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Abstract

Effective argumentation is essential towards a
purposeful conversation with a satisfactory out-
come. For example, persuading someone to
reconsider smoking might involve empathetic,
well founded arguments based on facts and ex-
pert opinions about its ill-effects and the con-
sequences on one’s family. However, the au-
tomatic generation of high-quality factual ar-
guments can be challenging. Addressing ex-
isting controllability issues can make the re-
cent advances in computational models for ar-
gument generation a potential solution. In this
paper, we introduce ArgU: a neural argument
generator capable of producing factual argu-
ments from input facts and real-world concepts
that can be explicitly controlled for stance and
argument structure using Walton’s argument
scheme-based control codes. Unfortunately,
computational argument generation is a rela-
tively new field and lacks datasets conducive
to training. Hence, we have compiled and re-
leased an annotated corpora of 69,428 argu-
ments spanning six topics and six argument
schemes, making it the largest publicly avail-
able corpus for identifying argument schemes;
the paper details our annotation and dataset
creation framework. We further experiment
with an argument generation strategy that es-
tablishes an inference strategy by generating
an “argument template” before actual argument
generation. Our results demonstrate that it is
possible to automatically generate diverse ar-
guments exhibiting different inference patterns
for the same set of facts by using control codes
based on argument schemes and stance.

1 Introduction

Although arguing is an innate human quality, for-
mulating convincing arguments is an art. A success-
ful narrative aiming to persuade someone should be
rhetorically appealing, trustworthy, factually cor-
rect, and logically consistent, which makes formu-
lating good arguments challenging. Incorporating

neural language models, the relatively new field
of computational argument generation has shown
promise in assisting with argument synthesis. Argu-
ment generators like Project Debater (Slonim et al.,
2021) have successfully formulated convincing ar-
guments across different domains including legal,
politics, education, etc., and can potentially find
new argumentative connections. However, lack-
ing explicit control mechanisms, neural argument
generators often render illogical and inappropri-
ate arguments, reducing their trustworthiness and
applicability for practical use. Furthermore, train-
ing such models requires a considerable amount
of quality data, which is hard to collect and an-
notate. Hence, we propose ArgU, a controllable
neural argument generator trained on a curated and
quality-controlled corpus of annotated argument
texts from abortion, minimum wage, nuclear en-
ergy, gun control, the death penalty and school
uniform.

Figure 1: Generating stance and argument scheme con-
trolled factual arguments using ArgU.

ArgU strives to enable effective, scalable and
appealing argument generation. As depicted in
Figure 1, it takes as input worldly knowledge and
concepts as fact variables and coherently combines
them to generate an argument that exhibits the de-
sired pro/con stance and inference structure. Using
control codes to regulate argument stance and rea-
soning, ArgU generates a variety of argument texts
for the same set of facts 1, thus providing diverse
response options. Internally ArgU implements a 2-
step generation process, where it first generates an

1Unless explicitly mentioned, the term fact refers to real-
world concepts, propositions, and knowledge and does not
refer to only knowledge-based facts.
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“argument template”, which depicts the structure
of the final argument based on the control codes,
and finally yields the argument text by modifying
the template to include the augmented input fact
variables. We ground our work on prominent theo-
retical foundations, where the inference structure-
based control codes derive from six Walton’s ar-
gument schemes: “Means for Goal”, “Goal from
Means”, “From Consequence”, “Source Knowl-
edge”, “Source Authority”, and “Rule or Princi-
ple”.

Since human annotation is expensive and time-
consuming, we devise a multi-phased annotation
framework for systematically leveraging human
and automatic annotation mechanisms to yield a
curated dataset of 69,428 examples for controllable
argument synthesis. We release our curated corpus
to facilitate further research; an example constitutes
an argument text, a set of real-world concepts and
knowledge from which the argument derives, and
the stance and argument scheme of the text. We fur-
ther detail and analyze our annotation framework
and share variants of topic-independent computa-
tional models for automatically annotating factual
spans from argument text and identifying the as-
serted argument schemes. We share our datasets
and codebase here: https://github.com/sougata-
ub/argu-generator and summarize our contribu-
tions below:

• We propose an argument generator that me-
thodically generates factual arguments follow-
ing a specified stance and argument scheme
(Sec. 4).

• We share a quality-controlled annotated
dataset conducive to training such generators.
To our knowledge, this is the largest available
corpora that identify argument schemes from
argument text (Sec. 3.2.4).

• We share our annotation framework and
release domain-independent computational
models that automatically identify factual
spans and argument schemes from argument
text from any topic (Sec. 3).

