
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7809–7821

July 9-14, 2023 ©2023 Association for Computational Linguistics

HiTIN: Hierarchy-aware Tree Isomorphism Network for
Hierarchical Text Classification

He Zhu1∗, Chong Zhang1∗, Junjie Huang1, Junran Wu1†, Ke Xu1,2

1State Key Lab of Software Development Environment
Beihang University, Beijing, 100191, China

2Zhongguancun Laboratory, Beijing, 100094, China
{roy_zh, chongzh, huangjunjie, wu_junran, kexu}@buaa.edu.cn

Abstract

Hierarchical text classification (HTC) is a chal-
lenging subtask of multi-label classification as
the labels form a complex hierarchical structure.
Existing dual-encoder methods in HTC achieve
weak performance gains with huge memory
overheads and their structure encoders heav-
ily rely on domain knowledge. Under such
observation, we tend to investigate the feasi-
bility of a memory-friendly model with strong
generalization capability that could boost the
performance of HTC without prior statistics
or label semantics. In this paper, we propose
Hierarchy-aware Tree Isomorphism Network
(HiTIN) to enhance the text representations
with only syntactic information of the label hi-
erarchy. Specifically, we convert the label hier-
archy into an unweighted tree structure, termed
coding tree, with the guidance of structural en-
tropy. Then we design a structure encoder to
incorporate hierarchy-aware information in the
coding tree into text representations. Besides
the text encoder, HiTIN only contains a few
multi-layer perceptions and linear transforma-
tions, which greatly saves memory. We conduct
experiments on three commonly used datasets
and the results demonstrate that HiTIN could
achieve better test performance and less mem-
ory consumption than state-of-the-art (SOTA)
methods.

1 Introduction

Hierarchical text classification is a sub-task of text
multi-label classification, which is commonly ap-
plied in scenarios such as news document clas-
sification (Lewis et al., 2004; Sandhaus, Evan,
2008), academic paper classification (Kowsari
et al., 2017), and so on. Unlike traditional classifi-
cation tasks, the labels of HTC have parent-child
relationships forming a hierarchical structure. Due
to the complex structure of label hierarchy and the

∗Equal Contribution.
†Correspondence to: Junran Wu.

�
 �� �
 �� �
 	�
�("��%�$���%� #��!����%�"�'�%&����

���

�	��

�	�

�
��

�
�

����

���

�
 �

%$
��

��
&�

$%
�

� ������(%&�

��)'����

� ����

� �����

� ��'��

����#�$��)

Figure 1: Micro-F1 score and the number of trainable
parameters of our method and SOTAs with dual en-
coders on Web Of Science dataset.

imbalanced frequency of labels, HTC becomes a
challenging task in natural language processing.

Recent studies in HTC typically utilize a dual-
encoder framework (Zhou et al., 2020), which con-
sists of a text encoder for text representations and a
structure encoder to inject the information of labels
into text. The text encoder could be a traditional
backbone for text classification, for instance, Tex-
tRCNN (Lai et al., 2015) or BERT (Devlin et al.,
2019). The structure encoder is a Graph Neural
Network (GNN) that treats the label hierarchy as a
Directed Acyclic Graph (DAG) and propagates the
information among labels. To maximize the propa-
gation ability of the structure encoder, Zhou et al.
(2020) learn textual features of labels and count the
prior probabilities between parent and child labels.
Based on the dual-encoder framework, researchers
further complicated the model by adding comple-
mentary networks and loss functions from different
aspects, such as treating HTC as a matching prob-
lem (Chen et al., 2021), introducing mutual infor-
mation maximization (Deng et al., 2021). However,
more complementary components result in more
memory consumption, as shown in Figure 1. On

7809

the other hand, their structure encoders still rely on
the prior statistics (Zhou et al., 2020; Chen et al.,
2021) or the representation of labels (Zhou et al.,
2020; Deng et al., 2021). That is, their models re-
quire a mass of domain knowledge, which greatly
reduces the generalization ability.

To this end, we intend to design a more effective
structure encoder with fewer parameters for HTC.
Instead of introducing domain knowledge, we try
to take full advantage of the structural information
embedded in label hierarchies. Inspired by Li and
Pan (2016), we decode the essential structure of la-
bel hierarchies into coding trees with the guidance
of structural entropy, which aims to measure the
structural complexity of a graph. The coding tree
is unweighted and could reflect the hierarchical or-
ganization of the original graph, which provides us
with another view of the label hierarchy. To con-
struct coding trees, we design an algorithm, termed
CodIng tRee Construction Algorithm (CIRCA) by
minimizing the structural entropy of label hierar-
chies. Based on the hierarchical structure of coding
trees, we propose Hierarchical-aware Tree Isomor-
phism Network (HiTIN). The document represen-
tations fetched by the text encoder are fed into a
structure encoder, in which we iteratively update
the node embeddings of the coding tree with a few
multi-layer perceptions. Finally, we produce a fea-
ture vector of the entire coding tree as the final
representation of the document. Compared with
SOTA methods of dual encoders on HTC tasks
(Zhou et al., 2020; Chen et al., 2021; Deng et al.,
2021; Wang et al., 2022a), HiTIN shows superior
performance gains with less memory consumption.
Overall, the contributions of our work can be sum-
marized as follows:

• To improve the generalization capability of
dual-encoder models in HTC, we decode the
essential structure of label hierarchies with the
guidance of structural entropy.

• We propose HiTIN, which has fewer learnable
parameters and requires less domain knowl-
edge, to fuse the structural information of la-
bel hierarchies into text representations.

