
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7597–7616

July 9-14, 2023 ©2023 Association for Computational Linguistics

Convergence and Diversity in the Control Hierarchy

Alexandra Butoi1 Ryan Cotterell1 David Chiang2

1ETH Zürich 2University of Notre Dame

{alexandra.butoi, ryan.cotterell}@inf.ethz.ch dchiang@nd.edu

Abstract
Weir has defined a hierarchy of language
classes whose second member (L2) is gener-
ated by tree-adjoining grammars (TAG), linear
indexed grammars (LIG), combinatory catego-
rial grammars, and head grammars. The hi-
erarchy is obtained using the mechanism of
control, and L2 is obtained using a context-
free grammar (CFG) whose derivations are
controlled by another CFG. We adapt Weir’s
definition of a controllable CFG to give a
definition of controllable pushdown automata
(PDAs). This yields three new characteriza-
tions of L2 as the class of languages generated
by PDAs controlling PDAs, PDAs controlling
CFGs, and CFGs controlling PDAs. We show
that these four formalisms are not only weakly
equivalent but equivalent in a stricter sense
that we call d-weak equivalence. Furthermore,
using an even stricter notion of equivalence
called d-strong equivalence, we make precise
the intuition that a CFG controlling a CFG is
a TAG, a PDA controlling a PDA is an embed-
ded PDA, and a PDA controlling a CFG is a
LIG. The fourth member of this family, a CFG
controlling a PDA, does not correspond to any
formalism we know of, so we invent one and
call it a Pushdown Adjoining Automaton.

1 Introduction

Weir (1992) defined a hierarchy of formal lan-
guages whose first level (L1) is the class of context-
free languages, and whose second level (L2) is
the class generated by several existing formalisms:
tree-adjoining grammars (Joshi et al., 1975), lin-
ear indexed grammars (Gazdar, 1988), combina-
tory categorial grammars (Steedman, 1987) and
head grammars (Pollard, 1984), which were proven
weakly equivalent in a classic paper (Joshi et al.,
1991; Vijay-Shanker and Weir, 1994), and embed-
ded pushdown automaton (EPDA) as well (Vijay-
Shanker, 1987).

Weir’s hierarchy is obtained using the mecha-
nism of control, and L2 is obtained by using a

CFG ⊲ CFG

CFG ⊲ PDA

PDA ⊲ CFG

PDA ⊲ PDA

spinal TAG LIG

EPDAspinal PAA

Figure 1: Overview of results. “- ⊲ .” means “-
controlling . .” Thin lines indicate d-weak equivalence,
while thick lines indicate d-strong equivalence.

context-free grammar (CFG) to control another
modified CFG, called a labeled distinguished CFG
or LD-CFG. Here, we define a controllable push-
down automaton (PDA), called a labeled distin-
guished PDA (LD-PDA), and show that PDAs can
also be used as controllers. By combining a con-
troller CFG or PDA with a controlled LD-CFG or
LD-PDA, we obtain a total of four formalisms that
characterize L2.

We show that these four formalisms are not only
weakly equivalent but equivalent in a stricter sense
that we call d-weak equivalence. Furthermore, us-
ing an even stricter notion of equivalence called
d-strong equivalence, we make precise the intuition
that a CFG controlling a CFG is essentially TAG,
a PDA controlling a PDA is an EPDA, and a PDA
controlling a CFG is a LIG. The fourth member
of this family, CFGs controlling PDAs, does not
correspond to any existing automaton we know of,
so we invent one and call it a Pushdown Adjoining
Automaton (PAA).

The main contributions of this paper are:
• Adapting Weir’s LD-CFG to pushdown au-

tomata (LD-PDA).
• Two new definitions of equivalence between for-

malisms, d-weak equivalence and d-strong equiv-
alence.

• Four d-weakly equivalent formalisms (one old,
three new) obtained by controlling an LD-

7597

mailto:alexandra.butoil@inf.ethz.ch
mailto:ryan.cotterell@inf.ethz.ch
mailto:dchiang@nd.edu

CFG/PDA using a controller CFG/PDA, three
of which are d-strongly equivalent to TAG, LIG
and EPDA, respectively.

• A new formalism, PAA, d-strongly equivalent to
the fourth formalism.

2 Preliminaries

Let [=] denote the set of integers {1, . . . , =}, and
let [8: 9] denote the set of integers {8, . . . , 9}.

For any sets X and Y, we write X̆ = {X̆ | X ∈
X} and X[Y] = {X [Y] | X ∈ X, Y ∈ Y}.
2.1 Context-free grammars
We assume familiarity with CFGs; see App. A.1
for definitions. The following normal form will be
convenient later.

Definition 1. A CFG is in normal form if its pro-
ductions have one of the forms X → Y1 · · · Y : or
X → a.

A CFG derivation is sometimes thought of as a
sequence of rewriting steps, and sometimes as a
tree. The distinction is important in this paper, and
we always refer to the former as derivations and
the latter as derivation trees. See App. A.1, Def. 29
for a definition and Fig. 2a for an example.

2.2 Pushdown automata
Definition 2. A pushdown automaton (PDA) is a
tuple P = (&,Σ, Γ, X, (@], S), (@ 5 , Y)) where &, Σ
and Γ are finite sets of states, input symbols and
stack symbols, X is a finite set of transitions, and
(@], S) and (@ 5 , Y) are called the initial and final
configurations, where @], @ 5 ∈ & and S ∈ Γ. The
transitions are of the form ?,X 0−→ @, $, where
?, @ ∈ &, $ ∈ Γ∗, X ∈ Γ and a ∈ Σ ∪ {Y}. We say
that a transition scans a and is scanning iff |a| > 0.

This definition is similar to that of Hopcroft et al.
(2006) but has only a single final configuration.
Stacks are represented as strings over Γ, from top
to bottom. Thus, in the stack $ = X1 · · ·X=, the X1
is at the top of the stack, while X= is at the bottom.

See App. A.2 for further definitions. We again
define a normal form that will be convenient later.

Definition 3. A PDA is in normal form if its transi-
tions have one of the forms @,X Y−→ $ or @,X a−→ Y.

Unlike with CFGs, there is essentially no dif-
ference between treating PDA derivations as se-
quences of transitions or as (unary-branching) trees.
See App. A.2, Def. 34 for a definition and Fig. 2b
for an example.

3 Equivalence of Formalisms

We think of grammars and automata generically as
“formal systems” that have derivation trees yielding
strings. By equipping formal systems with deriva-
tion trees, we can define a notion of equivalence
that is stricter than weak equivalence, and another
notion that is more precise than strong equivalence.

Definition 4. A formal system F over alphabet Σ
is a set � of derivation trees together with a yield
function . : � → Σ∗ that defines a language
L(F) = {. (3) | 3 ∈ �}.
Definition 5. Two formal systems F and F′ are d-
weakly equivalent if there is a bijection q between
the derivation trees of F and F′ such that for any
derivation tree 3 of F that yields the string s, the
derivation tree q(3) of F′ also yields s.

Example 1. Consider two CFGs Gfin and Ginf:

Gfin = {S→ a} Ginf = {S→ S, S→ a}.

These grammars are weakly equivalent, but not d-
weakly equivalent, because Gfin has just one deriva-
tion of a, but Ginf has infinitely many, so there is
no bijection between their derivation sets.

Although there is a standard method to remove
unary productions S→ S, on weighted grammars
this method requires the semiring of weights to be
complete; it will not work with general semirings.
D-weak equivalence captures this distinction.

Example 2. Consider a CFG Gaa = {S →
AA; A → a} and PDA Paa = {?, S Y−→
?,A�; ?,A a−→ ?, Y}. Both Gaa and Paa derive just
one string, aa, each with a single derivation. Thus,
Gaa and Paa are d-weakly equivalent.

Strong equivalence is traditionally understood to
mean that two formal systems generate the same
sets of structural descriptions, but this notion can-
not be made precise without defining what struc-
tural descriptions are. For our purposes, it will
suffice to use derivation trees, thought of as unla-
beled, unordered trees.

Definition 6. Two formal systems F and F′ are
d-strongly equivalent if there is a bijection q be-
tween the derivation trees of F and F′ such that
for any derivation tree 3 of F, 3 and q(3) are iso-
morphic as unlabeled, unordered trees, and 3 and
q(3) yield the same string.

Example 3. Fig. 2 shows the derivation trees of
the string aa in the CFG G and the PDA P defined

7598

(a) S

A

a

A

a

(b) (?, S)

(?,A�)

(?,A)

(?, Y)
a

a

Y

Figure 2: Example derivation trees for Example 2.
(a) For CFG G, the nodes are nonterminals/terminals.
(b) For PDA P, the nodes are configurations.

in Example 2. G and P are not d-strongly equiv-
alent, because there is no isomorphism between
their derivation trees: the derivation tree in G is
branching while the derivation tree in P is not.

In general, CFG and PDA are d-weakly equiva-
lent (App. D, Prop. 7), but not d-strongly equiva-
lent.

