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Abstract

Multimodal Sentiment Analysis aims to pre-
dict the sentiment of video content. Recent re-
search suggests that multimodal sentiment anal-
ysis critically depends on learning a good rep-
resentation of multimodal information, which
should contain both modality-invariant repre-
sentations that are consistent across modalities
as well as modality-specific representations. In
this paper, we propose ConFEDE, a unified
learning framework that jointly performs con-
trastive representation learning and contrastive
feature decomposition to enhance representa-
tion of multimodal information. It decomposes
each of the three modalities of a video sam-
ple, including text, video frames, and audio,
into a similarity feature and a dissimilarity fea-
ture, which are learned by a contrastive relation
centered around text. We conducted extensive
experiments on CH-SIMS, MOSI and MOSEI
to evaluate various state-of-the-art multimodal
sentiment analysis methods. Experimental re-
sults show that ConFEDE outperforms all base-
lines on these datasets on a range of metrics.

1 Introduction

Multimodal deep learning involves interpreting and
analyzing multimodal signals together, where each
modality refers to a way in which something is
experienced and felt, e.g., the visual, audio, or lan-
guage modality. With the widespread popularity
of online social media, such as Instagram, Tik-
Tok, Facebook, etc., videos containing multiple
modalities have become a major information car-
rier, which brings new challenges to content recom-
mendation and classification, e.g., video question
answering (Lei et al., 2021; Li et al., 2020), video
captioning (Ging et al., 2020; Li et al., 2020), and
video retrieval (Akbari et al., 2021; Lei et al., 2021).

While traditional sentiment analysis is mainly
based on language, multimodal sentiment analysis

∗These authors contributed equally to this work.
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(MSA) predicts the human emotion by utilizing ex-
tra information available in visual and audio modal-
ities of the content to assist with language-based
prediction. Here, the text modality contains the
semantic meaning of the spoken language. The
visual modality extracts the facial characteristics
(e.g., head orientation, facial expressions, and pose)
of the speaker. The audio modality reflects the em-
phasis on the utterance (e.g., through pitch, band-
width and intensity). MSA has recently gained
much attention in research for several reasons. On
one hand, because of the abundance of social me-
dia content, commercial interests are switching
from gauging user opinions/emotions from text
only to more thorough multimodal analysis based
on videos. On the other hand, short video platforms
(e.g., TikTok, Instagram) allow users to easily cre-
ate multimodal content including visual informa-
tion, audio, and inserted text, while these modali-
ties are sometimes noisy or even contradicting each
other in sentiments. Therefore, the presence of
multimodal information in addition to the text or
language itself is necessary to make a thorough
conclusion about the overall sentiment of a video.

Multimodal fusion has become essential to gain-
ing a deeper understanding of these video scenes
(Baltrušaitis et al., 2018) and has proven to be help-
ful in many downstream tasks. Various multimodal
fusion techniques have been proposed for MSA,
among which a basic solution is concatenating the
extracted feature of each modality before perform-
ing downstream regression or classification. Recent
work has recognized the importance of identifying
modality-invariant information across modalities
and fuse them to strengthen sentiment prediction
(Hazarika et al., 2020; Zadeh et al., 2018a; Rahman
et al., 2020; Sun et al., 2020).

Although modality-invariant information helps
reinforce the understanding of the content, there
are also cases where sentiments of different modal-
ities contradict each other. For example, when one
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thanks someone with phrases like “Finally I can
rest easy tonight” or “I can’t thank you enough”,
it is very hard to conclude whether the sentiment
is positive or negative without looking at the non-
verbal cues, such as tones, facial expressions, and
gestures. In fact, many sarcastic opinions are ex-
pressed by non-linguistic markers. In these cases,
the overall sentiment cannot simply be judged by
a majority vote among all modalities. Thus, mul-
timodal representation learning that respects both
consistency and incongruity between modalities
have recently shown great promise (Yu et al., 2020;
Hazarika et al., 2020).

In this paper, we propose ConFEDE, a
Contrastive FEature DEcomposition framework,
which integrates both modality decomposition
within each sample and supervised contrastive
learning across samples in a single unified con-
trastive learning framework. Our main contribu-
tions are summarized as follows: (1) We integrate
inter-sample contrastive learning and intra-sample
modality decomposition into a simple unified loss
function, based on a customized data sampler that
allows us to sample positive/negative data pairs to
perform both learning tasks. (2) We propose to
decompose each modality into a similarity feature
and a dissimilarity feature, and use the similarity
feature of the text as an anchor to build the con-
trastive relation among all decomposed features.
This is due to the observation that sentiment analy-
sis is still largely centered around text and spoken
language, while other modalities can provide extra
information to assist with prediction. (3) Based
on multimodal representation learning proposed
above, we further introduce a multi-task prediction
loss that depends on each decomposed modality
representation and enables the model to learn from
both multimodal prediction and unimodal predic-
tion.