• Numerous experiments are conducted on
three benchmark datasets to demonstrate
the superiority of our model. For re-
producibility, our code is available at
https://github.com/Rooooyy/HiTIN.

2 Related Work

Hierarchical Text Classification. Existing
works for HTC could be categorized into local
and global approaches (Zhou et al., 2020). Local
approaches build classifiers for a single label or
labels at the same level in the hierarchy, while
global approaches treat HTC as a flat classification
task and build only one classifier for the entire
taxonomy. Previous local studies mainly focus
on transferring knowledge from models in the
upper levels to models in the lower levels. Kowsari
et al. (2017) first feed the whole corpus into the
parent model and then input the documents with
the same label marked by the parent model into
a child model. In the next few years, researchers
try different techniques to deliver knowledge from
high-level models to low-level models (Shimura
et al., 2018; Huang et al., 2019; Banerjee et al.,
2019).

Global studies in HTC try to improve flat multi-
label classification by introducing various informa-
tion from the hierarchy. Gopal and Yang (2013)
propose a recursive regularization function to make
the parameters of adjacent categories have sim-
ilar values. Peng et al. (2018) propose a reg-
ularized graph-CNN model to capture the non-
consecutive semantics from texts. Besides, vari-
ous deep learning techniques, such as sequence-
to-sequence model (Yang et al., 2018; Rojas et al.,
2020), attention mechanism (You et al., 2019), cap-
sule network (Aly et al., 2019; Peng et al., 2021),
reinforcement learning (Mao et al., 2019), and
meta-learning (Wu et al., 2019) are also applied
in global HTC. Recently, Zhou et al. (2020) spe-
cially design an encoder for label hierarchies which
could significantly improve performance. Chen
et al. (2020) learn the word and label embeddings
jointly in the hyperbolic space. Chen et al. (2021)
formulate the text-label relationship as a semantic
matching problem. Deng et al. (2021) introduce
information maximization which can model the in-
teraction between text and label while filtering out
irrelevant information. With the development of
Pretrained Language Model (PLM), BERT(Devlin
et al., 2019) based contrastive learning(Wang et al.,
2022a), prompt tuning(Wang et al., 2022b), and
other methods (Jiang et al., 2022) have brought
huge performance boost to HTC.

Structural Entropy. Structural entropy (Li and
Pan, 2016) is a natural extension of Shannon en-

7810

https://github.com/Rooooyy/HiTIN

Traffic sign recognition (TSR) is an
integrated part of driver assistance systems
and it remains an active research topic in
computer vision today……….. Experiment
results demonstrated that the proposed
method has satisfactory result when
compared to state-of-the-art methods.

Input Document
BERT

TextRCNN

Text Encoder

Label Hierarchy

Structure Encoder Tree Isomorphism NetworkCoding Tree Construction Algorithm

Structural
Entropy:

Coding Tree: Representation Learning
for Non-leaf nodes:

Embeddings

Feature propagation

BCE Loss

Recursive
Regularization

Supervision

Nodes

Figure 2: An example of HiTIN with K = 2. As shown in Section 4.1, the input document is first fed into the text
encoder to generate text representations. Next, the label hierarchy is transformed into a coding tree via Coding
Tree Construction Algorithm proposed in Section 4.2. The text representations are mapped into the leaf nodes
of the coding tree and we iteratively update the non-leaf node embeddings in Section 4.2. Finally, we produce a
feature vector of the entire coding tree and calculate the classification probabilities in Section 4.3. Besides, HiTIN
is supervised by binary cross-entropy loss and recursive regularization (Gopal and Yang, 2013).

tropy (Shannon, 1948) on graphs as structure en-
tropy could measure the structural complexity of
a graph. The structural entropy of a graph is de-
fined as the average length of the codewords ob-
tained by a random walk under a specific coding
scheme. The coding scheme, termed coding tree
(Li and Pan, 2016), is a tree structure that encodes
and decodes the essential structure of the graph.
In other words, to minimize structural entropy is
to remove the noisy information from the graph.
In the past few years, structural entropy has been
successfully applied in network security (Li et al.,
2016a), medicine (Li et al., 2016b), bioinformatics
(Li et al., 2018), graph classification (Wu et al.,
2022b,a), text classification (Zhang et al., 2022),
and graph contrastive learning (Wu et al., 2023).

3 Problem Definition

Given a document D = {w1, w2, . . . , wn}, where
wi is a word and n denotes the document length,
hierarchical text classification aims to predict a
subset Y of the holistic label set Y . Besides, ev-
ery label in Y corresponds to a unique node on a
directed acyclic graph, i.e. the label hierarchy. The
label hierarchy is predefined and usually simplified
as a tree structure. In the groud-truth label set, a
non-root label yi always co-occurs with its parent
nodes, that is, for any yi ∈ Y , the parent node of yi
is also in Y .

4 Methodology

Following the dual-encoder scheme in HTC, the
architecture of HiTIN that consists of a text en-
coder and a structure encoder is shown in Figure 2.
The text encoder aims to capture textual informa-
tion from the input document while the structure
encoder could model the label correlations in the
hierarchy and inject the information from labels
into text representations.

4.1 Text Encoder
In HTC, text encoder generally has two choices,
that is, TextRCNN encoder and BERT encoder.
TextRCNN (Lai et al., 2015) is a traditional method
in text classification, while BERT (Devlin et al.,
2019) has shown its powerful ability in sequence
feature extraction and has been widely applied in
natural language processing in the past few years.