4 Control

After a number of formalisms were proven to be
equivalent characterizations of a language class L2
that is slightly more powerful than context-free lan-
guages (CFLs), Weir (1992) introduced the control
hierarchy to characterize an infinite sequence of
language classes, starting with CFLs and L2. The
essential idea is that L2 languages can be recog-
nized by a CFG in which the productions do not
apply freely, but are controlled by another CFG.

4.1 LD-CFGs
To make a CFG controllable, Weir augments it
slightly, as follows.

Definition 7. A labeled distinguished context-
free grammar (LD-CFG) is a tuple G =
(N ,Σ, !,R, S), where N , Σ and ! are finite sets
of nonterminal symbols, terminal symbols and la-
bels, R is a finite set of productions, and S ∈ N is
the start symbol. The productions have one of the
forms ℓ : A → UB̆V or ℓ : A → U, where ℓ ∈ !,
A ∈ N , B̆ ∈ N̆ , and U, V ∈ (N ∪ Σ)∗.

The labels enable a controller, which is a for-
mal system over !, to decide what productions the
LD-CFG (the controllee) can use. Because the con-
troller generates/accepts strings over !, whereas an
LD-CFG derivation tree has a branching structure,
the distinguishing marks (�̆) determine the paths
of the derivation tree that are controlled.

Definition 8. A sentential form of an LD-CFG
is a pair (",,) where " ∈ ((N ∪ Σ) [!∗])∗ is
a sequence of terminal and nonterminal symbols,

each augmented with a string of labels, and , ⊆
!∗ is a set of control words.

Definition 9. If there is a production ℓ : A →
#1B̆#2 ∈ R, then we write ("1 A[F] "2,,)

ℓ
=⇒

("1 #1 [Y] B[Fℓ] #2 [Y] "2,,).
If there is a production ℓ : A → #, where

∈ N∗, then we write ("1 A[F] "2,,)
ℓ
=⇒

("1 #[Y] "2,, ∪ {Fℓ}).
Definition 10. Let, ⊆ !∗. If

(S[Y], ∅) ℓ1
==⇒ ("1,,1)

ℓ2
==⇒ · · · ⇒ ℓ= ("=,,=)

where "= ∈ Σ∗ and,= ⊆ , , we say that G derives
"= under, .

Example 4. Below is an LD-CFG G1 and the
derivation tree for the string aabbccdd.

ℓ1 : S1 → AS̆1D
ℓ2 : S1 → BS̆1C
ℓ3 : S1 → Y

ℓ4 : A→ a
ℓ5 : B→ b
ℓ6 : C→ c
ℓ7 : D→ d

S1

D

d
ℓ7

S1

D

d
ℓ7

S1

C

c
ℓ6

S1

C

c
ℓ6

S1

Y
ℓ3

B

b
ℓ5

ℓ2

B

b
ℓ5

ℓ2

A

a
ℓ4

ℓ1

A

a
ℓ4

ℓ1

The control words used in this derivation are
{ℓ1ℓ1ℓ2ℓ2ℓ3, ℓ4, ℓ5, ℓ6, ℓ7}.
Definition 11. Let , ⊆ !∗. The language of
G under , is the set of strings L(,,G) = {s |
G derives s under,}.
Definition 12. Let F2 be a formal system defin-
ing strings over ! and G1 an LD-CFG. Then F2
controlling G1 form a single formal system, which
we call F2 ⊲ G1 and which defines the language
L(F2 ⊲ G1) = L(L(F2),G1).
Example 5. Below is an example CFG G2 that can
be used as a controller for G1 above (Example 4).

S2 → TL3

T→ L1TL2 T→ Y

L8 → ℓ8 (8 ∈ [1:3])
S2 → ℓ8 (8 ∈ [4:7])

It generates the language {ℓ=1 ℓ=2 ℓ3 | = ≥ 0} ∪ {ℓ8 |
8 ∈ [4:7]}, which makes the LD-CFG generate the
language {a=b=c=d= | = ≥ 0}.

7599

The controller could also be a PDA, like P2:

@,S2
Y−→ @, TL3

@, T
Y−→ @, L1TL2 @, T

Y−→ @, Y

@, L8
ℓ8−→ @, Y (8 ∈ [1:3])

@,S2
ℓ8−→ @, Y (8 ∈ [4:7])

4.2 LD-PDAs
Weir’s definition of LD-CFG can be adapted to
pushdown automata.
Definition 13. A labeled distinguished
PDA (LD-PDA) is a tuple P =
(&,Σ, Γ, !, X, (@], S), (@ 5 , $ 5)), where &, Σ
and Γ are finite sets of states, input symbols and
stack symbols, X is a finite set of transitions, and
(@], S) and (@ 5 , $ 5) ∈ & × (Γ[!∗])∗ are the
initial and final configurations. The transitions are
of the form ℓ : @,A a−→ A,", or ℓ : @,A a−→ A,"B̆#,
where ℓ ∈ !, @, A ∈ &, a ∈ Σ, A ∈ Γ, B̆ ∈ Γ̆, and
", # ∈ Γ∗.
Example 6. Below is an example LD-PDA, P1,
where @ is both initial and final:

ℓ1 : @, S1
Y−→ @,AS̆1D ℓ2 : @, S1

Y−→ @,BS̆1C

ℓ3 : @, S1
Y−→ @, Y

ℓ4 : @,A a−→ @, Y ℓ5 : @,B b−→ @, Y

ℓ6 : @,C c−→ @, Y ℓ7 : @,D d−→ @, Y

Definition 14. A configuration of an LD-PDA P
is a tuple (@, $,,), where @ is the current state,
$ ∈ (Γ[!∗])∗ is a sequence of stack symbols, each
augmented with a string of labels, and, ⊆ !∗ is
a set of control words.

Definition 15. If there is a transition ℓ : @,A a−→
A, #1B̆#2 ∈ X, we write (@,A[F] $,,) ℓ

=⇒
(A, #[Y] B[Fℓ] #[Y] $′,,).

If there is a transition ℓ : @,A
a
=⇒ A, #, we write

(@,A[F] $,, ∪ {Fℓ}) ℓ=⇒ (A, #[Y] $,, ∪ {Fℓ}).

Definition 16. Let , ⊆ !∗. If (@], S, ∅)
ℓ1
==⇒

(@1, $1,,1)
ℓ2
==⇒ · · · ℓ=−1

====⇒ (@=−1, $=−1,,=−1)
ℓ=
==⇒

(@ 5 , Y,,=), where,= ⊆ , , and for 8 = 1, . . . , =,
transition ℓ8 scans a8, then we say that P accepts
string a1a2 · · · a=−1a= under, .
Definition 17. Let , ⊆ !∗. The language ac-
cepted by P under, is the set of stringsL(,,P) =
{s | P accepts s under,}.

Definition 18. Let F2 be a formal system defin-
ing strings over ! and P1 an LD-PDA. Then F2
controlling P1 form a single formal system, which
we call F2 ⊲ P1 and which defines the language
L(F2 ⊲ P1) = L(L(F2),P1).

4.3 Four two-level formalisms

Considering both CFGs and PDAs as both con-
trollers and controllees yields four two-level for-
malisms, one of which is Weir’s original two-level
grammar, and the other three of which are new.

Proposition 1. CFG ⊲ CFG, CFG ⊲ PDA, PDA ⊲
PDA and PDA ⊲ CFG are d-weakly equivalent.

Proof. See App. D. �

From now on, we will use different fonts for the
symbols in the controllee and the controller. In
a controllee LD-CFG/LD-PDA, we use X, Y , . . .
and a, b, . . . for the nonterminal/stack symbols and
terminal/input symbols. In a controller CFG/PDA,
we use A,B , . . . for the nonterminal/stack symbols
and a, b, . . . or ℓ, ℓ1, . . . for the terminal/input sym-
bols.

5 Derivation Trees of Two-Level
Formalisms

In order to show that our four two-level formalisms
are d-strongly equivalent to other L2 formalisms,
we need to establish what derivation trees look like
in these formalisms. Weir actually gives two defini-
tions of derivation in a two-level grammar. The first
is the one we have reproduced above, where a par-
tial control word is written inside the square brack-
ets. The second runs a leftmost derivation of the
controller CFG inside the square brackets. In this
section, we follow this second approach, except
that we use derivation trees, not leftmost deriva-
tions. We give a separate definition for each two-
level formalism. Ideally, these definitions would
have followed “for free” from the definitions of
derivation trees of (LD-)CFGs and (LD-)PDAs, but
we save this level of generality for future work.

Fig. 3 shows the derivation of string aabbccdd
under the four two-level formalisms considered in
this paper. The rest of this section discusses each
formalism in turn. We assume all controllers and
controllees are in normal form; see App. C for the
general case.

