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Abstract

In this work, we investigate a more realis-
tic unsupervised multimodal machine transla-
tion (UMMT) setup, inference-time image-free
UMMT, where the model is trained with source-
text image pairs, and tested with only source-
text inputs. First, we represent the input images
and texts with the visual and language scene
graphs (SG), where such fine-grained vision-
language features ensure a holistic understand-
ing of the semantics. To enable pure-text input
during inference, we devise a visual scene hal-
lucination mechanism that dynamically gener-
ates pseudo visual SG from the given textual
SG. Several SG-pivoting based learning objec-
tives are introduced for unsupervised transla-
tion training. On the benchmark Multi30K
data, our SG-based method outperforms the
best-performing baseline by significant BLEU
scores on the task and setup, helping yield trans-
lations with better completeness, relevance and
fluency without relying on paired images. Fur-
ther in-depth analyses reveal how our model
advances in the task setting.

1 Introduction

Current neural machine translation (NMT) has
achieved great triumph (Sutskever et al., 2014; Bah-
danau et al., 2015; Zhu et al., 2020), however in
the cost of creating large-scale parallel sentences,
which obstructs the development of NMT for the
minor languages. Unsupervised NMT (UMT) has
thus been proposed to relieve the reliance of paral-
lel corpora (Artetxe et al., 2018; Chen et al., 2018).
The core idea of UMT is to align the represen-
tation spaces between two languages with alter-
native pivot signals rather than parallel sentences,
such as bilingual lexicons (Lample et al., 2018),
multilingual language models (LM) (Conneau and
Lample, 2019) and back-translation technique (Sen-
nrich et al., 2016). Recent trends have considered
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Avoid parallel sent.
during training?

Avoid paired img.
during testing?

• Supervised MMT
General MMT
Zhang et al. (2020)
Fang and Feng (2022)
Li et al. (2022)

✓

• Unsupervised MMT
Chen et al. (2018)
Su et al. (2019)
Huang et al. (2020)

✓

This work ✓ ✓

Table 1: Practical unsupervised MMT requires the avoid-
ance of not only parallel sentences during training, but
also the paired image during inference (testing).

the incorporation of visual information, i.e., mul-
timodal machine translation (MMT) (Specia et al.,
2016; Huang et al., 2016). Intuitively, visual modal-
ity can serve as language-agnostic signals, pivoting
different languages by grounding the same textual
semantics into the common visual space. Therefore,
solving UMT with visual contents as pivot becomes
a promising solution, a.k.a., unsupervised MMT
(UMMT) (Huang et al., 2020; Su et al., 2019).

UMMT systems are trained with only the text-
image pairs (<text-img>), which can be easier to
collect than the parallel source-target sentence pairs
(<src-tgt>) (Huang et al., 2020). Although exempt-
ing the parallel sentences for training, UMMT still
requires such text-image pairs as inputs for testing.
Yet such assumption might be unrealistic, because
in most of the real-world scenarios such as online
translation systems, paired images are not available
during inference. Especially for some scarce lan-
guages, the <text-img> pairs have difficult access.
In other words, practical UMMT systems should
not only avoid the parallel sentences during train-
ing, but also the text-image pairs during inference.
As summarized in Table 1, although some existing
MMT researches exempt the testing-time visual
inputs (Zhang et al., 2020; Li et al., 2022), they all
unfortunately are supervised methods, relying on
large-scale parallel sentences for training.
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Figure 1: Representing the texts and images via lan-
guage scene graphs (LSG) and visual scene graphs
(VSG). In a scene graph, object, attribute, relation nodes
are shown in green, orange, purple respectively.

As emphasized above, the visual information is
vital to UMMT. However, for both the existing su-
pervised and unsupervised MMT studies, they may
suffer from ineffective and insufficient modeling of
visual pivot features. For example, most of MMT
models perform vision-language (VL) grounding
over the whole image and text (Huang et al., 2019;
Zhang et al., 2020), where such coarse-grained rep-
resentation learning can cause mismatching and
sacrifice the subtle VL semantics. Fang and Feng
(2022) recently introduce a fine-grained VL align-
ment learning via phrase-level grounding, while
without a holistic understanding of the visual scene,
such local-level method may lead to incomplete or
missing alignments.

In this work, we present a novel UMMT method
that solves all aforementioned challenges. First of
all, to better represent the visual (also the textual)
inputs, we consider incorporating the visual scene
graph (VSG) (Johnson et al., 2015) and language
scene graph (LSG) (Wang et al., 2018). The scene
graphs (SG) advance in intrinsically depicting the
semantic structures of texts or images with rich
details (cf. Fig. 1), which offers a holistic view-
point for more effective pivoting learning. Then,
we build the UMMT framework as illustrated in
Fig. 2. The input src text and paired image are first
transformed into LSG and VSG, which are further
fused into a mixed SG, and then translated into the
tgt-side LSG. And the tgt sentence will be finally
produced conditioned on the tgt LSG. Several SG-
based pivoting learning strategies are proposed for
unsupervised training of UMMT system. In addi-
tion, to support pure-text (image-free) input during
inference, we devise a novel visual scene hallu-
cination module, which dynamically generates a
hallucinated VSG from the LSG compensatively.