TextRCNN Encoder. The given document D =
{w1, w2, . . . , wn}, which is a sequence of word
embeddings, is firstly fed into a bidirectional GRU
layer to extract sequential information. Then, multi-
ple CNN blocks along with max pooling over time
are adopted to capture n-gram features. Formally,

HRCNN = MaxPool(ΦCNN (ΦGRU (D))), (1)

where ΦCNN (·) and ΦGRU (·) respectively denote
a CNN and a GRU layer, while MaxPool(·) de-
notes the max pooling over time operation. Be-
sides, HRCNN ∈ RnC×dC , where nC denotes the
number of CNN kernels and dC denotes the output
channels of each CNN kernel.

7811

The final representation H ∈ RnC∗dC of doc-
ument D is the concatenation of HRCNN . That
is,

H = Concat(HRCNN). (2)

BERT Encoder. Recent works in HTC also uti-
lize BERT for learning textual features (Chen et al.,
2021; Wang et al., 2022a). Since there are few
changes made to the vanilla BERT, we only in-
troduce the workflow of our model and omit the
details of BERT.

Given a input document D = {w1, w2, . . . , wn},
we pad the document with two specical tokens:

D̃ = {[CLS], w1, w2, . . . , wn, [SEP]}, (3)

where [CLS] and [SEP] respectively denote the
beginning and the end of the document. After
padding and truncating, document D̃ is fed into
BERT. Then BERT generates embeddings for each
token in the document:

HBERT = ΦBERT (D̃), (4)

where HBERT ∈ R(n+2)×dB , and ΦBERT (·) de-
notes the BERT model. We adopt the CLS em-
bedding as the representation of the entire text se-
quence. Thus, the final representation H of docu-
ment D is:

H = H0
BERT , H ∈ RdB , (5)

where dB is the hidden dimension.

4.2 Structure Encoder
The semantic information provided by text encoder
is then input into the structure encoder. Unlike
previous works, we do not utilize the prior statis-
tics or learn representations of the label hierarchy.
Instead, we design a suite of methods guided by
structural entropy (Li and Pan, 2016) to effectively
incorporate the information of text and labels.

Structural Entropy. Inspired by Li and Pan
(2016), we try to simplify the original structure
of the label hierarchy by minimalizing its struc-
tural entropy. The structural entropy of a graph
is defined as the average length of the codewords
obtained by a random walk under a specific cod-
ing pattern named coding tree (Li and Pan, 2016).
Given a graph G = (VG, EG), the structural en-
tropy of G on coding tree T is defined as:

HT (G) = −
∑

α∈T

gα
vol(G)

log
vol(α)

vol(α−)
, (6)

where α is a non-root node of coding tree T which
represents a subset of VG, α− is the parent node of
α on the coding tree. gα represents the number of
edges with only one endpoint in α and the other
end outside α, that is, the out degree of α. vol(G)
denotes the volume of graph G while vol(α) and
vol(α−) is the sum of the degree of nodes that
respectively partitioned by α and α−.

For a certain coding pattern, the height of the
coding tree should be fixed. Therefore, the K-
dimensional structural entropy of the graph G de-
termined by the coding tree T with a certain height
K is defined as:

HK(G) = min
{T |height(T)≤K}

HT (G). (7)

Coding Tree Construction Algorithm. To mini-
mize the structural entropy of graph G, we design
a CodIng tRee Construction Algorithm (CIRCA)
to heuristically construct a coding tree T with
a certain height no greater than K. That is,
T = CIRCA(G,K), where T = (VT , ET),
VT = (V 0

T , . . . , V
h
T). To better illustrate CIRCA,

we make some definitions as follows,

Definition 1 Let T = (VT , ET) be a coding tree
for graph G = (VG, EG), vr be the root node of
T . For any (vi, vj) ∈ T , if vi is the direct child
node of vj , denote that

vi ∈ vj .children;

and vj is equivalent to vi.parent.

Definition 2 Following Definition 1, given any two
nodes (vi, vj) ∈ T , in which vi ∈ vr.children and
vj ∈ vr.children.

Define a member function merge(vi, vj) of
T . T.merge(vi, vj) could insert a new node vϵ
bewtween vr and (vi, vj). Formally,

vϵ.children← vi;

vϵ.children← vj ;

vr.children← vϵ;

V vi.height+1
T ← vϵ; ET ← (vϵ, vi), (vϵ, vj);

Definition 3 Following Definition 1, given a node
vi. Define a member function delete(vi) of T .
T.delete(vi) could delete vi from T and attach

7812

the child nodes of vi to its parent node. Formally,

vi.parent.children← vi.children;

VT := VT − {vi};
ET := ET − {(vi.parent, vi)};
ET := ET − {(vi, v)|v ∈ vi.children};

Definition 4 Following Definition 1, given any
two nodes(vi, vj), in which vi ∈ vj .children.
Define a member function shift(vi, vj) of T .
T.shift(vi, vj) could insert a new node vϵ between
vi and vj:

vϵ.children← vi; vj .children← vϵ;

V vi.height+1
T ← vϵ; ET ← {(vj , vϵ), (vϵ, vi)};

Based on the above definitions, the pseudocode
of CIRCA can be found in Algorithm 1. More
details about coding trees and CIRCA are shown
in Appendix A.

