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Abstract

Arguments often do not make explicit how a
conclusion follows from its premises. To com-
pensate for this lack, we enrich arguments with
structured background knowledge to support
knowledge-intense argumentation tasks. We
present a new unsupervised method for con-
structing Contextualized Commonsense Knowl-
edge Graphs (CCKGs) that selects contextu-
ally relevant knowledge from large knowl-
edge graphs (KGs) efficiently and at high qual-
ity. Our work goes beyond context-insensitive
knowledge extraction heuristics by computing
semantic similarity between KG triplets and
textual arguments. Using these triplet simi-
larities as weights, we extract contextualized
knowledge paths that connect a conclusion to
its premise, while maximizing similarity to the
argument. We combine multiple paths into a
CCKG that we optionally prune to reduce noise
and raise precision. Intrinsic evaluation of the
quality of our graphs shows that our method is
effective for (re)constructing human explana-
tion graphs. Manual evaluations in a large-scale
knowledge selection setup confirm high recall
and precision of implicit CSK in the CCKGs.
Finally, we demonstrate the effectiveness of
CCKGs in a knowledge-insensitive argument
quality rating task, outperforming strong base-
lines and rivaling a GPT-3 based system.1

1 Introduction

Computational argumentation is a growing field
with relevant applications, such as argument re-
trieval (Wachsmuth et al., 2017b; Bondarenko et al.,
2021), argument analysis (Feng and Hirst, 2011;
Janier et al., 2014; Wachsmuth et al., 2017a; Jo
et al., 2020; Opitz et al., 2021) or generation
(Schiller et al., 2021; Alshomary et al., 2021;
Heinisch et al., 2022a). Argumentation requires
deep understanding of argumentative statements

1Our code and data are available at
https://github.com/Heidelberg-NLP/CCKG

Figure 1: CCKG connecting the premise "A person is
unhappy if she is dissatisfied with her body." to the con-
clusion "Plastic surgery raises patients’ self esteem and
allows them to lead normal happy lives." Concepts asso-
ciated with premise and conclusion are colored in violet
and orange, respectively. The graph makes explicit that
plastic surgery causes looking better, which in turn
causes happiness, which is distinct from dissatisfaction.

and how they relate to each other. Often, common-
sense knowledge (CSK) is needed to understand
how a premise connects to its conclusion, as these
connections are often left implicit, as shown in
Figure 1. While humans can easily infer implied
knowledge, for machines extra mechanisms are
needed to inject missing knowledge to better solve
argumentative tasks (Moens, 2018; Becker et al.,
2020; Lauscher et al., 2022; Singh et al., 2022).

Methods to inject such knowledge either rely on
parametric memory, where CSK is stored in the
parameters of large language models (LLMs), or
non-parametric memory, where CSK is stored in
external knowledge bases. In the LLM approach,
latent CSK can be directly exploited in downstream
tasks (Petroni et al., 2019; Li et al., 2021a) or the
LLM is fine-tuned to generate the CSK in explicit
form (Bosselut et al., 2019; Bansal et al., 2022).
However, approaches based on parametric memory
have drawbacks: they often are difficult to adapt
to new domains (Liu et al., 2022a) or suffer from
risk of hallucinations and unsafe generations (Levy
et al., 2022) since they are not traceably grounded.

Explicit and structured CSK is available in com-
monsense knowledge graphs (KGs) (Vrandečić and
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Krötzsch, 2014; Speer et al., 2017; Hwang et al.,
2021). But KGs are large and not contextualized,
which makes selecting relevant knowledge difficult.

We can extract knowledge in the form of indi-
vidual triplets (Liu et al., 2022b), but this does not
allow for multi-hop reasoning over (potentially dis-
connected) triplets. Extracting paths consisting of
multiple triplets allows multi-hop reasoning (Paul
et al., 2020), but systems cannot exploit potential
interactions between multiple paths. Our approach
extends the idea of multi-hop path extraction by
combining multiple such paths into a graph – our
Contextualized Commonsense Knowledge Graph.
The CCKGs are small and tailored to a specific
argument, as shown in Figure 1, which makes them
applicable in joint reasoning models (Yasunaga
et al., 2022). Similar to retrieval models (Feldman
and El-Yaniv, 2019) that extract relevant passages
from text for knowledge extension, our approach
extracts relevant subgraphs from structured KGs.

We can find connecting paths in large KGs by
extracting shortest paths that link pairs of concepts.
But the paths are not guaranteed to provide rele-
vant knowledge for a given context, as intermediate
triplets might be off-topic. To mitigate this prob-
lem, we compute edge weights to rate the semantic
similarity of individual KG triplets to the argument
at hand, and extract weighted shortest paths that are
maximally similar to the argument. Combining the
paths into a CCKG encapsulates relevant CSK. We
compute the edge weights using SBERT without
extra fine-tuning, and rely on graph algorithms for
CCKG construction. Hence, our method is unsu-
pervised and applicable in zero-shot settings.

Our main contributions are:
i.) We present an unsupervised Contextualized

Commonsense Knowledge Graph (CCKG) constru-
ction method that enriches arguments with relevant
CSK, by combining similarity-based contextualiza-
tion with graph algorithms for subgraph extraction.

ii.) We evaluate the quality of CCKGs against
manually created CSK graphs from an existing ar-
gumentation explainability task, where our method
outperforms strong supervised baselines. Manual
annotation shows that our CCKGs achieve high
recall and precision for capturing implicit CSK.

iii.) We evaluate our CCKGs extrinsically in a
knowledge-intense argumentative transfer task. We
construct CCKGs to predict the validity and novelty
of argument conclusions, using a lightweight classi-
fier which combines graph and textual features. We

achieve strong results, rivaling a SOTA GPT-3 sys-
tem and outperforming other supervised systems,
which – along with ablations – demonstrates the
quality, effectiveness and transparency of CCKGs.

2 Background and Related Work

When humans debate a topic, they typically lever-
age a vast body of background knowledge, some
already known to them and other knowledge sub-
ject to addition, e.g., by looking up a Wikipedia
entry. Therefore, with the availability of large-scale
KGs (Auer et al., 2007; Speer et al., 2017), and with
the advent of LLMs that have been shown to learn
knowledge during self-supervised training (Bosse-
lut et al., 2019), we observe growing interest in
incorporating knowledge into computational argu-
mentation systems (Becker et al., 2020; Lauscher
et al., 2022; Singh et al., 2022).

Of particular interest is the (re-)construction of
implicit commonsense knowledge (CSK) (Moens,
2018; Lawrence and Reed, 2020; Becker et al.,
2021) within or between arguments. Usually, the
goal is to improve downstream-task performance
of systems, e.g., improving argumentative relation
classification by connecting concepts with paths
found in KGs (Paul et al., 2020), or improving argu-
ment quality prediction by extracting KG distance
features (Saadat-Yazdi et al., 2022). But the aim
can also extend to argumentative explanations, pro-
pelled by an emergent need for more transparency
of model predictions (Niven and Kao, 2019), which
is crucial for argumentative decision making (Čyras
et al., 2021). Therefore, Saha et al. (2021, 2022)
manually created small CSK explanation graphs
and developed fine-tuned language models to gen-
erate such graphs automatically.

Prior approaches for retrieving CSK suffer from
several issues, e.g., Botschen et al. (2018) enrich
single tokens but can’t provide longer reasoning
paths. By contrast, works that construct reasoning
paths either do not exploit their interactions, are in-
transparent on which paths are used for prediction
(Paul et al., 2020), employ thresholds that are hard
to tailor to different tasks (Li et al., 2021b), or de-
pend on knowledge generated from LLMs (Becker
et al., 2021; Bansal et al., 2022; Saha et al., 2022),
which may decrease trust in the provided knowl-
edge due to hallucinations (Xiao and Wang, 2021;
Hoover et al., 2021; Ji et al., 2022). In our work, we
aim to unify the strengths of such approaches while
mitigating their weaknesses: Our CCKG construc-
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Figure 2: Overview of our method for Contextualized Commonsense Knowledge Graph (CCKG) construction.

tion method is i) context-sensitive without requir-
ing threshold selection, and extracts CSK graphs
that provide ii) accurate multi-hop reasoning struc-
tures and iii) are transparently grounded in a large
KG, and hence, iv) yield strong task performance
in a transfer setting.

3 CCKG Construction

Given an argument, we aim to enrich it with CSK
that connects the argument’s premise and conclu-
sion via a Contextualized Commonsense Knowl-
edge Graph (CCKG). Figure 2 shows an overview
of our method. In a pre-processing step we com-
pute a semantic embedding for each triplet of the
KG. Using these embeddings we compute the se-
mantic similarity of each triplet to the premise, to
the conclusion and to the argument as a whole.
By selecting the triplets with maximal similarity
scores, we obtain relevant concepts associated with
the premise and conclusion. Next we aim to con-
nect these concepts with relevant reasoning paths,
i.e., short paths containing triplets that match the
argument. We thus convert the argument similarity
scores to edge weights, and connect the extracted
concepts with weighted shortest paths that maxi-
mize the semantic similarity between the path and
the argument. Optionally, we further prune the
CCKG.2 Below we describe each step in detail.

Pre-processing We compute a sentence embed-
ding for each triplet in the KG by first verbalizing
the triplets using a designated template for each re-
lation (see §B.1.2). We then use a S(entence)BERT
(Reimers and Gurevych, 2019) encoder to compute
an embedding for each verbalized triplet. Verbal-
ization and triplet encoding is independent from
the argument, so this step is executed only once.

2The pruning is not shown in Figure 2.

Similarity Computation Given an argument A
consisting of premise P and conclusion C, we em-
bed P , C and A = (P concatenated with C) using
SBERT. For each embedding we compute its cosine
similarity to all KG triplet embeddings. This gives
us three similarity scores for each triplet: sP , sC
and sA. Note that all triplet similarity scores can
be computed in one single matrix multiplication,
which is cheap despite a usually large number of
triplets in a KG.

Triplet Selection for Concept Extraction We
select all concepts from the m triplets that achieve
highest similarity to P and C, respectively, where
m is a hyperparameter.3 By using the semantic
similarity of KG triplets to the textual argument
as criterion for concept selection, we aim to ex-
tract concepts of higher relevance to the argument,
compared to selection by string overlap. String
overlap can only capture concepts that are explic-
itly mentioned, which can result in incomplete ex-
tractions in case only near-synonyms appear in the
KG. Preliminary experiments (see §A.1) showed
that computing similarity between individual con-
cepts and the text results in concepts that are overly
specific and not well connected in the KG. With
limited connections, the shortest path search is re-
stricted to very few paths, which can result in non-
or weakly-contextualized paths. Thus, we extract
P - and C-concepts from selected triplets, which
yields more general and better connected concepts.