2 Related Work

Argument schemes are typical inference patterns
found in arguments. Walton provided an in-depth
study of argument schemes (Walton et al., 2008)
and defined 60 such schemes prevalent in daily

argument text. Based on Walton’s argumentation
schemes, Kondo et al. (2021) proposed represent-
ing the reasoning structure of arguments using
Bayesian networks and defined abstract network
fragments termed idioms, which we use here.

Advances in neural methods for language mod-
elling have enabled the field of computational ar-
gument generation. Hua and Wang (2018) intro-
duced a factual argument generator that generates
opposite stance arguments by yielding a set of talk-
ing point key phrases, followed by a separate de-
coder to produce the final argument text. Hua et al.
(2019) proposed Candela, a framework for counter-
argument generation similar to Hua and Wang
(2018), which also controls for the style. Schiller
et al. (2021) introduced Arg-CTRL: a language
model for generating sentence-level arguments us-
ing topic, stance, and aspect-based control codes
(Keskar et al., 2019). Khatib et al. (2021) con-
structed argumentation-related knowledge graphs
and experimented with using them to control argu-
ment generation. Alshomary et al. (2021) explored
a novel pipelined approach to generating counter-
arguments that first identifies a weak premise and
then attacks it with a neurally generated counter-
argument. Hypothesizing that the impact of an
argument is strongly affected by prior beliefs and
morals, Alshomary et al. (2022) studied the feasibil-
ity of the automatic generation of morally framed
argument text and proposed an argument genera-
tor that follows the moral foundation theory. Syed
et al. (2021) introduced the task of generating in-
formative conclusions from arguments. They com-
piled argument text and conclusion pairs and ex-
perimented with extractive and abstractive mod-
els for conclusion generation using control codes.
Chakrabarty et al. (2021) experimented with argu-
ment text re-framing for positive effects. They
created a suitable corpus and trained a control-
lable generator with a post-decoding entailment
component for re-framing polarizing and fearful
arguments such that it can reduce the fear quo-
tient. Our work best aligns with Arg-CTRL and
Candela, where we use control codes to regulate
argument generation and implement a multi-step
decoding pipeline to generate the final argument.
However, unlike Arg-CTRL, we control for the
argument scheme, and unlike Candela, our multi-
step decoding utilizes an argument template as an
intermediate step.

Most argumentation datasets identify argumen-
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tative components (claims, premises, etc.), making
them better suited for argument-mining tasks (Stab
and Gurevych, 2014; Peldszus, 2015; Ghosh et al.,
2016; Hidey et al., 2017; Chakrabarty et al., 2019).
Further, existing argument scheme annotated cor-
pora are either very restricted in domain and size
(Reed et al., 2008; Feng and Hirst, 2011; Green,
2015; Musi et al., 2016; Visser et al., 2022; Jo et al.,
2021) or only provide guidelines and tools for anno-
tations (Visser et al., 2018; Lawrence et al., 2019).
Hence, we use the BASN dataset (Kondo et al.,
2021), which contains sizeable examples spanning
six topics and identify argument schemes.

3 Argument Generation Corpus

Training a factual argument generator controlled
for the stance and argument scheme requires exam-
ples that identify such features from the text: such
a corpus is lacking. Hence, we introduce a two-
phased annotation framework that yields a corpus
of 69,428 examples which (i) identify argument
schemes and factual spans from argument text and
(ii) grounds the spans to a knowledge base (KB).
In the first phase, we employ human annotators to
identify factual spans from a subset of an existing
dataset of 2,990 arguments which already identifies
argument schemes. We further train computational
models to annotate the remaining corpus for factual
spans and perform extensive quality checks. In the
second phase, we train models from the resultant
Phase 1 dataset to automatically annotate a larger
parallel corpus for both argument scheme and fac-
tual spans, yielding an annotated corpus of 69,428
arguments for training argument generators.

3.1 Phase 1 (P1): Initial Corpus Creation

Kondo et al. (2021) introduced the BASN dataset
comprising 2,990 pairs of arguments and abstract
network fragments derived from six Walton’s argu-
mentation schemes: “Means for Goal”, “Goal from
Means”, “From Consequence”, “Source Knowl-
edge”, “Source Authority”, “Rule or Principle”,
and “Others”. They utilized a knowledge base (KB)
of 205 facts (termed as variables) spanning the top-
ics of abortion, minimum wage, nuclear energy,
gun control, the death penalty and school uniform
to define the idioms. Figure 2 illustrates an example
from the BASN dataset where variables from the
KB formulate a pro-stance argument following the
“Means for goals” argument scheme. We perform
two annotation tasks in P1: (i) Span Detection:

Annotate arguments by identifying (highlighting)
non-overlapping factual spans from argument text.
(ii) Span Grounding: Ground the identified fac-
tual spans to the available KB variables, or “Others”
if the span is unrelated to any available variables.