Algorithm 1 Coding Tree Construction Algorithm
Input: A graph G = (VG, EG) , a postive integer
K
Output: Coding tree T = (VT , ET) of the graph
G with height K

1: V 0
T := V ;

{Stage 1: Construct a full-height binary-tree}
2: while |vr.children| > 2 do
3: (vi, vj) = argmax(v,v′){HT (G) −

HT.merge(v,v′)(G)}
4: T.merge(vi, vj)
5: end while

{Stage 2: Squeeze T to height K}
6: while T.height > K do
7: vi = argminv{HT.remove(v)(G) −

HT (G)}
8: T.remove(vi)
9: end while

{Stage 3: Erase cross-layer links}
10: for vi ∈ T do
11: if |vi.parent.height−vi.height| > 1 then
12: T.shift(vi, vi.parent)
13: end if
14: end for
15: return T

Hierarchy-aware Tree Isomorphism Network.
For representation learning, we reformulate the la-
bel hierarchy as a graph GL = (VGL

, EGL
, XGL

),

where VGL
, EGL

respectively denotes the node set
and the edge set of GL, VGL

= Y while EGL
is

predefined in the corpus. In our work, VGL
and

EGL
are represented by the unweighted adjacency

matrix of GL. XGL
is the node embedding matrix

of GL. Instead of learning the concept of labels,
we directly broadcast the text representation to the
label structure. Specifically, XG is transformed
from the text representation H by duplication and
projection. Formally,

XG = WdHWp +BH , (8)

where Wd ∈ R|Y |×1 and Wp ∈ RdH∗dV are learn-
able weights for the duplication and projection. |Y |
is the volume of the label set. dH and dV respec-
tively denote the dimension of text and node. BH

indicates the learnable bias and BH ∈ R|Y |×dv .
Next, we simplify the structure of the label hi-

erarchy into a coding tree with the guidance of
structural entropy. Given a certain height K, the
coding tree TL = (VTL

, ETL
, XTL

) of the label
hierarchy could be constructed by CIRCA,

(VTL
, ETL

) = CIRCA(GL,K), (9)

where VTL
= {V 0

TL
, V 1

TL
, ...V K

TL
} are the layer-

wise node sets of coding tree TL while XTL
=

{X0
TL

, X1
TL

, ..., XK
TL
} represents the node embed-

dings of V i
TL

, i ∈ [0,K].
The coding tree TL encodes and decodes the

essential structure of GL, which provides multi-
granularity partitions for GL. The root node vr is
the roughest partition which represents the whole
node set of GL, so V K

TL
= {vr}. For every node

v and its child nodes {v1, v2, . . . , vz}, v1, v2, . . . ,
and vz formulate a partition of v. Moreover, the
leaf nodes in TL is an element-wise partition for
GL, that is, V 0

TL
= VGL

, X0
TL

= XGL
.

Note that {V i
TL
|i ∈ [1,K]} is given by CIRCA

while their node embeddings {Xi
TL
|i ∈ [1,K]} re-

main empty till now. Thus, we intend to update
the un-fetched node representation of coding tree
TL. Following the message passing mechanism
in Graph Isomorphism Network (GIN) (Xu et al.,
2019), we design Hierarchy-aware Tree Isomor-
phism Network (HiTIN) according to the structure
of coding trees. For xiv ∈ Xi

TL
in the i-th layer,

xiv = Φi
MLP (

∑
n∈C(v)

xi−1
n), (10)

where v ∈ V i
T , xiv ∈ RdV is the feature vector of

node v, and C(v) represents the child nodes of v

7813

in coding tree TL. Φi
MLP (·) denotes a two-layer

multi-layer perception within BatchNorm (Ioffe
and Szegedy, 2015) and ReLU function. The learn-
ing stage starts from the leaf node (layer 0) and
learns the representation of each node layer by
layer until reaching the root node (layer K). Fi-
nally, a read-out function is applied to compute a
representation of the entire coding tree TL:

HT = Concat(Pool({xiv|v ∈ V i
TL
})

|i ∈ [0,K])),
(11)

where Concat(·) indicates the concatenation op-
eration. Pool(·) in Eq. 11 can be replaced with a
summation, averaging, or maximization function.
HT ∈ RdT denotes the final representation of TL.

4.3 Classification and Loss Function

Similar to previous studies (Zhou et al., 2020;
Wang et al., 2022a), we flatten the hierarchy by
attaching a unique multi-label classifier. HT is fed
into a linear layer along with a sigmoid function to
generate classification probability:

P = Sigmoid(HT ·Wc + bc), (12)

where Wc ∈ RdT×|Y | and bc ∈ R|Y | are weights
and bias of linear layer while |Y | is the volume
of the label set. For multi-label classification, we
adopt the Binary Cross-Entropy Loss as the classi-
fication loss:

LC = − 1

|Y |

|Y |∑

j

yj log(pj) + (1− yj)log(1− pj), (13)

where yj is the ground truth of the j-th label while
pj is the j-th element of P . Considering hierarchi-
cal classification, we use recursive regularization
Gopal and Yang (2013) to constrain the weights of
adjacent classes to be in the same distributions as
formulated in Eq. 14:

LR =
∑

p∈Y

∑

q∈child(p)

1

2
||w2

p − w2
q ||, (14)

where p is a non-leaf label in Y and q is a child
of p. wp, wq ∈ Wc. We use a hyper-parameter λ
to control the strength of recursive regularization.
Thus, the final loss function can be formulated as:

L = LC + λ · LR. (15)

Dataset |Y | Avg(yi) Depth # Train # Dev # Test
WOS 141 2.0 2 30,070 7,518 9,397

RCV1-v2 103 3.24 4 20,833 2,316 781,265
NYTimes 166 7.6 8 23,345 5,834 7,292

Table 1: Summary statistics of datasets.

