
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6102–6114

July 9-14, 2023 ©2023 Association for Computational Linguistics

TOME: A Two-stage Approach for Model-based Retrieval

Ruiyang Ren1,3∗ Wayne Xin Zhao1,3† Jing Liu2† Hua Wu2

Ji-Rong Wen1,3 Haifeng Wang2

1Gaoling School of Artificial Intelligence, Renmin University of China
2Baidu Inc.

3Beijing Key Laboratory of Big Data Management and Analysis Methods
{reyon.ren, jrwen}@ruc.edu.cn, batmanfly@gmail.com

{liujing46, wu_hua, wanghaifeng}@baidu.com

Abstract

Recently, model-based retrieval has emerged as
a new paradigm in text retrieval that discards
the index in the traditional retrieval model and
instead memorizes the candidate corpora us-
ing model parameters. This design employs
a sequence-to-sequence paradigm to generate
document identifiers, which enables the com-
plete capture of the relevance between queries
and documents and simplifies the classic index-
retrieval-rerank pipeline. Despite its attractive
qualities, there remain several major challenges
in model-based retrieval, including the discrep-
ancy between pre-training and fine-tuning, and
the discrepancy between training and inference.
To deal with the above challenges, we propose
a novel two-stage model-based retrieval ap-
proach called TOME, which makes two major
technical contributions, including the utiliza-
tion of tokenized URLs as identifiers and the
design of a two-stage generation architecture.
We also propose a number of training strategies
to deal with the training difficulty as the corpus
size increases. Extensive experiments and anal-
ysis on MS MARCO and Natural Questions
demonstrate the effectiveness of our proposed
approach, and we investigate the scaling laws
of TOME by examining various influencing
factors.

1 Introduction

Information retrieval systems have undergone con-
tinuous development over the past few decades,
with the aim of obtaining relevant resources, such
as documents, in response to a user query from
a vast collection. With the recent success of Pre-
trained Language Models (PLMs) (Devlin et al.,
2019; Raffel et al., 2020; Zhao et al., 2023), re-
searchers have developed PLM-based dense retriev-
ers (Lin et al., 2021; Zhao et al., 2022), which
utilize dual-encoders and nearest neighbor search

∗The work was done during the internship at Baidu.
† Corresponding authors.

index for retrieval and achieve significant improve-
ments over sparse retrievers.

More recently, a new retrieval paradigm, known
as model-based retrieval (Tay et al., 2022; Zhou
et al., 2022c), has been introduced by developing
an alternative architecture for retrieval. In contrast
to traditional retrieval methods, it does not explic-
itly maintain a corpus index, thereby simplifying
the classic index-retrieve-rerank process. Typically,
a model-based retrieval system is built based on a
sequence-to-sequence generation model with an
encoder-decoder architecture, such as T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020). It
accepts a query as input and directly generates the
corresponding document identifier via the genera-
tion model.

Despite its attractive benefits in simplifying the
retrieval pipeline, model-based retrieval still faces
following major challenges.

• Firstly, since the retrieval task is framed as a
prediction task of document identifiers, mak-
ing it crucial to design document identifiers
that are well-suited to the underlying generative
PLM. However, this issue is rarely discussed
in prior research, and most existing approaches
employ manually or randomly constructed iden-
tifiers (i.e., docids) as generation targets. Such
docids are not adequately captured in the pre-
training stage of the generative PLM, thus limit-
ing PLM’s capabilities for generative prediction
(e.g., unseen docids during pre-training). This
creates a discrepancy between the pre-training
and fine-tuning phases.

• Secondly, there is a discrepancy between train-
ing and inference in the single-model generative
architecture. While most existing studies incor-
porate multi-task learning (Tay et al., 2022) and
auxiliary pre-training tasks (Zhou et al., 2022b)
to model both documents and queries during
training, the model only processes queries dur-

6102

Passage
Generation Model

When did nevada
become a state

Query
Here's some history on that: Nevada

became a state (admitted to the
Union) October 31, 1864, so

https://en.wikipedia.
org/wiki/Nevada

Passage URL

URL
Generation Model

Passage Generation Stage URL Generation Stage

Figure 1: The illustration of the proposed two-stage generation approach.

ing inference, resulting in a gap between the
training and inference stages.

To this end, in this paper, we propose a
novel TwO-stage Model-based rEtrieval approach,
TOME (as illustrated in Figure 1), which makes
two major technical contributions.

• Firstly, we suggest using tokenized URLs (or
URIs) as text identifiers, which are widely avail-
able for web pages or Wikipedia pages 1. By
using URL-based identifiers, the tokenized sym-
bols are well aligned with the vocabulary of the
generative PLM, thereby enhancing the gener-
ative capacity of the PLM. URLs are typically
comprised of normal text, as opposed to manu-
ally or randomly constructed identifiers. As a
result, such an identifier design can be used to
help alleviate the gap between pre-training and
fine-tuning.