LSG VSG

LSG

Visual Scene
Hallucinating

LSG VSG

LSG

(a) Training phase (b) Testing phase

SG Fusing&Mapping SG Fusing&Mapping

Visual Scene
Hallucinating

Figure 2: The high-level overview of our SG-based
UMMT model. During training, src-side sentences with
paired images are used as inputs, together with the cor-
responding LSG and VSG. Testing phase only takes
src-side sentences, where the visual hallucination mod-
ule is activated to generate VSG from text sources.

Our system is evaluated on the standard MMT
Multi30K and NMT WMT data. Extensive exper-
imental results verify that the proposed method
outperforms strong baselines on unsupervised mul-
timodal translation by above 5 BLEU score on av-
erage. We further reveal the efficacy of the vi-
sual scene hallucination mechanism in relieving
the reliance on image inputs during inference. Our
SG-pivoting based UMMT helps yield translations
with higher completeness, relevance and fluency,
and especially obtains improvements on the longer
sentences.

Overall, we make the following contributions:
▶ 1) We are the first to study the inference-

time image-free unsupervised multimodal machine
translation, solved with a novel visual scene hal-
lucination mechanism. ▶ 2) We leverage the SGs
to better represent the visual and language inputs.
Moreover, we design SG-based graph pivoting
learning strategies for UMMT training. ▶ 3) Our
model achieves huge boosts over strong baselines
on benchmark data. Code is available at https:
//github.com/scofield7419/UMMT-VSH.

2 Related Work
Neural machine translation has achieved notable
development in the era of deep learning (Sutskever
et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015). The constructions of powerful neural mod-
els and training paradigms as well as the collec-
tion of large-scale parallel corpora are the driving
forces to NMT’s success (Vaswani et al., 2017; De-
vlin et al., 2019). The key of NMT is to learn a
good mapping between two (or more) languages.
In recent years, visual information has been intro-
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duced for stronger NMT (i.e., multimodal machine
translation), by enhancing the alignments of lan-
guage latent spaces with visual grounding (Specia
et al., 2016; Huang et al., 2016). Intuitively, people
speaking different languages can actually refer to
the same physical visual contents and conceptions.

Unsupervised machine translation aims to learn
cross-lingual mapping without the use of large-
scale parallel corpora. The setting is practically
meaningful to those minor languages with hard
data accessibility. The basic idea is to leverage
alternative pivoting contents to compensate the par-
allel signals based on the back-translation method
(Sennrich et al., 2016), such as third-languages
(Li et al., 2020), bilingual lexicons (Lample et al.,
2018) or multilingual LM (Conneau and Lample,
2019). The visual information can also serve as
pivot signals for UMT, i.e., unsupervised multi-
modal machine translation. Comparing to the stan-
dard MMT that trains with <src-img-tgt> triples,
UMMT takes as input only the <src-img>. So far,
few studies have explored the UMMT setting, most
of which try to enhance the back-translation with
multimodal alignment mechanism (Nakayama and
Nishida, 2017; Chen et al., 2018; Su et al., 2019;
Huang et al., 2020).

Scene graph describes a scene of an image or
text into a structure layout, by connecting discrete
objects with attributes and with other objects via
pairwise relations (Krishna et al., 2017; Wang et al.,
2018). As the SGs carry rich contextual and se-
mantic information, they are widely integrated into
downstream tasks for enhancements, e.g., image
retrieval (Johnson et al., 2015), image generation
(Johnson et al., 2018) and image captioning (Yang
et al., 2019). This work inherits wisdom, incorpo-
rating both the visual scene graph and language
scene graph as pivots for UMMT.

All the UMMT researches assume that the <src-
img> pairs are required during inference, yet we
notice that this can be actually unrealistic. We thus
propose a visual hallucination mechanism, achiev-
ing the inference-time image-free goal. There are
relevant studies on supervised MMT that manage
to avoid image inputs (with text only) during in-
ference. The visual retrieval-base methods (Zhang
et al., 2020; Fang and Feng, 2022), which main-
tain an image lookup-table in advance, such that
a text can retrieve the corresponding visual source
from the lookup-table. Li et al. (2022) directly
build pseudo image representations from the input

LSG

Step1: Sketching skeleton

Skeleton VSG Hallucinated VSG

Step2: Completing vision

Object node Attribute node Relation node Edge

Node 
augmentor

Relation 
augmentor

Figure 3: The illustration of the visual scene hallucina-
tion (VSH) module, including two steps of inference.

sentence. Differently, we consider generating the
visual scene graph with richer and holistic visual
structural information.