5 Experiments

5.1 Experiment Setup

Datasets and Evaluation Metrics. We conduct
experiments on three benchmark datasets in HTC.
RCV1-v2 (Lewis et al., 2004) and NYT (Sand-
haus, Evan, 2008) respectively consist of news ar-
ticles published by Reuters, Ltd. and New York
Times, while WOS (Kowsari et al., 2017) includes
abstracts of academic papers from Web of Science.
Each of these datasets is annotated with ground-
truth labels in a given hierarchy. We split and pre-
process these datasets following Zhou et al. (2020).
The statistics of these datasets are shown in Ta-
ble 1. The experimental results are measured with
Micro-F1 and Macro-F1 (Gopal and Yang, 2013).
Micro-F1 is the harmonic mean of the overall pre-
cision and recall of all the test instances, while
Macro-F1 is the average F1-score of each cate-
gory. Thus, Micro-F1 reflects the performance on
more frequent labels, while Macro-F1 treats labels
equally.

Implementation Details. The text embeddings
fed into the TextRCNN encoder are initialized with
GloVe (Pennington et al., 2014). The TextRCNN
encoder consists of a two-layer BiGRU with hidden
dimension 128 and CNN layers with kernel size=[2,
3, 4] and dC=100. Thus, the hidden dimension of
the final text representation is dH = rC ∗ dC =
3 ∗ 100 = 300. The height K of the coding tree
is 2 for all three datasets. The hidden dimension
dV of node embedding XG is set to 512 for RCV1-
v2 while 300 for WOS and NYTimes. Pool(·)
in Eq. 11 is summation for all the datasets. The
balance factor λ for LR is set to 1e-6. The batch
size is set to 16 for RCV1-v2 and 64 for WOS
and NYTimes. The model is optimized by Adam
(Kingma and Ba, 2014) with a learning rate of 1e-4.

For BERT text encoder, we use the BertModel of
bert-base-uncased and there are some negligi-
ble changes to make it compatible with our method.
dB = dH = dV = 768. The height K of the cod-
ing tree is 2 and the Pool(·) in Eq. 11 is averaging.
The batch size is set to 12, and the BertModel is
fine-tuned by Adam (Kingma and Ba, 2014) with a
learning rate of 2e-5.

7814

Hierarchy-aware Models
WOS RCV1-v2 NYTimes Average

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
TextRCNN (Zhou et al., 2020) 83.55 76.99 81.57 59.25 70.83 56.18 78.65 64.14
HiAGM (Zhou et al., 2020) 85.82 80.28 83.96 63.35 74.97 60.83 81.58 68.15
HTCInfoMax (Deng et al., 2021) 85.58 80.05 83.51 62.71 - - - -
HiMatch (Chen et al., 2021) 86.20 80.53 84.73 64.11 - - - -
HiTIN 86.66 81.11 84.81 64.37 75.13 61.09 82.20 68.86

Table 2: Main Experimental Results with TextRCNN encoders. All baselines above and our method utilize GloVe
embeddings (Pennington et al., 2014) to initialize documents and encode them with TextRCNN (Lai et al., 2015).

Pretrained Language Models
WOS RCV1-v2 NYTimes Average

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
BERT † 85.63 79.07 85.65 67.02 78.24 65.62 83.17 70.57
BERT+HiAGM† 86.04 80.19 85.58 67.93 78.64 66.76 83.42 71.63
BERT+HTCInfoMax† 86.30 79.97 85.53 67.09 78.75 67.31 83.53 71.46
BERT+HiMatch (Chen et al., 2021) 86.70 81.06 86.33 68.66 - - - -
HGCLR (Wang et al., 2022a) 87.11 81.20 86.49 68.31 78.86 67.96 84.15 72.49
HiTIN 87.19 81.57 86.71 69.95 79.65 69.31 84.52 73.61

Table 3: Main Experimental Results with BERT encoder. All baselines above and our method adopt BERT(Devlin
et al., 2019) as the text encoder. † denotes the results are reported by Wang et al. (2022a).

Baselines. We compare HiTIN with SOTAs in-
cluding HiAGM(Zhou et al., 2020), HTCInfo-
Max (Deng et al., 2021), HiMatch (Chen et al.,
2021), and HGCLR (Wang et al., 2022a). Hi-
AGM, HTCInfoMax, and HiMatch use different
fusion strategies to model text-hierarchy correla-
tions. Specifically, HiAGM proposes a multi-label
attention and a text feature propagation technique
to get hierarchy-aware representations. HTCInfo-
Max enhances HiAGM-LA with information max-
imization to model the interaction between text
and hierarchy. HiMatch treats HTC as a matching
problem by mapping text and labels into a joint
embedding space. HGCLR directly incorporates
hierarchy into BERT with contrastive learning.

5.2 Experimental Results

The experimental results with different types of
text encoders are shown in Table 2 and Table 3. Hi-
AGM is the first method to apply the dual-encoder
framework and outperforms TextRCNN on all
the datasets. HTCInfoMax improves HiAGM-LA
(Zhou et al., 2020) by introducing mutual informa-
tion maximization but is still weaker than HiAGM-
TP. HiMatch treats HTC as a matching problem
and surpasses HiAGM-TP(Zhou et al., 2020) on
WOS and RCV1-v2. Different from these meth-
ods, HiTIN could further extract the information
in the text without counting the prior probabilities
between parent and child labels or building feature
vectors for labels. As shown in Table 2, when using
TextRCNN as the text encoder, our model outper-

forms all baselines on the three datasets. Based on
TextRCNN, HiTIN brings 3.55% and 4.72% im-
provement of Micro-F1 and Macro-F1 on average.