• Secondly, our approach decomposes the predic-
tion task into two consecutive stages, namely
passage generation and URL generation, which
are fulfilled by two separate T5-based genera-
tion models, respectively. The first stage aims to
generate a relevant passage in the corpus based
on the query, while the second stage aims to
generate the corresponding URL of the gener-
ated passage from the first stage. This two-stage
architecture can reduce the discrepancy between
training and inference. In addition, the entire
generation process is progressive. Consequently,
the second stage is capable of tolerating errors
that may be introduced by the preceding stage
and generates correct URLs.

Moreover, we discover that optimizing model-
based retrieval becomes a challenging task when
dealing with a vast corpus. As a result, we pro-
pose a number of improved training strategies to
optimize the generation models, including query
augmentation, passage length reduction, and model
scaling.

1Regarding to other types of documents, we can use tok-
enized URIs as the identifiers.

To verify the effectiveness of TOME, we con-
duct extensive experiments on the publicly avail-
able MS MARCO and NQ datasets. Experimental
results demonstrate the effectiveness of the pro-
posed method, including the URL identifier design
and the two-stage generation process. Additionally,
case studies indicate that the second stage can tol-
erate errors induced by the first stage. Furthermore,
we investigate the scaling laws of TOME by exam-
ining different model sizes, corpus sizes, and text
lengths. We anticipate that these experimental re-
sults will facilitate further research on model-based
retrieval.

2 Related Works

Text Retrieval. Text retrieval endeavors to find
textual information related to a query from a
large candidate corpus. Early studies on sparse
retrieval focused on term matching by utilizing
sparse representations and inverted indices, such
as BM25 (Robertson et al., 2009). In recent
years, with the resurgence of neural networks
and the emergence of pre-trained language mod-
els (PLMs) (Devlin et al., 2019; Raffel et al., 2020),
dense retrieval achieves better performance beyond
traditional sparse retrieval on multiple tasks (Khat-
tab and Zaharia, 2020; Karpukhin et al., 2020;
Xiong et al., 2021; Qu et al., 2021). The dense
retrieval and the technique of approximate near-
est neighbor search have been widely adopted in
various applications (Oguz et al., 2020; Ren et al.,
2021a,b; Asai et al., 2021; Ren et al., 2022; Zhou
et al., 2022a). Recently, Zhao et al. (2022) have
made a very comprehensive survey about the re-
cent progress of dense retrieval based on PLMs,
and we refer the readers to this survey paper for
more details.

Model-based Retrieval. Both sparse retrieval
and dense retrieval rely on explicit indices. Re-
cently, researchers have proposed model-based re-
trieval (a.k.a., generative retrieval) models (Met-
zler et al., 2021; Tay et al., 2022). These methods

6103

consider model parameters as retrieval indices and
directly generate the identifiers of related docu-
ments. Such an idea is initially proposed for entity
retrieval (Cao et al., 2021), which autoregressively
generates unique entity identifiers. Following this
approach, researchers have introduced sequence-
to-sequence encoder-decoder architecture for doc-
ument retrieval (Zhou et al., 2022c; Bevilacqua
et al., 2022; Zhuang et al., 2022; Wang et al., 2022;
Lee et al., 2022; Chen et al., 2022; Zhou et al.,
2022b). As discussed in the previous section, there
still remain issues with model-based retrieval, in-
cluding the discrepancy between pre-training and
fine-tuning, and the discrepancy between training
and inference. Our work tries to deal with these is-
sues with a two-stage generation architecture with
URL identifiers.

3 Approach

In this section, we first introduce the task formula-
tion, followed by the description of the proposed
two-stage generation approach TOME.

3.1 Task Formulation

In this work, we consider the task of text retrieval,
which aims to find relevant text resources (e.g.,
documents) related to a query from a large corpus.
We further assume that these texts can be accessed
by an associated URL2 (or URI).

To develop our approach, we adopt the re-
cently proposed model-based paradigm for text
retrieval (Tay et al., 2022; Zhuang et al., 2022).
For retrieval, a model-based retrieval model takes a
query q as input and uses the text-to-text model to
generate the identifier y (length n) of the relevant
document in an autoregressive manner, with the
conditional probability:

PrM(y|q) =
n∏

i=1

PrM(yi|y<i, q), (1)

where yi denotes the i-th output token in the identi-
fier y, y<i denotes the previous tokens y1, . . . , yi−1,
and M represents the PLM. The identifier can be
an atomic token or a string (Tay et al., 2022). In
our setting, it is assigned to an associated URL of
a text (refer to Section 3.2.1). Typically, a gener-
ative pre-trained language model (PLM) with an

2For the passages in a Web page, we can append specific
postfix (e.g., tab symbol) to the document URL or simply
share the same document URL for within-document passages.

encoder-decoder architecture is employed to im-
plement the text-to-text model (e.g., T5), which
is typically optimized by a cross-entropy loss as
follows:

L(M) = − log PrM(y|q)

= −
n∑

i=1

log
(
PrM(yi|y<i, q)

)
. (2)

The key to model-based retrieval is to design a
generative architecture that employs suitable docu-
ment identifiers, and to develop effective training
methods that can effectively associate queries to
the identifiers of documents. Next, we expound our
approach in detail.