3 Scene Graph-based Translation System
3.1 Problem Definition

In UMMT, no parallel translation pairs are avail-
able. This work considers an inference-time image-
free UMMT. During training, the data availabil-
ity is <x, z>∈<X ,Z> and the corresponding src-
side LSGx and VSG, where X are the src-side
sentences, and Z are the paired images. During
inference, the model generates tgt-side sentences
y ∈ Y based on the inputs of only x ∈ X and the
corresponding LSGx, while the visual scene VSG

′

is hallucinated from LSGx. In both training and
inference, y will be generated from the intermedi-
ate tgt-side language scene graph LSGy, which is
produced from LSGx and VSG (or VSG

′
).

3.2 Framework
As shown in Fig. 2, the system first represents the
src-side LSGx and VSG features with two GCN
graph encoders, respectively. Then the SG fus-
ing&mapping module integrates and transforms
two SG representations into a unified one as tgt-
side LSG, i.e., LSGy. Another GSN model further
encodes the LSGy, where the representations are
used to generate the tgt sentence (i.e., translation).

Scene Graph Generating and Encoding We
first employ two off-the-shelf SG parsers to obtain
the LSG and VSG, separately (detailed in the ex-
periment part). For simplicity, here we unify the
notations of LSG and VSG as SG. We denote a
SG as G=(V,E), where V are the nodes (including
object o, attribute a and relation r types), and E are
the edges ei,j between any pair of nodes vi ∈ V .

We then encode both the VSG and LSG with
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Figure 4: Illustrations of the learning strategies for unsupervised multimodal machine translation.

two spatial Graph Convolution Networks (GCN)
(Marcheggiani and Titov, 2017) respectively, which
is formulated as:

r1, · · · , rn = GCN(G) , (1)

where ri is the representation of node vi. We here
denote rLi as LSG’s node representation, and rVi
as VSG’s node representation.

Visual Scene Hallucinating During inference,
the visual scene hallucination (VSH) module is
activated to perform two-step inference to generate
the hallucinated VSG

′
, as illustrated in Fig. 3.

Step1: sketching skeleton aims to build the
skeleton VSG. We copy all the nodes from the raw
LSGx to the target VSG, and transform the textual
entity nodes into the visual object nodes.

Step2: completing vision aims to enrich and aug-
ment the skeleton VSG into a more realistic one.
It is indispensable to add new nodes and edges
in the skeleton VSG, since in real scenarios, vi-
sual scenes are much more concrete and vivid than
textual scenes. Specifically, we develop a node aug-
mentor and a relation augmentor, where the former
decides whether to attach a new node to an existing
one, and the later decides whether to create an edge
between two disjoint nodes. To ensure the fidelity
of the hallucinated VSG

′
, during training, the node

augmentor and relation augmentor will be updated
(i.e., with the learning target LVSH) with the input
LSG and VSG supervisions. Appendix §A.1 details
the VSH module.

SG Fusing&Mapping Now we fuse the hetero-
geneous LSGx and VSG into one unified scene
graph with a mixed view. The key idea is to merge
the information from two SGs serving similar roles.

In particular, we first measure the representation
similarity of each pair of <text-img> nodes from
two GCNs. For those pairs with high alignment
scores, we merge them as one by averaging their
representations, and for those not, we take the
union structures from two SGs. This results in
a pseudo tgt-side LSGy. We then use another GCN
model for further representation propagation. Fi-
nally, we employ a graph-to-text generator to trans-
form the LSGy representations to the tgt sentence
y. Appendix §A.2 presents all the technical details
in this part.

4 Learning with Scene Graph Pivoting
In this part, based on the SG pivot we introduce
several learning strategies to accomplish the un-
supervised training of machine translation. We
mainly consider 1) cross-SG visual-language learn-
ing, and 2) SG-pivoted back-translation training.
Fig. 4 illustrates these learning strategies.

4.1 Cross-SG Visual-language Learning

The visual-language SG cross-learning aims to en-
hance the structural correspondence between the
LSG and VSG. Via cross-learning we also teach
the SG encoders to automatically learn to highlight
those shared visual-language information while de-
activating those trivial substructures, i.e., denois-
ing.