As for pretrained models in Table 3, our model
also beats existing methods in all three datasets.
Compared with vanilla BERT, our model can sig-
nificantly refine the text representations by respec-
tively achieving 1.2% and 3.1% average improve-
ment of Micro-F1 and Macro-F1 on the three
datasets. In addition, our method can achieve
3.69% improvement of Macro-F1 on NYT, which
has the deepest label hierarchy in the three datasets.
It demonstrates the superiority of our model on the
dataset with a complex hierarchy. Compared with
BERT-based HTC methods, our model observes a
1.12% average improvement of Macro-F1 against
HGCLR. On RCV1-v2, the performance boost of
Macro-F1 even reaches 1.64%. The improvement
of Macro-F1 shows that our model could effec-
tively capture the correlation between parent and
child labels even without their prior probabilities.

Ablation Models
WOS RCV1-v2 NYTimes

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
HiTIN(Random) 84.74 77.90 82.41 61.46 71.99 58.26

w/o LR 86.48 80.48 84.14 63.12 74.93 59.95
HiTIN 86.66 81.11 84.81 64.37 75.13 61.09

Table 4: Performance when replacing or removing a
component of HiTIN. HiTIN(Random) denotes the re-
sults produced by HiTIN within the random algorithm.
w/o LR stands for the parameter λ is set to 0.

7815

� � � � � 	

���

���

���

���

��
��
��
�

	���

	���

���

���

���

��
��
��
�

�������
�������

(a) WOS

	
 � � � �

�
���

�
�	�

�
���

�
���

�����

���	�

�����

�����

�
��
��
��
�

�

	

�

�
��
��
��
�

��������
��������

(b) RCV1-v2

� � � � � 	

	���

	���

	���

	���

��
��
��
�

�
��

����

����

����

����

����

��
��
��
�

�������
�������

(c) NYTimes

Figure 3: Test performance of HiTIN with different height K of the coding tree on three datasets.

5.3 The Necessity of CIRCA

In this subsection, we illustrate the effectiveness
of CIRCA by comparing it to a random algorithm.
The random algorithm generates a coding tree of
the original graph G with a certain height K just
like CIRCA. First, the random algorithm also takes
all nodes of graph G as leaf nodes of the tree. But
different from CIRCA, for each layer, every two
nodes are randomly paired and then connect to their
parent node. Finally, all nodes in the K − 1th layer
are connected to a root node. We generate coding
trees with the random algorithm and then feed them
into our model.

As shown in Table 4, the results demonstrate that
the random algorithm leads to a negative impact
which destroys the original semantic information.
Thus, it is difficult for the downstream model to
extract useful features. On the contrary, the coding
tree constructed by CIRCA can retain the essential
structure of the label hierarchy and make the learn-
ing procedure more effective. Besides, our model
could achieve good performance without Eq. 14,
which proves that CIRCA could retain the informa-
tion of low-frequency labels while minimizing the
structural entropy of label hierarchies.

5.4 The Height of Coding Tree

The height of the coding tree directly affects the
performance of our model. The higher the cod-
ing tree, the more information is compressed. To
investigate the impact of K, we run HiTIN with
different heights K of the coding tree while keep-
ing other settings the same. Figure 3 shows the
test performance of different height coding trees
on WOS, RCV1-v2, and NYTimes. As K grows,
the performance of HiTIN is severely degraded.
Despite the different depths of label hierarchy, the
optimal heights of the coding tree for the three
datasets are always 2. A probable reason is that
the 2-dimensional structural entropy roughly corre-
sponds to objects in the 2-dimensional space as the

text and label are both represented with 2-D tensors.
On the other hand, as K grows, more noisy infor-
mation is eliminated, but more useful information
is also compressed.

� �� �� �� ��
�"������������������������!�� ����

����

��#!�
��

��	����	

��	�����

����!��

��
�����#

Figure 4: The number of trainable parameters of HiTIN
and baseline models on WOS.

5.5 The Mermory-saving Feature of HiTIN

In this subsection, we compare the number of learn-
able parameters of HiTIN with that of the baselines.
We set K to 2 and run these models on WOS while
keeping the other hyper-parameter the same. The
numbers of trainable parameters are counted by
the numel(·) function in PyTorch (Paszke et al.,
2019). As shown in Figure 4, we can observe
that the parameter of our model is slightly greater
than TextRCNN (Zhou et al., 2020) but signifi-
cantly smaller than HiAGM (Zhou et al., 2020),
HiMatch (Chen et al., 2021), and HTCInfoMax
(Deng et al., 2021). One important reason is the
simple and efficient architecture of HiTIN, which
contains only a few MLPs and linear transforma-
tions. On the contrary, HiAGM-LA (Zhou et al.,
2020) needs extra memory for label representations,
HiAGM-TP uses a space-consuming method for
text-to-label transformation, and both of them uti-
lized gated network as the structure encoder, which
further aggravates memory usage. HiMatch (Chen
et al., 2021) and HTCInforMax (Deng et al., 2021)
respectively introduce auxiliary neural networks

7816

based on HiAGM-TP and HiAGM-LA. Thus, their
memory usages are even larger.

6 Conclusion

In this paper, we propose a suite of methods to
address the limitations of existing approaches re-
garding HTC. In particular, tending to minimize
structural entropy, we design CIRCA to construct
coding trees for the label hierarchy. To further ex-
tract textual information, we propose HiTIN to up-
date node embeddings of the coding tree iteratively.
Experimental results demonstrate that HiTIN could
enhance text representations with only structural
information of the label hierarchy. Our model out-
performs existing methods while greatly reducing
memory increments.