3.2 Model Architecture
In this section, we first introduce the design of doc-
ument identifiers, and then present the two-stage
generation architecture.

3.2.1 Identifier Design
Existing studies typically use docids to represent
a document (Tay et al., 2022; Zhuang et al., 2022).
These docids are often randomly generated or man-
ually constructed, which may not exist in real-
world text corpora. However, the generative PLM
is pre-trained based on large-scale text corpora,
leading to a discrepancy between pre-training and
fine-tuning.

Different from previous approaches, we con-
sider a tokenized form of URLs as the docids.
We directly treat the URL as a text string and
tokenize it into a sequence of tokens using a
T5 tokenizer. For instance, a sample URL
‘https://en.wikipedia.org/wiki/Nevada’ can be to-
kenized to {‘https’, ‘://’, ‘en’, ‘.’, ‘wikipedia’, ‘.’,
‘org’, ‘/’, ‘wiki’, ‘/’, ‘N’, ‘e’, ‘vada’}. We use the
token sequence as the prediction target of the gen-
erative PLM, following the generation formula of
Equation (1). It is worth noting that Ultron (Zhou
et al., 2022b) also uses URLs as identifiers, where
a URL is reversed and only used as part of an iden-
tifier (also involving titles and domains). As a
comparison, we solely utilize tokenized URLs as
the identifier, without any additional processing.

Compared to non-linguistic docids, URLs typi-
cally contain more meaningful tokens in the form
normal text and widely exist in real-world text cor-
pora, making them more suitable to modeling and
prediction using generative PLMs. During decod-
ing, we can directly adopt the general text decoding

6104

method to generate the URL, without resorting to
limited search strategies such as constrained beam
search (Tay et al., 2022; Bevilacqua et al., 2022).
Since these tokenized symbols often overlap among
different URLs (e.g., web pages from the same do-
mains), they naturally derives semantic strings as
the clustering method in DSI (Tay et al., 2022).

3.2.2 Two-stage Generation Architecture
The objective of the generative model for retrieval
is to establish a correlation between a query and its
corresponding docid (i.e., URL). However, owing
to the scarcity of annotated data, various improved
strategies such as multi-task learning (Tay et al.,
2022) or pre-training (Zhou et al., 2022b) have
been proposed. Typically, a model processes both
documents and queries during training, while it
processes only queries during inference, resulting
in the discrepancy between training and inference.
To tackle this issue, we propose a two-stage genera-
tion approach with two different generation models:
one for passage generation and the other for URL
generation, as shown in Figure 1.

Passage Generation. In the first stage, we employ
a T5-based passage generation model to map an
input query to the passage content according to
Equation (1). The generated passage is anticipated
as a relevant passage in the corpus that can provide
an answer to the query. The objective of the pas-
sage generation model is to memorize the passages
in the corpus, so as to generate the passages with
utmost precision. It is trained with query-passage
pairs, where each pair comprises a query and a
passage from the document, along with the cor-
responding labeled URL. Different from existing
methods (Tay et al., 2022; Bevilacqua et al., 2022),
we do not utilize any data structure to restrict the
decoding process and simply use greedy search
to generate an individual result for a query in an
autoregressive manner, which has a high decod-
ing efficiency. By incorporating the intermediate
passage generation, our approach can mitigate the
training-inference discrepancy that the query en-
coder also needs to process documents (Tay et al.,
2022).

URL Generation. In the second stage, another
T5-based PLM is employed to predict the corre-
sponding URL as the retrieval result, utilizing the
passage generated by the passage generation model
as input. The URL is generated by means of greedy
search decoding in a similar manner as in Equa-

tion (1). The URL generation model is trained with
passage-URL pairs, where each pair comprises a
passage and its corresponding URL. The objective
of the URL generation model is to memorize all
the URLs in the corpus, so as to map a generated
passage related to a query to a corresponding URL.
Meanwhile, even if the generated passages contain
some irrelevant content or noise, this stage can still
make reliable predictions since it can employ long
passages as the context, rather than short queries.

Overall, such a two-stage generation approach
can more effectively capture the semantic related-
ness between queries and identifiers by both reduc-
ing the training-inference discrepancy and enrich-
ing the generation context, which is specifically
tailored for model-based retrieval.

3.3 Training

For both the passage generation model and the
URL generation model, we optimize them inde-
pendently by utilizing the cross-entropy loss for
optimizing standard T5 models, as shown in Equa-
tion (2). Nevertheless, optimizing model-based
retrieval approaches (Zhuang et al., 2022; Wang
et al., 2022) is a challenging task as they essen-
tially require memorizing the corpus information,
and generating long text also poses challenges in
model convergence. In this part, we further pro-
pose several strategies for improving the training
of our approach.