Figure 2: Phase 1 Annotation Pipeline.

We annotate 1,153 randomly sampled examples
spanning all six topics and train a model for auto-
matically annotating the remaining examples. We
further perform human evaluations to determine
the correctness of the automatic annotations.

3.1.1 Human Expert Annotation
Using Doccano (Nakayama et al., 2018), we an-
notated 1,153 examples from the BASN corpus
for both the tasks of span detection and grounding,
where each sample comprised an argument and a
minimum of 2 to a maximum of 5 fact variables
from the KB. Figure 8 (Appendix A) contains a
screenshot from our Doccano annotation task. We
employed two computational linguistics and com-
puter science graduate students as paid expert anno-
tators for the annotation task. Both annotators were
appointed and compensated as per the legal norms.
To be efficient with resources, each annotator in-
dependently annotated non-overlapping examples.
Further, to ensure consistency across annotations,
we computed inter-annotator agreement over 100
samples, which resulted in a Cohen’s Kappa score
of 0.78, indicating substantially high agreement.

3.1.2 Automatic Annotation: ArgSpan
We train ArgSpan: a Roberta-based tagger (Liu
et al., 2019), on the annotated examples for auto-
matically annotating the rest of the BASN dataset
for both tasks. Figure 3 illustrates ArgSpan’s
architecture. ArgSpan inputs concatenated argu-
ment and fact variables and encodes them using a
Roberta-based encoder. It reduces the hidden rep-
resentation for each fact variable by passing the
beginning of the string token (BOS) through a fully
connected neural network layer. Finally, it uses
a biaffine layer to capture the interaction between
the argument text and each variable. The model is
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trained end-to-end by minimizing the cross entropy
loss between the predicted logit for each argument
token and the actual BIO scheme encoded target la-
bel. Appendix A.1 contains further training details.

Figure 3: ArgSpan Architecture.

3.1.3 Evaluation
We automatically annotate the remaining BASN
samples using ArgSpan. To gauge the quality of
the automatic annotations, we ask one of the hu-
man evaluators to annotate 300 random examples
from the remaining samples using Doccano and
compare them with the model predictions. De-
tailed in Figure 4, we evaluate Span Detection by
computing the F1 score between the overlapping
predicted and human-identified tokens and achieve
an average score of 91.1% across all 300 examples.
We measure accuracy for evaluating Span Ground-
ing and attain a score of 89.2%. With the addi-
tional 300 examples (total of 1,453), we re-train
ArgSpan and perform inference on the remaining
BASN samples, yielding a fully annotated corpus
of 2,990 examples with KB-grounded factual spans
and argument schemes from argument text. Also,
we observe very few examples of the “Goal From
Means” scheme in the resultant dataset and com-
bine it with the more prevalent “Means for Goal”
scheme, resulting in six argument schemes.

Figure 4: ArgSpan Evaluation.

3.2 Phase 2 (P2): Corpus Expansion
Kondo et al. (2021) used crowd-sourcing to create
the BASN dataset, where crowd workers formu-

lated argument text from a knowledge base com-
prising a limited number of premise-conclusion
pairs (fact variables). Although such an approach
resulted in a considerable number of arguments,
using approximately 34 fact variables per topic,
it lacks variety. Training an argument generator
on such a corpus would limit its generalizability
and use. Hence, we expand the P1 dataset with
a parallel corpus (PC) of 66,180 examples from
the Aspect-Controlled Reddit and CommonCrawl
corpus by Schiller et al. (2021), and 733 combined
examples from the Sentential Argument Mining,
Arguments to Key Points and the debate portal-
based Webis datasets (Stab et al., 2018; Friedman
et al., 2021; Bar-Haim et al., 2020; Ajjour et al.,
2019). Since the PC examples do not identify fac-
tual spans and argument schemes, we use the fully
annotated P1 dataset to train ArgSpanScheme: a
Roberta-based model that identifies factual spans
and argumentation schemes from argument text.
We automatically annotate the PC using ArgSpan-
Scheme and combine them with the P1 dataset, to
yield the P2 dataset.