PDA ⊲ PDA For PDA, derivations and derivation
trees are the same thing, so derivation trees of PDA

7600

CFG ⊲ CFG S1 [S2]

S1 [L3]

n

S1/S1 [T]

S1/S1 [L2]

C[S2]

c

B[S2]

b

S1/S1 [T]

S1/S1 [L2]

C[S2]

c

B[S2]

b

S1/S1 [T]

n

S1/S1 [L1]

D[S2]

d

A[S2]

a

S1/S1 [L1]

D[S2]

d

A[S2]

a

CFG ⊲ PDA S1 [S2]

S1 [L3]

n

S1/S1 [T]

S1/S1 [L2]

B[S2] ∗ C[S2]

C[S2]

n

c

b

S1/S1 [T]

S1/S1 [L2]

B[S2] ∗ C[S2]

C[S2]

n

c

b

S1/S1 [T]

n

S1/S1 [L1]

A[S2] ∗ D[S2]

D[S2]

n

d

a

S1/S1 [L1]

A[S2] ∗ D[S2]

D[S2]

n

d

a

PDA ⊲ CFG S1 [S2]

S1 [TL3]

S1 [L1TL2L3]

D[S2]

d

S1 [TL2L3]

S1 [L1TL2L2L3]

D[S2]

d

S1 [TL2L2L3]

S1 [L2L2L3]

C[S2]

c

S1 [L2L3]

C[S2]

c

S1 [L3]

n

B[S2]

b

B[S2]

b

A[S2]

a

A[S2]

a

PDA ⊲ PDA

S1 [S2]

S1 [TL3]

S1 [L1TL2L3]

A[S2] S1 [TL2L3] D[S2]

S1 [TL2L3] D[S2]

S1 [L1TL2L2L3] D[S2]

A[S2] S1 [TL2L2L3] D[S2] D[S2]

S1 [TL2L2L3] D[S2] D[S2]

S1 [L2L2L3] D[S2] D[S2]

a

a

B[S2] S1 [L2L3] C[S2] D[S2] D[S2]

S1 [L2L3] C[S2] D[S2] D[S2]

B[S2] S1 [L3] C[S2] C[S2] D[S2] D[S2]

S1 [L3] C[S2] C[S2] D[S2] D[S2]

C[S2] C[S2] D[S2] D[S2]

C[S2] D[S2] D[S2]

D[S2] D[S2]

D[S2]

n

d

d

c

c

b

b

Figure 3: Derivation trees of aabbccdd under the four two-level formalisms considered in this paper. For pushdown
automata, states are omitted.

⊲ PDA follow Weir’s definition straightforwardly.
There are three cases to consider.

(a) If a derivation node is labeled @,X [B,A] �,

and B,A
ℓ−→ @ 5 , Y is a controller transition, and ℓ is

a controllee transition @,X a−→ A, Y, then the node
can have child

@,X [B,A] �

A,�
a

(b) If a derivation node is labeled @,X [B,A#] �,

and B,A
ℓ−→ C, Y is a controller transition,

and ℓ is a controllee transition @,X Y−→
A, Y1 · · · Y3−1 Z̆ Y3+1 · · · Y : , then

@, X [B,A#] �

A , Y1 [@] , S2] · · · Y3−1 [@] , S2] Z [C , #] Y3+1 [@] , S2] · · · Y: [@] , S2] �

(c) If a derivation node is labeled @,X [B,A#] �,
and B,A

Y−→ C, $ is a controller transition, then

@,X [B,A#] �

@,X [C, $#] �

PDA ⊲ CFG This formalism is not much more
difficult than CFG ⊲ CFG.

(a) If a derivation node is labeled X [@,A], and

@,A
ℓ−→ @ 5 , Y is a controller transition, and ℓ is a

controllee production X → a, then

X [@,A]
a

(b) If a derivation node is labeled X [@,A#], and

@,A
ℓ−→ A, Y is a controller transition, and ℓ is a con-

trollee production X → Y1 · · · Y3−1 Z̆ Y3+1 · · · Y: ,
then

X [@,A#]

Y: [@] , S2]· · ·Y3+1 [@] , S2]Z [A , #]Y3−1 [@] , S2]· · ·Y1 [@] , S2]

7601

(c) If a derivation node is labeled X [@,A#], and
@,A

Y−→ A, $ is a controller transition, then

X [@,A#]

X [A, $#]

CFG ⊲ CFG When the controller is a CFG and
therefore has branching derivation trees, the con-
trollee’s derivation becomes fragmented. To ensure
that the fragments form one correct derivation, we
need to add some extra information to the deriva-
tion nodes: each node is labeled X/Z[A], where A is
a controller nonterminal, and X and Z are controllee
nonterminals or ⊥. We write X/⊥[A] as X [A].

Moreover, the yield of a subderivation is in gen-
eral a discontinuous string. We write ∗ to indicate
a hole in a string (meant to resemble foot nodes
in TAG), and we write D(E) to plug E into the first
hole in D; that is, if D = D1 ∗ D2 where D1 does not
have a hole, then D(E) = D1ED2.

(a) If a derivation node is labeled X [A], and A→
ℓ is a controller production, and ℓ is a controllee
production X → a, then

X [A]
a

The yield is 0.
(b) If a derivation node is labeled X/Z[A], and

A → ℓ is a controller production, and ℓ is a con-
trollee production X → Y1 · · · Y38−1 Z̆ Y3+1 · · · Y: ,
then

X/Z[A]

Y: [S2]· · ·Y3+1 [S2]Y3−1 [S2]· · ·Y1 [S2]

If each child node Y8 [S2] has yield F8, then the
parent has yield F1 · · ·F3−1 ∗ F3+1 · · ·F: .

(c) If a derivation node is labeled X/Z[A], and
A→ B1 · · ·B: is a controller production, then

X/Z[A]

Y:−1/Y: [B:]· · ·Y0/Y1 [B1]

where Y0 = X, Y: = Z, and Y1, . . . , Y:−1 can be
any controllee nonterminals. If the children have
yields F1, F2, . . . , F: , then the parent has yield
F1(F2(· · · (F:))).
CFG ⊲ PDA The derivation trees of CFG ⊲ PDA
are the most complicated. To cut down on com-
plexity, we make use of the fact that every PDA

that accepts by empty stack is equivalent to one
with only one state (Hopcroft et al., 2006), and in-
deed the equivalence is d-strong (App. A, Prop. 6).
Therefore, we assume that the controllee has just
one state, @.

Derivation nodes are labeled (@,�), where @ is
a state and � is a string of symbols of the form
X/Z[A] (as above, for CFG ⊲ CFG) or ∗.

(a) If a derivation node is labeled @, ∗?X [A] �,
where ∗? denotes either the presence or absence of
a ∗, and A→ ℓ is a controller production, and ℓ is
a controllee transition @,X a−→ @, Y, then

@, ∗?X [A] �

@,�
a

If the yield of the child is F, then the yield of the
parent is ∗?0F.

(b) If a derivation node is labeled @, X/Z[A] �,
and A → ℓ is a controller production,
and ℓ is a controllee transition @,X Y−→
@, Y1 · · · Y3−1 Z̆ Y3+1 · · · Y: , then

@, X/Z[A] �

@, Y1 [S2] · · · Y3−1 [S2] ∗ Y3+1 [S2] · · · Y: [S2] �

The yield of the parent is just the yield of the child.
(c) If a derivation node is labeled @, X/Z[A] �,

and A→ B1 · · ·B : is a controller production, then

@, X/Z[A] �

@, Y:−1/Y: [B:]· · ·@, Y0/Y1 [B1] �

where Y0 = X, Y: = Z, and Y1, . . . , Y:−1 can be
any controllee nonterminals. If the children have
yields F1, F2, . . . , F: , then the parent has yield
F1(F2(· · · (F:))).

The reader may be surprised that � is placed on
the leftmost child. It would be equally sensible
to place it on any of the children, but the leftmost
child makes the yield function simplest.

6 Correspondences with L2 Formalisms

We can now show how PDA ⊲ PDA, PDA ⊲ CFG,
and CFG ⊲ CFG are d-strongly equivalent to EPDA,
LIG, and TAG, respectively, and to introduce PAA,
which is d-strongly equivalent to CFG ⊲ PDA.

6.1 Embedded pushdown automata
Definition 19. An embedded push-
down automaton (EPDA) is a tuple

7602

P = (&,Σ, Γ, X, (@], [S]), (@ 5 , Y)), where &,
Σ, N and Γ are finite sets of states, input symbols
and stack symbols, X is a finite set of transitions,
and (@], [S]) and (@ 5 , Y) are called the initial
and final configurations, where @], @ 5 ∈ &,
and S ∈ Γ. The transitions are of the form
?, [A ··] a−→ @,�[$ ··]�′ or ?, [A] a−→ @, Y, where
?, @ ∈ &, A ∈ Γ, $ ∈ Γ∗, �,�′ ∈ ([S])∗, and
a ∈ Σ ∪ {Y}.

An EPDA maintains a stack of stacks. Each
transition can pop and push from the top stack, as
well as pop the top stack and/or push other stacks
above and below it.

Proposition 2. An EPDA is d-strongly equivalent
to a PDA ⊲ PDA.

Proof. See App. E. �

6.2 Linear indexed grammars

Definition 20. A linear indexed grammar (LIG)
is a tuple G = (N ,Σ, Γ,R, S, S), where N , Σ
and Γ are sets of nonterminals, terminals and
stack symbols, R is a finite set of productions,
S ∈ N is the start symbol, and S ∈ Γ is the
initial stack. The production rules are of the
form X [A ··] → �1Y [$ ··]�2 or X [A] → a, where
X, Y ∈ N , $ ∈ Γ∗, A ∈ Γ, �1,�2 ∈ (N [S] ∪ Σ)∗,
and a ∈ Σ ∪ {Y}.