Cross-modal SG Aligning The idea is to encour-
age the text and visual nodes that serve a similar
role in VSG and LSG to be closer. To align the
fine-grained structures between SGs, we adopt the
contrastive learning (CL) technique (Logeswaran
and Lee, 2018; Yan et al., 2021; Fei et al., 2022;
Huang et al., 2022). In particular, CL learns effec-
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tive representation by pulling semantically close
content pairs together, while pushing apart those
different ones. Technically, we measure the simi-
larities between pairs of nodes from two VSG and
LSG:

si,j =
(rL

i )
T · rV

j

||rL
i || ||rV

j ||
. (2)

A threshold value α is pre-defined to decide the
alignment confidence, i.e., pairs with si,j > α are
considered similar. Then we put on the CL loss:

LCMA = −
∑

i∈LSGx, j∗∈VSG
log

exp(si,j∗/τ)

Z , (3)

Z =
∑

i∈LSGx, k∈VSG, k ̸=j∗

exp(si,k/τ) , (4)

where τ>0 is an annealing factor. j∗ means a posi-
tive pair with i, i.e., si,j∗>α.
Cross-modal Cross-reconstruction We further
strengthen the correspondence between VSG and
LSG via cross-modal cross-reconstruction. Specifi-
cally, we try to reconstruct the input sentence from
the VSG, and the image representations from the
LSG. In this way we force both two SGs to focus
on the VL-shared parts. To realize VSG→x we
employ the aforementioned graph-to-text generator.
For LSG→z, we use the graph-to-image generator
(Johnson et al., 2018). The learning loss can be
marked as LREC.

4.2 SG-pivoted Back-translation Training
Back-translation is a key method to realize unsuper-
vised machine translation (Sennrich et al., 2016).
In this work, we further aid the back-translation
with structural SG pivoting.
Visual-concomitant Back-translation We per-
form the back-translation with the SG pivot-
ing. We denote the X→Y translation direction
as y=Fxz→y(x, z), and Y→Z as x=Fyz→x(y, z).
As we only have src-side sentences, the back-
translation is uni-directional, i.e., x→ȳ→x.
LVCB = E[− log pyz→x(x|Fxz→y(x, z), z)] . (5)

Captioning-pivoted Back-translation Image
captioning is partially similar to MMT besides
the non-text part of the input. Inspired by Huang
et al. (2020), based on the SG pivoting, we incorpo-
rate two captioning procedures, Z→X and Z→Y ,
to generate pseudo parallel sentences <x̄-ȳ> for
back-translation and better align the language latent
spaces. We denote Z→X as x̄=Cz→x(z), Z→Y as
ȳ=Cz→y(z). The back-translation loss will be:

LCPB = E[− log p(x̄|Fxz→y(x̄, z), z)]

+ E[− log p(ȳ|Fyz→x(ȳ, z), z)] .
(6)

⋆ Remarks In the initial stage, each of the above
learning objectives will be executed separately, in
a certain order, so as to maintain a stable and ef-
fective UMMT system. We first perform LCMA

and LREC, because the cross-SG visual-language
learning is responsible for aligning the VL SGs,
based on which the high-level translation can hap-
pen. Then we perform back-translation training
LVCB and LCPB, together with VSH updating LVSH.
Once the system tends to converge, we put them all
together for further fine-tuning:
L = LCMA + LREC + LVCB + LCPB + LVSH . (7)

5 Experiments

5.1 Setups
The experiments are carried out on Multi30K data
(Elliott et al., 2016), a benchmark for MMT, where
each image comes with three parallel descriptions
in English/German/French. Following Huang et al.
(2020), we mainly consider the English-French
(En↔Fr) and English-German (En↔De). For each
translation direction, we only use the src sentence
& img for training, and only the src sentence for
testing. We also test on the WMT16 En→Ro and
WMT14 En→De, En→Fr. WMT (Bojar et al.,
2014, 2016) is widely-used text-only translation
corpora, where following Li et al. (2022), we use
CLIP (Radford et al., 2021) to retrieve images from
Multi30K for sentences.

Following prior research, we employ the Faster-
RCNN (Ren et al., 2015) as an object detector, and
MOTIFS (Zellers et al., 2018) as a relation clas-
sifier and an attribute classifier, where these three
together form a VSG generator. For LSG gener-
ation, we convert the sentences into dependency
trees with a parser (Anderson et al., 2018), which
is then transformed into the scene graph based on
certain rules (Schuster et al., 2015). For text prepro-
cessing, we use Moses (Koehn et al., 2007) for tok-
enization and apply the byte pair encoding (BPE)
technique. We use Transformer (Vaswani et al.,
2017) as the underlying text-encoder to offer rep-
resentations for GCN, and use the FasterRCNN to
encode visual feature representations. All GCN
encoders and other feature embeddings have the
same dimension of 1,024, and all GCN encoders
are with two layers.