3.2.1 ArgSpanScheme Architecture
Illustrated in Figure 5, we experiment with two vari-
ants of ArgSpanScheme to jointly extract factual
spans and predict argument schemes from argu-
ment text. Both architectures use a Roberta-based
encoder to encode an input argument text and differ
in the final prediction layers, as detailed below.
Parallel Architecture Here we use two indepen-
dent classification heads: (i) A span detection head
which uses a linear layer to extract factual spans
by classifying each encoded argument token as be-
longing to one of the three BIO tags. (ii) A scheme
detection head which uses a linear layer to pre-
dict argument schemes by performing a multi-label
(six labels including “Others”) classification on the
mean pooled encoded argument tokens.
Pipelined Architecture Argument schemes rep-
resent structures of inference and are invariant to
the constituent facts. For example, although both
arguments A: “Increase in the minimum wage is
not favourable as it can increase unemployment”,
and B: “Increase in gun laws are favourable as it re-
duces gun violence”, are from different topics, they
follow a similar structure “X is/are (not) favourable
as it Y”, exhibiting “From Consequences” argu-
ment scheme. As depicted in Figure 5, we model
this by performing selective multi-headed attention.
We mask the factual spans predicted by the span de-
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tection head and apply two layers of multi-headed
self-attention on the remaining tokens. Finally, we
pass the BOS token representation through a linear
layer to predict the argument schemes. Appendix
A.2 contains further training details.

Figure 5: ArgSpanScheme Architectures.

3.2.2 Modelling Results and Evaluation
For both tasks of span and scheme detection, we
compare the F1 score of the parallel and pipelined
architectures across different data splits. We per-
form a 5-fold Cross Validation (CV) by randomly
splitting the resultant dataset from P1 into 93%
training and 7% validation split. We further assess
the generalizability of ArgSpanScheme by training
and validating on examples from non-overlapping
topics. As illustrated in Figure 6, we set up five
data splits (ids 1 to 5) comprising three combina-
tion ratios of training-validation topics (5:1, 4:2,
and 2:4), which increases the difficulty by reducing
the number of training topics.

Figure 6: ArgSpanScheme Data Splits.

Evaluating Span Prediction: For span detection
we compute the F1 score at three levels of overlap:
(i) Partial Overlap: A span level metric where a
predicted span is true positive if at least 50% of
its tokens overlap with the actual span. (ii) Full
Overlap: A span level metric where a predicted
span is true positive if all of its tokens overlap with
the actual span. (iii) Overall: A token level metric
which compares the predicted and actual token BIO
labels. Table 1 shares the CV and combination ratio

aggregated results for span detection. We observe
similar performance for both ArgSpanScheme ver-
sions across all three levels of overlap.
Evaluating Scheme Prediction: We compare
scheme-wise and overall F1 scores and share the re-
sults in Table 1. We observe that the parallel archi-
tecture slightly outperforms the pipelined version
in CV, whereas the pipelined version almost always
performs better for the non-overlapping splits. The
results indicate that for scheme detection, incorpo-
rating a generalizable architecture by emphasizing
the argument structure rather than the factual spans
does lead to better results on unseen topics.

3.2.3 Automatic Annotation & Human Eval.
Based on the analysis of automatic evaluation re-
sults, we train a final pipelined version of ArgSpan-
Scheme on the P1 dataset and perform inference on
the PC to automatically annotate it for factual spans
and argument schemes. We randomly sample 200
annotations and perform a human evaluation using
one evaluator to ascertain the annotation quality.
Evaluating Span Prediction: We present the hu-
man evaluator with an argument text along with the
model predicted spans and ask them to rate each
example using two custom metrics: (i) Span Preci-
sion: On a continuous scale of 1 (low) to 5 (high),
how sensible are the identified spans? Spans which
are unnecessarily long or abruptly short are penal-
ized. This metric evaluates whether the identified
spans adequately convey meaningful information.
(ii) Span Recall: On a continuous scale of 1 (low)
to 5 (high), how well does the model perform in
identifying all factual spans? Examples which fail
to identify spans conveying real-world concepts
and factual knowledge are penalized. We observe
an average score of 4.1 (median 4.7) for Span Pre-
cision and 3.9 (median 4.4) for Span Recall, indi-
cating the reliability of the automatic annotations.
Evaluating Scheme Prediction: Since identifying
argument schemes is a much more difficult task,
we first measure the evaluator’s competency by
presenting 30 random arguments from the BASN
dataset and asking them to label each argument text
with the most likely argument scheme. We com-
pared the evaluator-assigned labels with the golden
labels and found them to be matching in 53.3% of
cases, with most matches belonging to the “from
consequences”, “rule or principle”, and “means for
goal” schemes. Although the labels majorly con-
firm, the fair amount of disagreement testifies to
the task difficulty. Further, Table 5 (Appendix A)
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Span Scheme