Each nonterminal symbol is augmented with a
stack (in square brackets). A production with lhs
X rewrites a nonterminal X [A$] into its rhs, while
popping A and pushing zero or more stack sym-
bols.1 Exactly one of the rhs nonterminals inherits
the stack, while the others get new stacks.

Proposition 3. A LIG is d-strongly equivalent to a
PDA ⊲ CFG.

Proof. See App. E. �

6.3 Tree-adjoining grammars

Definition 21. A tree-adjoining grammar (TAG)
is a tuple G = (V, C,Σ, S ,R) whereV, C and Σ
are finite sets of variable, constant,2 and terminal
symbols, S ∈ V is the start symbol and R is a set
of productions. The productions are of the form
X → V, where X ∈ V and V ∈ T (V∪C∪Σ∪{Y}).

1Most LIG definitions (Vijay-Shanker, 1987; Joshi et al.,
1991; Kanazawa, 2014) allow only productions that pop/push
at most one symbol from/to a nonterminal’s stack.

2The terms variable and constant come from Lang (1994)
and are equivalent to nonterminals with obligatory and null
adjunction constraints, respectively.

In V, interior nodes must be in V ∪ C. There is
one leaf inV ∪ C that is designated the foot node
and marked with ∗. The path from the root to the
foot node is called the spine. Other leaves must be
in V (in which case they are called substitution
nodes and marked with ↓) or Σ ∪ {Y}.

This definition is close to non-strict TAG (Lang,
1994; Rogers, 2003). Unlike the usual definition,
its rules have left-hand sides and do not require the
root and foot node to have the same label. We also
do not allow substitution, as it can be simulated
by adjunction. A TAG derivation starts with S and
proceeds by repeatedly choosing a variable X and
rewriting it using a production X → V, such that
the children of X become the children of V’s foot
node. See App. B.3 for additional definitions.

Definition 22. A TAG production X → V, where
V has a foot node, is called spinal3 if every node of
is either on the spine or the child of a node on the
spine. A TAG production X → U, where U does not
have a foot node, is called spinal if there is a leaf
[such that every node is either on the path from
the root to [or the child of such a node. A TAG is
called spinal if all its productions are spinal.

TAG derivation trees were defined by Vijay-
Shanker (1987). We show an example TAG and
derivation tree in Fig. 4.

Proposition 4. A spinal TAG is d-strongly equiva-
lent to a CFG ⊲ CFG.

Proof. See App. E; we give a brief sketch here,
using the same three cases as in §5. Case (a) corre-
sponds to the TAG production

- [A] → X

a

Case (b) corresponds to the TAG production

X/Z [A] → X

Y: [S2]↓· · ·Y3+1 [S2]↓Z∗Y3−1 [S2]↓· · ·Y1 [S2]↓

Case (c) corresponds to the TAG productions

X/Z[A] → X/Y1 [B1]
Y1/Y2 [B2]

Y:−1/Z[B:]∗

X [A] → X/Y1 [B1]
Y1/Y2 [B2]

Y:−1 [B:]↓
3This term comes from Fujiyoshi and Kasai (2000), who

use it for context-free tree grammars.

7603

TAG productions TAG derivation tree for aabbccdd

V1 : S→ T

L3
∗

V2 : T→ L1

T

L2
∗

V3 : T→ X∗

V4 : L1 → X

D↓X∗A↓

V5 : L2 → X

CX∗B↓

V6 : L3 → X

n

V7 : A→ X

a

V8 : B→ X

b

V9 : C→ X

c

V10 : D→ X

d

V1

V6V2

V5

V9V8

V2

V5

V9V8

V3V4

V10V7

V4

V10V7

Figure 4: Example TAG and derivation tree for aabbccdd. To reduce clutter, symbols have been renamed. Sym-
bol X is constant; other uppercase symbols are variable.

If : = 0 then the corresponding TAG productions
are

X/X[A] → X∗ X [A] → X

Y

�

6.4 Pushdown adjoining automata

A pushdown adjoining automaton (PAA) maintains
a stack of symbols. The stack symbols are either
variable symbols, which can be rewritten, or con-
stant symbols, which cannot. Each stack symbol is
augmented with another stack, written below it:

ABC
DE

Here, the top-level stack is ABC, in which B is
augmented with stack DE. The other symbols have
empty stacks, which are not shown.

A PAA transition has a lhs which is a variable
symbol and a rhs which is a stack (as described
above). The rhs may have one symbol occurrence
called the foot; if so, both the lhs and the foot are
written as X .

At each step, the PAA operates on the topmost
stack that has a variable X on top. If it has a transi-
tion X

a−→ b, then it scans a, pops X and pushes b.
If X had a stack attached, then the stack becomes
attached to the foot of b. Finally, any constant
symbol that has an empty stack is deleted.

Example 7. The PAA for {a=b=c=d=} is shown in
Fig. 5, along with the run of this PAA on aabbccdd.

The nested stacks of a PAA, described infor-
mally above, are treated formally as trees with a
special constant symbol > at the root. However, we
continue to draw them as shown above, without >.

Definition 23. A pushdown adjoining automaton
(PAA) is a tuple P = (Σ,V, C, X, S) where Σ, V,
and C are finite sets of input symbols, variable
stack symbols, and constant stack symbols, X is a
set of transitions and S ∈ V is the initial stack. The
transitions are of the form X

a−→ b where X ∈ V
and b ∈ T (V ∪C). The root of b is >, and at most
one leaf in b is designated the foot and written
as X .

Definition 24. The path from the root to the foot of
a PAA production’s rhs is called its spine. We say
that a PAA production is spinal if every rhs node is
either on the spine or a child of a node on the spine.
A PAA is spinal if all of its productions are spinal.

Definition 25. If b ∈ T (V ∪ C) without constant
leaf nodes, the top variable of b is defined as fol-
lows: If b = X , then the top variable is X . If
b = X

b1 · · ·
where X ∈ V, then the top variable

is X. If b = X
b1 · · ·

where X ∈ C, then the top

variable of b is the top variable of b1.

Definition 26. If b has top variable X , and there
is a transition g = (X a−→ d), then we write b

g
=⇒ b ′

if b ′ can be obtained from b by replacing its top
variable X with d (sans >), making the children
of X the children of the foot of d, and deleting any
constant leaf nodes.

In a PAA derivation tree (see Fig. 5 for an exam-
ple), every node is a stack, written without its em-
bedded stacks. If X$ is such a node and (X a−→ b)
is a transition, then the stacks of b$ are its children.

Proposition 5. A spinal PAA is d-strongly equiva-
lent to a CFG ⊲ PDA.

7604

PAA transitions PAA run for aabbccdd
S
n−→ T

L3

L3
n−→ n

T
n−→ L1

T
L2

T
n−→ X

L1
n−→ AXD L2

n−→ BXC

A
a−→ n B

b−→ n

C
c−→ n D

d−→ n

S
n
==⇒ T

L3

n
==⇒ L1

T
L2

L3

n
==⇒ AXD

T
L2

L3

a
=⇒ XD

T
L2

L3

n
==⇒ XD

L1
T

L2
L2

L3

n
==⇒ XD

AXD
T

L2
L2

L3

a
=⇒ XD

XD
T

L2
L2

L3

n
==⇒ XD

XD
X

L2
L2

L3

n
==⇒ XD

XD
X

BXC
L2

L3

b
=⇒ XD

XD
X

XC
L2

L3

n
==⇒ XD

XD
X

XC
BXC

L3

b
=⇒ XD

XD
X

XC
XC

L3

n
==⇒ XD

XD
X

XC
C

c
=⇒ XD

XD
X

C

c
=⇒ XD

D

d
=⇒ D

d
=⇒ n

PAA derivation tree for aabbccdd
S

L3

Y

T

L2

BXC

C

Y

c

b

T

L2

BXC

C

Y

c

b

T

X

L1

AXD

D

Y
d

a

L1

AXD

D

Y
d

a

Figure 5: Example PAA with run and derivation tree for aabbccdd. To reduce clutter, symbols have been renamed.
Symbol X is constant; other uppercase symbols are variable.

Proof. See App. E; we give a brief sketch here,
using the same three cases as in §5.

Case (a) corresponds to the rule

X [A] 0−→ Y

Case (b) corresponds to the rule

X/Z [A] Y−→ Y1 [S2] · · · Y3−1 [S2] / Y3+1 [S2] · · · Y: [S2]

where Z is constant.
Case (c) corresponds to the rules

X/Z[A] Y−→ X/Y1 [B1]
Y1/Y2 [B2]

Y:−1/Z[B:]
X [A] Y−→ X/Y1 [B1]

Y1/Y2 [B2]
Y:−1 [B:]

If : = 0 then we must insert a constant symbol:

X/X[A] Y−→ X X [A] Y−→ X �

7 Conclusion

We introduced new notions of equivalence be-
tween formalisms, d-weak equivalence and d-
strong equivalence, that allow for finer-grained

comparisons than weak equivalence. By extend-
ing Weir’s idea of control to PDAs, we obtained
three new formalisms recognizing L2, all d-weakly
equivalent to Weir’s original two-level grammar.
But by nuancing the idea of control to account for
the difference between CFG derivations and deriva-
tion trees, we showed that they are not d-strongly
equivalent. Instead, three of them are d-strongly
equivalent to existing L2 formalisms, namely TAG,
LIG and EPDA, and the fourth is d-strongly equiv-
alent to our new L2 formalism, PAA.

