♡ 32.9 79.7 18.1
Baseline (T5-large) ♡ 31.4 81.9 17.5
Baseline (T5-3B) ♡ 29.7 79.7 16.2
LIR+RIR (T5-base) ♡ 47.8 83.0 20.0
LIR+RIR (T5-large) ♡ 43.2 79.7 22.0
LIR+RIR (T5-3B) ♡ 28.5 75.8 12.4

LSP (Ours)
+ T5-base 38.3 81.3 25.1

Table 2: Performance on Text-to-SQL against:
♣(Finegan-Dollak et al., 2018), ♢(Andreas, 2020),
♠(Zheng and Lapata, 2020), ♡(Herzig et al., 2021),
□(Herzig and Berant, 2021)

4.2 Evaluation

We evaluated our approach using exact match ac-
curacy, i.e., whether the generated logical form
exactly matches the gold logical form annotation.
To accommodate for unordered n-ary predicates,
we reordered the arguments to all such unordered
predicates (e.g., and) lexicographically in both the
gold and generated logical forms before comparing
them. The unordered predicates are the WHERE
operator in CFQ as well as the and predicate in
the lambda calculus version of Geoquery.

Method Acc.

DCS+L w/ lexicon (Liang et al., 2013) 91.1
TISP (Zhao and Huang, 2015) 88.9
KZGS11 (Kwiatkowski et al., 2011) 88.6
DCS+L w/o lexicon(Liang et al., 2013) 87.9
AQA (Crouse, 2021) 87.5
λ-WASP (Wong and Mooney, 2007) 86.6
ZC07 (Zettlemoyer and Collins, 2007) 86.1

AWP + AE + C2 (Jia and Liang, 2016) 89.3
Graph2Tree (Li et al., 2020) 88.9
Coarse2Fine (Dong and Lapata, 2018) 88.2
Seq2Tree (Dong and Lapata, 2016) 87.1
SpanbasedSP (Herzig and Berant, 2021) 86.4
Graph2Seq (Xu et al., 2018) 85.7

LSP (Ours)
+ LSTM Encoder 86.4

Table 3: Performance on Geoquery, with neural-based
approaches grouped in the bottom half of the table

5 Results and Discussion

Table 1 shows the results of our approach, referred
to as LSP (Lazy Semantic Parser), on the CFQ
dataset. As can be seen from the table, our ap-
proach fares quite well against domain-general se-
mantic parsing approaches and, importantly, signif-
icantly outperforms both T5-base and the LSTM.

The large performance increase as compared to
both the basic LSTM and T5-base supports our
hypothesis that a bottom-up, semi-autoregressive
decoding strategy is a better inductive bias for com-
positional generalization than autoregressive, top-
down decoding. However, a better decoding strat-

8440



Method MCD1 MCD2 MCD3 ATIS Geoquery Scholar

T5-base 58.5 27.0 18.4 32.9 79.7 18.1
RIR 86.3 49.1 46.8 81.3 36.3 19.4
LIRd 48.1 40.3 35.3 44.4 83.5 20.6
LIRd+RIR 72.5 61.1 51.2 47.8 83.0 20.0
LIRind 57.6 41.4 34.7 38.3 80.8 16.5
LIRind+RIR 85.8 64.0 53.6 41.5 81.9 16.5

LSP (Ours)
+ T5-base 88.7 57.7 43.8 38.3 81.3 25.1

Table 4: Performance as compared to task-specific T5-base models from (Herzig et al., 2021).

egy clearly does not provide the complete solution,
as evidenced by the gap in performance between
the best systems designed specifically for composi-
tional generalization and our approach.

Table 2 shows the performance of our approach
on the three Text-to-SQL datasets of (Finegan-
Dollak et al., 2018). While our approach clearly
outperforms the baselines, it has mixed results as
compared to the work of (Herzig et al., 2021).
Additionaly, our approach was outperformed by
(Herzig and Berant, 2021) on the Geoquery SQL
dataset; however we note that their approach re-
quired a manually constructed lexical mapping of
text to Geoquery terms (they reached 65.9% accu-
racy without the mapping). Still, that our approach
outperformed T5-base in all three datasets again
supports our hypothesis that bottom-up is more
effective for compositional generalization.