Similarity-weighted Shortest Paths We use Di-
jkstra’s algorithm (Dijkstra, 1959) to find weighted
shortest paths between all pairs of extracted con-
cepts. The algorithm requires non-negative edge
weights that represent the semantic dissimilarity

3This means that we extract up to 4m concepts from up to
2m triplets.
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between a triplet and the argument. We therefore
convert the argument similarity sA of each triplet to
an edge weight w = (1−sA)/2. The weighted short-
est paths minimize the sum of edge weights and
thus, maximize semantic similarity between the
argument and the path, i.e., its constituting triplets.

CCKG We combine all weighted shortest paths
to yield the final CCKG. By construction it in-
cludes i) P -concepts and C-concepts representing
the premise and conclusion, respectively, and ii)
reasoning paths that provide CSK connections be-
tween P and C. Overall, the CCKG enriches the
argument with CSK that makes the connections
between premise and conclusion explicit.

Pruning By merging all weighted shortest paths,
we obtain a graph with high coverage of potential
reasoning paths, but it may also include noise. To
eliminate noise and increase precision, we option-
ally prune CCKGs: We rank all concepts by their
semantic similarity to the argument. Starting with
the most dissimilar concept, we greedily delete con-
cepts from the CCKG unless the concept is i) a P -
or C-concept or ii) a separator, i.e., a concept that
makes the CCKG disconnected if removed. These
constraints ensure that the pruned CCKG still cov-
ers both premise and conclusion, and preserves
their connection. Figure 1 shows a pruned CCKG.

4 Experiments

We evaluate our CCKG construction method intrin-
sically (§4.1) in an argumentative commonsense
graph generation task and extrinsically (§4.2) in a
knowledge-intense conclusion classification task.

Experimental setup We instantiate our KG us-
ing the English part of ConceptNet (CN) Ver-
sion 5.7 (Speer et al., 2017), with or without the
RelatedTo relation (see §B.2.1 for details). CN
is directed, but for the shortest path search we
consider all edges to be undirected. For SBERT
similarity computation we verbalize the CN rela-
tions using templates shown in §B.1.2. We use
the Huggingface implementation4 of SBERT. For
shortest path search we use Dijkstra’s algorithm
implemented in iGraph (Dijkstra, 1959; Csárdi and
Nepusz, 2006).

Baselines Besides task-specific baselines we
compare to two versions of our method that ab-
late the edge weights, i.e., the shortest path search

4sentence-transformers/all-mpnet-base-v2

is unweighted and hence not contextualized. We
either i) randomly select one shortest path between
each pair of concepts (w/o EWO), or ii) consider all
shortest paths between two concepts (w/o EWA).
The latter can result in large graphs5 which in-
creases computational costs in downstream tasks.

4.1 Intrinsic evaluation on ExplaGraphs

Our aim is to directly assess if the constructed
CCKGs capture implicit CSK in arguments. This
assessment is challenging, as gold data on implicit
connections in argumentation is scarce and, as in
any generation task, there is not only one single
correct answer. To the best of our knowledge, only
Saha et al. (2021) provide relevant data. They
introduce ExplaGraphs, a generative structured
commonsense reasoning task with a corresponding
dataset. Given a belief and a support or counter
argument, the task is to generate a commonsense
explanation graph that is expected to explain the
argument’s stance.

We adapt their data to our setting of premise-
conclusion pairs by considering the argument as a
premise and the belief as conclusion, which yields
plausible premise-conclusion pairs for supports
(see §B.3.2). For example, the premise and con-
clusion in Figure 1 have been constructed this way.
Similarly, we can turn their counters into premise-
conclusion pairs. In this case, the belief does not
form a plausible conclusion, but we can make their
implicit knowledge connections explicit via the
CCKG anyway.

Saha et al. (2021)’s gold graphs are manually
constructed. Edge relations were chosen from the
set of CN relations, with additional negated rela-
tions, such as NotCapableOf. Several constraints
were enforced on the graphs to ensure better quality
during data collection and to simplify evaluation.
The graphs are connected directed acyclic graphs
consisting of 3-8 triplets. Concepts have a maxi-
mum of three words and at least two concepts must
stem from the premise and conclusion, respectively.

Our method does not necessarily fulfill these con-
straints by construction, and also cannot learn them,
as it is unsupervised. Also, the imposed constraints
are not necessarily beneficial for downstream tasks.
We discuss appropriate metrics to compare our
CCKGs against ExplaGraphs in §4.1.1.

Saha et al. (2021)’s data consists of 2368/ 398/

5e.g., there are ∼100 shortest paths linking person to
work in ConceptNet.
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Configuration #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑
C

C
K

G m = 1 4.0 3.0 52.54 37.94 42.67 28.55 19.78 22.13 0.3435 66.88
m = 2 6.6 5.8 36.67 44.36 38.88 19.42 25.44 20.97 0.3745 74.26
m = 3 9.2 8.5 29.25 48.55 35.49 15.51 29.63 19.56 0.4313 64.50

Su
pe

rv
is

ed RE-SP 5.9 4.9 42.19 46.17 42.94 1.17 1.34 1.20 0.3706 74.63
T5 4.5 3.3 51.87 44.68 47.25 4.10 3.59 3.77 0.3320 76.26

max-marg. 4.7 3.5 50.47 44.48 46.52 4.02 3.68 3.79 0.3315 77.96
contrastive 4.6 3.4 53.70 46.93 49.26 5.18 4.75 4.88 0.3314 77.04

Table 1: Intrinsic evaluation of pruned CCKGs from ExplaKnow on the ExplaGraphs dev split. C P, C R and C F1
are precision, recall and F1 scores of concepts. T P, T R and T F1 are the same for triplets. GED is normalized
Graph-Edit-Distance; G-BS is Graph-BERT-Score (see §B.2.2). All values are macro-averages across all 398 graphs.

400 text-graph pairs in the train, dev and test set.
Since the test set is not public, we report results on
the dev set. We do not need any data for hyperpa-
rameter tuning, as our method is unsupervised.

4.1.1 Evaluation against gold graphs
ExplaKnow Automatically assessing the seman-
tic similarity of two graphs is challenging. Con-
cepts in CN and ExplaGraphs are both in free-form,
hence we find only few matching concepts in the
two resources. To circumvent this problem for our
intrinsic evaluation, we replace CN as our exter-
nal KG with an artificially created ExplaKnow KG,
which we form by combining all gold graphs from
samples in the train and dev set into a single graph.
The resulting KG has ∼ 1% of CN’s size, but with
comparable density. Despite its smaller size, re-
trieving information from ExplaKnow is non-trivial
as it includes many topics, with different perspec-
tives and stances for each of them. We hence use
ExplaKnow as a proxy to perform intrinsic qual-
ity estimation of our graph construction method
against Saha et al. (2021)’s gold graphs. §B.2.1
shows detailed statistics of ExplaKnow vs. CN.

Metrics We aim to assess how semantically and
structurally similar our CCKGs are to the gold
graphs, using a selection of metrics that focus on
different aspects of similarity. We measure preci-
sion, recall and F1-scores for concepts and triplets.
Concept F1-score indicates the ratio of correct con-
cepts in the constructed CCKGs, as a measure of
topical overlap. By contrast, the triplets encode
concrete CSK statements, and hence triplet F1-
score provides a more rigid measure of the seman-
tic overlap of a pair of graphs. Hence, we consider
triplet F1-score as our main metric and report con-
cept scores as additional information. We further
include two graph structure metrics from Saha et al.

(2021): normalized graph edit distance (GED) and
G-BERTScore (G-BS). Please refer to §B.2.2 for
further details on evaluation metrics applied in Saha
et al. (2021).

Baselines We compare against supervised meth-
ods by Saha et al. (2021) (RE-SP) and Saha et al.
(2022) (T5, max-margin, contrastive). Their mod-
els are all trained on gold graphs in a supervised
manner. RE-SP predicts concepts with fine-tuned
RoBERTa and BART models and edge probabili-
ties between concepts are predicted with another
fine-tuned RoBERTa model. The system finally
combines the concepts and probability-weighted
edges to a graph using integer linear programming.
The other baselines predict a stance with a fine-
tuned RoBERTa model, then a fine-tuned T5-large
model predicts the graph in a linearized form condi-
tioned on the belief, argument and predicted stance.
T5 is fine-tuned on the training data with a stan-
dard cross-entropy loss. Max-margin and con-
trastive extend T5 to additionally learn from nega-
tive samples via a max-margin loss, and from pos-
itive and negative samples via a contrastive loss,
respectively.

Automatic evaluation of CCKG on ExplaKnow
Table 1 shows results for pruned CCKGs. The su-
pervised methods outperform CCKG by a small
margin in concept metrics. By contrast, CCKG
outperforms all supervised methods by 400% and
more in triplet metrics. This indicates that the su-
pervised models tend to generate correct concepts,
but struggle to connect them in meaningful rela-
tions. By contrast, our approach, being grounded
in a KG, attracts contextually similar triplets.

The GED and G-BS metrics show better results
for the supervised methods, differing by 1.2 pp. and
3.7 pp. for the best supervised systems, respectively.
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However, our method matches or outperforms the
RE-SP model that respects structural constraints by
construction. Note that both metrics put high em-
phasis on the graph structure, which the supervised
models are optimized to match. Our unsupervised
method, by construction, does not necessarily ful-
fill the structural constraints that are imposed on the
gold graphs, and cannot learn them. Hence, it is ex-
pected that the supervised models fit the structural
constraints reflected in the train data much better.
We thus consider the competitive performance of
our unsupervised method as a strong result, which
is confirmed by the very high triplet scores.

Increasing m (∼ number of extracted concepts)
increases the size of the CCKGs, which increases
recall but lowers precision. The F1-scores are best
for m = 1. For downstream tasks, m should be
chosen according to the task, and depending on
whether higher recall or higher precision is desired.

§B.2.3 reports further experiments which show
that i) CCKGs outperform uncontextualized base-
lines, also when CCKGs are constructed from
ConceptNet; ii) they achieve similar performance
for support and counter instances; iii) verbalization
of triplets has a small impact, but more natural
verbalizations achieve better performance; iv) us-
ing more than one weighted shortest path increases
recall but decreases precision; v) pruning driven by
structural features achieves comparable quality to
pruning by semantic similarity. In §4.2 we intro-
duce a variation of the CCKG construction which
extracts concepts from constituents of the argument.
We also test this method on ExplaGraphs in §B.2.3.

4.1.2 Manual evaluation of CN subgraphs
Saha et al. (2021)’s graphs with ExplaKnow as un-
derlying knowledge resource offer a concise eval-
uation target for our CCKG construction method.
But ExplaKnow is small and its concepts have been
tailored to the data during instance-level data cre-
ation. To obtain a quality estimate for CCKG in
a more realistic setup, we additionally conduct a
manual evaluation of CCKGs on the same data, but
extracted from the large ConceptNet (CN) resource.

CCKGs from CN We construct CCKGs from
CN, but exclude its unspecific RelatedTo edges.
We set m = 3 since CN concepts are less specific
compared to ExplaKnow, hence we expect that
larger graphs are required to cover the targeted
content. To counter-balance the larger graph size
we apply pruning. In this setup, we cannot use Saha

et al. (2021)’s gold graphs as evaluation targets and
therefore perform manual quality assessment.