Query Augmentation. Generating pseudo queries
is proven to be effective in improving the perfor-
mance of model-based retrieval (Wang et al., 2022;
Zhuang et al., 2022). Here, we utilize query gener-
ation for constructing the training data for passage
generation. Specifically, we take the passage col-
lection as the corpus, and use an existing query gen-
eration model (i.e., DocT5query (Nogueira et al.,
2019)) trained on the labeled dataset to generate
multiple pseudo queries for each passage in the
corpus. Following DSI-QG (Zhuang et al., 2022),
we use the top-k sampling strategy for query gen-
eration, and set k up to 20. The generated pseudo
queries and their corresponding passages are then
used to construct query-passage pairs as the train-
ing data for the passage generation model. Such
a query augmentation method can significantly in-
crease the availability of training data, and also
enhance the generalization capability of the model
for different queries.

6105

Reducing the Passage Length. Since passages
are much longer than URLs, passage generation
is more complicated than URL generation. In the
generation task, a more extensive generation tar-
get results in larger search space, which typically
leads to a decrease in efficiency and effectiveness.
While, in our approach, passage generation serves
as an indirect step for predicting the URL, so that
we consider reducing the passage length for im-
proving the training efficiency. For this purpose,
we shorten the maximum truncation length of the
passage, from 128 to 32. However, reducing the
passage length will probably results in a informa-
tion loss, thus hurting the generation performance.
As the solution, we concatenate the title (a short
text) and the shortened passage for enhancing the
contained semantics. We also add prompts before
titles and passage contents like “title:” or “passage:”
for better generation performance.

Increasing Model Scale. Model-based retrieval
requires a strong memorization capacity from the
generative PLM, especially for our approach that in-
volves a passage generation stage. Besides, scaling
up the text corpus will significantly increase the
difficulty of corpus memorization, and the PLM
with a small parameter scale will have a limited
memorization capacity when the data scale reaches
a certain level. Considering the two aspects, we
scale the model size accordingly and employ a
larger PLM when necessary. Specifically, we use
T5-large (the first stage is more difficult) and T5-
base for the two stages of our approach on a small
corpus (e.g., subsets of MS MARCO), respectively.
Further, we increase them to T5-3B and T5-large
accordingly on a large corpus (e.g., the full set of
MS MARCO). Besides the improved capacity, we
find that using a larger model size is also useful
in improving the convergence rate (as detailed in
Section 5.4).

4 Experimental Settings

This section describes the major experimental set-
tings, including datasets, evaluation metrics, base-
lines and implementation details.

4.1 Datasets and Evaluation Metrics

Datasets. We conduct experiments on two public
available datasets, namely MS MARCO (Nguyen
et al., 2016) Passage Ranking and Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019). (1) MS

MARCO contains Bing search queries as well as
passages from web documents, making it one of
the largest web search datasets to date, with a full
corpus of over 8.8 million passages. In addition, we
also consider two subsets, each containing 100K
and 1M passages, by following (Tay et al., 2022;
Zhuang et al., 2022). Based on the MS MARCO
Question Answering dataset, we extract the URLs
associated with the passages, selecting a random
URL if a passage contains multiple URLs (2) The
NQ dataset is a question answering dataset where
the query data is collected from Google search
logs, and the document data is from Wikipedia. We
use the NQ320K version by following NCI (Wang
et al., 2022), which contains 320K labeled query-
document pairs and 100K documents. We collect
abstracts of documents as intermediate-generated
passages.

Evaluation Metric. Following previous works,
we adopt Hits@1 as the evaluation metric. This
metric is calculated as the percentage of queries to
which the top-1 generation result is positive. Since
the outputs of models at different stages are either
passage texts or URL texts, unlike the conventional
MS MARCO evaluation by determining whether
the retrieved identifiers are in the identifier label
list, we evaluate the results by determining whether
it is an exact match to the label text.

4.2 Baselines

For comparison, we chose the following base-
lines including sparse retrieval, dense retrieval, and
model-based retrieval.

BM25 (Robertson et al., 2009) is a classi-
cal sparse retriever that uses the inverted in-
dex to find relevant passages by term overlap.
DPR (Karpukhin et al., 2020) and ANCE (Xiong
et al., 2021) are two representative dense retrievers
that adopts dual-encoder architecture. For model-
based retrievers, DSI (Tay et al., 2022) is a pi-
oneer work for model-based retrieval that uses
a sequence-to-sequence model to map the input
query to the relevant docid. We use the open-source
code released by DSI-QG for reproducing DSI
baseline on MS MARCO. SEAL (Bevilacqua et al.,
2022) is proposed to generate multiple ngrams for
a query with an auxiliary Ferragina Manzini in-
dex. DSI-QG (Zhuang et al., 2022) proposes to
improve DSI with augmented data constructed by
query generation. NCI (Wang et al., 2022) also
utilizes pseudo queries for improving model-based

6106

retrieval with tailored architecture. Due to the dif-
ferent experimental settings of different methods,
we copy the performance values for some baselines
on NQ in NCI and reproduce all of the baselines on
MS MARCO under the same evaluation strategy.
All the model-based retrieval baselines adopt the
“large” version of PLMs.