We mainly compare with the existing UMMT
models: Game-MMT (Chen et al., 2018), UMMT
(Su et al., 2019) and PVP (Huang et al., 2020).
To achieve a fair comparison on the inference-time
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En→ Fr En← Fr En→ De En← De

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR
• Testing with image input given
Game-MMT - - - - 16.6 - 19.6 -
UMMT 39.8 35.5 40.5 37.2 23.5 26.1 26.4 29.7
PVP 52.3 67.6 46.0 39.8 33.9 54.1 36.1 34.7
Ours# 56.9 70.7 50.4 42.5 37.4 57.2 39.2 38.3

w/o SGs 51.7 64.0 46.2 40.7 34.5 56.4 36.9 35.2
• Testing without image input given
UMMT 15.8 12.7 10.2 13.6 8.4 11.3 7.5 10.8
UMMT∗ 30.4 28.4 31.8 30.4 15.7 17.7 19.3 22.7
PVP 26.1 23.8 25.7 23.4 11.1 13.8 14.0 17.2
PVP∗ 46.7 58.0 39.0 31.9 25.4 40.1 27.6 26.0
Ours 50.6 64.7 45.5 37.3 32.0 52.3 33.6 32.8

(+3.9) (+6.7) (+6.5) (+5.4) (+6.6) (+12.2) (+6.0) (+6.8)

Table 2: Results of UMMT on Multi30K data. ‘Ours#’: using paired images for testing instead of visual
hallucination. ‘UMMT∗/PVP∗’: re-implemented baselines with phrase-level retrieval-based visual hallucination. In
the brackets are the improvements of our model over the best-performing baseline(s).

En→Fr En←Fr En→De En←De Avg.
Ours 50.6 45.5 32.0 33.6 40.4
- LCMA 49.2 44.3 30.9 32.6 39.3(-1.1)

- LREC 48.7 43.9 30.3 32.1 38.8(-1.6)

- LVCB 47.0 42.2 28.7 30.1 37.0(-3.4)

- LCPB 45.9 41.6 27.6 29.2 36.1(-4.3)

- LCMA&LREC 47.2 42.5 29.2 30.9 37.5(-2.9)

- LCPB&LVCB 44.6 40.0 26.3 27.7 34.7(-5.7)

Table 3: Ablating different learning strategies.

image-free setup, we also re-implement the UMMT
and PVP by integrating the phrase-level retrieval-
based visual hallucination method (Fang and Feng,
2022). All models use the same fair configurations,
and we do not use pre-trained LM. On WMT we
also test the supervised MMT setup, where we use
these baselines: UVR (Zhang et al., 2020), RMMT
(Wu et al., 2021b), PUVR (Fang and Feng, 2022)
and VALHALLA (Li et al., 2022). We report the
BLEU and METEOR scores for model evaluation.
Our results are computed with a model averaging
over 5 latest checkpoints with significance test. Our
experiments are based on the NVIDIA A100 Tensor
Core GPUs.

5.2 Main Results

Results on Multi30K In Table 2 we show the
overall results on Multi30K data. First, we in-
spect the performance where gold-paired images
are given as inputs for testing. We see that our
method (Ours#), by integrating the LSG and VSG
information, shows clear superiority over baselines
on all translation jobs, while ablating the SGs, the
performance drops rapidly. This shows the impor-
tance of leveraging scene graphs for more effective

En→Ro En→De En→Fr Avg.
• Supervised training (with parallel sentences)
UVR 33.8 28.2 39.6 33.8
RMMT - 24.5 35.3 -
PUVR 33.2 28.5 39.9 33.9
VALHALLA - 28.0 40.0 -
• Unsupervised training (without parallel sentences)
UMMT∗ 27.4 20.8 32.6 26.9
PVP∗ 29.9 23.4 35.0 29.4
Ours 33.1 27.8 38.1 33.0

Table 4: Results (BLEU) on WMT datasets. All model
supports inference-time image-free setting with vi-
sual hallucination mechanism.

multimodal feature representations. Then, we look
at the results where no paired images are given, i.e.,
an inference-time image-free setup. By comparing
UMMT/PVP with UMMT∗/PVP∗ we understand
that without images unsupervised MMT fails dra-
matically. Notably, our system shows significant
improvements over the best baseline PVP∗, by av-
erage 5.75=(3.9+6.5+6.6+6.0)/4 BLEU score. Al-
though UMMT∗ and PVP∗ acquire visual signals
via the phrase-level retrieval technique, our SG-
based visual hallucination method succeeds much
more prominently. Besides, there are compara-
bly small gaps between Ours and Ours#, which
indicates that the proposed SG-based visual halluci-
nation is highly effective. The above observations
prove the efficacy of our overall system for UMMT.

Ablation Study In Table 3 we quantify the con-
tribution of each objective of scene graph piv-
oting learning via ablation study. Each learn-
ing strategy exhibits considerable impacts on the
overall performance, where the captioning-pivoted
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Figure 5: Qualitative results of inference-time image-free UMMT (En→De).