Limitations

We currently give separate definitions of the deriva-
tion trees of the four two-level formalisms. Ideally,
one could give a general definition of derivation
tree in a multi-level formalism, and then derive
each particular case by plugging in the definition
of derivation trees of (LD-)CFGs and (LD-)PDAs.
We leave this generalization for future work.

The d-strong equivalence results only hold for
spinal TAG and spinal PAA. However, full TAG
and PAA are not d-strongly equivalent to spinal
TAG and spinal PAA, and therefore they are not
d-strongly equivalent to CFG ⊲ CFG and CFG ⊲
PDA, either.

7605

Ethics Statement

The authors foresee no ethical concerns with the
research presented in this paper.

Acknowledgements

We would like to thank the anonymous reviewers
for their comments and suggestions.

References
Akio Fujiyoshi and Takumi Kasai. 2000. Spinal-

formed context-free tree grammars. Theory of Com-
puting Systems, 33(1):59–83.

Gerald Gazdar. 1988. Applicability of indexed gram-
mars to natural languages. In Natural Language
Parsing and Linguistic Theories, pages 69–94.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2006. Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edition. Addison-
Wesley Longman Publishing Co.

Aravind Joshi, K. Vijay-Shanker, and David Weir.
1991. The convergence of mildly context-sensitive
grammar formalisms. In Foundational Issues in Nat-
ural Language Processing, pages 31–81.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. Journal of Computer
and System Sciences, 10(1):136–163.

Makoto Kanazawa. 2014. A generalization of linear
indexed grammars equivalent to simple context-free
tree grammars. In Formal Grammar, pages 86–103.

Bernard Lang. 1994. Recognition can be harder than
parsing. Computational Intelligence, 10(4):486–
494.

Carl J. Pollard. 1984. Generalized Phrase Structure
Grammars, Head Grammars and Natural Language.
Ph.D. thesis, Stanford University.

James Rogers. 2003. wMSO theories as gram-
mar formalisms. Theoretical Computer Science,
293(2):291–320.

Mark Steedman. 1987. Combinatory grammars and
parasitic gaps. Natural Language & Linguistic The-
ory, 5(3):403–439.

K. Vijay-Shanker. 1987. A Study of Tree Adjoining
grammars. Ph.D. thesis, University of Pennsylva-
nia.

K. Vijay-Shanker and David Weir. 1994. The equiv-
alence of four extensions of context-free grammars.
Mathematical Systems Theory, 27(6):511–546.

David Weir. 1992. A geometric hierarchy beyond
context-free languages. Theoretical Computer Sci-
ence, 104(2):235–261.

A Context-Free Formal Systems

A.1 Context-Free Grammars
Definition 27. A context-free grammar (CFG) is
a tuple G = (N ,Σ,R, S), whereN and Σ are finite
sets of nonterminal and terminal symbols, R is
a finite set of production rules, and S ∈ N is a
distinguished start symbol. The production rules
are of the form A → ", where A ∈ N and " ∈
(N ∪ Σ)∗.
Definition 28. A sentential form of a CFG G is
a sequence of nonterminal and terminal symbols
" ∈ (N ∪ Σ)∗. If ? = (X → ") ∈ R and #1, #2 ∈
(N ∪ Σ)∗, we write #1X#2

?
=⇒ #1"#2. If

S
?1
==⇒ "1

?2
==⇒ · · · ?===⇒ "=

where "= ∈ Σ∗, we say that G derives "=.
The language generated by G is L(G) = {s |
G derives s}.
Definition 29. The set of derivation trees of a CFG
is the smallest set defined as follows.

• If a ∈ Σ then the tree consisting of a single
node a is an a-type derivation tree (whose
yield is a).

• If (X → V1 · · · V:) ∈ R and, for 8 = 1, . . . , : ,
38 is a V8-type derivation tree, then the follow-
ing is an X-type derivation tree:

X

3:· · ·31

whose yield is . (3) = . (31) · · ·. (3:).
A derivation tree of G is an S-type derivation tree.

A.2 Pushdown Automata
Definition 30. A configuration of a PDA is a pair
(@, $), where @ ∈ & is the current state and $ is
the current contents of the stack.

Definition 31. If (?,X#) and (@, $#) are configu-
rations, and g = (?,X a−→ @, $) is a transition, we
write (?,X#) g=⇒ (@, $#).
Definition 32. A run of a PDA is a sequence of
transitions 0 = (g1, . . . , g=) such that there are
configurations (@0, $0), . . . , (@=, $=) such that

(@0, $0)
g1
==⇒ · · · g===⇒ (@=, $=).

7606

https://doi.org/10.1007/s002249910004
https://doi.org/10.1007/s002249910004
https://doi.org/10.1007/978-94-009-1337-0_3
https://doi.org/10.1007/978-94-009-1337-0_3
https://dl.acm.org/doi/book/10.5555/1196416
https://dl.acm.org/doi/book/10.5555/1196416
https://repository.upenn.edu/cis_reports/539/
https://repository.upenn.edu/cis_reports/539/
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1007/978-3-662-44121-3_6
https://doi.org/10.1007/978-3-662-44121-3_6
https://doi.org/10.1007/978-3-662-44121-3_6
https://doi.org/https://doi.org/10.1111/j.1467-8640.1994.tb00011.x
https://doi.org/https://doi.org/10.1111/j.1467-8640.1994.tb00011.x
https://searchworks.stanford.edu/view/1095753
https://searchworks.stanford.edu/view/1095753
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00349-8
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00349-8
https://doi.org/10.1007/BF00134555
https://doi.org/10.1007/BF00134555
https://repository.upenn.edu/dissertations/AAI8804974/
https://repository.upenn.edu/dissertations/AAI8804974/
https://doi.org/10.1007/BF01191624
https://doi.org/10.1007/BF01191624
https://doi.org/https://doi.org/10.1016/0304-3975(92)90124-X
https://doi.org/https://doi.org/10.1016/0304-3975(92)90124-X

If each g8 scans a8, then we say that the run
scans a1 · · · a=.

A run 0 is called a pop computation of X from
@0 to @= if $0 = X$=, and for all 8 < =, |$8 | ≥ |$0 |.

An accepting run (or derivation) is a pop com-
putation of S from @] to @ 5 .

Definition 33. Let P be a PDA. If P has an accept-
ing run that scans s ∈ Σ∗, we say that P accepts
s. The language recognized by P is L(P) = {s ∈
Σ∗ | P accepts s}.
Definition 34. The set of derivation trees of a PDA
is the smallest set defined as follows.

• The tree consisting of a single node (@ 5 , Y)
(which is the final configuration), is a (@ 5 , Y)-
type derivation tree (whose yield is Y).

• If (@, $) a
=⇒ (@′, $′) and � ′ is a (@′, $′)-type

derivation tree, then the following is a (@, $)-
type derivation tree:

� = (@, $)

� ′
a

If the yield of � ′ is F′, then the yield of �
is 0F′.

A derivation tree of % is a (@], S)-type derivation
tree, where (@], S) is the initial configuration.

The definitions of runs, accepting runs, and pop
computation for LD-PDAs are analogous to those
for PDAs.

Proposition 6. Every PDA is d-strongly equivalent
to a PDA with one state.

Proof. Given a PDA

P = (&,Σ, Γ, X, (@], S), (@ 5 , Y))

construct the PDA

P′ = ({@′},Σ, Γ′, X′, (@′, S′), (@′, Y))
Γ′ = {-@A | - ∈ Γ, @, A ∈ &}
S′ = S@]@ 5

and for every transition (@, - 0−→ A,.1.2 · · ·.:) ∈
X with : > 0, let X′ contain transitions (@′, -@B: 0−→
@′, . AB11 . B1B22 · · ·. B:−1B:

:) for all B1, . . . , B: ∈ &. For

every transition (@, - 0−→ A, Y) ∈ X, let X′ contain
transition @′, -@A

0−→ @′, Y.
We claim that P and P′ are d-strongly equiva-

lent. (⇒) Given a derivation of P, apply the above

construction to each of the transitions used. Al-
though the construction generates many possible
sequences of transitions, exactly one sequence is
a well-formed derivation. (⇐) Given a derivation
of P′, just apply the reverse construction to each of
the transitions used. �

B L2 Formalisms

B.1 Embedded Pushdown Automata
To distinguish between the two types of stacks in
an EPDA, we will call them the outer stack and
the inner stacks. A inner stack is written as [$],
$ ∈ Γ∗ is written from top to bottom as in a PDA.
We write outer stacks as � = [$1] · · · [$=], where
[$1] is at the top, while [$=] is at the bottom.