We mainly evaluated ConFEDE on CH-SIMS
(Yu et al., 2020) benchmark, which contains both
unimodal and overall sentiment labels for each sam-
ple. The result shows that the proposed method
significantly outperforms a wide range of state-
of-the-art multimodal sentiment analysis methods.
To test the capability when no unimodal labels
are provided, we further conduct experiments on
MOSI (Zadeh et al., 2018a) and MOSEI (Zadeh
et al., 2018b), which contain only an overall sen-
timent label for each sample, which shows that
our proposed method can also achieve better per-

formance than state-of-the-art methods on a num-
ber of performance metrics without unimodal la-
bels. We provide extensive ablation studies to
show the effectiveness and necessity of each de-
sign component in ConFEDE. The code is released
at https://github.com/XpastaX/ConFEDE/.

2 Related Work

In this section, we discuss the related work in MSA
and contrastive representation learning.

2.1 Multimodal Sentiment Analysis

Prior works on multimodal sentiment analysis
mostly focus on predicting sentiments based on
text and vision (Zhu et al., 2022; Ji et al., 2019; Liu
et al., 2019).However, there is growing interest in
analyzing sentiment using all three modalities: text,
audio, and vision (Yu et al., 2020, 2021; Rahman
et al., 2020). Zadeh et al. (2016) were among the
first to propose a multimodal dictionary that could
learn the dynamic interactions between facial ges-
tures and spoken words to model sentiments. They
later introduced a Tensor Fusion Network (TFN) to
learn the intra-modality and inter-modality dynam-
ics of three modalities in an end-to-end way (Zadeh
et al., 2017). Furthermore, they presented a Mem-
ory Fusion Network (MFN) which is composed of
Long Short Term Memories (LSTMs) to learn the
view-specific and cross-view interactions of three
views (text, video, and audio) to improve senti-
ment analysis performance. Rahman et al. (2020)
proposed a Multimodal Adaptation Gate (MAG)
to fine-tune BERT (Devlin et al., 2019) on multi-
modal data to improve sentiment analysis perfor-
mance. However, these prior works do not consider
modality-specific information.

To better study the impacts that modality-
specific information can bring to MSA, Yu et al.
(2020) construct a new multimodal sentiment anal-
ysis dataset CH-SIMS, which contains a unimodal
label for each modality of a sample. Experiments
show a great improvement in overall sentiment pre-
diction after simply integrating unimodal predic-
tions as subtasks in the learning objective.

Hazarika et al. (2020) further decompose each
modality into a modality-invariant and a modality-
specific representation, and employ squared Frobe-
nius norm loss as the regularizer. However, they
treat all modalities equally while regularizing the
prediction result, which ignores the different ef-
fectiveness of modalities. In real cases, the text is
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usually more effective on MSA tasks compared
to vision and audio. In other words, it is less
“noisy” than the other two modalities. Also, they
employ Central Moment Discrepancy loss to push
the modality-invariant representations close and a
Frobenius norm to push modality-specific repre-
sentations to be orthogonal, while in our method,
we integrate the above mechanism into a single
loss function. Moreover, they regularize the de-
composed features by reconstructing the original
features with the generated features. We, instead,
avoid using such a method and regularize the de-
composed features with unimodal prediction tasks.
To improve the decomposition performance, we
further aggregate the supervised contrastive learn-
ing between samples into our frameworks by a
custom-designed sampling method.

A concurrent work HyCon (Mai et al., 2021) in-
troduces a contrastive learning method for MSA,
taking both inter-sample and intra-sample contrasts
into consideration. However, they ignore the reg-
ularization for each decomposed feature. In con-
trast, in ConFEDE, within-sample feature contrasts
are constructed based on a specific pattern cen-
tered around text similarity features. Also, when
performing inter-sample contrastive learning, Hy-
Con samples positive and negative pairs randomly
based on MSA labels. In contrast, we design a data
sampler that considers both the labels and similari-
ties between modalities to retrieve positive/negative
pairs. Due to these reasons, our method beats Hy-
Con on most metrics on MOSI (Zadeh et al., 2018a)
and MOSEI (Zadeh et al., 2018b), and is able to uti-
lize unimodal labels to further boost performance,
e.g., on CH-SIMS (Yu et al., 2020).

2.2 Contrastive Representation Learning

Contrastive learning has achieved great success
in representation learning by contrasting positive
pairs against negative pairs (Akbari et al., 2021;
Hassani and Khasahmadi, 2020; Chen et al., 2020).
Akbari et al. (2021) train a Video-Audio-Text
Transformer (VATT) using multimodal contrastive
learning for the alignment of video-text and video-
audio pairs, and thus achieve state-of-the-art on
various computer vision tasks (e.g., audio classi-
fication and video action recognition). Hassani
and Khasahmadi (2020) propose to learn node and
graph level representations by contrasting encod-
ings obtained from different structural views of
graphs and achieve the state-of-the-art on various

graph classification benchmarks. Chen et al. (2020)
present a self-supervised framework, SimCLR, to
learn visual representations through a contrastive
loss between augmented views of the same image
sample.

Khosla et al. (2020) extend self-supervised con-
trastive learning to the supervised setting, i.e., con-
trasting samples from different classes. They also
claim that the supervised setting is more stable for
hyperparameters. We design a novel contrastive
learning framework that utilizes the contrasts of
modalities both within a sample and between sam-
ples to enhance multimodal representation in a uni-
fied contrastive loss guided by a specific pairing
pattern. Furthermore, we propose a data sampler
to retrieve similar samples as positive pairs, which
is in contrast to the above prior work that obtains
positive pairs by data augmentation.