Limitations

For text classification tasks, the text encoder is
more important than other components. Due to
the lack of label semantic information and sim-
plified learning procedure, the robustness of text
encoders directly affects the performance of our
model. From Table 2 and 3, we could observe that
BERT has already surpassed TextRCNN by 4.52%
and 6.43% on Micro-F1 and Macro-F1. Besides,
BERT beats all the TextRCNN-based methods on
RCV1-v2 and NYTimes. However, when applying
BERT as the text encoder, our model makes slight
improvements to Micro-F1, especially on WOS.
A probable reason is that BERT was pre-trained
on news corpus while WOS consists of academic
papers.

Acknowledgements

This research was supported by NSFC (Grant No.
61932002).

References
Rami Aly, Steffen Remus, and Chris Biemann. 2019.

Hierarchical multi-label classification of text with
capsule networks. In ACL.

Siddhartha Banerjee, Cem Akkaya, Francisco Perez-
Sorrosal, and Kostas Tsioutsiouliklis. 2019. Hierar-
chical transfer learning for multi-label text classifica-
tion. In ACL.

Boli Chen, Xin Huang, Lin Xiao, Zixin Cai, and Lip-
ing Jing. 2020. Hyperbolic interaction model for
hierarchical multi-label classification. In AAAI.

Haibin Chen, Qianli Ma, Zhenxi Lin, and Jiangyue Yan.
2021. Hierarchy-aware label semantics matching
network for hierarchical text classification. In ACL.

Zhongfen Deng, Hao Peng, Dongxiao He, Jianxin Li,
and Philip S. Yu. 2021. Htcinfomax: A global model
for hierarchical text classification via information
maximization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2021, Online, June
6-11, 2021, pages 3259–3265. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Siddharth Gopal and Yiming Yang. 2013. Recursive
regularization for large-scale classification with hier-
archical and graphical dependencies. Proceedings of
the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining.

Wei Huang, Enhong Chen, Qi Liu, Yuying Chen, Zai
Huang, Yang Liu, Zhou Zhao, Dandan Zhang, and
Shijin Wang. 2019. Hierarchical multi-label text
classification: An attention-based recurrent network
approach. Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge
Management.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Pro-
ceedings, pages 448–456. JMLR.org.

Ting Jiang, Deqing Wang, Leilei Sun, Zhong-Yong
Chen, Fuzhen Zhuang, and Qinghong Yang. 2022.
Exploiting global and local hierarchies for hierarchi-
cal text classification.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Kamran Kowsari, Donald E. Brown, Mojtaba Hei-
darysafa, K. Meimandi, Matthew S. Gerber, and
Laura E. Barnes. 2017. Hdltex: Hierarchical deep
learning for text classification. 2017 16th IEEE In-
ternational Conference on Machine Learning and
Applications (ICMLA), pages 364–371.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In AAAI.

7817

https://doi.org/10.18653/v1/2021.naacl-main.260
https://doi.org/10.18653/v1/2021.naacl-main.260
https://doi.org/10.18653/v1/2021.naacl-main.260
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res.,
5:361–397.

Angsheng Li, Qifu Hu, Jun Liu, and Yicheng Pan. 2016a.
Resistance and security index of networks: Structural
information perspective of network security. Scien-
tific Reports, 6.

Angsheng Li and Yicheng Pan. 2016. Structural infor-
mation and dynamical complexity of networks. IEEE
Transactions on Information Theory, 62:3290–3339.

Angsheng Li, Xianchen Yin, and Yicheng Pan. 2016b.
Three-dimensional gene map of cancer cell types:
Structural entropy minimisation principle for defining
tumour subtypes. Scientific Reports, 6.

Angsheng Li, Xianchen Yin, Bingxian Xu, Danyang
Wang, Jimin Han, Yi Wei, Yun Deng, Yingluo Xiong,
and Zhihua Zhang. 2018. Decoding topologically as-
sociating domains with ultra-low resolution hi-c data
by graph structural entropy. Nature Communications,
9.

Yuning Mao, Jingjing Tian, Jiawei Han, and Xiang Ren.
2019. Hierarchical text classification with reinforced
label assignment. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, pages
445–455. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Hao Peng, Jianxin Li, Qiran Gong, Senzhang Wang,
Lifang He, Bo Li, Lihong Wang, and Philip S. Yu.
2021. Hierarchical taxonomy-aware and attentional
graph capsule rcnns for large-scale multi-label text
classification. IEEE Transactions on Knowledge and
Data Engineering, 33:2505–2519.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. Pro-
ceedings of the 2018 World Wide Web Conference.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Methods
in Natural Language Processing.

Kervy Rivas Rojas, Gina Bustamante, Arturo Oncevay,
and Marco Antonio Sobrevilla Cabezudo. 2020. Ef-
ficient strategies for hierarchical text classification:
External knowledge and auxiliary tasks. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 2252–2257. Association for
Computational Linguistics.

Sandhaus, Evan. 2008. The new york times annotated
corpus.

Claude E. Shannon. 1948. A mathematical theory of
communication. Bell Syst. Tech. J., 27(3):379–423.

Kazuya Shimura, Jiyi Li, and Fumiyo Fukumoto. 2018.
Hft-cnn: Learning hierarchical category structure for
multi-label short text categorization. In EMNLP.

Zihan Wang, Peiyi Wang, Lianzhe Huang, Xin Sun, and
Houfeng Wang. 2022a. Incorporating hierarchy into
text encoder: a contrastive learning approach for hi-
erarchical text classification. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 7109–
7119. Association for Computational Linguistics.