Definition 35. A configuration of an EPDA is a
pair (@,�), where @ is the current state and � is
the current contents of the outer stack.

Definition 36. If an EPDA has a transition g =
(@, [A ··] a−→ A,�1 [$ ··] �2), then we write, for any
	 ∈ ([Γ∗])∗ and # ∈ Γ∗,

(@, [A#]) g=⇒ (A,�1 [$#] �2).

Similarly, if an EPDA has a transition g =
(@, [A] a−→ A, Y), then we write

(@, [A]) g=⇒ (A,).

The definitions of scanning and non-scanning
transitions, runs, and accepting runs of an EPDA,
and EPDAs accepting strings and recognizing lan-
guages, are all analogous to those for PDAs.

Definition 37. An EPDA is in normal form if its
transitions have one of the following types

?, [A ··] Y−→ @, [S] · · · [··] · · · [S],
?, [A ··] Y−→ ?, [B1 · · ·B : ··],
?, [A] a−→ @, Y.

B.2 Linear Indexed Grammars
Definition 38. A sentential form " ∈
(N [Γ∗] ∪ Σ)∗ of a LIG is a sequence of
nonterminal symbols, each augmented with a stack,
and terminal symbols.

Definition 39. If a LIG has a production ? =
(X [A ··] → �1Y [$ ··]�2), then we write, for any
	1,	2 ∈ (N [Γ∗] ∪ Σ)∗ and # ∈ Γ∗,

	1 X [A#] 	2
?
=⇒ 	1 �1 Y [$#] �2 	2.

7607

Similarly, if a LIG has a production ? =
(X [A] → a), then we write

	1 X [A] 	2
?
=⇒ 	1 a	2.

A LIG derivation starts with the start symbol and
initial stack S[S]. The definitions of LIG deriva-
tions, LIG derivation trees, LIGs accepting strings,
and LIGs recognizing languages are all analogous
to those for CFGs.

Definition 40. A LIG is in normal form if its pro-
ductions have one of the following types

X [A ··] → Y1 [S] · · · Y3 [··] · · · Y : [S],
X [A ··] → X [B1 · · ·B : ··],

X [A] → a.

B.3 Tree-Adjoining Grammars

Definition 41. A tree V with a foot node is ad-
joined at an interior node [by removing the chil-
dren of [, replacing [with V and inserting the old
children of [as the children of the foot node of V.
The old label of [is thus lost.

A tree U without a foot node is substituted at a
leaf node [by replacing [with U. The old label of
[is thus lost.

Definition 42. If g = (X → V) is a TAG produc-
tion, U is a tree with a node [labeled X , and U′ is
the resulting of adjoining or substituting V at [, we
write U

g
=⇒ U′.

Definition 43. Let G be a TAG. If

S
g1
==⇒ U1 ⇒ · · ·

g=
==⇒ U=

where U= does not have any variable nodes, then
we say that G derives U=.

Definition 44. The tree language of a TAG is the
set of trees it derives. Additionally, the yield of a
tree is the string obtained by concatenating the
terminal symbols at the leaves of the tree, and
the string language of a TAG is the set of strings
yielded by its tree language.

Definition 45. A TAG is in normal form if its pro-
ductions are of the types shown in Fig. 6.

B.4 Pushdown Adjoining Automata

Definition 46. A PAA is in normal form if its tran-
sitions are of the types shown in Fig. 7.

A→ X

Y : ↓· · ·Y 3+1↓Z∗Y 3−1↓· · ·Y 1↓

A→ B1

B2

B:∗

A→ B1

B2

B: ↓

A→ X∗ A→ X

a

Figure 6: Production rules of TAG in normal form.
Symbols X and Z are constant; other uppercase letters
are variables.

A
Y−→ Y 1 · · ·Y 3−1 Z Y 3+1 · · ·Y :

A
Y−→ B1

B2

B:

A
Y−→ B1

B2

B:

A
Y−→ X A

a−→ Y

Figure 7: Transitions of PAA in normal form. Sym-
bols X and Z are constant; other uppercase letters are
variables.

C Derivation Trees of Two-Level
Formalisms

In §5 we showed what the derivation trees of four
two-level formalisms look like when both the con-
troller and the controllee are in normal form. In
this section, we give details on what the derivation
trees look like for general controller CFGs/PDAs
and controllee LD-CFGs/LD-PDAs.

PDA ⊲ PDA The normal form and general form
of PDAs are not so different, so moving to gen-
eral PDAs is straightforward. We still distinguish
between the cases where the controller transition
is (a,b) scanning or (c) non-scanning, and if the
former, whether the controllee transition has (a) no
distinguished symbol or (b) a distinguished sym-
bol.

(a) If a derivation node is labeled @,X [B,A#] �,

and B,A
ℓ−→ @ 5 , Y is a controller transition, and ℓ is

a controllee transition @,X a−→ A, Y1 · · · Y : (with no
distinguished symbol),

@, X [B,A] �

A , Y1 [@] , S2] · · · Y: [@] , S2] �
a

(b) If B,A
ℓ−→ C, $ is a controller transi-

tion, and ℓ is a controllee transition @,X a−→
7608

A, Y1 · · · Y3−1 Z̆ Y3+1 · · · Y : , then the node can have
child

@, X [B,A#] �

A , Y1 [@] , S2] · · · Y3−1 [@] , S2] Z [C ,$#] Y3+1 [@] , S2] · · · Y: [@] , S2] �
a

Case (c) stays the same.

PDA ⊲ CFG Generalizing to a PDA controller is
also not very difficult here.

(a) If a derivation node is labeled X [@,A], and

@,A
ℓ−→ @ 5 , Y is a controller transition, and ℓ is a

controllee production X → h1 · · · h: , where each
h8 is either a terminal or non-distinguished nonter-
minal symbol, then the node can have children as
follows. For each 8,

• If h8 is a terminal a, then there is a child a.

• If h8 is a non-distinguished nonterminal Y ,
then there is a child Y [@], S2].

(b) If a derivation node is labeled X [@,A#], and

@,A
ℓ−→ A, $ is a controller transition, and ℓ is a con-

trollee production X → h1 · · · h: , where each h8
is either a terminal, nonterminal, or distinguished
nonterminal symbol, then the node can have chil-
dren as follows. For each 8,

• If h8 is a terminal or non-distinguished nonter-
minal, then there is a child as in case (a).

• If h8 is a distinguished nonterminal Z, then
there is a child Z [A, $#].

Case (c) stays the same.

CFG ⊲ CFG Generalizing to a CFG controller is
more complicated because a production can now
yield multiple terminal symbols, which causes the
controllee to use multiple productions in a single
derivation step.

Derivation nodes are labeled X/Z[A] where A is a
controller nonterminal, and - and / are controllee
nonterminals or ⊥. We write X/⊥[A] as X [A].

If a derivation node is labeled X/Z[A], and A→
V1 · · · V: is a controller production, where each V8
is either a nonterminal or a terminal symbol, then
the derivation node can have children as follows.
Let Y0 = X, Y: = Z, and Y1, . . . , Y:−1 be any con-
trollee nonterminals. For each 8:

(a) If V8 is a terminal ℓ that names a controllee
production Y8−1 → h1 · · · h<, where each h 9
is a terminal or non-distinguished nonterminal
(and Y8 = ⊥), then for each 9 ,

• If h 9 is a terminal a, then there is a
child a.

• If h 9 is a non-distinguished nonterminal
Y , then there is a child Y [S2].

(b) If V8 is a terminal ℓ that names a controllee
production Y8−1 → h1 · · · h<, where each h 9
is a terminal, nonterminal or distinguished
nonterminal (and Y8 ≠ ⊥), then for each 9 ,

• If h 9 is a terminal or non-distinguished
nonterminal, then there is a child as in
case (a).

• If h 9 is a distinguished nonterminal, it
must be Y̆ 8 (and Y 8 ≠ ⊥).

(c) If V8 is a nonterminal B , then there is a child
Y8−1/Y8 [B].

CFG ⊲ PDA Derivation nodes are labeled (@,�),
where @ is a state and � is a string of symbols of
the form X/Z[A] (as above, for CFG ⊲ CFG) or ∗.

If a derivation node is labeled @, ∗?X/Z[A] �
(where ∗? denotes either the presence or absence of
a ∗), and A→ V1 · · · V: is a controller production,
where each V8 is either a nonterminal or terminal
symbol, then the derivation node can have children
as follows. Let Y0 = X, Y: = Z, and Y1, . . . , Y:−1
be any controllee nonterminals. For each 8:

(a) If V8 is a terminal ℓ that names a controllee
transition @, Y8−1

a−→ @,W1 · · ·W: (with no dis-
tinguished symbol and Y8 = ⊥), then there is
a child

@,W1 [S2] · · ·W: [S2]
a

(b) If V8 is a terminal ℓ that names
a controllee transition @, Y8−1

a−→
@,W1 · · ·W3−1 Y̆8 W3+1 · · ·W: (and Y8 ≠ ⊥),
then there is a child

@,W1 [S2] · · ·W3−1 [S2] ∗W3+1 [S2] · · ·W: [S2]
a

(c) If V8 is a nonterminal B , then there is a child

@, Y8−1/Y8 [B]
Y

Finally, append � to the leftmost child.