4.3 Implementation Details

We conduct our experiments with the deep learning
framework PaddlePaddle (Ma et al., 2019) and nat-
ural language processing toolkit PaddleNLP (Con-
tributors, 2021) on up to 32 NVIDIA Tesla A100
GPUs (with up to 80G RAM).

PLM. The generation models adopted in our work
are initialized with different parameter scales of
T5 (Raffel et al., 2020). In the passage genera-
tion model, we use T5-3B for initialization on MS
MARCO Full, and other models are initialized with
T5-large. In the URL generation model, we use T5-
large for initialization on MS MARCO Full, and
other models are initialized with T5-base.

Hyper-parameters. We adopt Adam optimizer
with a learning rate of 5e-5, and train the models for
a maximum of 3M steps with bf16 mixed precision
strategy. The batchsize is set up to 128, 384 and 80
for T5-base, T5-large and T5-3B, respectively. The
maximal length of queries, passages and URLs are
set as 32, 32 and 80, respectively. The warm-up
step is set as 100K and 10K for passage and URL
generation task, respectively.

Query Augmentation. We adopt the existing
docT5query-large (Nogueira et al., 2019) model
that trained on MS MARCO training set, and gener-
ate 20 and 15 queries per passage for MS MARCO
and NQ, respectively. For training data, we only
use pseudo-labeled data constructed by query gen-
eration on MS MARCO, and use both pseudo-
labeled data and labeled data on NQ.

5 Experimental Results and Analysis

In this section, we report the experimental results of
our proposed approach and conduct comprehensive
empirical analysis.

5.1 Main Results

Table 1 and Table 2 report the overall results on
MS MARCO and NQ320K. Based on the results,
we have the following observations:

Methods 100K 1M Full

BM25 (Yang et al., 2017) 58.01 35.20 17.05
DPR (Karpukhin et al., 2020) 71.84 52.52 29.54
DSI (Tay et al., 2022) 11.75 - -
DSI-QG (Zhuang et al., 2022) 65.64 40.43 -

TOME (single-stage) 66.46 43.04 19.32
TOME (two-stage) 71.93 47.19 22.03

Table 1: The Hits@1 results of different methods on
variant corpus scales of MSMARCO.

Methods Hits@1

BM25 (Yang et al., 2017) 15.11
ANCE (Xiong et al., 2021) 52.63
DSI (Tay et al., 2022) 35.60
SEAL (Bevilacqua et al., 2022) 59.93
NCI (Wang et al., 2022) 66.23
DSI-QG (Zhuang et al., 2022) 61.34

TOME (single-stage) 64.93
TOME (two-stage) 66.64

Table 2: The results of different methods on NQ320K.

Comparison with Model-based Retrievers. We
observe that TOME consistently outperforms
model-based retrievers on three subsets of MS
MARCO and NQ320K datasets, thereby demon-
strating the effectiveness of the proposed method.
Moreover, NCI is a competitive baseline on
NQ320K, which uses tailored decoder architecture,
preprocessed semantic docid, and regularization
on top of DSI-QG, while our method is simply
trained with the standard T5 configuration without
any additional processing. We also discover that
DSI-QG is unable to effectively converge when
trained on the MS MARCO Full. We speculate that
random non-linguistic docids become a bottleneck
as the corpus scales up, while the loss can normally
converge when using normal text (e.g., URL) as a
generation target.

Effect of Two-stage Generation Architecture. By
simply substituting the generation target of DSI-
QG from random string docids to URLs (single-
stage of our method), the performance has been im-
proved (refer to DSI-QG and TOME single-stage
in Table 1 and 2), indicating that natural language
identifiers are more suitable for model-based re-
trieval tasks than non-linguistic docids. Further-
more, if we employ the two-stage generation that
includes an intermediate step to generate passages
before generating URLs, the performance will be
further improved (refer to TOME single-stage and
TOME two-stage in Table 1 and 2). Such observa-

6107

Variants
MS MARCO NQ

100K 320K

TOME (two-stage) 71.93 66.64

w/o prompt 71.49 65.60
w/ increased maxlen 71.80 65.15
w/ reduced pseudo query 69.23 64.73

Table 3: The Hits@1 results of different variants of
TOME on MS MARCO 100K and NQ320K.

tion demonstrates that integrating passage genera-
tion in the process of model-based retrieval leads
to better performance.