3 Methodology

In this section, we introduce the overall architecture
of ConFEDE followed by a detailed description of
the contrastive feature decomposition process for
learning multimodal representations.

3.1 Model Architecture

The overall architecture of ConFEDE is shown in
Figure 1. Given a sample, we first encode each
modality with corresponding feature extractors.
Specifically, we use the [CLS] tag of BERT to
encode text (i.e., T), and two separate transformer
encoders to encode vision and audio modalities
(i.e., V and A), respectively. After that, we de-
compose each encoded modality into a similarity
feature (i.e., Ts/Vs/As in Figure 1) and a dissim-
ilarity feature (i.e., Td/ Vd/Ad in Figure 1) with
different projectors. Each projector is composed
of layer normalization, a linear layer with the Tanh
activation, and a dropout layer. Finally, we update
the six decomposed features and fuse them to train
the ConFEDE model with the following multi-task
learning objective function:

Lall = Lpred + ´uniLuni + ´clLcl,

where Lpred is the multimodal prediction loss, Luni

represents the unimodal prediction loss and Lcl

represents the contrastive loss. ´cl and ´uni are
hyper-parameters that balance the contribution of
each regularization component to the overall loss
Lall. We describe each loss term as follows.
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Figure 1: The structure of the ConFEDE framework. Ts and Td represent the projected similarity and dissimilarity
text features. Similarly, Vs, Vd, As and Ad are the projected similarity and dissimilarity features of vision and
audio modalities, respectively.

Lpred-Multimodal Prediction Loss. We use a
multilayer perceptron (MLP) with the ReLU activa-
tion function as the classifier to get the final predic-
tive result (i.e., ŷ in Figure 1). We concatenate all
6 decomposed modality features to obtain the input
to the classifier, [Ti

s;T
i
d;V

i
s;V

i
d;A

i
s;A

i
d], where

[·; ·] denotes the concatenation of two vectors. De-
note the set of samples in a batch as B. For a given
sample i ∈ B, let its prediction from the classifier
be ŷim, we calculate the multimodal prediction loss
by mean squared error:

ŷim = MLP([Ti
s;V

i
s;A

i
s;T

i
d;V

i
d;A

i
d]),

Lpred =
1

n

n∑

i=1

(yim − ŷim)2,

where n is the number of samples in a batch and
yim is the multimodal label.
Luni-Unimodal Prediction Loss. For each sam-

ple i, we also feed the 6 decomposed features
[Ti

s,V
i
s,A

i
s,T

i
d,V

i
d,A

i
d] into a weight-shared

MLP classifier separately to get the 6 predictions
denoted by the vector ûi. Specifically, we compute
the unimodal prediction loss by:

ûi = MLP([Ti
s,V

i
s,A

i
s,T

i
d,V

i
d,A

i
d]),

ui = [yim, yim, yim, yit, y
i
v, y

i
a],

Luni =
1

n
∥ui − ûi∥22,

where the vector ui = [yim, yim, yim, yit, y
i
v, y

i
a] rep-

resents the ground-truth labels for unimodal predic-
tion. In other words, each decomposed feature is
regularized to perform prediction individually.

Note that the similarity features Ti
s,V

i
s,A

i
s are

mapped through the MLP to predict the multi-
modal label yim, whereas the dissimilarity features
Ti

d,V
i
d,A

i
d are mapped through the MLP to pre-

dict modality-specific labels yit, y
i
v, y

i
a (if available).

When modality-specific labels are not available,
the dissimilarity features Ti

d,V
i
d,A

i
d will also be

used to predict multimodal label yim. The ratio-
nale behind this design is that we let the similarity
features capture the consistent information shared
across different modalities via the overall multi-
modal label for the sample, while the dissimilarity
features can retain modality-specific information
represented by unimodal labels.
Lcl-Contrastive Loss. We further regularize

the learning through Contrastive Feature Decompo-
sition in one simple joint contrastive loss that con-
trasts (1) similar samples against dissimilar sam-
ples; (2) similarity features against dissimilarity
features within a sample. The contrastive loss is
denoted as:

Lcl =
1

n

n∑

i=1

ℓicl,

where ℓicl is the contrastive loss of sample i, the
detailed derivation of which will be given in the
following subsection.
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Figure 2: The pairing policy of decomposed modality
features. (a) represents the intra-sample pairing; (b)
represents the pairing between samples.

3.2 Contrastive Feature Decomposition
We unify intra-sample and inter-sample contrastive
learning into one simple NT-Xent contrastive loss
framework (Chen et al., 2020) to conduct both
modality representation learning and modality de-
composition simultaneously. The loss for sample i
is given by

ℓicl =
∑

(a,p)∈Pi

− log
exp(sim(a,p)/Ä)∑

(a,k)∈N i∪Pi exp(sim(a,k)/Ä)
,

where (a,p) and (a,k) denote a pair of decom-
posed feature vectors either within a sample, e.g.,
(Ti

s,V
i
s), (T

i
s,A

i
d), or across different samples,

e.g., (Ti
s,T

j
s). The sets P i and N i are given by

P i = P i
intra ∪ P i

inter,

N i = N i
intra ∪N i

inter.