Annotation Two independent expert annotators6

manually labeled all 199 support instances in the
ExplaGraphs dev set. First, they assess if argu-
ments are plausible and include an implicit CSK
connection that links the conclusion to the premise.
On the 115 instances that fulfilled both criteria
unanimously, we evaluate the quality of CCKGs.
To estimate recall, we inquire whether the CCKG
expresses the implicit CSK that links the premise
and the conclusion completely, partially or not at
all. Such implicit CSK can be expressed, for ex-
ample, by a chain of triplets as shown in Figure 1.
To estimate fine-grained precision, the annotators
had to label individual triplets as either positive
(expresses implicit CSK), neutral (does not express
implicit CSK, but matches the topic), unrelated
(does not match the topic) or negative (contradicts
implicit CSK or the conclusion)7. This allows us
to assess the precision of triplets showing implicit
CSK (positive triplets) and the precision of triplets
being in-topic (positive, neutral or negative). See
§B.3.1 for detailed annotation guidelines.

Results §B.3.2 Table 14 and 15 show detailed
analysis of the annotation results. We report the
main findings here. 29.57% of CCKGs were unani-
mously judged to show the implicit CSK connection
completely, i.e., the CCKG explains the argument
fully. This result almost doubles to 59.13% when
considering graphs that at least one annotator la-
beled as complete. 88.70% show the implicit CSK
partially. Thus, CCKGs have high recall of im-
plicit CSK and hence can help making implicit con-
nections explicit. At the level of individual triplets,
our annotation reveals that CCKGs have a high
macro triplet precision, i.e., averaged over indi-
vidual graphs, of 39.43% and 73.87% for show-
ing implicit CSK when considering unanimously
labeled triplets, and triplets labeled as positive by at
least one annotator, respectively. Equivalent macro
precision scores for in-topic triplets are 92.76%
and 99.20%. This shows that a substantial amount
of triplets reflects implicit CSK, and that almost
all triplets are from the correct topic. Triplets from
wrong topics are avoided due to strong contextual-
ization in CCKG construction and pruning.

6Students with advanced/native competence of English.
7E.g., (human_cloning, IsA, considered_unethical) is

an example of a negative triplet in a CCKG for an argument
that supports cloning.

6135



We also gained qualitative insights. Missing
knowledge: We find cases of arguments on a
topic that lacks coverage in CN, resulting in simi-
lar CCKGs for different arguments.8 Ambiguity:
CN concepts are not disambiguated. A path may
thus run through concepts that take different senses,
making the path meaningless.9

4.2 Extrinsic evaluation: Predicting Validity
and Novelty of Arguments (VALNOV)

We now investigate the effectiveness of CCKGs –
used to explicate implicit CSK in arguments – in
the novel, knowledge-intense argumentation task
VALNOV. We evaluate the robustness of our unsu-
pervised method relying on non-parametric knowl-
edge, compared to supervised graph generation
systems applied out-of-domain, as well as SOTA
VALNOV systems.

Task description Heinisch et al. (2022b) intro-
duced a novel argument inference task VALNOV as
a community shared task. Given a textual premise
and conclusion, the task is to predict whether the
conclusion is i) valid and ii) novel with respect to
its premise. A conclusion is valid if it is justified
by the premise. It is novel if it contains premise-
related content that is not part of the premise, i.e.
the conclusion adds novel content to the premise.
Please refer to §B.4.1 for data statistics.

Systems are expected to report macro F1-scores
for joint and individual prediction of validity and
novelty. In joint modeling we distinguish 4 classes:
i) valid & novel, ii) non-valid & novel, iii) valid &
non-novel, iv) non-valid & non-novel. The training
data is unbalanced with respect to these 4 classes.

Predicting Validity and Novelty from CCKGs
We hypothesize that CCKGs show structural char-
acteristics that correlate with validity and novelty:
For instance, a valid conclusion should be well
connected to its premise in the constructed CCKG,
and a novel conclusion should result in a CCKG
with long paths from the premise to its conclusion.
To test these hypotheses we extract graph features
from the CCKGs and combine them with textual
features from the argument. We feed all features to

818 out of 22 instances on entrapment yield identical
CCKGs, due to lack of coverage in CN.

9For example, the following chain of triplets
(river_bank, IsA, bank, UsedFor, keeping_money_safe),
is a path that connects the concepts river_bank and
keeping_money_safe, and is established by the intermediary
concept bank that takes a different meaning in the two
constituting triplets.

shallow classifiers to predict the validity and nov-
elty of conclusions. Note that interaction between
the CCKG and the argument is limited in this ap-
proach, which allows us to isolate and investigate
the expressiveness of our CCKGs.

CCKG details The VALNOV dataset contains ar-
guments that are relatively long (76 tokens in avg.),
often comprising more that one aspect/ perspective.
This negatively effects the quality of triplet selec-
tion for concept extraction: the extracted concepts
are semantically relevant, but often don’t span the
entire argument. Thus, we parse the text into con-
stituents and select concepts from the top-m triplets
for each constituent individually.

Pruning CCKGs completely bears the danger
of removing relevant structural aspects of CCKGs.
We therefore experiment with partial pruning, that
only removes the most dissimilar prunable con-
cepts. This enables a more fine-grained balance of
recall and precision compared to complete pruning.

We obtain best performance using parsing,
partial pruning (75%), m = 2 and CN w/o
RelatedTo. Please refer to §B.4.2 for further de-
tails on concept extraction with parsing and partial
pruning.

Feature extraction: We extract 15 graph fea-
tures from each CCKG: 5 characterizing its size, 6
its connectivity and 4 the distance between premise
and conclusion in the CCKG. As textual features
we use the semantic similarity of premise and con-
clusion, and predictions from a NLI-model. We
obtain 19 features in total. See §B.4.3 for detailed
description of the features.

Classifier We train Random Forests and SVMs
in a multi-class setting, considering validity and
novelty jointly. Following Saadat-Yazdi et al.
(2022) we use upsampling to balance the training
data. Results are averaged over 5 different runs.
Please refer to §B.4.4 for hyperparameters and im-
plementation details of the classifiers.

Baselines We compare to supervised Expla-
Graphs generation systems by embedding their
graphs into our classifier, and to systems participat-
ing in the VALNOV shared task: the two best-per-
forming submissions, the System-Average (average
of all submissions) and the ST baseline.

We evaluate against supervised graph construc-
tion methods (Saha et al., 2022) (see §4.1.1), to as-
sess their performance in an out-of-domain setting,
compared to our unsupervised CCKG construction
method. We apply their trained graph generation
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models to VALNOV arguments and use the gener-
ated graphs exactly as we do for our CCKGs: we
extract the same features to train the shallow classi-
fier models, following our training protocol. Unlike
our general-purpose CCKGs, these methods were
trained to generate graphs for stance-classification
tasks. Nevertheless, we can apply these methods to
VALNOV as further baselines.

The shared task winning system ST-1st (van der
Meer et al., 2022) prompted GPT-3 for validity and
separately fine-tuned a RobERTa-based NLI model,
further enhanced with contrastive learning, for nov-
elty. The second-best shared task system ST-2nd
(Saadat-Yazdi et al., 2022) is a FFNN trained with
upsampling that combines diverse features from
NLI predictions, semantic similarity, predictions
of validity and novelty and structural knowledge
extracted from WikiData. The shared task baseline
BL consists of two RoBERTa models, fine-tuned
for validity and novelty separately.

Our system resembles the ST-2nd approach, how-
ever, their system strongly emphasizes textual fea-
tures, even leveraging a fine-tuned BERT predict-
ing validity and novelty based on text alone, and
considers only two structural features from uncon-
textualized WikiData paths. Our model, by con-
trast, relies on a minimal amount of textual fea-
tures, leveraging standard pre-trained models with-
out task-dependent fine-tuning. Hence, it strongly
relies on graph features, building on the strong con-
textualization of CCKGs to the textual argument.

Results Table 2 shows the results on the
VALNOV test set. Our system CCKG achieves the
second best result in all metrics: validity, novelty
and joint prediction. Best scores are achieved either
by ST-1st with GPT-3 on joint and validity predic-
tion or by Saha et al. (2022)’s T5 model for novelty.
Yet our approach outperforms these systems in the
respective complementary metrics: novelty for ST-
1st and validity for T5. CCKG clearly outperforms
T5 in joint F1 by 6.2 pp.

Heinisch et al. (2022b)’s analysis of the
VALNOV results concludes that i) LLMs are pow-
erful predictors of validity, due to the textual in-
ference capabilities they acquire in pretraining on
massive text sources. At the same time, ii) LLMs
were shown to lag behind knowledge-based sys-
tems in novelty prediction. Validity was overall
easier to solve than novelty, and systems that per-
formed well for novelty had poor validity results,

Systems and BLs joint F1 Val F1 Nov F1

ST

1st (GPT-3) 45.16 74.64 61.75
2nd (w/ KG) 43.27 69.80 62.43
System Avg 35.94 62.74 52.97

Baseline 23.90 59.96 36.12

E
G

w
/

O
ur

s T5 37.71 67.07 63.53
max-margin 36.22 67.61 63.27
contrastive 37.82 64.77 59.96

CCKG (Ours) 43.91 70.69 63.30

A
bl

at
io

n

w/o Graph feats. -11.65 -3.40 -5.12
w/o Text feats. -20.65 -20.74 -17.69

w/o EWO -6.51 -3.80 -1.69
w/o EWA -3.25 -4.45 1.76

string matching -6.71 -3.23 0.55
w/o connectivity feats. -5.60 -4.01 -0.60
w/o PC-distance feats. -2.27 -0.27 -3.73

Table 2: Results on VALNOV: joint, validity and novelty
F1-scores. We compare against Shared Task (ST) results
and ExplaGraphs generation models, integrated in our
VALNOV classifier (EG w/ Ours). Ablated scores are
relative to CCKG (Ours).

and vice versa.10 It is therefore no surprise that
our system cannot compete with GPT-3 for valid-
ity. However, it achieves 2nd best performance on
validity at a high level of 70.69% F1 without sac-
rificing novelty. Leveraging structural knowledge,
T5 achieves highest scores for novelty, but per-
forms poorly in validity, and hence, only ranks 5th
in the joint ranking. CCKGs perform well in both,
validity and novelty, with one unified approach,
unlike ST-1st. Our strong joint score of 43.72%
only gets surpassed by ST-1st, which leverages two
independent systems for validity and novelty. Thus,
simple feature extraction from CCKGs achieves
interpretable and yet compatible scores. Our ab-
lation will show that this is possible due to strong
contextualization in the graph construction.

Ablation Removing graph or text features from
CCKG (ours) reduces performance by 11.65 pp.
and 20.65 pp., respectively. The text is more im-
portant for validity, while the graph has a larger
impact on novelty. Yet, both metrics benefit from
both modalities. This indicates that text and CCKG
contain complementary information and should be
considered jointly in future work.