Avg.
BLEU

Human evaluation
Completeness↑ Ambiguity↓ Fluency↑

PVP∗(SR) 33.2 7.1 7.6 8.0
PVP∗(PR) 35.0 7.8 5.0 8.5
Ours 39.3 9.2† 2.5† 9.7†

w/o SG 35.7 7.6 6.7 8.6

Table 5: Human evaluations are rated on a Likert 10-
scale, where the results are averaged on En→De and
De→En. PVP∗ model uses the sentence-level and
phrase-level retrieval-based visual hallucination (i.e.,
SR and PR), respectively, during testing. † indicates
significance over the variants.

back-translation influences the results the biggest,
with an average 4.3 BLEU score. Overall, two
SG-pivoted back-translation training targets show
much higher influences than the two cross-SG
visual-language learning objectives. When re-
moving both two back-translation targets, we wit-
ness the most dramatic decrease, i.e., average -5.7
BLEU. This validates the long-standing finding
that the back-translation mechanism is key to unsu-
pervised translation (Sennrich et al., 2016; Huang
et al., 2020).

Results on WMT Table 4 further compares the
translation results on WMT corpora under super-
vised/unsupervised MMT. It is unsurprising to see
that MMT models trained with supervision from
parallel sentences are overall better than the unsu-
pervised ones. However, our UMMT system ef-
fectively narrows the gap between supervised and

Overall Txt-Img. Regional Phrase-Object
PVP∗(SR) 67.4±6.8 -
PVP∗(PR) - 88.9±5.4

Ours 86.8±4.7 91.4±3.8

- LCMA 76.5±5.5 80.3±4.3

- LREC 70.1±5.2 77.5±4.0

- LCMA&LREC 68.6±6.1 72.8±4.8

Table 6: Vision-language aligning evaluation. For our
models, we transform the hallucinated VSG into an
image via a graph-to-image generator. We use CLIP to
measure the VL relevance score.

unsupervised MMT. We can find that our unsuper-
vised method only loses within 1 BLEU score to
supervised models, e.g., UVR and PUVR.

5.3 Further Analyses and Discussions

In this part we try to dive deep into the model, pre-
senting in-depth analyses to reveal what and how
our proposed method really works and improves.

• Integration of the vision and language SGs
helps gain a holistic understanding of input.
Both VSG and LSG advance in comprehensively
depicting the intrinsic structure of the content se-
mantics, which ensures a holistic understanding of
the input texts and images. By encoding the vision
and language SGs, it is expected to completely cap-
ture the key components from src inputs, and thus
achieve better translations. However, without such
structural features, some information may be lost
during the translation. In Table 5 via human evalua-
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Figure 6: BLEU scores under different sentence lengths.

tion we can see that our system obtains significantly
higher scores in terms of the completeness, com-
paring to those baselines without considering SGs.
Also in Fig. 5, we can find that the baseline system
PVP∗(PR), with only the local-level phrase-level
visual retrieval, has frequently missed the key enti-
ties during the translation, e.g., the object ‘tee’ in
case#2.

• SG-based multimodal feature modeling helps
achieve more accurate alignment between vi-
sion and language. Another merit to integrating
the SGs is that the fine-grained graph modeling of
visual and language scenes obviously aids more
precise multimodal feature alignment. In this way,
the translated texts have higher fidelity to the origi-
nal texts. Inaccurate multimodal alignment without
considering the SG modeling will otherwise lead
to worse ambiguity. Observing the ambiguity in
Table 5, we see that our model exhibits the lowest
ambiguity. In Fig. 5 for the case#3, PVP∗(PR)
confuses the verb ‘saw’ as ‘see’ as it fails to accu-
rately refer ‘saw’ to a certain lumbering tool, while
ours gives a correct prediction. Besides, accurate
multimodal alignment greatly enhances the utility
of visual information. In Table 6 we compare the
relevance of vision-language counterparts by dif-
ferent models, where our model gives the highest
performance on both the overall text-image match-
ing and the regional phrase-object matching. In
addition, two proposed cross-SG learning targets
display big impacts on the VL-aligning ability.

• The longer and more complex the sentences,
the higher the translation quality benefiting
from the SGs features. In this work, we investi-
gate the SG structures to model the input texts.
Graph modeling of the texts has proven effec-
tive for resolving the long-range dependency issue
(Marcheggiani and Titov, 2017; Li et al., 2022). In
Fig. 6 we group the translation performance based
on the lengths of source sentences. We see that
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tween the hallucinated vision (via graph-to-image gen-
erator) and the ground truth image.

our SG-based model gives very considerable gains
over the two non-SG baselines, where the longer
the sentences the higher the improvements.

• Incorporating SGs into MMT advances in
more fluent translation. Also, modeling the se-
mantic scene graph of the input features contributes
a lot to the language fluency of the translation texts.
Looking at the Fluency item in Table 5, we find that
our system gives the best fluency with the lowest
grammar errors.