Here P i is the positive pair set that includes both
intra-sample positive pairs P i

intra and inter-sample
positive pairs P i

inter, while N i is the negative
pair set that consists of both intra-sample nega-
tive pairs N i

intra and inter-sample negative pairs
N i

inter. Note that (a,p) is a positive pair in P i,
and (a,k) is a pair in P i or N i.

Specifically, we use the six decomposed features
(Ts, Vs, As, Td, Vd, Ad) to form intra-sample
positive/negative pairs, as shown in Figure 2 (a),
with P i

intra and N i
intra given by

P i
intra ={(Ti

s,V
i
s), (T

i
s,A

i
s)}

∪ {(Tj
s,V

j
s), (T

j
s,A

j
s)

|j ∈ Neighbori ∪ Outlieri},

N i
intra ={(Ti

s,T
i
d), (T

i
s,V

i
d), (T

i
s,A

i
d)}

∪ {(Tj
s,T

j
d), (T

j
s,V

j
d), (T

j
s,A

j
d)

|j ∈ Neighbori ∪ Outlieri},

where Neighbori and Outlieri represent the sim-
ilar samples and dissimilar samples for the sample
i, respectively, to enlarge the scope of the contrast,
the detail of which is given in Algorithm 1 that will
be explained subsequently.

Note that instead of treating all modalities
equally as in other contrastive learning schemes,
here we choose the text similarity feature Ti

s as
an anchor, such that the visual and audio similar-
ity features Vi

s and Ai
s are pushed closer to Ti

s,
while in the meantime, the dissimilarity features in
all modalities are pushed away from Ti

s. This is
due to the observation that multimodal sentiment
analysis is still largely centered around text infor-
mation. Although other modalities can provide
additional information to assist with sentiment pre-
diction, they may also introduce more noise than
text. Therefore, unlike other work, we avoid using
visual/audio similarity features as anchors, which
may bring noise into contrastive learning and con-
fuse model training.

We now describe the data sampler shown in Al-
gorithm 1 that retrieves similar samples for a given
sample based on both multimodal features and mul-
timodal labels to perform supervised contrastive
learning across samples. Specifically, the sampling
procedure can be divided into two steps.

First, given the dataset D that contains |D| sam-
ples, for each sample pair (i, j) in D, we calculate
the cosine similarity score between them:

Ci,j = sim([Ti;Vi;Ai], [Tj ;Vj ;Aj ]),

where sim(w,v) = wTv/||w|| · ||v|| denotes the
cosine similarity between two vectors w and v.
And T, V, and A (in Figure 1) are the output of
BERT, vision and audio encoders, respectively.

Second, we retrieve candidate similar/dissimilar
sample sets for each sample. For each sample i, we
sort samples that have the same multimodal label
yim according to the similarity scores in ascending
order as a candidate similar sample set Si

0. In con-
trast, we sort samples that have labels other than
yim as a candidate dissimilar sample set Si

1.
Two similar samples with high cosine similar-

ity scores from Si
0 are randomly selected to form

inter-sample positive pairs with sample i, which
is denoted as Neighbori. Four dissimilar samples
from Si

1 are selected to form inter-sample nega-
tive pairs. We denote them as Outlieri in which
two samples Outlieri1 have low cosine similarity
scores and the other two samples Outlieri2 have
high cosine similarity scores.
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Usually, we tend to select the samples in
Neighbori and Outlieri1 to form positive and
negative pairs with sample i, respectively. How-
ever, samples in Outlieri2 have different labels but
similar semantic information to sample i, making
them hard to distinguish from sample i. Therefore,
we additionally add these samples to Outlieri to
specifically handle this issue by contrastive learn-
ing.

Based on the samples retrieved by Algorithm 1
and the pairing strategy shown in Figure 2 (b), the
inter-sample positive/negative pairs for sample i
are given by:

P i
inter ={(Ti

s,T
j
s), (V

i
s,V

j
s), (A

i
s,A

j
s)

|j ∈ Neighbori}
,

N i
inter ={(Ti

s,T
k
s), (V

i
s,V

k
s ), (A

i
s,A

k
s)

|k ∈ Outlieri}.

Notably, our data sampler enables contrastive
learning across samples through decomposed
modality features without data augmentation. This
contrasts original contrastive learning in image clas-
sification, which obtains positive pairs by augmen-
tation applied to images. Moreover, we only use
similarity features to obtain inter-sample pairing
since the similarity features of similar samples in
the same class should be close while the similarity
features of samples in different classes should be
far apart.

4 Experiments

We mainly evaluate ConFEDE on CH-SIMS (Yu
et al., 2020), since it has unimodal labels, which
can best meet the design of ConFEDE. To justify
the effectiveness of ConFEDE when unimodal la-
bels are unavailable, we further test ConFEDE on
the MOSI (Zadeh et al., 2016) and MOSEI (Zadeh
et al., 2018b), which are two English MSA datasets.
However, they can not best test the performance of
ConFEDE.