Zihan Wang, Peiyi Wang, Tianyu Liu, Yunbo Cao, Zhi-
fang Sui, and Houfeng Wang. 2022b. Hpt: Hierarchy-
aware prompt tuning for hierarchical text classifica-
tion.

Jiawei Wu, Wenhan Xiong, and William Yang Wang.
2019. Learning to learn and predict: A meta-learning
approach for multi-label classification. In EMNLP.

Junran Wu, Xueyuan Chen, Bowen Shi, Shangzhe Li,
and Ke Xu. 2023. Sega: Structural entropy guided
anchor view for graph contrastive learning. In Inter-
national Conference on Machine Learning. PMLR.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li.
2022a. Structural entropy guided graph hierarchical
pooling. In International Conference on Machine
Learning, pages 24017–24030. PMLR.

Junran Wu, Shangzhe Li, Jianhao Li, Yicheng Pan, and
Keyulu Xu. 2022b. A simple yet effective method
for graph classification. In IJCAI.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. Sgm: Sequence gen-
eration model for multi-label classification. In COL-
ING.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. In NeurIPS.

7818

https://doi.org/10.18653/v1/D19-1042
https://doi.org/10.18653/v1/D19-1042
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/2020.acl-main.205
https://doi.org/10.18653/v1/2020.acl-main.205
https://doi.org/10.18653/v1/2020.acl-main.205
https://doi.org/10.35111/77BA-9X74
https://doi.org/10.35111/77BA-9X74
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://aclanthology.org/2022.acl-long.491
https://aclanthology.org/2022.acl-long.491
https://aclanthology.org/2022.acl-long.491
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Chong Zhang, He Zhu, Xing Qiang Peng, Junran Wu,
and Ke Xu. 2022. Hierarchical information matters:
Text classification via tree based graph neural net-
work. In COLING.

Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu,
Ning Ding, Haoyu Zhang, Pengjun Xie, and Gong-
shen Liu. 2020. Hierarchy-aware global model for
hierarchical text classification. In ACL.

A Analysis of CIRCA

In this section, we first present the definition of cod-
ing tree following (Li and Pan, 2016). Secondly,
we present the detailed flow of CIRCA, in particu-
lar, how each stage in Algorithm 1 works, and the
purpose of designing these steps. Finally, we give
an analysis of the temporal complexity of CIRCA.

Coding Tree. A coding tree T of graph G =
(VG, EG) is defined as a tree with the following
properties:

i. For any node v ∈ T . v is associated with a non-
empty subset V of VG. Denote that Tv = V ,
in which v is called the codeword of V while
V (or Tv) is termed as the marker of v.1

ii. The coding tree has a unique root node vr that
stands for the vertices set VG of G. That is,
Tvr = VG.

iii. For every node v ∈ T , if v1, v2, . . . , vz are
all the children of v, {Tv1 , Tv2 , . . . , Tvz} is a
partition of Tv. That is, Tv = ∪zi=1Tvi .

iv. For each leaf node vγ ∈ T , Tvγ is a singleton.
i.e. vγ corresponds to a unique node in VG,
and for any vertex v ∈ VG, there is only one
leaf node vτ ∈ T that satisfies Tvτ = v.

The workflow of CIRCA. In the initial state, the
original graph G = (VG, EG) is fed into CIRCA
and each node in VG is treated as the leaf node of
coding tree TL and directly linked with the root
node vr. The height of the initial coding tree is
1, which reflects the one-dimensional structure en-
tropy of graph G. In other words, there are only
two kinds of partition for VG, one is the graph-
level partition (Tvr = VG), and the other is the
node-level partition (Tvτ = v). We tend to find
multi-granularity partitions for G, which could be
provided by the K-dimensional optimal coding tree

1For simplicity, we do not distinguish the concept of node,
codeword, and marker in the body of this paper.

as the coding tree with height K encodes and de-
codes K + 1 partitions in different levels for graph
G.

In Stage 1, we merge the leaf nodes of the initial
coding tree pair by pair until the root node vr has
only two children. Merging leaf nodes is essentially
compressing structural information, which is a pro-
cess of reducing the structural entropy of graph G.
When selecting the node pairs to be merged, we
give priority to the nodes that reduce more struc-
tural entropy of graph G after merging.

After Stage 1, the coding tree T becomes a bi-
nary tree, whose height is much greater than K
and closer to log|VG| in practical applications. In
Stage 2, we tend to compress the coding tree T to
height K by erasing its intermediate nodes. Note
that removing nodes from the highly compressed
coding tree is increasing the structural entropy of
graph G. Thus, we preferentially erase the nodes
that cause the minimal structural entropy increase.

The result of Stage 2 might be an unbalanced tree
that does not conform to the definition of coding
trees. In Stage 3, we do some post-processing on
the coding tree to make the leaf nodes the same
height.

Complexity analysis. The time complexity of
CIRCA is O(hmax(|EG|log|VG| + |VG|)), where
hmax is the maximum height of coding tree TL

during Stage 1. Since CIRCA tends to construct
balanced coding trees, hmax is no greater than
log(|VG|).

7819

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

We discuss the limitations at the end of this paper.

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
The introduction is shown in Section 1.

�3 A4. Have you used AI writing assistants when working on this paper?
We utilize Grammarly’s standard edition to check the spelling and grammar for the whole paper.

B � Did you use or create scientific artifacts?
Not applicable. Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
We conduct experiments on three benchmark datasets. The experimental results are shown in Section

5.2.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We report the number of parameters in Section 5.6.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7820

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
The implementation details are shown in Section 5.1.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
The experimental results are shown in Section 5.2.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
The implementation details are shown in Section 5.1.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

7821