Comparison with Dense Retrievers. By adopting
a series of training strategies, we successfully train
TOME on large-scale corpora. However, although
TOME outperforms dense retrieval methods on MS
MARCO 100K and NQ320K, there still remains a
performance gap when compared to DPR on larger
corpora such as MS MARCO 1M and Full. This in-
dicates that our method still has gaps compared to
advanced dense retrieval methods when the corpus
scales up. Since the model-based method necessi-
tates complete memorization of the entire corpus, it
inherently possesses a disadvantage in larger-scale
corpora when compared to dense retrievers, which
needs to be further explored.

5.2 Ablation Study

In this section, we conduct an ablation study to
examine the effectiveness of strategies in TOME.
We report the results on MS MARCO 100K and
NQ320K. Here, we consider three variants based
on TOME for comparison: (a) w/o prompt re-
moves the prompts before titles and passages;
(b) w/ increased maxlen increases the maximum
truncated length of passage from 32 to 128; (c)
w/ reduced pseudo query reduces the amount of
pseudo query to 10 per passage.

Table 3 presents the results for variants of TOME.
We can observe the following findings: (a) The per-
formance drops in w/o prompt, demonstrating that
adding prompts for identifying the title and pas-
sage is helpful for generating better results. (b) The
performance drops in w/ increased maxlen, demon-
strating that due to various training strategies, short-
ening the maximum truncated passage length does
not bring performance loss but reduces the diffi-
culty of training. (c) The performance drops in
w/ reduced pseudo query, demonstrating the effec-
tiveness of generating a large number of pseudo

queries for data augmentation.

5.3 Analysis on Two-stage Generation

In this section, we investigate the generation results
of the passage generation model quantitatively and
qualitatively to showcase the superiority of the pro-
posed two-stage generation approach.

5.3.1 Quantitative Analysis
We quantitatively analyze the generation results on
MSMARCO dev set with the passage generation
models trained on MS MARCO 100K.

First, we are surprised to find that on the entire
dev set, the proportion of generated passages are
the passages exist in the corpus is about 95%. In
cases where the model failed to generate labels
correctly, about 85% of the generated passages
still exist in the corpus. This result indicates that
the model is capable of memorizing the corpus
precisely and is able to generate a retrieval-like re-
sult. Moreover, previous studies of dense retrieval
reveal that there are a lot of false negatives in MS-
MARCO (Qu et al., 2021). We also observe that
approximately 80% of the generation results that
are not labeled as positives but appear in the cor-
pus are false negatives, showing that model-based
retrieval suffers from the same issue of false neg-
atives as dense retrieval. Despite this, the passage
generation model actually has strong generation
capability.

5.3.2 Qualitative Analysis
To explore the generative capabilities of TOME,
we conduct a case study on MSMARCO 100K,
utilizing a maximum truncation length of 128 for
better illustration.

Table 4 gives two sampled queries, along with
their corresponding label passages, evidence pas-
sages (if available) and generated passages. With
respect to the first query, the generated passage is
not exactly the same as the labeled passage. In
comparison with the labeled positive passage, the
second half of the generated passage is altered.
Despite the alteration in the generation passage,
the URL generation model is still able to accu-
rately map it to the correct URL, indicating that
the URL generation model can tolerate changes
introduced by the passage generation model. In
the second example, the model extracts relevant
content from both the label passage and the ev-
idence passage, and then combines the contents
to create the generated passage. It is interesting

6108

Query Label passages Other evidence passage in the corpus Passages generated by passage generation model

Fin de siecle
meaning

Fin de si cle [(fann duh see-ek-luh)] The end of the
nineteenth century; the phrase is French for end of the
century. Fin de si cle is particularly used to describe
the period’s self-conscious artistic movements and a
sophisticated despair that became popular at . . .

- Fin de si cle [(fann duh see-ek-luh)] The end of the
nineteenth century; the phrase is French for end of the
century. Fin de si cle is particularly used to describe
a period of national despair that ended in the French
Alps, after the French Revolution.

Is ginger good for
sore throat

Foods that heal a sore throat! Ginger: Lots of it eaten
as close to raw as possible. Ginger is an analgesic (a
pain-killer) that may alleviate the pain associated
with a sore throat. It is also a good antibacterial
and antifungal and can help fight the infection
causing your sore throat. I love ginger and use
it a lot whether I have a sore throat or not. I keep a
grater handy and grate fresh ginger into soups . . .

1. Ginger. Ginger, often used for treating
the common cold, can also help with bronchi-
tis.

::
The

:::::::::
anti-inflammatory

::
and

::::::::
immune-boosting

:::::
properties

::::
present

:
in
:::
ginger

:::
help

:::
relieve

:::::
irritated,

::::
inflamed

::
or

::::
swollen

::::
bronchial

::::
tubes. 1 Add half

a teaspoon each of ground ginger, cinnamon and
cloves in a cup of hot water. . . .

:::
Ginger

::
is
:::::::

commonly
:::

used
::

to
:::::

soothe
:::

sore

:::
throats

:::::
because

::
of
::

its
::::::::::

anti-inflammatory
:::

and

::::::::
immune-boosting

:::::::
properties. Ginger is an

analgesic (a pain-killer) that may alleviate the
pain associated with a sore throat. It is also a
good antibacterial and antifungal and can help
fight the infection causing your sore throat. . . .