Table 3 shows the performance of our approach
on Geoquery. To keep the comparison relatively
fair, we used only an LSTM encoder and ran-
domly initialized token embeddings for this experi-
ment. Despite using an entirely different generation
scheme, our method is competitive with the other
neural-based semantic parsers on this dataset. No-
tably, there is not a significant drop from Seq2Tree
(Dong and Lapata, 2016), which can be consid-
ered the antithesis to our method as it decodes trees
from the top down. We find these results to be very
encouraging, as our approach maintains competi-
tive performance against a varied set of approaches
that leverage hand-engineered data augmentation
strategies (Jia and Liang, 2016), pretrained word
embeddings (Li et al., 2020), and hand-built lexi-
cons (Herzig and Berant, 2021).

Lastly, in Table 4 we highlight the T5-base mod-
els of (Herzig et al., 2021), which used task-specific
intermediate representations to simplify the learn-
ing problem of semantic parsing for an off-the-shelf
large language model. This is a very useful work to

compare against, as the number of parameters be-
tween our model and theirs is near identical. From
the table, we see that our approach roughly matches
that of their best performing T5-base model. This
is an interesting result, as it could suggest that our
architecture is naturally capturing the useful prop-
erties of their intermediate representations without
as much need for hand-engineering. Importantly,
unlike their approach which assumes knowledge of
the syntactic structure of questions, ours needs only
a rule for identifying expressions (e.g., parenthe-
ses delineate expression boundaries) or a grammar
for the target (readily available for formalisms like
SPARQL or SQL).

6 Related Work

While the overall parsing approach of (Zhou et al.,
2021a,b) is quite different from ours (as they pro-
pose a transition-based semantic parser), several
aspects of our work were inspired from their ideas.
For instance, as mentioned in Section 3.3, they pro-
posed the use of two types of decoding actions to
expand the target graph.

Bottom-up neural semantic parsers are a rela-
tively recent development. Most related to our
work is that of (Rubin and Berant, 2021), which
introduced a bottom-up system that achieved near
state-of-the-art results on the Spider dataset (Yu
et al., 2018) while being significantly more com-
putationally efficient than its top-down, autoregres-
sive competitors. There are three significant dif-
ferences between their approach and ours. First,
they generate trees rather than DAGs and thus as-
sume a many-to-one correspondence between in-
put spans in the question and tokens in the logical
form (which does not hold for datasets like CFQ).
Second, they use an eager evaluation scheme (i.e.,
nodes are generated at each decoding step and not
actions), and thus enforce a beam-size hyperparam-
eter K that must be defined a priori and places a
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hard limit on the number of subtrees that can be
considered at a given time. Third, they use a highly
customized decoder which limits how tightly in-
tegrated their approach can be with off-the-shelf
language models. In contrast, when using a pre-
trained large language model as the base to our
approach, we reuse the entirety of the language
model as is to instantiate our model.

Another similar work is (Herzig and Berant,
2021), which introduced a method that learned
to predict span trees over the input question that
could be composed together to build complete logi-
cal forms. Their method achieves strong perfor-
mance on the Geoquery SQL dataset (Finegan-
Dollak et al., 2018); however, similar to (Rubin
and Berant, 2021), their approach differs from ours
in that they assume a one-to-one correspondence
between disjoint spans of the question and disjoint
subtrees of the logical form. Further, their method
can only handle inputs whose parse falls into a re-
stricted class of non-projective trees, where the au-
thors note that extending their method to all classes
of non-projective trees would prohibitively increase
the time complexity of their parser. Such assump-
tions make it unclear how it would directly apply
to a more complex dataset like CFQ.