We compare our methods with the state-of-the-
art baselines in Table 1 and 2: LF-DNN (Yu et al.,
2020), MFN (Zadeh et al., 2018a), LMF (Liu et al.,
2018), TFN (Zadeh et al., 2017), MulT (Tsai et al.,
2019), MISA (Hazarika et al., 2020), MAG-BERT
(Rahman et al., 2020), HyCon (Mai et al., 2021)
and Self-MM (Yu et al., 2021). For a fair compari-
son, the methods which only report the results of a
single run and have no valid official code released

Algorithm 1: Data Sampling Algorithm
Input: Dataset D with the corresponding features T ,
V , A and multimodal labels ym.

Output: Neighbori, Outlieri for every i ∈ D
Define: sim(w,v) = wTv/||w|| · ||v||
for every (i, j) ∈ D do

Compute the cosine similarity score:

Ci,j = sim([Ti;Vi;Ai], [Tj ;Vj ;Aj ]),

end
Define:
argsort(X) = indices sort X ascendingly

Let |D| = length ofD, z = |D|
4

.
for every sample i ∈ D do

Retrieve the similar sample set Si
0:

Si
0 = argsort({Ci,j |j : yj

m = yi
m});

Retrieve the dissimilar sample set Si
1:

Si
1 = argsort({Ci,j |j : yj

m ̸= yi
m}),

Randomly select two samples from the last z
elements of Si

0 as Neighbori;
Randomly select two samples from the first z

elements of Si
1 as Outlieri1;

Randomly select two samples from the last z
elements of Si

1 as Outlieri2;

Outlier
i = Outlier

i
1 ∪ Outlier

i
2.

end

for reproduction are not selected. A detailed intro-
duction can be found in the supplementary material.
The detailed experimental settings are introduced
in Appendix C.

4.1 Evaluation Metrics

Following the previous works (Yu et al., 2020,
2021; Rahman et al., 2020; Hazarika et al., 2020),
we report our results in (multi-class) classification
and regression with the average of 5 runs of differ-
ent seeds. For classification, we report the multi-
class accuracy and weighted F1 score. We calculate
the accuracy of 2-class prediction (Acc-2), 3-class
prediction (Acc-3), and 5-class (Acc-5) prediction
for CH-SIMS and the accuracy of 2-class predic-
tion and 7-class prediction (Acc-7) for MOSI and
MOSEI. Besides, Acc-2 and F1-score of MOSI
and MOSEI have two forms: negative/non-negative
(non-exclude zero) (Zadeh et al., 2017; Yu et al.,
2021) and negative/positive (exclude zero) (Tsai
et al., 2019; Yu et al., 2021). For regression, we
report Mean Absolute Error (MAE) and Pearson
correlation (Corr). Except for MAE, higher values
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Model
CH-SIMS

Acc-2 F1 Acc-3 Acc-5 MAE Corr
LF-DNN 78.87 79.87 66.91 41.62 0.420 0.612
MFN(A) 77.9 77.88 65.73 39.47 0.435 0.582

LMF 77.77 77.88 64.68 40.53 0.441 0.576
TFN 78.38 78.62 65.12 39.30 0.432 0.591

MulT(A) 78.56 79.66 64.77 37.94 0.453 0.561
Self-MM 80.04 80.44 65.47 41.53 0.425 0.595

Plain 80.79 80.56 68.49 42.98 0.393 0.664
Inter 81.14 81.29 68.84 45.64 0.381 0.656
Intra 81.88 81.84 69.36 43.24 0.391 0.668

ConFEDE 82.23 82.08 70.15 46.30 0.392 0.637

Table 1: Results on CH-SIMS. For each model, (A)
means the model utilized the aligned data

indicate better performance for all metrics.

4.2 Results

The performance comparison of all methods on
CH-SIMS, MOSI, and MOSEI is summarized in
Table 1 and Table 2. The scores of the proposed
method and its variations are the averages of 5 runs.
The performances of all other baselines, except for
MAG-BERT, have been sourced from published
papers or official repositories1.

On the CH-SIMS dataset, our proposed method
outperforms all baselines on all metrics. We
achieve superior performance compared to the best
baseline model, Self-MM, with an improvement of
2.19% on acc-2 and 1.64% on F1 scores. Addition-
ally, the proposed model demonstrates exceptional
ability in multi-class classification, outperforming
the best baseline by 4.68% on acc-3 and 4.77% on
acc-5.

As seen in the results, our proposed method,
ConFEDE, consistently outperforms all other base-
lines on the CH-SIMS dataset. The superior clas-
sification performance demonstrates that our de-
signed learning method is more effective than the
compared methods. Our method, ConFEDE, ef-
fectively distinguishes similarity and dissimilarity
information between modalities, providing clearer
modality features to the downstream classifier for
improved prediction. Additionally, the significant
improvement in MAE and Corr further highlights
the ability of our model to better understand the
CH-SIMS dataset than the other baselines.