Split Partial Full Overall From
Consequence

From Source
Authority

From Source
Knowledge

Goal From Means/
Means from Goals

Rule or
Principle Other Overall

CV 0.86/0.85 0.92/0.91 0.89/0.89 0.94/0.93 0.92/0.91 0.88/0.90 0.96/0.95 0.97/0.96 0.88/0.86 0.95/0.94
5:1 0.70/0.70 0.77/0.78 0.81/0.81 0.65/0.65 0.68/0.85 0.48/0.48 0.48/0.56 0.64/0.66 0.46/0.46 0.68/0.69
4:2 0.76/0.77 0.84/0.84 0.85/0.85 0.60/0.71 0.67/0.70 0.49/0.49 0.45/0.47 0.49/0.55 0.49/0.49 0.75/0.82
2:4 0.74/0.74 0.82/0.80 0.82/0.80 0.63/0.73 0.69/0.67 0.50/0.49 0.47/0.46 0.73/0.77 0.46/0.46 0.70/0.77

Table 1: ArgSpanScheme span and scheme prediction results for Parallel / Pipelined versions. The best performing
model for each data split and task is highlighted in bold.

lists a few examples where we believe the evalua-
tor labels are more accurate than the actual ones.
Post-assessment, we asked the evaluator to evaluate
the predicted argument schemes of the previously
sampled 200 examples with a binary flag, where 1
signifies agreement and 0 signifies disagreement,
and observe a fair agreement rate of 73%.

3.2.4 Dataset Post-processing
The PC initially contains 1,272,548 examples,
which we automatically annotate for span and ar-
gument scheme using ArgSpanScheme. We persist
samples where an argument scheme’s predicted
probability is at least 20% of the scheme’s average
probability and discard examples with the scheme
predicted as “Others”.

To make the PC consistent with the P1 data,
we implement the following steps to normalize
and ground the ArgSpanScheme-identified factual
spans to the existing KB comprising fact variables
from BASN or expand the KB with new knowl-
edge wherever applicable. (i) Direct Mapping:
Using sentence transformer embedding-based co-
sine similarity (Reimers and Gurevych, 2019) and
a threshold of 0.85, we associate factual spans from
the annotated PC with its most similar fact variable
from the KB. (ii) Indirect Mapping: We use the
sentence transformer-based community detection
clustering algorithm to cluster similar factual spans
from the annotated PC. For directly unmapped
spans, we associate the KB fact variable of the near-
est neighbour in its cluster. Figure 9 (Appendix A)
further illustrates each step in detail.

We apply a series of filtering steps to ensure the
quality of the final corpus. We only keep examples
containing a maximum of 30% unnormalized fac-
tual spans and add those facts to the KB. Next, we
discard instances containing more than 150 words
in the argument text and persist examples contain-
ing 1-4 fact variables, with each variable present
2-4 times. Finally, to ensure argumentativeness,
we parse the argument text using the Dialo-AP
argument parser (Saha et al., 2022) and keep ex-

amples containing at least one claim. We combine
the filtered PC with the P1 dataset to yield 69,428
examples, which we use for argument generation.

4 Controllable Argument Generation

Arguments based on similar facts but structured
differently might lead to dissimilar consequences
by exerting different perlocutionary effects. For ex-
ample, consider argument A: “Reproductive rights
advocates say enabling access to abortion is impor-
tant towards reproductive rights”, which exhibits
the “From Source Authority” argument scheme,
and B: “Access to abortion is important towards
reproductive rights”, which expresses “From Con-
sequence”. Although both arguments share the
same view regarding the role of abortion in repro-
ductive rights, backed by reproductive rights advo-
cates who are experts, argument A might lead to
a favourable outcome in a situation that demands
authority. To assist the formulation of arguments
exhibiting heterogeneous viewpoints and reason-
ing, we experiment with BART-based (Lewis et al.,
2020) neural argument generators capable of gen-
erating factual argument text with distinct stances
and argument schemes using control codes.

4.1 Model Architecture

Figure 7 illustrates our encoder-decoder based
model architecture, which we discuss below.

4.1.1 Encoder
The model inputs a concatenated representation
I1 of the argument topic and the required KB fact
variables. We prefix each variable with a token
<VAR_X> where X ∈ [0, 3] is an incremental id
enforcing a random ordering over the variables.
The representation I1 is passed through a BART
encoder E to yield a hidden representation H.