There are several works targeted specifically
towards compositional generalization (Gai et al.,
2021; Liu et al., 2021; Jambor and Bahdanau, 2021;
Guo et al., 2020; Herzig et al., 2021). Though
these systems have proven to be quite effective on
compositional generalization datasets, they make
significant task-specific assumptions that limit how
they might be applied more broadly.

7 Limitations

The main limitation to our work lies in the han-
dling of unordered n-ary relations. We hypothesize
that the bottom-up paradigm performs best when
there is one unambiguous logical form to generate
for a particular question. While this is quite often
true for semantic parsing, in our experience, un-
ordered n-ary relations (e.g., WHERE) can quickly
cause this not to be the case. With such relations,
there tends to be a large number of correct logical
forms for a particular question. In these situations,
having so many candidate logical forms can cause
significant issues in terms of runtime. A second
limitation of our work is that it assumes the logical
form will be given as a graph. Thus, there is an
annotation burden on the users of this system that

would not be present in systems that treat semantic
parsing as a text-to-text problem (e.g., fine-tuned
large language models).

8 Conclusions

In this work, we introduced a novel, bottom-up
decoding scheme that semi-autoregressively con-
structs logical forms in a way that facilitates com-
positional generalization. Key to our method was
a lazy generation process designed to address the
computational efficiency issues inherent to bottom-
up parsing. We demonstrated our approach on five
different datasets covering three logical formalisms
and found that our approach was strongly competi-
tive with neural models tailored to each task.
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A Appendix

A.1 Dataset Sizes
Geoquery (Zelle and Mooney, 1996) is a standard
benchmark dataset for semantic parsing that con-
sists of 880 geography-related questions. We use
the standard (Zettlemoyer and Collins, 2007) split
of 600 train questions and 280 test questions and
the logical form representation of (Dong and La-
pata, 2016; Kwiatkowski et al., 2011), which is a
variant of typed lambda calculus (Carpenter, 1997).

A.2 Training Details
All models were trained on an HPC cluster, where
each training run was provided with 100 GB RAM,
2 CPUs, and 1 V100 GPU. The longest training run
(on CFQ with T5-base) would complete within 24
hours.

A.3 Model Sizes
The T5-base models have around 220 million pa-
rameters. As our model shares all parameters with
T5 except for the final attention-based pointer mod-
ule, a rough estimate is that our model would
have approximately 221 million parameters (with
768× 768 additional parameters from the attention
module).

A.4 Hyperparameters
We did not do much in the way of hyperparame-
ter tuning, instead opting to base most values off
of the original CFQ (Keysers et al., 2019) work
and sharing most hyperparameter settings between
our experiments. In Tables 6 and 7, we list the
hyperparameters used in both experiments.

Dataset Split Train Test

CFQ MCD1 95k 12k
MCD2 95k 12k
MCD3 95k 12k

Text-To-SQL ATIS 4812 347
Geoquery 539 182
Scholar 408 315

Geoquery - 600 280

Table 5: Dataset sizes
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Hyperparameter CFQ Text-to-SQL Geoquery

Embedding dimensionality 256 256 256
Number of MHA heads 8 8 8
Dimensionality of FFN hidden layers 1024 1024 1024
Encoder Dropout 0.4 0.4 0.4
Decoder Dropout 0.1 0.1 0.1
Batch size 32 32 32
Learning rate 0.0001 0.001 0.001
Number of training epochs 100 500 500

Table 6: Hyperparameters for CFQ, Text-to-SQL, and Geoquery experiments when an LSTM encoder was used

Hyperparameter CFQ Text-to-SQL

Embedding dimensionality 768 768
Number of MHA heads 12 12
Dimensionality of FFN hidden layers 3072 3072
Encoder Dropout 0.1 0.1
Decoder Dropout 0.1 0.1
Batch size 16 16
Learning rate 0.0001 0.0001
Number of training epochs 20 500

Table 7: Hyperparameters for CFQ and Text-to-SQL experiments when T5-base was used
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