Ablating all edge weights incurs considerable
performance losses for validity and joint F1. Nov-
elty is less affected, which shows that contextualiza-
tion is more relevant for validity. We can also em-

10For example, prompting GPT-3 for novelty resulted in
only 46.07% F1 score.
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poverish contextualization by extracting concepts
via string matching. This decreases performance by
6.71 pp., again with a larger decrease for validity.

Feature ablation confirms that connectivity fea-
tures are most relevant for validity, while premise-
conclusion distance in the CCKG is most relevant
for novelty. Further ablations are shown in §B.4.5.

5 Conclusion

In this work we proposed an unsupervised method
to construct Contextualized Commonsense Knowl-
edge Graphs (CCKGs). Our extensive evaluations
show that CCKGs are of high quality, outperform
context-insensitive baselines and rival strong su-
pervised graph construction methods on diverse
argumentation tasks, while offering increased ro-
bustness. Being grounded in a KG, the informa-
tion captured in our CCKGs is traceable and hence
interpretable. Future work could explore incorpo-
ration of more specific KGs to address particular
domains. Using our compact, high-quality CCKGs
in stronger interaction with LLMs is another step
to address in future work.

Limitations

In principle our method is applicable in many do-
mains, for example, one could use a biomedical
knowledge graph instead of ConceptNet in a rele-
vant domain. However, in this paper we only eval-
uate the quality of our approach in argumentative
tasks which require commonsense knowledge. Our
approach is unsupervised, but its performance de-
pends on the quality of the used knowledge graph
and SBERT model.

Similarly, we only evaluate CCKGs for En-
glish data, although our approach is not limited
to English if one uses multilingual SBERT models
(Reimers and Gurevych, 2020) or a multilingual
knowledge graph.

Finally, our approach is purely extractive and
hence, is limited by the coverage and quality of
knowledge graphs. However, improving knowl-
edge graphs is an active field of research and hence,
high-quality and high-coverage knowledge graphs
are to be expected. Furthermore, our extracted
CCKGs could be augmented with generative mod-
els if coverage in the knowledge graph is not suffi-
cient. However, that would reduce the interpretabil-
ity that our approach provides.

Ethical Considerations

Our method extracts subgraphs from knowledge
graphs. Hence, any potential biases present in the
knowledge graph can propagate to our CCKGs.
While this can be problematic, our approach allows
to trace biases back to their origin. This is com-
parable to manual information extraction, as all
knowledge sources can contain biases – for exam-
ple political tendencies in newspapers. Strategies
to automatically avoid biases (Mehrabi et al., 2021)
could also be incorporated in future work. How-
ever, as our approach is a pure extraction, it can
not generated new potentially harmful information.
Thus, CCKGs are perhaps more reliable for sen-
sitive application than knowledge representations
generated without grounding.
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A Method

A.1 Preliminary experiments on concept
extraction

As a preliminary experiment, we test how to extract
concepts that are well-connected in the KG. Con-
cepts which are not well-connected have limited
options to be connected to each other, which hin-
ders contextualization in the shortest path search.
Hence, we require well-connected concepts which
are not overly specific. We estimate the connectiv-
ity and specificity of concepts by their degree and
number of words, respectively.

We experiment with i) extracting concepts that
are most similar to the text, and ii) extracting all
concepts from the triplets that are most similar
to the text. In each case we measure similarity
between the concept / triplet and the text with the
same SBERT model. As KG we use ConceptNet
(CN) without RelatedTo triplets (please refer to
§B.1.1 for further context on the choice of the KG).

Table 3 shows the macro averages over the de-
velopment split of ExplaGraphs (Saha et al., 2021)
for m = 1. Varying m only has a small impact on
the results. Extracting concepts via ranking triplets
results in shorter concepts with high degrees, i.e.
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metric concept triplet

number of words 2.42 1.83
degree 4.21 103.39

Table 3: Comparison of direct concept extraction and
concept extraction via triplet ranking. Values are av-
erages over extracted concept from dev set of Expla-
Graphs for m = 1.

general and well-connected concepts. Thus, we
extract concepts by first ranking triplets and then
selecting all concepts in the top-m triplets.

B Experiments

B.1 Experimental setup

B.1.1 Discussion of RelatedTo in CN
More than half of all triplets in CN have the re-
lation RelatedTo (see Table 6). This is a very
general relation and thus might cause a high degree
of semantically vacuous connections. Hence, paths
constructed from CN without RelatedTo are poten-
tially longer, but more explicit and therefore also
more expressive. On the other hand, RelatedTo
might be necessary to make certain connections in
CN. Thus we experiment with two different ver-
sions of CN: one with RelatedTo and one without
RelatedTo.

To create a graph from CN excluding the
RelatedTo relation, we first remove all triplets
with this relation and then all concepts with de-
gree 0. Table 6 shows statistics of CN with and
without RelatedTo.

B.1.2 Triplet verbalization
SBERT was pre-trained on natural language sen-
tences, and thus is not ideal for capturing seman-
tics of triplets. We could fine-tune SBERT to
learn triplet-representations, but that might reduce
the generalizability of our model. Therefore we
prefer to convert the triplets to natural language,
which can be processed by SBERT without any
fine-tuning.

To translate triplets to natural language we de-
signed natural templates that preserve the relation’s
meaning, but are more natural. To analyze the im-
pact of the verbalization templates we also created
static templates, which are closer to the original
relations. Our templates are shown in Table 4 and
Table 5 for CN and ExplaKnow.

Note that these templates can propagate

Relation Natural Static

RelatedTo is related to is related to
IsA is a is a

FormOf is a form of is a form of
CapableOf is capable of is capable of

MotivatedByGoal is motivated by is motivated by the goal
HasContext has context has the context

HasPrerequisite has prerequisite has the prerequisite
Synonym is a synonym of is a synonym of
Antonym is an antonym of is an antonym of

AtLocation is in is at the location
Desires desires desires
UsedFor is used for is used for

HasSubevent has subevent has the subevent
HasProperty is has the property

PartOf is a part of is a part of
DefinedAs is defined as is defined as

HasA has has a
MannerOf is a manner of is a manner of

Causes causes causes
HasFirstSubevent starts with has the first subevent
HasLastSubevent ends with has the last subevent
ReceivesAction ⋆ can be done to receives the action

InstanceOf is an instance of is an instance of
NotCapableOf is not capable of is not capable of
CausesDesire causes desire causes the desire
DistinctFrom is distinct from is distinct from
NotDesires does not desire does not desire

MadeOf is made of is made of
Entails entails entails

CreatedBy is created by is created by
NotHasProperty is not does not have the property

LocatedNear is near is located near
SymbolOf is a symbol of is a symbol of

Table 4: Verbalization templates for all relations in CN.
⋆: the order of concepts is inverted in the verbalization,
i.e. (A, ReceivesAction, B) is verbalized as B can be
done to A.

grammatical errors from the triplets, e.g.
(humans, Desires, freedom) would get verbal-
ized to humans desires freedom instead of the
grammatically correct humans desire freedom. In
principle, automatically correcting these errors
could be included in the pre-processing step of our
method, but for simplicity we refrained from doing
so.

B.2 ExplaGraphs automatic evaluation

B.2.1 Knowledge Graph statistics

For the statistics in Table 6 we consider the KGs as
multi-graphs, i.e. two triplets which differ only by
their relation are considered as two separate edges.
The table shows statistics for ConceptNet with and
without the RelatedTo Relation (see §B.1.1) and
for ExplaKnow, the artificial KG constructed from
ExplaGraphs. The average number of words is the
average across all concepts in the graph.

The table shows that ExplaKnow is smaller than
CN, but has a comparable average degree. How-
ever, concepts in ExplaKnow have more words than
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Relation Natural Static

IsA is a is a
IsNotA is not a is not a

CapableOf is capable of is capable of
NotCapableOf is not capable of is not capable of

HasContext has context has context
NotHasContext does not have context does not have context

SynonymOf is a synonym of is a synonym of
AntonymOf is an antonym of is an antonym of
AtLocation is in is at the location

NotAtLocation is not in is not at the location
Desires desires desires

NotDesires does not desire does not desire
UsedFor is used for is used for

NotUsedFor is not used for is not used for
HasSubevent has subevent has subevent

NotHasSubevent does not have subevent does not have subevent
HasProperty is has the property

NotHasProperty is not does not have the property
PartOf is a part of is a part of

NotPartOf is not a part of is not a part of
Causes causes causes

NotCauses does not cause does not cause
ReceivesAction ⋆ can be done to receives the action

NotReceivesAction ⋆ can not be done to does not receive the action
MadeOf is made of is made of

NotMadeOf is not made of is not made of
CreatedBy is created by is created by

NotCreatedBy is not created by is not created by

Table 5: Verbalization templates for all relations in Ex-
plaKnow.
⋆: the order of concepts is inverted in the verbaliza-
tion, e.g. (A, NotReceivesAction, B) is verbalized as
B can not be done to A.

CN’s concepts on average. The intersection scores
show that only 35% of concepts in ExplaKnow are
contained in CN, and less than 1% of ExplaKnow
triplets are in CN.

B.2.2 Metrics proposed in Saha et al. (2021)

Saha et al. (2021) propose evaluation of constructed
graphs in three steps, where the first two steps eval-
uate if the stance is correctly predicted, and if the
graph is structurally correct, i.e. if it fulfills the
structural constraints imposed by Saha et al. (2021).
Graphs are only evaluated in the third step, if the
stance-prediction and the structure are correct. In
this work, we do not focus on stance prediction and
also do not aim at fulfilling the artificial structural
constraints. Hence, we skip the first two stages and
evaluate our metrics on all graphs, independent of
the predicted stance and structural constraints.

In their third evaluation stage, Saha et al. (2021)
consider four metrics. However, two of them are
automatically assessed by fine-tuned LLMs. These
LLMs were fine-tuned on graphs which fulfill the
structural constraints, and hence, we would have to
use the LLMs out-of-domain if we were to apply
them to our CCKGs. Thus, we can not rely on
these automatic metrics for our graphs. However,
we do adopt the other two proposed metrics from

stage three: Graph edit distance (GED) measures
the minimal number of edits to make two graphs
isomorph. Edits are local changes, i.e. relabeling,
adding or removing a concept or an edge. For
increased consistency the GED is normalized to
range from 0 to 1. G-BERTScore (G-BS) is an
extension of BERTScore (Zhang et al., 2020b) to
graphs. Triplets are considered as sentences, and
BERTScore is used as an alignment score between
each pair of triplets. G-BS is computed from the
best alignment between the two graphs given the
alignment scores.

B.2.3 Additional experiments
This section shows experiments that are slight vari-
ations to the setting presented in Table 1. Hence,
unless stated otherwise, all CCKGs are pruned
CCKGs constructed from ExplaKnow.