To further evaluate the effectiveness of our pro-
posed method, ConFEDE, we trained our models
on the MOSI and MOSEI datasets without uni-

1https://github.com/thuiar/MMSA/blob/master/results/result-
stat.md

modal labels. Instead, we used their multimodal la-
bels for compatibility. The results are presented in
Table 2. On the MOSI dataset, our method outper-
forms all other baselines in both the negative/non-
negative (NN) setting and negative/positive (NP)
setting for acc-2 and F1 metrics. Additionally,
our acc-7 and MAE metrics surpass most of the
baselines. For the MOSEI dataset, our ConFEDE
method outperforms all baselines in all metrics ex-
cept for the NN Acc-2 and F1 score. Furthermore,
our MAE is significantly lower than all baselines,
reaching 0.522.

It is worth noting that our models perform much
better in NP acc-2 than NN acc-2 for MOSEI, as
shown in Table 2. This is because the NN acc-2
setting is generally more challenging than the NP
acc-2 setting, as it places more pressure on a model
to classify data samples with a regression label of
0. Specifically, if there are two samples with a re-
gression label of 0, when predicted by a regression
model, the results might be -0.01 and 0.01. As the
value range of “Neutral” is [-0.5,0.5) in MOSI and
(-0.1,0.1] in SIMS, these two samples should be
classified as “Neutral”. However, in NN settings,
they will be classified into two different classes,
resulting in a worse acc-2. In contrast, with the
NP setting, all “Neutral” samples are abandoned,
resulting in a better acc-2.

In contrast, our method shows better perfor-
mance in both NN and NP settings on MOSI when
compared to other models. The Acc-7, MAE and
Corr are also better or comparable to most base-
lines.

4.3 Ablation Study and Analysis

To evaluate the impact of our proposed structures,
we conducted an ablation study on our proposed
method by removing inter-sample contrastive learn-
ing and intra-sample contrastive learning. The re-
sults are shown in Table 1. “Plain” represents the
model without contrastive learning method, “Inter”
represents the model with inter-sample contrastive
learning only, and “Intra” represents the model with
intra-sample contrastive learning and unimodal pre-
diction as a sub-task.

The experiment shows that all three models per-
form worse than the original model. Among the
three models, the plain setting has the lowest perfor-
mance. Both intra-sample contrastive learning and
inter-sample contrastive learning provide positive
impacts on performance. Compared with Plain,
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Model MOSI MOSEI
Acc-2 F1 Acc-7 MAE Corr Acc-2 F1 Acc-7 MAE Corr

LF-DNN 77.52/78.63 77.46/78.63 34.52 0.955 0.658 80.60/82.74 80.85/82.52 50.83 0.58 0.709
MFN(A) 77.4/- 77.3/- 34.1 0.965 0.632 78.94/82.86 79.55/82.85 51.34 0.573 0.718

LMF -/82.5 -/82.4 33.2 0.917 0.695 80.54/83.48 80.94/83.36 51.59 0.576 0.717
TFN -/80.8 -/80.7 34.9 0.901 0.698 78.50/81.89 78.96/81.74 51.60 0.573 0.714

MulT(A) -/83.0 -/82.8 40.0 0.871 0.698 81.15/84.63 81.56/84.52 52.84 0.559 0.733
MISA(A) 81.8/83.4 81.7/83.6 42.3 0.783 0.776 83.6/85.5 83.8/85.3 52.2 0.555 0.756

MAG-BERT 82.13/83.54 81.12/83.58 41.43 0.790 0.766 79.86/86.86 80.47/83.88 50.41 0.583 0.741
HyCon -/85.2 -/85.1 46.6 0.713 0.790 -/85.4 -/85.6 52.8 0.601 0.776

Self-MM 83.44/85.46 83.36/85.43 46.67 0.708 0.796 83.76/85.15 83.82/84.90 53.87 0.531 0.765
ConFEDE 84.17/85.52 84.13/85.52 42.27 0.742 0.784 81.65/85.82 82.17/85.83 54.86 0.522 0.780

Table 2: Results on MOSI and MOSEI. The settings and results of all baselines are same with Table 1. In Acc-2 and
F1 score, the left of the “/” corresponds to “negative/non-negative” and the right corresponds to “negative/positive”.

Model Acc-2 F1 Acc-3 Acc-5 MAE Corr
Intra 81.88 81.84 69.36 43.24 0.391 0.668

M-label 80.96 81.08 68.84 41.92 0.389 0.671
-uni 81.71 81.71 68.97 42.27 0.389 0.669
-cl 80.92 81.06 68.84 42.71 0.383 0.668

+full 81.58 81.42 69.36 42.45 0.391 0.669

Table 3: The Ablation study results of Intra on CH-
SIMS. Each score is the average of 5 runs.

by using text feature as the anchor, Intra filters
out noise (useless information for sentiment anal-
ysis) in the vision and audio modality, leading to
better prediction. This is also the reason why it
reaches better acc-2 accuracy than both the other
models. Since the acc-2 metric in CH-SIMS fol-
lows the negative/non-negative setting, a feature
with lower noise helps the classifier make a more
precise prediction value, making it easier to clas-
sify the 0-labeled samples. This also explains why
we achieve better NN Acc-2 performance than all
baselines on MOSI.