4.1.2 Decoder
A BART based decoder inputs H along with a set
of control codes to generate the final argument A.
We experiment with two types of decoding:
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Figure 7: ArgU-Mono and Dual End-to-end Architectures.

Single Step Decoding: ArgU-Mono: As depicted
in Figure 7, following the standard decoding strat-
egy of an encoder-decoder architecture, the decoder
D1 inputs H along with three control codes (DI

11)
comprising the desired stance, argument scheme,
and the argument text BOS token ‘<argument>’,
and learns the distribution P(A|I1,DI

11).
Dual Step Decoding: ArgU-Dual An argument
generally exhibits structured reasoning by coher-
ently combining variables using appropriate con-
nectives and clauses. For example, the variables
A: “introduce death penalty” and B: “reduce crime”
can be combined as “A has shown evidence in B”,
resulting in a pro-death penalty argument “Intro-
ducing the death penalty has shown evidence in
reducing crime”. Following the same template of
“A has shown evidence in B”, the variables A: “en-
force gun laws” and B: “reduce gun violence” can
be combined to form an argument “Enforcing gun
laws has shown evidence in reduction of gun vi-
olence”. The ArgU-Dual architecture implements
“argument templates” to model this property, where
distinct argument texts exhibit similar structure and
reasoning over variables.

To condition the argument generation on its tem-
plate, we train decoder D2 to create an argument
template T before generating the actual argument
A. As depicted in Figure 7, D2 inputs H and a set
of three control codes (DI

21) comprising the de-
sired stance, argument scheme, and the template
BOS token ‘<pattern>’, to learn the probability
distribution P(T|I1,DI

21). Next, we suffix T with
the argument BOS token ‘<argument>‘, and pass
through D2 to generate the final argument text and
learn the distribution P(A|T,DI

22).

4.2 Training, Experiments and Results

We use the resultant P2 dataset for our experiments
and create random train-test set of 67,728 and 1,700
examples. To analyze the effect of each type of con-
trol code, we also perform ablation analysis and
train two model variants: ArgU-Stance and ArgU-
Scheme. Both implementations follow the same
encoding and decoding steps as ArgU-Mono, with
the only difference being the absence of scheme or
stance-based control codes in respective architec-
tures. Training details in Appendix A.3.

4.2.1 Automatic Evaluation Results

Apart from comparing standard metrics like corpus
BLEU (Papineni et al., 2002) and Rouge-L (Lin,
2004), we define the following metrics to evaluate
each model. (i) Fact Faithfulness (Fact): This
evaluates fact faithfulness by measuring the simi-
larity between the input variables and the generated
argument. We use the sentence transformer’s se-
mantic textual similarity to compute the average
cosine similarity between the embeddings of the
input variables and the model-generated argument,
where a higher score correlates with better utiliza-
tion of the fact variables. (ii) Entailment (Entail)
& Contradiction (Contra): This evaluates the
relatedness between the original and generated ar-
gument. We use AllenNLP’s (Gardner et al., 2018)
Roberta-based textual entailment model pre-trained
on the SNLI dataset (Bowman et al., 2015) to deter-
mine whether a generated argument entails (higher
better) or contradicts (lower better) the original
argument with at least 0.8 probability.

We share our results in Table 2 and observe that
compared to others, ArgU-Dual majorly yields bet-
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Model BLEU RougeL Fact Entail Contra
Mono 0.150 0.379 0.641 0.399 0.140
Dual 0.158 0.381 0.641 0.406 0.144

Stance 0.151 0.375 0.641 0.400 0.133
Scheme 0.151 0.377 0.642 0.360 0.191

Table 2: Argument generation automatic evaluation re-
sults with best model highlighted for each metric.

Model Fluency
(K=0.61)

Stance
(K=0.87)

Scheme
(K=0.9)

Fact
(K=0.68)

Logic
(K=0.71)

Mono 4.99 0.78* 0.83 3.89 4.01
Dual 4.86 0.80* 0.83 3.88 4.06

Stance 4.95 0.84 0.79* 3.85 3.98*
Scheme 4.98 0.65* 0.79* 3.81 4.17

Table 3: Argument generation human evaluation results
with best model highlighted for each metric. * denotes
scores with at least 5% difference w.r.t the best score.

ter BLEU and RougeL scores and attains the best
entailment results, indicating a better correlation
with the original argument. On the contrary, using
only argument schemes and stance-based control
codes generally performs worse. We also observe
that ArgU-Mono performs almost at par with ArgU-
Stance across all metrics, whereas ArgU-Scheme
contradicts the original argument the most. The
results not only indicate the benefit of using both
stance and scheme-based control codes but also
indicate the superiority of the Dual architecture
compared to Mono.