Uncontextualized CCKG baselines Table 7
shows the CCKGs and pruned CCKGs compared
to the uncontextualized baselines. The results show
that CCKGs outperform the baselines without edge
weights in concept and triplet precision and F1, as
well as in GED and G-BS. Pruning by SBERT sim-
ilarity introduces contextualization to the baselines,
which allows w/o EWO (i.e. only one randomly
chosen unweighted shortest path between two con-
cepts) to achieve comparable performances to the
pruned CCKGs. In triplet F1 score the pruned
baseline achieves the best result, but it is only out-
performing the pruned CCKGs by insignificant
0.09 pp.

The baselines achieve increased recall compared
to CCKGs, but the baselines also produce larger
graphs which explains the improvements.

CN as KG Table 8 shows the results when using
ConceptNet (CN) as KG instead of ExplaKnow.
Scores have an upper bound due to the small over-
lap between CN and the gold graphs (see §B.2.1).
Especially for triplets only very low scores are pos-
sible.

However, the results show that CCKGs outper-
form the baselines without edge weights in concept
and triplet precision and F1, as well as in GED and
G-BS. The performance gap is especially promi-
nent when comparing the unpruned versions. This
is likely because the pruning by SBERT similar-
ity introduces contextualization into the otherwise
uncontextualized baselines.

The w/o EWA baselines (i.e. all unweighted
shortest paths between two concepts) outperforms
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Knowledge Graph # concepts # triplets avg. degree avg. # words ∩ concepts ∩ triplets

ExplaKnow 7,267 11,437 3.1 2.1 0.35 0.00
CN w/o RelatedTo 939,836 1,313,890 2.8 1.6 1.00 1.00
CN w/ RelatedTo 1,134,506 3,017,472 5.3 1.6 1.00 1.00

Table 6: Knowledge graph statistics. avg. # words is the average number of words per concept; ∩ concepts and ∩
triplets are the number of concepts and triplets respectively in the intersection between the KG and CN w/ RelatedTo
normalized by the number of concepts / triplets in the respective KG.

Configuration #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑

C
C

K
G

m = 1 4.1 3.2 52.10 38.28 42.58 28.12 20.19 22.02 0.3458 66.41
m = 2 7.1 6.6 35.90 45.40 38.53 18.68 26.60 20.55 0.3872 71.39
m = 3 10.1 10.3 28.26 49.96 34.81 14.43 31.11 18.61 0.4524 60.53

pr
un

ed m = 1 4.0 3.0 52.54 37.94 42.67 28.55 19.78 22.13 0.3435 66.88
m = 2 6.6 5.8 36.67 44.36 38.88 19.42 25.44 20.97 0.3745 74.26
m = 3 9.2 8.5 29.25 48.55 35.49 15.51 29.63 19.56 0.4313 64.50

w
/o

E
W

A

m = 1 5.5 6.1 47.97 40.22 40.91 24.95 22.85 20.88 0.3805 61.47
m = 2 11.4 16.2 29.76 49.34 34.27 14.02 31.96 16.94 0.4811 54.21
m = 3 18.2 28.5 21.49 55.49 28.76 9.70 39.11 13.88 0.5829 38.96

pr
un

ed m = 1 4.0 3.1 52.36 37.63 42.46 28.16 19.80 22.01 0.3455 67.61
m = 2 6.7 6.2 36.48 44.33 38.72 18.73 26.06 20.64 0.3799 72.54
m = 3 9.3 9.5 28.95 48.69 35.24 14.74 30.71 19.05 0.4406 61.00

w
/o

E
W

O

m = 1 4.6 4.3 49.77 39.21 41.77 26.14 21.91 21.56 0.3600 64.98
m = 2 8.9 10.7 32.48 47.81 36.45 15.50 29.90 18.31 0.4393 60.42
m = 3 13.7 18.3 24.35 53.71 31.75 11.30 36.70 15.89 0.5286 45.63

pr
un

ed m = 1 3.9 3.1 52.51 37.78 42.61 28.38 19.98 22.22 0.3441 67.75
m = 2 6.6 6.2 36.70 44.55 38.95 18.92 26.19 20.83 0.3786 72.71
m = 3 9.2 9.3 29.05 48.60 35.33 14.80 30.61 19.11 0.4390 61.28

Table 7: Intrinsic evaluation of pruned CCKGs constructed from ExplaKnow. w/o EWA and w/o EWO are the
baselines with unweighted shortest paths described in §4.
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CCKGs in terms of recall, but the baseline graphs
are also many times larger which greatly harms the
precision.

This confirms that CCKGs perform well in the
intrinsic evaluation, also when they are constructed
from CN.

Support vs. counter instances Table 9 shows
the intrinsic evaluation for support and counter in-
stances separately, i.e. we split the dev set accord-
ing to the gold stance label. Overall, the results are
similar for support and counter instances, except
for the concept precision where the supports are
more than 4 pp. better. Hence, we do not explicitly
show the difference between support and counter
in the rest of this paper.

Verbalization Table 10 shows the intrinsic evalu-
ation for natural and static verbalization templates.
The verbalization has a small impact on the results,
but the natural verbalization yields better results
overall.

In our extrinsic evaluation the verbalization has a
larger impact. This could be due to the fact that we
evaluate our method extrinsically on CN instead
of ExplaKnow. Due to the increased number of
triplets in CN a more precise differentiation by the
natural verbalization could be more important in
CN than in ExplaKnow.

Multiple shortest paths There can be poten-
tially many contextually relevant reasoning paths
between each pair of concepts. Hence, consider-
ing only the single weighted shortest path between
each concept-pair might be too restrictive in the
CCKG construction.

Using Yen’s algorithm we can compute the k
weighted shortest paths between two concepts,
where k is another hyperparameter. Dijkstra’s al-
gorithm can be seen as the special case of Yen’s
algorithm with k = 1. However, using Yen’s algo-
rithm comes at increased costs for us, since Yen’s
algorithm only computes paths between two spe-
cific concepts, while Dijkstra’s algorithm computes
the shortest paths from one concept to all other con-
cepts in one go. Thus, Yen’s algorithm has to be run
m(m− 1) times, while Dijkstra’s algorithm only
has to be run m− 1 times, where m is the number
of initially extracted concepts. Furthermore, the
time-complexity of Yen’s algorithm is kn times Di-
jkstra’s algorithm’s time-complexity, where n is the
number of concepts in the KG (n ∼ 1, 000, 000 for
CN). Hence, the path extraction for CCKGs with

k shortest paths takes mkn times longer compared
to our normal approach.11

Table 11 shows the results for pruned CCKGs
with k = 1 and k = 3. Without pruning, the
CCKGs with k = 3 are larger, leading to a higher
recall but lower precision. Overall, the F1 score
decreases as the decreased precision outweighs the
increased recall. When applying pruning, k only
has small effects on F1 scores, with k = 1 achiev-
ing the best performance. Hence, higher value of
k lead to increased computational costs without
increasing performance.

Different pruning methods We prune by rank-
ing concepts according to their semantic similar-
ity to the argument, as measured by SBERT. This
reduces noise, as contextually irrelevant (i.e. dis-
similar) concepts are removed. We expect that to
some extent this similarity should also be reflected
in the graph structure, and central concepts should
be more relevant. Thus, we also try pruning by
ranking concepts according to their PageRank. We
recompute PageRank after each concept-deletion
to ease pruning of chains of concepts.

Table 12 shows that the two pruning methods
perform similarly; both increasing precision at the
expense of a lower recall. However, pruning by
SBERT shows comparable or better performance
as pruning by PageRank in all metrics. Thus, we
rely on SBERT for pruning.

Constituent parser for concept extraction In
the extrinsic evaluation (§4.2), we face the prob-
lem that arguments consist of long premises and
conclusions. Extracting concepts with our usual
approach yields concepts that match the premise
and argument, but often they do not cover all as-
pects of the text. Hence, we first parse the texts
into constituents, and then extract concepts for each
constituent individually. Please refer to §B.4.2 for
more details.

Table 13 shows the results when relying on con-
stituents for concept extraction. Using the con-
stituents more than doubles the CCKGs in size, but
also increases concept and triplet recall by more
than 30 pp. The precision on the other hand de-
creases due to the increased graph size. Overall the
concept F1 scores decrease and the triplet F1 scores
increase slightly. However, the structural similarity
to the gold graphs, as measured by GED and G-

11Code for Yen’s algorithm adapted from
https://gist.github.com/ALenfant/5491853
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Configuration #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑
C

C
K

G

w
/o

R
T

m = 1 4.4 3.4 20.03 14.03 15.40 0.30 0.22 0.24 0.4393 57.59
m = 2 8.5 8.3 12.91 17.13 13.63 0.24 0.38 0.27 0.4980 59.51
m = 3 12.9 14.0 9.79 19.52 12.11 0.19 0.38 0.23 0.5762 49.75

pr
un

ed m = 1 4.2 3.0 20.54 14.03 15.73 0.30 0.22 0.24 0.4314 59.27
m = 2 7.5 6.6 13.75 16.95 14.32 0.25 0.32 0.27 0.4737 64.35
m = 3 10.8 10.4 10.80 19.04 13.05 0.19 0.32 0.22 0.5389 56.35

w
/R

T

m = 1 4.2 3.4 22.27 15.27 17.09 0.21 0.18 0.19 0.4373 58.86
m = 2 7.9 8.0 14.41 18.22 15.08 0.11 0.21 0.15 0.4910 61.65
m = 3 11.6 13.4 10.78 20.05 13.21 0.13 0.36 0.18 0.5632 51.69

pr
un

ed m = 1 3.9 2.8 22.81 14.98 17.30 0.23 0.14 0.17 0.4282 60.88
m = 2 6.9 6.1 15.40 17.87 15.80 0.11 0.14 0.12 0.4633 67.48
m = 3 9.8 9.8 11.97 19.76 14.30 0.14 0.32 0.19 0.5272 58.15

w
/o

E
W

A

w
/o

R
T

m = 1 11.8 18.2 17.45 14.46 13.21 0.19 0.22 0.19 0.5193 45.41
m = 2 36.7 66.2 8.36 18.33 8.99 0.13 0.44 0.16 0.6663 36.46
m = 3 79.1 153.7 4.22 21.08 5.81 0.08 0.44 0.11 0.8078 19.56

pr
un

ed m = 1 4.2 3.2 20.49 13.94 15.66 0.30 0.22 0.24 0.4340 59.04
m = 2 13.2 18.3 13.02 17.11 13.54 0.19 0.32 0.22 0.5142 58.31
m = 3 32.5 56.2 9.69 19.38 11.62 0.14 0.32 0.18 0.6215 44.55

w
/R

T

m = 1 15.5 28.4 18.47 15.78 14.14 0.14 0.26 0.14 0.5342 45.22
m = 2 46.4 95.7 8.11 19.18 8.90 0.04 0.29 0.07 0.6948 32.81
m = 3 91.8 201.6 4.28 21.75 5.95 0.04 0.42 0.07 0.8223 17.52