7609

D D-Weak Equivalence Proofs

Proposition 7. CFG and PDA are d-weakly equiv-
alent.

Proof. (⇒) Let G = (N ,Σ,R, S) be a CFG in
normal form. We define the PDA in normal form
PG = ({@},Σ,N , X, (@, S) , (@, Y)), where

X = {@,A Y−→ @,B1 · · ·B : | A→ B1 · · ·B : ∈ R}
∪ {@,A a−→ @, Y | A→ a ∈ R}.

We prove by induction on the height ℎ of the deriva-
tion tree that for each A-type derivation tree 3 of G
that yields F, PG has a pop computation of A that
scans F.

Base case: When the height is ℎ = 2, it must
hold that G has a production A → a. The yield
of the derivation is a. By construction, PG has the
transition @,A

a−→ @, Y, which is a pop computation
of A that scans a.

Inductive Step: We assume that the statement
holds for each A-type derivation of height up to
ℎ and we assume that 3 is a derivation tree of
height ℎ + 1 yielding F = F1F2 · · ·F: , which
has root A and children B1,B2, . . . ,B : . We as-
sume that the B1,B2, . . . ,B : -type derivations have
yield F1, F2, . . . , F: . This implies that G has
the production A → B1B2 · · ·B: and PG has
the transition @,A

Y−→ @,B1B2 · · ·B: . By the
inductive hypothesis, PG has pop computations
(from state @ to state @) of B1,B2, . . . ,B: scanning
F1, F2, . . . , F: , thus it has a pop computation of A
that yields F.

Therefore, there is a yield-preserving bijection
between the S-type derivations of G and PG’s pop
computations of S (accepting runs).
(⇐) Let P = (&,Σ, Γ, (@], S), (@ 5 , Y)) be a

PDA in normal form. We define the CFG in normal
form

GP = (N ,Σ,R, S ′)
N = {A?@ | A ∈ Γ, ?, @ ∈ &}
S ′ = S@]@ 5

and R is constructed as follows:

• For each transition (?,A Y−→ @,B1 · · ·B :) ∈
X, and for each A1, A2, . . . , A: ∈ &, include
production A?A: → B@A11 BA1A22 · · ·BA:−1A:

: .

• For each transition (?,A a−→ @, Y) ∈ X, include
production A?@ → a.

We prove that for each pop computation of A
of P from ? to @ that scans F, there is a A?@-type
derivation of GP with yield F. We prove the state-
ment by induction on the length ; of the pop com-
putation.

Base case: When the pop computation has
length ; = 1, it must consist of a single transition
?, S

a−→ @, Y. It scans the string a. By construc-
tion, GP has a production S ?@ → a, thus it has a
derivation yielding a.

Inductive Step: We assume that the statement
holds for all pop computations of length up to
; and 0 is a pop computation of A such that
its first transition is ?,A

Y−→ @,B1B2 · · ·B: , fol-
lowed by pop computations of B1,B2, . . . ,B: from
? to A1, A1 to A2, . . ., and A:−1 to A: , respec-
tively. We assume that the pop computations of
B1,B2, . . . ,B: scan F1, F2, . . . , F: , therefore 0
scans F = F1F2 · · ·F: . By construction, GP has
a production A?@ → B ?A1

1 BA1A22 · · ·BA:−1A:
: . By the

inductive hypothesis GP has B ?A1
1 BA1A22 · · ·BA:−1A:

: -
type derivations yielding F1F2 · · ·F: , thus it also
has a A?A: -type derivation yielding F.

Therefore, there is a yield-preserving bijection
between the accepting runs of P (pop computations
of S from @] to @ 5) and derivation trees of GP. �

Proposition 8. LD-CFG and LD-PDA are d-
weakly equivalent, in the sense that for any LD-
CFG G, there is an LD-PDA PG such that for any
controller F, F ⊲ G and F ⊲ PG are d-weakly equiv-
alent; conversely, for any any LD-PDA P, there
is an LD-PDA GP such that for any controller F,
F ⊲ P and F ⊲ GP are d-weakly equivalent.

Proof. (⇒) Let G = (N ,Σ, !,R, S) be an LD-
CFG in normal form. We define the LD-PDA

PG = ({@},Σ,N , !, X, (@, S) , (@, Y))

where X is constructed as follows:

• For each (ℓ : A → B1 · · · B̆3 · · ·B :)
in R, include transition ℓ : @,A Y−→
@,B1 · · · B̆3 · · ·B : .

• For each (ℓ : A→ a) ∈ R, include transition
ℓ : @,A a−→ @, Y.

The rest of the proof is similar to the proof of
Prop. 7. The only addition is to observe that PG
uses each control word the same number of times
that G does, ensuring that the derivations of F,

7610

F ⊲ G and F ⊲ PG are in one-to-one correspon-
dence.
(⇐) Let P =

(
&,Σ, Γ, !, (@], S) ,

(
@ 5 , Y

))
be an

LD-PDA in normal form. We define the LD-CFG
in normal form

GP = (N ,Σ,R, S′)
N = {A?@ | A ∈ Γ, ?, @ ∈ &}
S′ = S@]@ 5

and R is constructed as follows:

• For each ℓ : ?,A Y−→ @,B1 · · · B̆3 · · ·B :

in X, and for each A1, A2, . . . , A: ∈ &,
include production ℓ : A?A: →
B@A11 BA1A22 · · · B̆A3−1A3

3 · · ·BA:−1A:
: .

• For each transition (ℓ : ?,A a−→ @, Y) ∈ X, in-
clude production ℓ : A?@ → a.

Again, the rest of the proof is similar to the proof
of Prop. 7. �

Proposition 1. CFG ⊲ CFG, PDA ⊲ CFG, CFG ⊲
PDA and PDA ⊲ PDA are d-weakly equivalent.

Proof. When two two-level formalisms have the
same controllee but one has a controller CFG and
the other has a controller PDA, it is sufficient to de-
fine controllers that are d-weakly equivalent. The
proof of Prop. 7 shows that this is possible and how
the controllers can be defined. If there is a bijec-
tion between the derivations of the CFG and PDA
for each control word, the rules of the controllee
will be applied in the same order in both two-level
formalisms, thus generating the same set of strings
with an equal number of derivations.

When two two-level formalisms have the same
controller but different controllees, the controllees
must consume the control words in the same order
and the same number of times. Indeed, the proof
of Prop. 8 shows that this is possible and how the
controllees can be defined.

�

E D-Strong Equivalence Proofs

We assume for simplicity that the controller
CFGs/PDAs and the LD-CFGs/LD-PDAs are in
normal form in this section. However, the proofs
of equivalence also hold in the general case.

Proposition 2. EPDA and PDA ⊲ PDA are d-
strongly equivalent.

Proof. (⇒) Let

P =
(
&,Σ, Γ, X, (@], [S]), (@ 5 , Y)

)
be an EPDA in normal form. Construct the con-
trollee LD-PDA and controller PDA

P1 = (&,Σ, {X}, !, X1, (@],X), (@ 5 , Y))
P2 = ({@}, !, Γ, X2, (@, S), (@, Y))

where the set of labels ! and the sets of transitions
X1 and X2 are constructed as follows:

• For each transition (?, [A ··] Y−→ ?, [$ ··]) ∈
X, let ! contain a fresh label ℓ, let X2 contain
the transition @,A

ℓ−→ @, $, and let X1 contain
the transition ℓ : ?,X Y−→ ?,X.

• For each transition (?, [A ··] Y−→
A, [S] . . . [··] . . . [S]) in X, add a new

label ℓ to !, the transition @,A
ℓ−→ @, Y to X2

and the transition ℓ : ?,X Y−→ A,X · · · X̆ · · ·X
to X1.

• For each transition (?, [A] a−→ A, Y) ∈ X, add a

new label ℓ to !, the transition @,A
ℓ−→ @, Y to

X2 and the transition ℓ : ?,X a−→ A, Y to X1.

(⇐) We are given P2 ⊲ P1, and by Prop. 6 we
can assume without loss of generality that both P1
and P2 have only one state. Thus

P1 = ({@},Σ, Γ1, !, X, (@, S1), (@, Y))
P2 = ({@}, !, Γ2, X2, (@, S2), (@, Y))

and we construct the EPDA

P′ = ({@},Σ, Γ′, X′, (@, [S1 [S2]]), (@, Y))
Γ′ = {X/Y [A] | A ∈ Γ2,X, Y ∈ Γ1}

∪ {X [A] | A ∈ Γ2,X ∈ Γ1}.

The set X′ is constructed as follows:

• For each transition (@,A Y−→ @,B1 · · ·B:) ∈
X2 where : > 0, and for each X0, . . . ,X: ∈ Γ1,
let X′ contain the transition @, [X0/X: [A] ··] Y−→
@, [X0/X1 [B1] · · · X:−1/X: [B:] ··].