4.2.2 Human Evaluation Results
We perform a human evaluation study using the
evaluators from Section 3.1.1. We created a work-
sheet with 50 random examples from the test set,
where an example constitutes the argument topic,
input KB variables, desired stance and argument
scheme, the original argument from the dataset,
and the generated argument text from each of the
four models. The evaluators were asked to rate
each generated argument text on the following five
metrics. (i) Fluency: On a scale of 1 (low) to 5
(high), this scores the fluency and grammatical cor-
rectness of an argument. (ii) Stance Appropriate-
ness (Stance): On a binary scale, this determines
if the stance exhibited by a generated argument
aligns with the desired stance passed as control
code. (iii) Scheme Appropriateness (Scheme):
On a binary scale, this determines if the argument
scheme exhibited by a generated argument aligns
with the desired scheme passed as control code. (iv)
Fact Faithfulness (Fact): On a scale of 1 (low) to
5 (high), this determines how well the generated

argument incorporates the input variables. Ignor-
ing variables or including additional facts (hallu-
cination) are penalized. (v) Logical Coherence
(Logic): A subjective metric that rates the overall
sensibleness of the logic portrayed by the generated
argument text on a scale of 1 (low) to 5 (high).

We measure inter-annotator agreement by com-
puting Cohens kappa (K) and observe substantial
to high agreement across all metrics. Table 3 shares
the averaged ratings from both evaluators. For each
metric, we highlight in bold the best performing
model(s) and mark with an asterisk the model(s)
where the difference from the best is at least 5%.
We further plot (in Appendix A) the scores by each
metric in Figure 10, the variation of each metric
across models in Figure 11, and the distribution of
scores for each metric in Figure 12.

We observe a high variation across models for
stance, followed by scheme and logic, and low
variations for fact and fluency metrics, indicating
stance, scheme, and logic-based metrics are bet-
ter suited for measuring model performance. The
low variation in fluency and fact metrics indicate
that all models are fluent in generating arguments
while incorporating the input variables, with ArgU-
Mono performing the best. Trained with only
stance-based control codes, ArgU-Stance yields
the best results for stance appropriateness, while
trained with only scheme-based control codes,
ArgU-Scheme rates the lowest. Contrastly, ArgU-
Scheme attains the highest rating for generating log-
ically coherent arguments, whereas ArgU-Stance
achieves the lowest rating. Thus, indicating the use-
fulness of using stance and scheme-based control
codes for argument text generation. The ArgU-
Dual and Mono variants rate similarly for both
metrics, and rate high for scheme appropriateness,
indicating that using control codes, the stance and
scheme of an argument can be successfully con-
trolled in tandem.

4.3 Discussion

Table 4 contains arguments generated by ArgU-
Dual. Examples 1 and 2 show the model’s capabil-
ity of generating authoritative argument text with
the correct stance by referring to human rights ad-
vocates and supporters, thus exhibiting the “From
Source Authority” argument scheme. Similarly,
examples 3 and 4 denote the model’s capability
of generating appropriate argument text following
the “Rule or Principle” argument scheme for both
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ID Topic Variables Scheme Stance Argument Template Argument Text Comments

1
Death
Penalty

<VAR_0>
human rights
around
the world
<VAR_1>
mandatory
death sentence

From
Source
Authority

Pro
<VAR_0>supporters of the bill
say it is a step toward <VAR_1>

human rights supporters of the bills say it is
a step towards a mandatory death sentence

Generated
arg incorporates
input control
codes, variables
and generated
arg template

2 Con
<VAR_0>advocates have long
argued that <VAR_1>

human rights advocates have long advocated that
mandatory death sentences should be abolished

3 Rule or
Principle

Pro
<VAR_1>is not a violation of
<VAR_0>

mandatory death sentence is not a violation
of human rights

4 Con
<VAR_1>is a violation
of <VAR_0>

mandatory death sentence is a violation to
international human rights law

5

Abortion

<VAR_0>
reproductive
health and rig-
hts advocates
<VAR_1>
stop people
from having
abortions

From
Conse-
quence

Pro
<VAR_1>is an important
step toward <VAR_0>

banning abortion is an important stepping
toward reproductive rights

Pro & con args
swapped

6 Con
<VAR_1>does nothing
to <VAR_0>

banning abortion does nothing to advance
women s reproductive rights

7 From
Source
Knowledge

Pro
<VAR_1>has been proven
to be effective in <VAR_0>

restricting access to abortion has been proved
to be ineffective in protecting women s
reproductive rights