pr
un

ed m = 1 3.9 3.0 22.70 14.97 17.24 0.20 0.14 0.16 0.4320 61.29
m = 2 14.9 24.2 14.41 17.93 14.80 0.09 0.14 0.10 0.5079 59.98
m = 3 33.0 63.2 10.81 20.06 12.88 0.10 0.39 0.15 0.6091 45.91

w
/o

E
W

O

w
/o

R
T

m = 1 5.3 5.0 18.85 14.03 14.59 0.27 0.22 0.22 0.4662 52.38
m = 2 12.2 15.0 10.64 17.05 11.58 0.20 0.38 0.22 0.5686 48.14
m = 3 21.1 29.0 7.09 19.26 9.28 0.13 0.38 0.17 0.6681 35.71

pr
un

ed m = 1 4.1 3.1 20.53 13.90 15.67 0.30 0.22 0.24 0.4326 59.21
m = 2 8.1 7.9 13.35 16.75 13.91 0.23 0.32 0.25 0.4895 61.44
m = 3 13.0 14.7 10.22 18.77 12.34 0.17 0.32 0.21 0.5661 50.95

w
/R

T

m = 1 5.1 5.0 20.66 15.05 16.06 0.18 0.18 0.17 0.4625 54.94
m = 2 11.6 15.4 11.57 17.98 12.65 0.08 0.21 0.12 0.5651 48.40
m = 3 19.3 29.3 7.72 20.10 10.15 0.09 0.42 0.14 0.6656 35.32

pr
un

ed m = 1 3.9 3.0 22.57 14.74 17.07 0.22 0.14 0.17 0.4315 61.30
m = 2 7.4 7.6 14.93 17.62 15.34 0.13 0.17 0.14 0.4792 63.78
m = 3 11.3 13.7 11.38 19.58 13.64 0.14 0.42 0.19 0.5544 52.13

Table 8: Intrinsic evaluation of pruned CCKGs constructed from CN. w/o EWA and w/o EWO are the baselines with
unweighted shortest paths described in §4

Configuration #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑

al
l

m = 1 4.0 3.0 52.54 37.94 42.67 28.55 19.78 22.13 0.3435 66.88
m = 2 6.6 5.8 36.67 44.36 38.88 19.42 25.44 20.97 0.3745 74.26
m = 3 9.2 8.5 29.25 48.55 35.49 15.51 29.63 19.56 0.4313 64.50

su
pp

or
t m = 1 3.8 2.8 54.76 37.58 43.19 28.40 18.55 21.27 0.3511 64.83

m = 2 6.3 5.5 38.22 44.66 39.97 19.78 25.03 21.11 0.3744 74.70
m = 3 8.7 8.1 30.95 49.26 36.97 16.24 29.56 20.08 0.4219 66.20

co
un

te
r m = 1 4.2 3.2 50.32 38.30 42.15 28.69 21.02 22.99 0.3359 68.93

m = 2 6.9 6.0 35.13 44.05 37.78 19.07 25.84 20.82 0.3746 73.82
m = 3 9.6 8.9 27.55 47.83 34.01 14.79 29.71 19.04 0.4407 62.80

Table 9: Intrinsic evaluation of pruned CCKGs constructed from ExplaKnow on the ExplaGraphs dev split. Results
are shown on i) all 398 instances, ii) the 199 support instances and iii) the 199 counter instances.
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Configuration #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑
na

tu
ra

l m = 1 4.0 3.0 52.54 37.94 42.67 28.55 19.78 22.13 0.3435 66.88
m = 2 6.6 5.8 36.67 44.36 38.88 19.42 25.44 20.97 0.3745 74.26
m = 3 9.2 8.5 29.25 48.55 35.49 15.51 29.63 19.56 0.4313 64.50

st
at

ic

m = 1 3.8 2.8 52.41 37.07 42.03 28.06 19.15 21.51 0.3478 65.71
m = 2 6.4 5.5 36.52 42.94 38.24 19.25 24.47 20.52 0.3760 74.50
m = 3 8.8 8.1 28.90 46.73 34.69 14.94 27.95 18.68 0.4320 65.92

Table 10: Intrinsic evaluation of pruned CCKGs constructed from ExplaKnow with natural and static verbalization.

k m #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑

1

1 4.1 3.2 52.10 38.28 42.58 28.12 20.19 22.02 0.3458 66.41
2 7.1 6.6 35.90 45.40 38.53 18.68 26.60 20.55 0.3872 71.39
3 10.1 10.3 28.26 49.96 34.81 14.43 31.11 18.61 0.4524 60.53

pr
un

ed 1 4.0 3.0 52.54 37.94 42.67 28.55 19.78 22.13 0.3435 66.88
2 6.6 5.8 36.67 44.36 38.88 19.42 25.44 20.97 0.3745 74.26
3 9.2 8.5 29.25 48.55 35.49 15.51 29.63 19.56 0.4313 64.50

3

1 9.7 12.4 31.95 51.48 37.33 15.75 35.90 19.78 0.4545 51.03
2 16.6 23.0 20.53 58.25 29.26 9.20 42.63 14.46 0.5924 33.46
3 17.8 24.9 20.23 60.87 29.36 9.19 45.74 14.75 0.6055 31.68

pr
un

ed 1 4.0 3.1 52.38 38.21 42.68 28.40 19.96 22.12 0.3445 66.79
2 6.9 6.2 36.29 44.79 38.65 18.96 26.04 20.71 0.3802 72.83
3 7.7 7.3 34.76 47.92 38.84 18.37 29.42 21.41 0.3934 69.34

Table 11: Intrinsic evaluation of CCKGs constructed from ExplaKnow. The number of shortest paths between each
pair of extracted concepts is k = 1 and k = 3.

Configuration #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑

N
on

e m = 1 4.1 3.2 52.10 38.28 42.58 28.12 20.19 22.02 0.3458 66.41
m = 2 7.1 6.6 35.90 45.40 38.53 18.68 26.60 20.55 0.3872 71.39
m = 3 10.1 10.3 28.26 49.96 34.81 14.43 31.11 18.61 0.4524 60.53

SB

m = 1 4.0 3.0 52.54 37.94 42.67 28.55 19.78 22.13 0.3435 66.88
m = 2 6.6 5.8 36.67 44.36 38.88 19.42 25.44 20.97 0.3745 74.26
m = 3 9.2 8.5 29.25 48.55 35.49 15.51 29.63 19.56 0.4313 64.50

PR

m = 1 4.0 3.0 52.26 37.58 42.36 28.14 19.30 21.70 0.3445 66.83
m = 2 6.6 5.7 36.38 43.71 38.48 18.93 24.47 20.34 0.3763 74.23
m = 3 9.1 8.5 29.04 48.03 35.20 15.17 28.86 19.09 0.4327 64.46

Table 12: Intrinsic evaluation of different pruning methods on ExplaKnow. Pruning is ranked by None: no pruning;
SB: SBERT; PR: PageRank.

6147



BS, decreases as a result of the larger graph sizes.
Thus, not using constituents for concept extraction
achieves better scores overall in the intrinsic eval-
uation. We expect that this would change in an
evaluation with longer sentences and larger gold
graphs.

B.3 ExplaGraphs manual evaluation

B.3.1 Annotation description

For each instance, we asked a series of questions to
annotators for which they had to select one answer
or say that they can not make a decision. The first
set of questions revolved around the argument as
such, without considering the graph. In Q1 anno-
tators selected the correct of 9 predefined topics.
Next, in Q2, we asked whether the conclusion is
plausible given the premise. We asked this to assess
i) quality of Saha et al. (2021)’s arguments, and ii)
whether we obtain plausible premise-conclusion
pairs from the belief-argument pairs. If an argu-
ment was labeled as plausible, then in Q3 annota-
tors had to decide if they can identify an implicit
CSK connection that links the conclusion to the
premise. If so, we also ask the annotators to formu-
late and write down the perceived CSK connection
in plain language. This serves to familiarize the
annotators with the argument, and provides them
with a reference to their own interpretation in the
later graph quality assessment steps.

The second set of questions were only pre-
sented for plausible arguments with a perceived
CSK connection, to assess the quality of the pro-
vided CCKGs. Q4: To estimate the recall we
asked if the graph shows the implicit connec-
tion i) completely ii) partially or iii) not at all.
Then, to estimate precision at a fine-grained anal-
ysis level, each individual triplet had to be la-
beled in Q5 as i) positive (expresses implicit CSK)
ii) neutral (does not express implicit CSK, but
matches the topic) iii) unrelated (does not match
the topic) or iv) negative (contradicts implicit
CSK or the conclusion, but the topic is appropri-
ate). An example of a negative triplet would be
(human_cloning, IsA, considered_unethical) in
a CCKG for an argument with a pro-cloning conclu-
sion. For negative triplets, we further asked (Q6)
if its negation expresses relevant implicit CSK,
and (Q7) if the graph extended with the negated
triplet(s) shows the CSK connection. However,
negative triplets were rare in our CCKGs, such that
we could not perform analysis of Q6 and Q7.

Please refer to our official annotation
guidelines at https://github.com/
Heidelberg-NLP/CCKG/blob/main/
annotation_guidlines.pdf for more
details on each question, as well as illustrative
examples.

B.3.2 Annotation results
For each question, Table 14 reports the support,
i.e. the number of instances that were annotated by
both annotators. Note that the support decreases in
Q3 and Q4, since annotation instances that were
labeled with no in Q2 (plausible argument?) or
Q3 (implicit CSK in argument?) were not further
annotated by the individual annotators. We only
report values for which both annotators provided
labels. Q5 has a support of 1,169 triplets that come
from the same 115 graphs as annotated in Q4.

To measure inter-annotator agreement, we re-
port the counts of the assigned labels per class and
annotator (A1, A2), and compute agreement scores
using a) Cohen’s Kappa κ, where we compute κ
of individual labels in a one-vs-all setting, i.e. by
considering all other labels as the same label. This
we complement by b) counts and percentages of
the overlap of label assignments (A1 ∧ A2) by
the two annotators per class.12 We also report the
percentage of labels assigned by both annotators
unanimously or by at least one annotator.

We now investigate the annotation results on Q1
to Q5.

Q1 (Topic): The arguments are uniformly dis-
tributed across topics. The topics are quite distinct
such that the annotators could assign them to the
correct classes with ease, with only minimal diver-
gences, yielding a high inter-annotator agreement
(κ = 0.916).

Q2 (plausible?): A large majority of instances
(79.90%) were unanimously labeled as plausible,
which shows that Saha et al. (2021)’s support be-
lief -argument pairs can indeed be interpreted as
premise-conclusion pairs.