• For each transition (@,A Y−→ @, Y) ∈ X2, and
for each X ∈ Γ1, let X′ contain the transition
@, [X/X[A] ··] Y−→ @, [··].

7611

• For each pair of transitions (@,A ℓ−→ @, Y) ∈
X2 and (ℓ : @,X Y−→ @, Y1 · · · Y̆3 · · · Y:) ∈ X1,
let X′ contain the transition @, [X/Y3 [A] ··] Y−→
@, [Y1 [S2]] · · · [··] · · · [Y: [S2]] (where the
[··] is in the 3-th position).

• For each pair of transitions (@,A ℓ−→ @, Y) ∈
X2 and (ℓ : @,X a−→ @, Y) ∈ X1, let X′ contain
the transition @, [X [A]] a−→ @, Y. �

Proposition 3. LIG and PDA ⊲ CFG are d-strongly
equivalent.

Proof. (⇒) Let G = (N ,Σ, Γ,R, S, S) be a LIG
in normal form. Construct the controllee LD-CFG
and controller PDA

G1 = (N ,Σ, !,R1, S)
P2 = ({@}, !, Γ, X2, (@, S) , (@, Y))

The set of labels !, the set of productions R1 and
the set of transitions X2 are constructed as follows:

• For each production X [A ··] → X [$ ··] ∈ R,
X2 contains the transition @,A

Y−→ @, $.

• For each production
X [A ··] → Y1 [S] · · ·Y3 [··]· · · Y: [S],
add a fresh label ℓ to !, the transition
@,A

ℓ−→ @, Y to X2 and the production
ℓ : X → Y1 · · · Y̆3 · · · Y : to R1.

• For each production X [A] → a, add a fresh

label ℓ to !, the transition @,A
ℓ−→ @, Y to X2

and the production ℓ : X → a to R1.

(⇐) Let G1 = (N ,Σ, !,R1, S) be a controllee
LD-CFG and P2 =

(
&, !, Γ, X2, (@], S) ,

(
@ 5 , Y

))
a

controller PDA, both in normal form. Construct
the LIG

G′ = (N ′,Σ, Γ,R ′, S, S)
N ′ = {X@ | X ∈ N , @ ∈ &}

and the set R ′ is defined as follows:

• For each transition (?,A Y−→ @, $) ∈ X2, and
for each X ∈ N , let R ′ contain a production
X? [A ··] → X@ [$ ··].

• For each transition (?,A ℓ−→ @, Y) ∈ X2 and
production (ℓ : X → Y1 · · · Y̆3 · · · Y :) ∈
R1, let R ′ contain a production
X? [A ··] → Y@]1 [S] · · ·Y

@
3 [··]· · · Y

@]
: [S].

• For each transition (?,A ℓ−→ @ 5 , Y) ∈ X2 and
production (ℓ : X → a) ∈ R1, let R ′ contain
a production X? [A] → a. �

Proposition 4. Spinal TAG and CFG ⊲ CFG are
d-strongly equivalent.

Proof. (⇒) Let T = (V, C,Σ, S ,R) be a spinal
TAG in normal form.

First, rename apart variables that allow adjunc-
tion and variables that allow substitution.

Then construct the controllee LD-CFG and con-
troller CFG

G1 = (C ∪ {�},Σ, !,R1, S1)
G2 = (V, !,R2, S)

where � ∉ C is a fresh constant symbol, and the
set of labels ! and the sets of rules R1 and R2 are
constructed as follows:

• For each rule of the type

A→ B1

B2

B :
∗

R2 contains the production A →
B1B2 · · ·B : .

• For each rule of the type

A→ B1

B2

B : ↓

! contains fresh labels ℓ0 and ℓ: , R2 contains
the production S → ℓ0B1B2 · · ·B :−1ℓ:S ,
and R1 contains the productions

ℓ0 : A→ �
ℓ: : �→ B :

• For each rule of the type

A→ X∗

R2 contains the production A→ Y.

7612

• For each rule of the type

A→ X

Y : ↓· · ·Y 3+1↓Z∗Y 3−1↓· · ·Y 1↓

! contains a fresh symbol ℓ, R1
contains the production ℓ : � →
Y 1 · · ·Y 3−1�̆Y 3+1 · · ·Y : and R2 con-
tains the production A→ ℓ.

• For each rule of the type

A→ X

a

! contains a fresh symbol ℓ, R1 contains the
production ℓ : A → a and R2 contains the
production S → ℓ.

(⇐) Let G1 = (N1,Σ, !,R1, S1) be an LD-
CFG and G2 = (N2, !,R2, S2) a controller CFG.
Construct the TAG

T = (V,N ,Σ, S1 [S2],R)
V = {X/Y [A] | X, Y ∈ N ,A ∈ N ′}

∪ {X [A] | X ∈ N ,A ∈ N ′}

and the set R is constructed as follows:

• For each production A → B1 · · ·B : ∈ R2,
where : > 0, and for each X0,X1, . . . ,X: ∈
N , let R contain the rules

X0/X: [A] → X0/X1 [B1]
...

X:−1/X: [B:]∗

X0 [A] → X0/X1 [B1]
...

X:−1 [B:]↓

• For each production A→ Y ∈ R2, let R con-
tain the rules

X/X[A] → X∗ X [A] → X

Y

• For each pair of productions A→ ℓ ∈ R2 and
ℓ : X → a ∈ R1, let R contain the rule

X [A] → X

a

• For each pair of productions A→ ℓ ∈ R2 and
ℓ : X → Y1 · · · Y3−1Z̆Y3+1 · · · Y: ∈ R1, let R
contain the rule

X/Z [A] → X

Y: [S2]↓· · ·Y3+1 [S2]↓Z∗Y3−1 [S2]↓· · ·Y1 [S2]↓

�

Proposition 5. Spinal PAA and CFG ⊲ PDA are
d-strongly equivalent.

Proof. (⇒) Let M = (Σ,V, C, X, S) be a PAA in
normal form.

First, rename apart variables that allow adjunc-
tion and variables that allow substitution.

Then construct the LD-PDA controllee and CFG
controller

P1 = ({@},Σ, C ∪ {�}, !, X1, S1)
G2 = (V, !,R2, S)

where � ∉ C is a fresh constant symbol, and the
sets !, X1 and R2 are constructed as follows:

• For every transition in X of the form

A
Y−→ Y 1 · · ·Y 3−1 Z Y 3+1 · · ·Y :

! contains a fresh label ℓ, R2 contains the pro-
duction A→ ℓ and X1 contains the transition
ℓ : @,� Y−→ @,Y 1 · · ·Y 3−1�̆Y 3+1 · · ·Y : .

• For every transition in X of the form

A
a−→ Y

! contains a fresh label ℓ, R2 contains the pro-
duction S → ℓ and X1 contains the transition
ℓ : @,A a−→ @, Y.

• For every transition in X of the form

A
Y−→ B1

B2

B:

R2 contains the production A→ B1 · · ·B: .

• For every transition in X of the form

A
Y−→ B1

B2

B:
7613

! contains fresh labels ℓ0 and ℓ: , R2 contains
the production S → ℓ0B1 · · ·B:−1ℓ:S and X1
contains the transitions

ℓ0 : @,A Y−→ @,�

ℓ: : @,� Y−→ @,B:

• For every transition in X of the form

A
Y−→ X

R2 contains the production A→ Y.

(⇐) We are given G2 ⊲ P1, where G2 is a CFG
and P1 is an LD-PDA. Without loss of generality,
we may assume by Prop. 6 that P1 has only one
state, so

P1 = ({@},Σ, Γ, !, X1, (@], S1), (@ 5 , Y))
G2 = (N , !,R2, S2)

We further assume that both are in normal form.
Then we construct the PAA

M = (Σ,V, Γ, X′, S1 [S2])
V = {X/Y [A] | A ∈ N ,X, Y ∈ Γ}

∪ {X [A] | A ∈ N ,X ∈ Γ}
where X′ is constructed as follows:

• For each production A → B1 · · ·B : ∈ R2,
where : > 0, and for all X0,X1, . . . ,X: ∈ Γ,
let X′ contain a transition

X0/Xk [A] Y−→ X0/X1 [B1]
X1/X2 [B2]

Xk−1/Xk [B:]

• For each production A→ Y ∈ R2 and for all
X ∈ Γ, let X′ contain a transition

X/X[A] Y−→ X

• For all pairs of rules A → ℓ ∈ R2 and
ℓ : @,X a−→ @, Y ∈ X1, let X′ contain the transi-
tion X [A] a−→ Y.

• For all pairs of rules A → ℓ ∈ R2 and
ℓ : @,X Y−→ @, Y1 · · · Y3−1Z̆Y3+1 · · · Y : ∈ X1,
let X′ contain a transition

X/Z [A] Y−→ Y1 [S2] · · · Y3−1 [S2] Z Y3+1 [S2] · · · Y: [S2]

�

7614

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations (not numbered)

�3 A2. Did you discuss any potential risks of your work?
Ethics Statement (not numbered)

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract (not numbered) & Introduction (1)

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �7 Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7615

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
No response.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No response.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

7616