For the inter-sample contrastive learning method,
by learning the common and different information
between samples, “Inter” performs better on mul-
ticlass classification. The result of Inter on CH-
SIMS shows great improvements on both acc-5 and
MAE compared with the other two models, which
proves that Acc-5 and regression performance ben-
efits more from “Inter”. This can also explain why
we have a lower NN Acc-2 performance on MO-
SEI. Since MOSEI is much larger than MOSI and
CH-SIMS, it introduces more noise in each modal-
ity, the contrastive feature decomposition learning
needs more epochs and a smaller learning rate to
separate the useful information from noise. Mean-
while, inter-sample contrastive learning is more
efficient on MOSEI. With the larger amount of
samples, it is much easier for the sampler to find

the most similar and dissimilar samples with the
given sample, from which the model can under-
stand the difference between samples better. Thus,
ConFEDE can reach higher Acc-7 and regression
performance than all other baselines on MOSEI.

To further evaluate the effectiveness of the con-
trastive feature decomposition method, we con-
ducted an ablation study on Intra using the CH-
SIMS dataset. As presented in Table 3, we created
three variations of Intra: 1) Intra with only multi-
modal labels for unimodal prediction (M-label); 2)
Intra without the unimodal prediction component
(-uni); 3) Intra without the similarity-dissimilarity
learning method (-cl); and 4) Intra that uses all sim-
ilarity features as anchors (+full), which utilizes Ts,
Vs, and As as anchors instead of Ts only.

The results in the table demonstrate that all vari-
ations resulted in a decrease in performance com-
pared to the original Intra in classification matrices.
Both the intra-sample contrastive learning and the
unimodal prediction task can regularize the learned
representation, resulting in clearer information that
aids the classifier in understanding the sample bet-
ter. However, the “+full” setting introduces more
noise by also using Vs and As as anchors, which
confuses the model and diminishes the denoising
ability of the contrastive feature decomposition
learning.

5 Conclusion

In this paper, we propose a novel method for multi-
modal sentiment analysis (MSA) called ConFEDE.
The ConFEDE framework is based on contrastive
feature decomposition, which utilizes a unified con-
trastive training loss to capture the consistency and
difference across modalities and samples. This
approach allows for the simultaneous learning of
modality decomposition within each sample and su-
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pervised contrastive learning across samples. Our
proposed method is mainly evaluated on CH-SIMS.
The result shows that the proposed method sig-
nificantly outperforms many state-of-the-art mul-
timodal sentiment analysis methods. We further
conduct an extensive experiment on MOSI and
MOSEI to test the capability of ConFEDE when
no unimodal label is available, where our method
achieves better performance than state-of-the-art
methods on a number of performance metrics.

Limitations

While our proposed ConFEDE method has shown
promising results in multimodal sentiment analysis,
there are some limitations to consider. Firstly, our
method is designed for multimodal sentiment anal-
ysis that includes three modalities: vision, audio,
and text. The performance of the model when one
of these modalities is missing is not considered.
Additionally, as the number of training samples
increases, our custom-designed sampling method
may require more processing time. However, the
similarity calculation can be pre-processed between
the unimodal training stage and the multimodal
training stage (as outlined in Appendix C). There-
fore, it may not consume a significant amount of
time.
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A Datasets

Table 4 shows the statistics of these datasets.
CH-SIMS. The CH-SIMS dataset is a Chinese

multimodal dataset that contains 2281 refined video
segments. Each sample has one multimodal label
and three unimodal labels with sentiment scores
ranging from -1 (strongly negative) to +1 (strongly
positive).

Dataset #Train #Valid #Test #Total Language
CH-SIMS 1368 456 457 2281 Chinese

MOSI 1284 229 686 2199 English
MOSEI 16326 1871 4659 22856 English

Table 4: The statistics of CH-SIMS, MOSI and MOSEI.

MOSI. The MOSI dataset is a popular dataset
with three modalities (i.e., text, video and audio)
specially designed for sentiment analysis. It was
collected from 93 YouTube videos where a speaker
expresses opinions about movies. MOSI contains
2199 utterance-video clips. Each clip was an-
notated with a sentiment score ranging from -3
(strongly negative) to +3 (strongly positive).

MOSEI. The MOSEI dataset is the larger ver-
sion of MOSI that contains 22856 annotated video
segments over 250 different topics. Same as MOSI,
each clip has a sentiment score between -3 (strongly
negative) to +3 (strongly positive).

B Baselines

LF-DNN. The Later Fusion DNN (LF-DNN) sim-
ply concatenates unimodal features that are ex-
tracted by unimodal subnets for sentiment infer-
ence(Yu et al., 2020)

MFN. The Memory Fusion Network (MFN)
(Zadeh et al., 2018a) first learns view-specific in-
teractions by LSTM, then learns the cross-view
interactions by an attention network, and finally
summarizes through time with a Multi-view Gated
Memory. The outputs of MFN are concatenated as
the final representations.

LMF. The Low-rank Multimodal Fusion (LMF)
method (Liu et al., 2018) leverages low-rank tensor
to perform multimodal fusion efficiently.

TFN. The Tensor Fusion Network (TFN) (Zadeh
et al., 2017) consists of 1) modality embedding sub-
networks that take unimodal features as input and
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output rich encodings after a neural network, 2) ten-
sor fusion layer that models the unimodal, bimodal
and trimodal interactions using outer-product, 3)
sentiment inference subnetwork that performs sen-
timent inference.