However, κ is low, as one annotator considered
all but 3 arguments as plausible, while the other
considered 38 of the 199 arguments, i.e., 19%, as
implausible. On deeper inspection we found that
these 19% suffered from various deficiencies: mul-
tiple negations made interpretation very difficult
and did often not yield a valid supporting argu-
ment; in other cases the pairs were presented in

12The percentage is computed relative to the average of A1
and A2.
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Configuration #nodes #edges C P ↑ C R ↑ C F1 ↑ T P ↑ T R ↑ T F1 ↑ GED ↓ G-BS ↑

w
/o

co
ns

tit
ue

nt
s

m = 1 4.1 3.2 52.10 38.28 42.58 28.12 20.19 22.02 0.3458 66.41
m = 2 7.1 6.6 35.90 45.40 38.53 18.68 26.60 20.55 0.3872 71.39
m = 3 10.1 10.3 28.26 49.96 34.81 14.43 31.11 18.61 0.4524 60.53
m = 4 13.0 14.1 23.26 52.37 31.11 11.59 33.45 16.30 0.5158 50.47
m = 5 15.9 17.8 19.94 54.41 28.28 9.88 36.08 14.81 0.5637 42.98

pr
un

ed

m = 1 4.0 3.0 52.54 37.94 42.67 28.55 19.78 22.13 0.3435 66.88
m = 2 6.6 5.8 36.67 44.36 38.88 19.42 25.44 20.97 0.3745 74.26
m = 3 9.2 8.5 29.25 48.55 35.49 15.51 29.63 19.56 0.4313 64.50
m = 4 11.5 11.2 24.43 50.94 32.17 12.77 31.88 17.58 0.4890 54.90
m = 5 13.8 13.8 21.17 52.87 29.54 10.96 34.14 16.11 0.5337 47.59

w
/c

on
st

itu
en

ts

m = 1 19.5 24.4 26.47 71.13 36.30 16.13 55.71 23.00 0.5489 39.86
m = 2 36.5 51.9 15.97 78.63 25.32 8.91 64.71 14.84 0.7038 22.40
m = 3 52.9 80.0 11.25 82.79 19.16 5.83 69.72 10.40 0.7843 15.01
m = 4 68.8 109.0 8.91 85.12 15.67 4.51 72.88 8.25 0.8286 11.42
m = 5 85.2 139.7 7.31 87.23 13.17 3.60 75.70 6.71 0.8600 8.99

pr
un

ed

m = 1 13.8 13.7 30.53 66.47 40.18 19.63 48.57 26.51 0.4690 51.51
m = 2 23.4 24.9 20.29 74.41 30.91 12.62 57.35 19.99 0.6076 33.72
m = 3 32.9 37.2 15.27 78.90 24.97 9.30 62.98 15.79 0.6895 24.89
m = 4 42.2 50.3 12.43 81.44 21.10 7.49 66.41 13.15 0.7406 19.94
m = 5 51.4 63.1 10.56 83.91 18.40 6.34 69.96 11.41 0.7777 16.45

Table 13: Intrinsic evaluation of different concept extractions for pruned CCKGs constructed from ExplaKnow.

the wrong direction to count as an argument. One
of our annotators considered the arguments with
great care and we could validate his judgements in
almost all cases. We are therefore confident that
the vast majority of such cases could be captured
in our annotation.

Q3 (implicit CSK in argument?): Only 6.29%
of arguments were unanimously judged as not be-
ing linked through implicit CSK, which confirms
that Saha et al. (2021)’s data collection successfully
resulted in belief-argument pairs that require expla-
nations. In 72.33% of cases both annotators agreed
that there is implicit CSK (115 instances). On these
115 instances we evaluate the performance of our
CCKGs.

Q4 (CSK covered in CCKG?): Here the annota-
tors evaluated whether the presented CCKG cov-
ered the implicit knowledge, by referring to what
they had written down in Q3, but they could also
accept another valid interpretation expressed by the
graph. 29.57% of CCKGs were unanimously an-
notated to cover the implicit CSK completely, i.e.
the argument could be fully understood based on
knowledge shown in the CCKG. When considering
CCKGs annotated by at least one annotator as com-
plete, the score doubles to 59.13%. 88.70% were
unanimously judged to cover the implicit CSK at
least partially, which corresponds to a high recall
of implicit CSK in the constructed CCKGs. I.e.,

most CCKGs make the connection between con-
clusion and premise more explicit, and hence, they
can be expected to support computational systems
in knowledge-intense argumentation tasks. With
0.413, Cohen’s κ is higher for completely than for
partially, indicating that partial coverage is more
subjective to decide.

Q5 (Triplet rating): The remaining 115 CCKGs
contain 1,169 triplets in total. Out of these, 39.44%
were unanimously labeled as positive, i.e., the
triplet reflects implicit CSK that links the conclu-
sion to the premise (again, annotators are asked
to compare the CCKG to their answer to Q3, but
are free to accept other valid connections in the
CCKG), and for 74.68% at least one annotator
rated the triplet as positive. This shows that a
substantial amount of triplets reflect implicit CSK,
while the judgement may be subjective, depending
on the annotator’s own interpretation. Also, it is of-
ten difficult to decide what the exact implicit CSK
is.
13.94% of all triplets were unanimously labeled

neutral, i.e. they express knowledge pertaining to
the topic of the argument. As such, they contribute
additional knowledge or context for the argument,
but no CSK that is required to support the conclu-
sion.

Only 1.71% of triples were unanimously la-
beled as unrelated, i.e. as not matching the ar-
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gument because they no not match the topic. These
triplets represent noise in the CCKG, and are
mostly avoided by the strong contextualization dur-
ing graph construction. Only a small number re-
mains after pruning.
1.07% of all triplets are unanimously labeled

negative, i.e. they contradict the conclusion or the
implicit CSK. These triplets are from the correct
topic, but often show the issue from a different
perspective and do not support the conclusion.

In the first block of Table 15, we also report
macro averages over the triplet precision measured
in Q5 (triplet rating) for individual graphs. We re-
port the score for triplets showing implicit CSK (i.e.
positive triplets) and triplets being from the correct
topic (i.e. positive, neutral or negative triplets).
Again, we report the support and the values for
each individual annotator A1 and A2. We derive
a joint rating from both annotators by either i) A1
∧ A2: A triplet is only considered as positive / in-
topic if both annotators labeled it as such, or ii) A1
∨ A2: A triplet is considered as positive / in-topic
if at least one annotator labeled it as such.

The unanimous macro precision is 39.43% for
triplets showing implicit CSK and 73.87% when
considering triplets rated as positive by at least
one annotator. This matches our observation from
the micro scores. Our CCKGs show high in-topic
macro precision with 92.76% in the unanimous set-
ting and exceeding 99% when considering triplets
rated by at least one annotator as in-topic.

Table 15 also shows the macro precision for
graphs which were unanimously judged to reflect
the implicit CSK in the argument completely and
partially in Q4. The precision of unanimous pos-
itive triplets increases by more than 15 pp. when
considering only CCKGs that reflect the implicit
CSK completely. On the other hand, the precision
of in-topic triplets increases more when consid-
ering CCKGs that reflect the implicit CSK only
partially. This indicates that CCKGs that fail to
reflect implicit CSK completely still reflect CSK
from the correct topic.

Overall, the manual annotation shows strong per-
formance of the CCKGs in terms of implicit CSK
recall, implicit CSK precision, and in-topic preci-
sion.

B.4 VALNOV

B.4.1 Data statistics
Heinisch et al. (2022b) collect arguments from di-

verse topics, where the conclusions are partially
automatically generated. The binary labels for va-
lidity and novelty are manually created by multi-
ple annotators. The data for the VALNOV Shared
Task13 has been constructed from arguments from
an argumentative dataset (Ajjour et al., 2019), and
has been extended by conclusions automatically
generated with T5 (Heinisch et al., 2022a; Raffel
et al., 2020), producing instances of paired premise-
conclusion pairs. All instances were manually as-
signed binary labels for validity and novelty.

The VALNOV train/ dev/ test sets consist of 750/
202/ 520 instances. However, 48 of the train in-
stances are defeasible, i.e. instances with no anno-
tator majority for validity or novelty. We remove
these instances, leaving us with 702 training items.

The train set is unbalanced, with only 2% of the
train data being from the non-valid and novel class.

Heinisch et al. (2022c) extend the dataset by
integrating datasets from different tasks as well as
synthetic data. In this work we only use the original
dataset proposed by Heinisch et al. (2022b).

B.4.2 Model variations
Concept extraction with constituents The
arguments in the VALNOV dataset are relatively
long (76 tokens in avg.), often containing more
that one aspect / perspective. This negatively
effects the quality of triplet selection for concept
extraction: the extracted concepts are semantically
relevant, but often do not span the entire argument.
We thus split the text into constituents using a
SOTA parser (Zhang et al., 2020a), and select
concepts for each constituent separately. The
hyperparameter m now controls the number
of extracted triplets for each constituent. We
use their crf-con-roberta-en model at
www.github.com/yzhangcs/parser.
Leaf nodes often consist of only one or two
concepts, which limits contextualization for these
constituents. Hence, we disregard the leaf nodes to
reduce noise in concept extraction.

Partial pruning Pruning CCKGs completely
bears the risk of removing relevant structure. How-
ever, not pruning at all leaves the CCKGs in a
potentially noisy state. To allow for a more fine-
grained balance, we apply partial pruning. I.e., we
rank concepts and prune the CCKG accordingly,
but instead of pruning all possible concepts we

13The task was organized as part of the ArgMining work-
shop 2022.
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Question Label
Counts [#] Agreement Quality [%]

Support A1 A2 A1 ∧ A2 κ A1 ∧ A2 [%] A1 ∧ A2 A1 ∨ A2

Q1 all labels 199 184 0.916
which abandon marriage 24 26 24 0.954 96.00 12.06 13.07
topic? ban cosmetic surgery 22 20 20 0.947 95.24 10.05 11.06

adopt an austerity regime 22 20 19 0.894 90.48 9.55 11.56
fight urbanization 22 22 22 1.000 100.00 11.06 11.06
subsidize embryonic stem cell research 19 18 17 0.911 91.89 8.54 10.05
legalize entrapment 22 22 22 1.000 100.00 11.06 11.06
ban human cloning 21 21 19 0.894 90.48 9.55 11.56
close Guantanamo Bay detention camp 21 21 21 1.000 100.00 10.55 10.55
adopt atheism 22 25 19 0.783 80.85 9.55 14.07
× 4 4 1 0.235 25.00 0.50 3.52

Q2 all labels 199 160 0.021
plausible yes 196 161 159 0.021 89.08 79.90 99.50
argument? no 3 38 1 0.021 4.88 0.50 20.10

Q3 all labels 159 125 0.298
implicit CSK yes 149 115 115 0.298 87.12 72.33 93.71
in argument? no 10 44 10 0.298 37.04 6.29 27.67

Q4 all labels 115 68 0.268
CSK in completely 43 59 34 0.413 66.67 29.57 59.13
CCKG? partially 59 56 34 0.183 59.13 29.57 70.43

completely or partially 102 115 102 0.000 94.01 88.70 100.00
not at all 13 0 0 0.000 0.00 0.00 11.30

Q5 (micro) all labels ⋆ 1169 656 0.230
triplet rating positive 556 778 461 0.306 69.12 39.44 74.68

neutral 465 321 163 0.133 41.48 13.94 53.29
unrelated 100 54 20 0.212 25.97 1.71 11.46
negative 48 16 12 0.362 37.50 1.03 4.45
positive or neutral 1021 1099 985 0.251 92.92 84.26 97.09
in-topic (i.e. all but unrelated) 1069 1115 1035 0.212 94.78 88.54 98.29

Table 14: Results of manual annotation. A1 and A2 show the label counts for each individual annotator. A1 ∧ A2
shows the counts (#) and percentages (%) of instances labeled unanimously by A1 and A2; A1 ∨ A2 shows the
percentage of instance labels assigned by at least one of the annotators. × means that the annotator could not decide.
Topic labels for Q0 are posed as "We should ..." .
⋆: the supporting 1,169 triplets are from the 115 supporting CCKG graphs from Q4.

