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Abstract

Various datasets have been proposed to pro-
mote the development of Table Question An-
swering (TQA) technique. However, the prob-
lem setting of existing TQA benchmarks suf-
fers from two limitations. First, they directly
provide models with explicit table structures
where row headers and column headers of the
table are explicitly annotated and treated as
model input during inference. Second, they
only consider tables of limited types and ignore
other tables especially complex tables with flex-
ible header locations. Such simplified problem
setting cannot cover practical scenarios where
models need to process tables without header
annotations in the inference phase or tables of
different types. To address above issues, we
construct a new TQA dataset with implicit and
multi-type table structures, named IM-TQA,
which not only requires the model to under-
stand tables without directly available header
annotations but also to handle multi-type ta-
bles including previously neglected complex
tables. We investigate the performance of re-
cent methods on our dataset and find that exist-
ing methods struggle in processing implicit and
multi-type table structures. Correspondingly,
we propose an RGCN-RCI framework outper-
forming recent baselines. We will release our
dataset to facilitate future research.1

1 Introduction

To automatically gain valuable information from
numerous tables, Table Question Answering (TQA)
technique was developed and can answer natural
language questions over tables (Zheng et al., 2022;
Hui et al., 2022; Herzig et al., 2020). Correspond-
ingly, researchers proposed various TQA datasets
aiming at different application scenarios (Zhong

1The code and data will be released at https://github.
com/SpursGoZmy/IM-TQA
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‡ Corresponding author: Zheng Lin.

Figure 1: Various types of tables in real world. Header
cells are in different colors. Column Attribute (red),
Column Index (green), Row Attribute (yellow), Row
Index (blue). See Section 3.3 for details.

et al., 2017; Iyyer et al., 2017; Chen et al., 2020).
As the model performance continues to improve,
TQA technique has been widely used in intelligent
data analysis tools, e.g., Power BI2, and Tableau3

Though previous datasets have promoted the de-
velopment of TQA technique, the problem setting
of existing benchmarks suffers from two limita-
tions. First, existing benchmarks only evaluate
the performance of model on tables with explicit
table structures, which means locations and di-
rections of headers are explicitly annotated and
treated as model input during inference. For exam-
ple, Text2SQL benchmarks offer annotated column
headers (Zhong et al., 2017; Yu et al., 2018) and
recent hierarchical table datasets also contain hi-
erarchical header annotations (Katsis et al., 2022;
Cheng et al., 2022), which are available at inference
time. This setting artificially lowers the difficulty
of the task. Nevertheless, in practical scenarios,
model may encounter plenty of tables without la-
beled headers. Manually annotating headers for
these tables is prohibitively expensive and time-
consuming. As a result, a benchmark is needed to
evaluate the performance of TQA models on tables

2https://powerbi.microsoft.com/en-us/
3https://www.tableau.com/
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with implicit table structures. Here, “implicit table
structures” represents that header annotations of the
table are not directly available during inference.

Second, existing benchmarks only consider
limited table types and ignore complex tables
with flexible header locations. Previous datasets
mainly focus on vertical or hierarchical tables
whose header cells only locate on the top or left
side of the table (Pasupat and Liang, 2015; Wang
et al., 2020b; Guo et al., 2021; Cheng et al., 2022),
as shown in Figure 1 (a) and (c), but neglect the
fact that model may require handling multi-type ta-
bles, especially complex tables whose header cells
also appear at other positions in the table such as
the bottom-right region, as illustrated in Figure 1
(d). Complex tables are prevalent in professional
equipment specifications and record sheets, which
are beyond the ability of current TQA systems.

Above analyses show that the problem setting
of previous benchmarks restricts the application
of TQA models. In this paper, we define a new
problem, table question answering over implicit
and multi-type table structures. In this problem
setting, annotations of table headers are not avail-
able during inference and model needs to com-
prehend implicit and multi-type table structures to
answer questions. To facilitate the study on this
problem, we build the first Chinese Table Question
Answering dataset with Implicit and Multi-type ta-
ble structures, named IM-TQA, which consists of
1,200 tables and 5,000 questions (Section 3). Our
dataset includes tables of four types from different
domains, especially complex tables neglected by
published studies. We annotate tables not only with
various Lookup questions and their answer cells,
but also with functional roles of table cells.

IM-TQA presents a strong challenge to existing
models. Because of the inability to understand im-
plicit and diverse table structures, the state-of-the-
art baseline RCI (Row and Column Intersection)
model (Glass et al., 2021) only achieves 49.6%
overall accuracy and 23.8% accuracy on complex
tables. To improve the performance of RCI, we pro-
pose an RGCN-RCI framework (Section 4). Specif-
ically, this framework solves the new problem in
two stages: (1) Table is modeled as graph and an
RGCN (Schlichtkrull et al., 2017) is used to com-
prehend table structure and predict table header
cells. (2) Based on predictions of RGCN, header
information is merged into the text sequence rep-
resentation of each row or column, which helps

RCI model to predict whether a row or column
contains the answer or not. Though our frame-
work shows high effectiveness and improves the
accuracy on all tables and complex tables by 3.8%
(49.6% → 53.4%) and 8.2% (23.8% → 32.0%)
respectively, it still lags far behind human perfor-
mance, i.e., 95.1% and 94.1% on all and complex
tables. We hope this work could raise attention to
the implicit and multi-type table structures, facili-
tating the development of TQA models to address
more complex and realistic table data.