Table 4: The comparison of the labeled passages and generated passages. The evidence passages are not manually
labeled but contain relevant content. The italic words with underline represents the different parts of two passages,
the

::::::::::::::::::::::::::
italic words with wavy underline and bold words with underline in different passages represent the reference

parts.

0 40K 80K 120K 150K 200K 240K
Training steps

1

2

3

4

5

6

PP
L

100k
1M
8.8M

(a) Corpus scales.

0 80K 160K 240K 320K 400K 480K
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

T5-base
T5-large
T5-3b

(b) Model scales.

0 160K 320K 480K 640K 800K
Training steps

1

2

3

4

5

6

7

8

9

PP
L

maxlen=32
maxlen=128

(c) Maximum truncated length.

Figure 2: The variation trends of model perplexity or training loss with the increase of training step under different
corpus scales, model scales and maximum truncated length of passages.

to observe that the passage generation model is
capable of summarizing multiple passages.

5.4 Analysis on Scaling

We observe that long text generation poses a chal-
lenge to the convergence of loss, so we investigate
the training efficiency and capability of the model
under varying conditions. In particular, we use the
same computing resource and conduct training on
the passage generation stage (i.e., the first stage)
of TOME. Considering that the trend is similar in
the second stage, it has been omitted here due to
limited space.

Effect on Data Scale. We investigate the impact of
expanding the corpus on model training and exam-
ine whether the model capacity is insufficient when
dealing with a large corpus. We fix the T5-large
model and conduct training on MSMARCO 100K,
1M and Full datasets, respectively, without shorten-
ing the length of passages. We use perplexity (PPL)
to estimate the model capacity and monitor how
perplexity changes as training steps increase. The
results are shown in Figure 2(a). It can be observed
that the perplexity of the T5-large model fails to

converge to a lower level after corpus scale expan-
sion, which illustrates that under this task, a certain
amount of data will lead to the capacity bottleneck
of the model. In addition, the decline rate of per-
plexity slows down on larger corpora, indicating
that models with the same parameter size have low
learning efficiency on a large-scale corpus..

Effect on Model Scale. To investigate the training
characteristics of models with varying parameter
scales, we fixed the data size to a intermediate scale
of 1M, and used T5-base, T5-large and T5-3B mod-
els for training. As depicted in Figure 2(b) shows
the loss convergence of the model with different
parameter sizes as training steps increases. Among
the three scales of models, the T5-base model ex-
hibits the slowest convergence and encounters dif-
ficulties in convergence, while the T5-3B model
with the largest scale of parameters converges the
fastest. This indicates that PLMs with a larger num-
ber of parameters exhibit higher training efficiency,
although with less data processing capability per
step and more parameters to optimize under the
same computing resources.

Effect on Passage Length. In order to investi-

6109

gate the effect of reducing the length of generated
passages, we fixed the model as T5-large, and con-
ducted experiments on passages with different max-
imum truncated lengths as generation targets on
MSMARCO 1M. Figure 2 shows that after reduc-
ing the maximum truncated length of the generated
passage, the perplexity significantly decreases, in-
dicating that such a strategy is beneficial to miti-
gate the difficulty of the passage generation task.
Moreover, the model exhibited enhanced efficiency
when generating shorter passages.

6 Conclusion

In this paper, we introduce TOME, a innovative
two-stage model-based retrieval approach. To im-
plement our approach, we make two major techni-
cal contributions in the design of the identifier and
the architecture of two-stage generation. Moreover,
we also employ a number of training strategies
to better optimize our proposed architecture, es-
pecially on large-scale corpora. Extensive results
demonstrate the effectiveness of TOME. Further-
more, we perform a thorough analysis and sum-
marize the scaling law for the proposed method.
We believe such an idea itself is worthwhile for
exploring in designing new model-based retrieval
architecture.

Limitations

In this work, we adopt a series of strategies for opti-
mizing the generation models when corpus scaling
up. Although we successfully train TOME on large-
scale corpora, there is still a performance gap com-
pared to mainstream dense retrieval methods under
this scenario. This is also one of the limitations
of current model-based retrieval methods, because
this retrieval paradigm requires the model to mem-
orize the entire corpus, unlike dense retrievers that
have strong generalization capability for different
documents in a large corpus. In addition, effective
training on large-scale corpus also requires large-
scale computing resources (up to 32 Tesla A100
80G GPU) and long training time, which will in-
directly generate risks of energy consumption and
emissions.

Acknowledgements

This work was partially supported by National
Natural Science Foundation of China under Grant
No. 62222215, Beijing Natural Science Founda-
tion under Grant No. 4222027, and Beijing Out-

standing Young Scientist Program under Grant No.
BJJWZYJH012019100020098.