• SG-based visual scene hallucination mecha-
nism helps gain rich and correct visual features.
Different from the baseline retrieval-based meth-
ods that directly obtain the whole images (or local
regions), our proposed VSH mechanism instead
compensatively generates the VSGs from the given
LSGs. In this way, the hallucinated visual features
enjoy two-fold advantages. On the one hand, the
pseudo VSG has high correspondence with the tex-
tual one, both of which will enhance the shared
feature learning between the two modalities. On
the other hand, the hallucinated VSG will produce
some vision-specific scene components and struc-
tures, providing additional clues to facilitate back
to the textual features for overall better semantic
understanding. Fig. 7 illustrates the node increas-
ing rate during the vision scene graph hallucination.
We see that the numbers of all three types of nodes
increase, to different extents, where object nodes
grow rapidest. Also, during the two transition steps
of the VSH mechanism we get two VSGs, skele-
ton VSG and hallucinated VSG. From Fig. 8 we
see that after two full hallucination steps, we can
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obtain high-fidelity vision features, demonstrating
the necessity of the second completing-vision step.

6 Conclusion
We investigate an inference-time image-free setup
in unsupervised multimodal machine translation.
In specific, we integrate the visual and language
scene graph to learn the fine-grained vision-
language representations. Moreover, we present
a visual scene hallucination mechanism to gener-
ate pseudo visual features during inference. We
then propose several SG-pivoting learning objec-
tives for unsupervised translation training. Ex-
periments demonstrate the effectiveness of our
SG-pivoting based UMMT. Further experimental
analyses present a deep understanding of how our
method advances the task and setup.
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Limitations

Our paper has the following potential limitations.
First of all, we take advantage of the external scene
graph structures to achieve the inference-time vi-
sual hallucination and secure significant improve-
ments of the target task, while it could be a double-
edged sword. This makes our method subject to
the quality of the external structure parsers. When
the parsed structures of visual scene graphs and
language scene graphs are with much noise, it will
deteriorate our methods. Fortunately, the existing
scene graph parsers have already achieved satisfac-
tory performance for the majority language (e.g.,
English), which can meet our demands. Second,
the effectiveness of our approach depends on the
availability of good-quality images, which how-
ever shares the pitfalls associated with the standard
unsupervised multimodal translation setup.
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Figure 9: A detailed view of our model architecture.
The tgt-side LSGy is synthesized from input LSGx and
VSG, which is a pseudo LSG without a real input of
LSGy from a parser.

A Appendix

In §3.2 we give a brief induction to the overall
model framework. Here we extend the details of
each module of the scene graph-based multimodal
translation backbone. In Fig. 9 we outline our
framework.

A.1 Visual Scene Hallucination Learning
Module

First of all, we note that VSH only will be acti-
vated to produce VSG hallucination at inference
time. During the training phase, we construct the
VSG vocabularies of different VSG nodes. We de-
note the object vocabulary as Do, which caches
the object nodes from parsed VSG of training im-
ages; denote the attribute vocabulary as Da, which
caches the attribute nodes; and denote the relation
vocabulary as Dr, which caches the relation nodes.
Those vocabularies will be used to provide basic
ingredients for VSG hallucination.

At inference time, VSH is activated to perform
two-step inference to generate the hallucinated
VSG

′
. The process is illustrated in Fig. 3.

Step1: Sketching Skeleton This step builds the
skeleton VSG from the raw LSG. Specifically, we
only need to transform the textual entity nodes into
the visual object nodes, while keeping unchanged
the whole graph topology. As for the attribute
nodes and the relation nodes, we directly copy them
into the VSG, as they are all text-based labels that
are applicable in VSG. Then we transform the tex-
tual entity nodes into the visual object nodes. For
each textual entity node in LSG, we employ the
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Figure 10: Illustrations of the node augmentor and the relation augmentor.

CLIP tool1 to search for the best matching visual
node (proposal) in Do as the counterpart visual ob-
ject, resulting in the skeleton VSG. After this step,
we obtain the sketch structure of the target VSG.

Step2: Completing Vision This step completes
the skeleton VSG into a more realistic one, i.e., the
final hallucinated VSG

′
. With the skeleton VSG at

hand, we aim to further enrich skeleton VSG. Be-
cause intuitively, in actual world the visual scenes
are always much more concrete and vivid than tex-
tual scenes. For example, given a caption text ‘boys
are playing baseball on playground’, the LSG only
mentions ‘boys’, ‘baseball’ and ‘playground’ ob-
jects. But imaginarily, there must be a ‘baseball
bat’ in the scene of vision, and also both the pairs of
‘boys’-‘playground’ and ‘baseball’-‘playground’
has ‘on’ relation. Thus it is indispensable to add
new nodes and more edges, i.e., scene graph aug-
mentation. To reach the goal, we propose a node
augmentor and a relation augmentor, as shown
in Fig. 10. First of all, we downgrade all the rela-
tion nodes as the edge itself, i.e., an edge with a
relation label. By this, we obtain a VSG that only
contains object and attribute nodes, and labeled

1https://github.com/openai/CLIP

Figure 11: Degeneration of the relation node to the
labeled edge.

edges, which is illustrated in Fig. 11.