CSK shown in CCKG Label support A1 A2 A1 ∧ A2 A1 ∨ A2

All
Implicit CSK 115 48.36 64.95 39.43 73.87
Topic 115 94.94 97.01 92.76 99.20

Completely
Implicit CSK 34 66.36 74.90 56.37 84.89
Topic 34 95.94 97.16 93.57 99.53

Partial
Implicit CSK 34 48.02 58.39 36.77 69.64
Topic 34 99.18 97.79 97.42 99.55

Table 15: Macro precision scores of manual annotation on Q5 (triplet rating) in %. A1 and A2 are the macro averages
for each individual annotator, A1 ∧ A2 is the macro average when only considering unanimous decisions and
A1 ∨A2 is the macro average when considering triplets which at least one annotator judged as positive / in-topic.
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only remove the first 25%, 50% or 75%, which
corresponds to removing only the most dissimilar
concepts.

B.4.3 Feature extraction
Structural features We extract 5 features de-
scribing the size of CCKGs (number of concepts,
number of triplets, number of premise-concepts,
number of conclusion-concepts, number of con-
cepts shared by premise and conclusion), 6 fea-
tures describing the connectivity of CCKGs (num-
ber of cluster with and without edge weights and
the corresponding modularity, density, transitivity),
and 4 features describing the distance between
premise and conclusion in the CCKG (weighted
and unweighted MinCut between premise-concepts
and conclusion-concepts, average and maximal
weighted length between premise-concepts and
conclusion concepts). This yields 15 graph fea-
tures in total.

Textual features We consider the semantic sim-
ilarity between premise and conclusion (measured
by SBERT), and the NLI probabilities that the
premise entails, is neutral or contradicts the con-
clusion. We compute the NLI predictions from a
RoBERTa-large (Zhuang et al., 2021) model which
was fine-tuned on NLI data.14 This yields 4 text
features in total.

B.4.4 Classifier
We use scikit-learn (Pedregosa et al., 2011)’s Ran-
domForest and SVM. For the SVM we test linear
and RBF kernels.

Our RandomForests consist of 1000 trees with
Gini impurity and 4 features considered at each
split. Data is sampled with bootstrapping. For
regularization we use Minimal Cost-Complexity
Pruning with the hyperpaprameter α. We choose
the best value for α on the dev split from {0, 1e−
4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 1e−1, 5e−1}.

For the SMVs we apply a shrinking heuristic
and choose the regularization parameter C on the
dev split from {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e−
1, 0.5, 1, 2, 5, 10}. For the RBF kernel we set γ to
scale or auto, also determined on the dev split.

The best setting for CCKGs was RandomFor-
est with α = 0.01. For methods from Saha et al.
(2022) the best methods were T5: RandomForest

14We applied roberta.large.mnli from
https://github.com/facebookresearch/
fairseq/blob/main/examples/roberta/
README.md

configuration joint F1 Val F1 Nov F1

CCKG 43.91 70.69 63.30

C
C

K
G

w/o EWO -6.51 -3.80 -1.69
w/o EWA -3.25 -4.45 1.76
w/ static verbalization -4.32 -6.34 2.44
w/ RelatedTo -3.66 -6.86 2.20
w/o pruning -8.24 -2.81 -0.14
w/ full pruning -5.28 -3.39 -1.53

C
on

ce
pt

E
xt

ra
ct

. m = 1 w/ const. -5.39 -5.27 -1.43
m = 3 w/ const. -7.57 -3.03 0.01
m = 1 w/o const. -8.11 -3.53 -11.08
m = 2 w/o const. -3.36 -5.86 0.79
m = 3 w/o const. -3.88 -5.83 0.41
string matching -6.71 -3.23 0.55

Fe
at

ur
es

w/o Text feats. -20.65 -20.74 -17.69
w/o Graph feats. -11.65 -3.40 -5.12
w/o connectivity feats. -5.60 -4.01 -0.60
w/o size -2.60 -2.93 0.80
w/o PC-distance feats. -2.27 -0.27 -3.73
w/o upsampling -4.11 -2.43 -3.10

Table 16: System ablations: values show performance
differences to our full system results. 1st block: differ-
ent CCKG constructions; 2nd block: configurations for
concept extraction; 3rd block: CCKGs with different
features / upsampling turned off.

with α = 0.05; max-margin: RandomForest with
α = 0.05; and contrastive: SVM with RBF with
γ = auto and C = 5.

B.4.5 Ablation
Our white-box feature-based system allows for a
thorough ablation study (see Table 16). We first ex-
plore variations in CCKG construction. Ablating
all edge weights incurs considerable performance
losses for the joint and validity scores. Consider-
ing only one random path between each pair of
concepts (w/o EWO) additionally has reduced per-
formance for novelty. However, considering all
unweighted shortest path (w/o EWA) increases the
novelty score by 1.76 pp. This indicates that con-
textualization is more relevant for validity, perhaps
because without edge weights the model can not
distinguish between valid and non-valid connec-
tions. The static verbalization (see §B.1.2) reduces
the quality of edge weights, and hence decreases
validity score by 6.34 pp. On the other hand, it
increases the novelty score but not enough to com-
pensate for the reduction in validity. Unspecific
RelatedTo edges have a strong negative impact
for validity but improve novelty, by attracting more
knowledge. No pruning fails to distinguish valid
from non-valid conclusions due to too many noisy
connections. Too much pruning on the other hand
removes structural diversity and hence decreases
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the predictive power of CCKGs. The results sug-
gest that contextualized graph construction has a
strong impact on validity and the joint score, which
intuitively makes sense as the contextualization
promotes valid connections. At the same time, the
fluctuating effects for novelty indicate that novelty
and validity are difficult to calibrate, but at a rela-
tively low impact level.

The impact of concept extraction can be best
observed when comparing m = 1 with m = 2, 3
without the constituent parser. Choosing m = 1
results in small graphs, which can not cover all as-
pects of the argument. Hence, the resulting graphs
are not suitable for predicting novelty. Increasing
m alleviates this problem, but decreases validity.
We found m = 2 with constituent parsing to yield
best results.

Feature ablation shows that both, text and
graph features, are necessary to achieve good per-
formance. The textual features have a stronger
impact on validity, while the graph features are
more impactful for novelty prediction. Yet, both
metrics benefit from both modalities. This indi-
cates that text and CCKG contain complementary
information and should be considered jointly in
future work. Finally, we remove selected graph fea-
tures from the classifier, i.e. all size, connectivity
or premise-conclusion distance features, at a time.
This induces losses of 5.60 pp. / 4.01 pp. joint / va-
lidity score, for connectivity features, and strong
losses of 3.73 pp. for novelty when removing PC-
distance features. This supports our hypothesis that
validity correlates with the connectivity, and nov-
elty with the distance between premise-concepts
and conclusion-concepts in the CCKGs.

Table 17 shows feature ablations when construct-
ing graphs with the supervised methods from Saha
et al. (2022). The graph contributes more to nov-
elty prediction in all three methods. This is consis-
tent with previous findings, as the models leverage
structural data which was found to be important
for novelty. However, the effect of ablating fea-
tures varies for each method and no clear trend is
apparent.

C Example CCKGs

The graphs in Figures 3, 4 and 5 show extracted
premise concepts in violet, conclusion concepts in
orange and intermediate concepts in blue. Concepts
which are extracted for both, the premise and the
conclusion, are shown in pink. Visualizations were

configuration joint F1 Val F1 Nov F1

T5 37.71 67.07 63.52
w/o Text feats. -10.97 -16.35 -12.84
w/o Graph feats. -5.45 0.21 -5.34
w/o connectivity feats. -0.63 0.26 -0.57
w/o size 0.87 -0.66 -1.72
w/o PC-distance feats. 0.64 0.55 -0.08
w/o upsampling -0.10 0.49 -4.33

max-margin 36.22 67.61 63.27
w/o Text feats. -15.22 -18.59 -19.90
w/o Graph feats. -3.96 -0.33 -5.08
w/o connectivity feats. 0.67 0.04 0.52
w/o size 0.69 0.04 0.55
w/o PC-distance feats. 5.32 -1.07 0.37
w/o upsampling -4.05 0.43 -16.79

contrastive 37.82 64.77 59.96
w/o Text feats. -5.35 -10.27 -2.70
w/o Graph feats. -5.56 2.51 -1.77
w/o connectivity feats. -0.75 2.85 -0.76
w/o size -5.85 2.51 -1.91
w/o PC-distance feats. -1.00 4.28 -3.49
w/o upsampling 0.39 -0.44 0.27

Table 17: Feature ablations for Saha et al.
(2022)’ graphs with our feature extraction and classifi-
cation. Ablated scores show performance distance to
respective base approach.

done with pyvis
(www.github.com/WestHealth/pyvis).
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(a) Premise: Cosmetic surgery makes people feel whole
again.
Conclusion: Cosmetic surgery improves self esteem.

(b) Premise: Cosmetic surgery can cause defects.
Conclusion: Cosmetic surgery can be dangerous.

(c) Premise: Urbanization increases employment for many. Conclusion: Urbanization is a positive for society.

Figure 3: Example CCKGs for arguments from ExplaGraphs dev set. Graphs are pruned CCKGs extracted from CN
without RelatedTo with m = 3. Figure 3c has the disambiguity problem: capital is once used as city, and once as
financial asset.
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(a) Premise: Embryonic stem cell research is a no brainer.
Conclusion: Embryonic stem cell research is very impor-
tant to medicine.

(b) Premise: Getting your original out of the copier and
putting it against the copy always shows differences.
Conclusion: Cloning is inherently decreasing quality.

(c) Premise: Austerity raises taxes on citizens.
Conclusion: Austerity would cripple the population.

Figure 4: Randomly selected example CCKGs for arguments from ExplaGraphs dev set. Graphs are pruned CCKGs
extracted from CN without RelatedTo with m = 3.
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(a) m = 3, without RelatedTo, without constituent
parser (b) m = 3, with RelatedTo, without constituent parser

(c) m = 1, without RelatedTo, with constituent parser

Figure 5: Example CCKGs for premise "A person is unhappy if she is dissatisfied with her body." and conclusion
"Plastic surgery raises patients’ self esteem and allows them to lead normal happy lives."
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