References
Akari Asai, Jungo Kasai, Jonathan Clark, Kenton Lee,

Eunsol Choi, and Hannaneh Hajishirzi. 2021. XOR
QA: Cross-lingual open-retrieval question answering.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 547–564.

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,
Wen tau Yih, Sebastian Riedel, and Fabio Petroni.
2022. Autoregressive search engines: Generat-
ing substrings as document identifiers. ArXiv,
abs/2204.10628.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021.

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu,
Yixing Fan, and Xueqi Cheng. 2022. Corpusbrain:
Pre-train a generative retrieval model for knowledge-
intensive language tasks. CoRR, abs/2208.07652.

PaddleNLP Contributors. 2021. Paddlenlp: An easy-
to-use and high performance nlp library. https://
github.com/PaddlePaddle/PaddleNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef-
ficient and effective passage search via contextual-
ized late interaction over BERT. In Proceedings of
the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pages 39–48.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob

6110

http://arxiv.org/abs/2208.07652
http://arxiv.org/abs/2208.07652
http://arxiv.org/abs/2208.07652
https://github.com/PaddlePaddle/PaddleNLP
https://github.com/PaddlePaddle/PaddleNLP

Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Hyunji Lee, Sohee Yang, Hanseok Oh, and Minjoon
Seo. 2022. Generative retrieval for long sequences.
CoRR, abs/2204.13596.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021.
Pretrained transformers for text ranking: Bert and
beyond. Synthesis Lectures on Human Language
Technologies, 14(4):1–325.

Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang.
2019. Paddlepaddle: An open-source deep learning
platform from industrial practice. Frontiers of Data
and Domputing, 1(1):105–115.

Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork.
2021. Rethinking search: Making experts out of
dilettantes. CoRR, abs/2105.02274.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrat-
ing neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2016), Barcelona,
Spain, December 9, 2016, volume 1773 of CEUR
Workshop Proceedings.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019.
From doc2query to doctttttquery. Online preprint.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2020.
Unik-qa: Unified representations of structured and
unstructured knowledge for open-domain question
answering. arXiv preprint arXiv:2012.14610.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5835–5847.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu,
Wayne Xin Zhao, QiaoQiao She, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. 2021a. PAIR: Leverag-
ing passage-centric similarity relation for improving
dense passage retrieval. In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP
2021, pages 2173–2183.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qiaoqiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021b. Rocketqav2: A joint training method
for dense passage retrieval and passage re-ranking.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2825–2835.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qifei Wu, Yuchen Ding, Hua Wu, Haifeng Wang,
and Ji-Rong Wen. 2022. A thorough examination on
zero-shot dense retrieval. CoRR, abs/2204.12755.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Yi Tay, Vinh Quang Tran, Mostafa Dehghani, Jianmo Ni,
Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe
Zhao, Jai Gupta, Tal Schuster, William W. Cohen,
and Donald Metzler. 2022. Transformer memory as a
differentiable search index. ArXiv, abs/2202.06991.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming
Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing Xia,
Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie,
Hao Allen Sun, Weiwei Deng, Qi Zhang, and Mao
Yang. 2022. A neural corpus indexer for document
retrieval. CoRR, abs/2206.02743.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of lucene for information retrieval
research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Shinjuku, Tokyo,
Japan, August 7-11, 2017, pages 1253–1256.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-
Rong Wen. 2022. Dense text retrieval based on pre-
trained language models: A survey. arXiv preprint
arXiv:2211.14876.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

6111

http://arxiv.org/abs/2204.13596
http://arxiv.org/abs/2204.12755
http://arxiv.org/abs/2204.12755
http://arxiv.org/abs/2206.02743
http://arxiv.org/abs/2206.02743

Kun Zhou, Yeyun Gong, Xiao Liu, Wayne Xin Zhao,
Yelong Shen, Anlei Dong, Jingwen Lu, Rangan Ma-
jumder, Ji-Rong Wen, Nan Duan, and Weizhu Chen.
2022a. Simans: Simple ambiguous negatives sam-
pling for dense text retrieval. In EMNLP.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian
Zhang, and Ji-Rong Wen. 2022b. Ultron: An ulti-
mate retriever on corpus with a model-based indexer.
CoRR, abs/2208.09257.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Yu Wu,
and Ji rong Wen. 2022c. Dynamicretriever: A pre-
training model-based ir system with neither sparse
nor dense index. ArXiv, abs/2203.00537.

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei,
Ming Gong, Guido Zuccon, and Daxin Jiang. 2022.
Bridging the gap between indexing and retrieval for
differentiable search index with query generation.
CoRR, abs/2206.10128.

6112

http://arxiv.org/abs/2208.09257
http://arxiv.org/abs/2208.09257
http://arxiv.org/abs/2206.10128
http://arxiv.org/abs/2206.10128

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1 and abstract

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 4

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We use the published datasets.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Section 4 and section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

6113

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
There are no special settings for packages we use, such as Pandas.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

6114