▶ For the node augmentor, we first traverse all
the object nodes in the skeleton VSG. For each
object node vi, we then perform k-order routing
over its neighbor nodes. We denote its neighbor
nodes as V na

i = {· · · , vk, · · · }. Then we use the
attention to learn the neighbor influence to vi, and
obtain the k-order feature representation hi of vi:

αn
k =

exp ri · rk∑
v∗k∈V na

i
exp ri · r∗k

hna
i = ri +

∑

k

αn
k · rk .

where ri and rk is the node representations of vi
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and vk, which are obtained from GCN encoder.
Then we use a classifier to make prediction over
the total vocabularies of Do and Da, to determine
which node v̂

′
i (either an object or an attribute node)

should be attached to vi, if any:
v̂
′
i ← Softmax

Dna
(FFN(hna

i )) ,

where Dna = Do ∪Da ∪ {ϵ}, including an addi-
tional dummy token ϵ indicating no new node to
be attached to vi. And if the predicted node is an
object node, an additional relation classifier will
determine what is the relation label ê

′
between v̂

′
i

and vi:
ê
′ ← Softmax

Dr
(FFN([hna

i ; ri)) .

▶ For the relation augmentor, we first traverse all
the node-pairs (object or attribute nodes, excluding
the relation nodes) in the VSG, i.e., vi&vj . Then,
for each node in the pair we use a triaffine attention
(Wang et al., 2019; Wu et al., 2021a) to directly
determine which new relation type ê

′
i,j should be

built between them, if exists:

hpa
i−j = Sigmoid(

[
ri
1

]T
(rj)

TW

[
ri−j

1

]
) ,

ê
′
i,j ← Softmax

Dpa
(FFN(hpa

i−j)) ,

where Dpa = Dr ∪ {ϵ}, where the dummy token ϵ
indicates no new edge should be created between
two nodes. The new edge ê

′
i,j has a relation label.

ri−j is the representation of the path from vi to vj ,
which is obtained by the pooling function over all
the nodes in the path:

hpa
i−j = Pool(ri, · · · , rj) .

Note that the triaffine scorer is effective in mod-
eling the high-order ternary relations, which will
provide a precise determination on whether to add
a new edge.

During training, the node augmentor and the
relation augmentor are trained and updated based
on the gold LSG and VSG, to learn the correct
mapping between LSG and VSG.

LNA =
∑

[log p(v̂
′
i|V SG← LSG)

+ log p(ê
′
i,j |V SG← LSG)] ,

LPA =
∑

log p(ê
′
i,j |V SG← LSG) ,

LVSH = LNA + LPA .

Such supervised learning is also important for en-
suring that the final generated hallucinated visual
scenes are basically coincident with the caption
text, instead of random or groundless vision scenes.

A.2 SG Fusing&Mapping Module
Here we extend the contents in § 3.2. As shown in
Fig. 9, first of all, the SG fusing module merges
the LSGx and VSG into a mixed cross-modal scene
graph, such that the merged scene graph are highly
compact with less redundant. Before the merging,
we first measure the similarity of each pair of <text-
img> node representations via cosine distance:

sfi,j =
(rLi )

T · rVj
||rLi || ||rVj ||

.

This is a similar process as in Eq. (2). For those
pairs with high alignment scores, i.e., si,j > α
(we use the same pre-defined threshold as in cross-
modal alignment learning), we consider them as
serving a similar role. Since we will perform the
cross-modal SG aligning learning LCMA, the accu-
racy of the alignment between LSGx and VSG can
be guaranteed. Then, we average the representa-
tions of the image-text node pair from their GCNs.
And for the rest of nodes in LSGx and VSG, we
take the union structures of them. The resulting
mixed SG fully inherits the semantic-rich scene
nodes from both the textual SG and the visual SG,
which will benefit the following text generation.

Now we treat the mixed SG as a pseudo tgt-side
LSGy. We use another GCN to model LSGy for
further feature propagation:

ry1 , · · · , rym = GCN(V SGy) .

The initial node representations of GCN are from
the GCNs of VSG and LSGx, i.e., rL and rV as
in Eq. (1). Based on the node representation ryi of
VSGy, we finally employ a graph-to-text model2 to
generate the final tgt-side sentence. Specifically, all
the node representation ri will be first summarized
into one unified graph-level feature via pooling:

ry = Pool(ry1 , · · · , rym) .

Then, an autoregressive sequential decoder (Se-
qDec) will take ry to generate tgt-side token over
the tgt-side vocabulary at each setp, sequentially:

ei = SeqDec(e≤i , r
y) ,

ŷi ← Softmax(ei) .

2https://github.com/freesunshine0316/
neural-graph-to-seq-mp
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