MulT. The Multimodal Transformer (MulT)
(Tsai et al., 2019) utilizes the directional pairwise
cross-modal attention to learn the interactions be-
tween multimodal sequences, and latently adapt
streams from one modality to another.

MISA. MISA (Hazarika et al., 2020) is a multi-
modal framework that learns modality-invariant
and modality-specific representations for each
modality. The learning process is optimized by
a combination of losses including similarity loss,
orthogonal loss, reconstruction loss, and task pre-
diction loss.

MAG-BERT. The Multimodal Adaptation Gate
for Bert (MAG-BERT) (Rahman et al., 2020) is
developed by applying multimodal adaptation gate
at different layers of the BERT backbone. We re-
produce this method and take the average result of
5 runs for a fair comparison with our method2.

HyCon. Hybrid Contrastive Learning of Tri-
modal Representation (HyCon) (Mai et al., 2021)
is developed based on contrastive learning method.
It focus on the interaction between modalities and
classes.

Self-MM. Self-MM (Yu et al., 2021) first uti-
lizes a self-supervised label generation module to
obtain unimodal labels, then joint learn the multi-
modal and unimodal representations based on the
multimodal label and generated unimodal labels.

C Experiments

C.1 Experimental Settings

Here we briefly introduce the detailed settings of
our experiments. All experiments were conducted
on a single NVIDIA RTX 3090 GPU. ConFEDE
has less than 200 million parameters for all imple-
mentations. The training is consist of a unimodal
training stage and a multimodal training stage.

In the unimodal training stage, we employ
“bert-base-chinese”3 for CH-SIMS and “bert-base-
uncased”4 for MOSI and MOSEI. we fine-tune both
Chinese BERT and English BERT with a learning
rate of 0.00001 with a batch size of 64, and train

2We select the model with the best validation performance
to evaluate the test set.

3https://huggingface.co/bert-base-chinese
4https://huggingface.co/bert-base-uncased

(b)(a)

Figure 3: The 2D projections of all six similarity-
dissimilarity features extracted and projected by Con-
FEDE model on the test set of CH-SIMS: (a) represents
the decomposed features without ConFEDE; (b) rep-
resents the decomposed features with ConFEDE. The
colors red, green, blue, cyan, yellow and magenta repre-
sent Ts, Vs, As, Td, Vd and Ad, respectively.

150 epochs to ensure convergence. We then employ
transformer encoders as our Vision Encoder and
Audio Encoder in Figure 1. Specifically, for CH-
SIMS and MOSI, we use two single-layer trans-
former encoders (Vaswani et al., 2017) on each of
them to extract the audio and the visual information
respectively. For MOSEI, we use 3 transformer lay-
ers to build each decoder, since MOSEI is much
larger than the other two. All vision encoders and
audio encoders are trained for 300 epochs with the
learning rate equals 0.0001 and batch size equals
128.

In the multimodal stage, we train ConFEDE for
MSA with the encoders obtained above. The loss
ratio is set to be ´cl = 0.1 and ´uni = 0.01. For
CH-SIMS and MOSI, we train ConFEDE for 50
epochs with the learning rate of 0.0001. We set the
batch size to 32 for CH-SIMS and 16 for MOSI. For
MOSEI, the model is trained with a batch size of 4
for 25 epochs. The learning rate is set to 0.00005.

C.2 Visualization

Figure 3 shows the 2D projections of the six de-
composed features of all test samples on CH-SIMS,
where (a) is the six decomposed features without
ConFEDE and (b) shows these features with Con-
FEDE. From it, we can observe that the similarity
features (i.e., Ts in red, Vs in green and As in blue)
become closer to each other while the dissimilarity
features (i.e., Td in cyan, Vd in yellow and Ad in
magenta) become further away from their corre-
sponding similarity features, indicating the effec-
tiveness of ConFEDE to learn the consistency and
incongruity between modalities.
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Figure 4: Two real-case examples from the test set of
CH-SIMS. “M” represents the multimodal sentiment
label of the sample, while “T”, “V” and “A” represent
the unimodal sentiment labels. For unimodal labels in
“Prediction”, the first column represents the unimodal
prediction using similar features, while the second col-
umn represents the unimodal prediction using dissimilar
features.

C.3 Real Case
Figure 4 provides two real cases from CH-SIMS.
From the figure, we can observe that the multi-
modal sentiment can be much different from the
unimodal sentiment labels. In the first example, the
text is positive by having the word “good”. How-
ever, the man is having a serious face and his voice
sounds angry, which indicates the man is actually
explaining what he has said, making the overall
sentiment neutral. In the second example, if only
judging from the text modal, the sentiment is very
negative by having words “dumb” and “slacking
off”. However, combining the happy face and the
fun voice, we can understand the man is banter-
ing with someone, which makes the multimodal
sentiment of the sample a weak positive.

By understanding the unimodal sentiments, Con-
FEDE can make the correct prediction on both
samples. However, as discussed in the main paper,
the visual modality and audio modality are much
noisier than the text modality. This is also why
ConFEDE makes more precise prediction on text
than on audio and vision for the two samples.
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