Generated
arg template
modified during
arg generation

8 Con
<VAR_1>is not the answer to
<VAR_0>

banning abortion is not the solution to
women s reproductive rights

Table 4: ArgU Generated Samples.

stances. Examples 5 and 6 depict a scenario where
the generator demonstrates shallow understanding
and inanely combines the input variables, yielding
contrasting stance arguments. Examples 7 and 8
highlight cases where the argument decoder mod-
ifies the generated argument template, which in
example 7 changes the meaning of the argument.

5 Conclusion

Here we propose ArgU: A neural factual argu-
ment generator that systematically generates ar-
guments following a specified stance and argument
scheme. We devise a multi-step annotation frame-
work to yield two golden and silver standard anno-
tated datasets that we further use to train multiple
ArgU variants. Implementing automatic and human
evaluation, we thoroughly analyze ArgU’s gener-
ation capabilities. Our findings indicate ArgU’s
applicability for aiding users to formulate situation-
specific arguments by controlling the argument
stance and scheme using control codes.
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mance on any other topics is unknown. Although
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A Appendix

A.1 ArgSpan Training Details
We initialize ArgSpan weights with pre-trained
Roberta base weights, and train using 2 Nvidia
RTX A5000 GPUs with mixed precision (Micike-
vicius et al., 2018) and a batch size of 32. Prior
to the biaffine layer, we reduce the hidden repre-
sentation to 600 dimensions. We use a learning
rate of 1E-5 and train till the validation loss stops
improving for five steps. We also clip (Pascanu
et al., 2013) the gradients to a unit norm and use
AdamW (Loshchilov and Hutter, 2019) with the
default PyTorch parameters for optimization.

A.2 ArgSpanScheme Training Details
We initialize ArgSpanScheme weights with pre-
trained Roberta base weights, and train using 1
Nvidia RTX A5000 GPUs with mixed precision
and a batch size of 64. We use 2 layers of multi-
headed self attention using 4 attention heads. We
use a learning rate of 1E-5 and train till the valida-
tion loss stops improving for five steps. We also
clip the gradients to a unit norm and use AdamW
with the default PyTorch parameters for optimiza-
tion.

A.3 ArgU Training Details
We initialize model weights with pre-trained BART
(Lewis et al., 2020) base weights and expand the
embedding layer to accommodate 13 new tokens,
detailed in Table 6 (Appendix A). We train all mod-
els over 2 Nvidia RTX A5000 GPUs with mixed
precision and a batch size of 24. We use a learn-
ing rate of 1E-5 and train till the validation loss
stops improving for five steps. We also clip the
gradients to a unit norm and use AdamW with the
default PyTorch parameters for optimization. We
use beam search for decoding with a beam length
of 5, a maximum length of 50 tokens, and a penalty
for trigram repetitions in the generated argument.
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Figure 8: Doccano Annotation Screenshot.

ID Argument Actual
Label

Annotator
Label

1
abortion is necessary, because, unintended pregnancies are associated with birth defects,
increased risk of child abuse, ad so on.

means for
goal

from
consequence

2
most students do not believe that school uniforms are useful, so uniforms should not
be required.

from source
knowledge

from source
authority

3
the death penalty is unacceptable because of the racial bias in the criminal justice system.
the death penalty does not follow a fair criminal justice system because of its racial bias.

rule or
principle

from source
authority

4
it is not necessary to require school uniforms, because t is important to respect students
who believe that school uniforms are not necessary.

from source
authority

from source
knowledge

5
increasing the minimum wage reduces income inequality. reducing income inequality
is desirable. we should increase the minimum wage.

from
consequence

means for
goal

Table 5: Annotator scheme conflicts

Description Tokens

Argument scheme
based control codes

<from_consequence>,
<from_source_authority>,
<from_source_knowledge>,
<goal_from_means/means_for_goal>,
<rule_or_principle>

Argument stance
based control codes

<pro>, <con>

Variable identifiers
<VAR_0>, <VAR_1>,
<VAR_2>, <VAR_3>

Decoder BOS tokens <pattern>, <argument>

Table 6: Special Tokens and Control Codes
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Figure 9: Phase 2 Dataset Fact Normalization Step.

Figure 10: Metric-wise Model Comparison.

Figure 11: Model-wise metric Comparison.

Figure 12: Metric-wise Score Distribution.
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