To summarize, we conclude our contributions as
follows:

• Considering the limitations of current TQA
setting, we propose a new problem, table ques-
tion answering over implicit and multi-type
table structures, which is complementary to
traditional TQA problem, i.e., TQA over ex-
plicit and limited (usually single-type) table
structures.

• We construct and publicly release a new
dataset, IM-TQA, to promote the research on
this problem. Our dataset includes tables of
four different types with implicit structures,
especially complex tables ignored by former
benchmarks.

• We investigate the performance of existing
methods on our dataset and propose an RGCN-
RCI framework which outperforms state-of-
the-art baselines on all table types.

2 Problem Statement

In this section, we define the problem of table ques-
tion answering over implicit and multi-type table
structures. Consisting of multiple cells, a table
t can be defined as t

.
= {P,R,V}, where P, R

and V represents the set of position information,
functional roles and values of cells in table t respec-
tively. Table cells can be categorized into different
types according to their functional roles, e.g., some
cells are column headers and others are data cells.

Under the setting of traditional TQA problem,
table structures are explicitly annotated (Zhong
et al., 2017; Yu et al., 2018) or can be easily
obtained by heuristic methods designed for spe-
cific table type (Cheng et al., 2022; Katsis et al.,
2022). In this setting, functional roles R are di-
rectly provided for the model f(·), which outputs
answer y given a natural language question q, i.e.,
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Figure 2: The improvements of IM-TQA compared with
previous benchmarks.

y = f(q, t) = f(q,P,R,V). However, in the set-
ting of real applications where the model may need
to process implicit and multi-type table structures,
functional roles R are not available in advance and
the model requires distinguishing useful headers
from data cells. Thus, TQA over implicit and
multi-type table structures can be formalized as:
y = f(q, t

′
) = f(q,P,V). This problem setting

poses a great challenge to existing methods. Un-
fortunately, none of previous benchmarks served
as testbed for this problem. To fill the gap, we
build IM-TQA, which includes multi-type tables
and requires understanding implicit table structures.
Compared with previous datasets, the improve-
ments of IM-TQA are demonstrated in Figure 2.

3 Dataset Construction

In this section, we first introduce considered table
types, and then elaborate the dataset construction
procedure. We also compare IM-TQA with other
related datasets. We recruit 10 professional an-
notators and provide them with sufficient instruc-
tions. The dataset construction totally costs 1,200
working hours. The ethical considerations will be
discussed in the Section 9.

3.1 Considered Table Types

As shown in Figure 1, we divide tables into 4 types
according to their structure characteristics, which
is in line with previous work (Wang et al., 2021;
Ghasemi-Gol and Szekely, 2018) with complex
table as an important complement. More table and
question examples are shown in App. F.
Vertical Table Table data is arranged in the vertical
direction, with the first row as column headers and
other rows as data tuples.
Horizontal Table Table data is arranged in the
horizontal direction, with the first column as row
headers and other columns as data tuples.
Hierarchical Table Table data is arranged in both

Figure 3: An example of table storage format and an-
notations. Cell IDs constitute the matrix in (a) and are
indices of cell value list in (b). Cells with same cell IDs
stand for merged cells.

vertical and horizontal directions, with headers ex-
hibiting a multi-level hierarchical structure.
Complex Table In tables of above 3 types, header
cells only locate on the top or left side of the table.
But in complex tables, headers also appear at other
positions such as bottom-right region in the table
and can be mixed with data cells, as depicted in
Figure 1 (d). Such tabular structures with flexible
header locations often appear in professional equip-
ment specifications and record sheets, presenting a
great challenge to existing methods.

3.2 Table Collection and Storage

To ensure the diversity of table data, we collect ta-
bles from open websites of different domains. Data
sources include company annual reports from dif-
ferent industries4 such as manufacturing, medicine
and education; web pages of Baidu Encyclopedia5

on science, professional equipment, etc. Tables
were extracted to Excel files by annotators. We
correct typos in the collected tables and filter ta-
bles without meaningful data. Finally, we preserve
300 tables for every table type. Figure 4 shows the
distribution of domains.

In order to store various tables, we design a stor-
age method which separately stores cell positions
P and cell contents V. To store cell positions, a
cell ID is assigned to each table cell in the row-first
order. For a table including m rows and n columns,
its cell IDs constitute an m×n matrix representing
cell locations. This matrix contains table layout in-
formation such as neighbouring relations between
different cells. As for cell contents, every cell value
is put into a list in the same row-first order. Figure

4http://eid.csrc.gov.cn/101111/index.html
5https://baike.baidu.com/
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3 (a) and (b) demonstrate the storage format of the
complex table in Figure 1 (d). The original table
can be recovered based on cell ID matrix and cell
value list. The storage method does not waste extra
space for merged cells and is also convenient to
annotate header cells and answer cells.

3.3 Cell Type Annotation

In our problem setting, models are required to rec-
ognize functional roles R of table cells, i.e., con-
ducting cell type classification (CTC) task. There
are different taxonomies of cell types which focus
on hierarchical spreadsheet tables (Ghasemi Gol
et al., 2019; Dong et al., 2019; Zhang et al., 2021).
To model different table structures especially com-
plex tables, we adopt a new taxonomy of cell types
with the concentration on header cells that are use-
ful for TQA models to locate correct answer cells.
Specifically, we categorize table cells into 5 types
based on their functional roles.
Row Attribute and Column Attribute Row at-
tribute and column attribute are traditional table
headers which describes other cells in the same
row and in the same column respectively, e.g., yel-
low cells and red cells in Figure 1. Attribute cells
only serve the purpose of describing other cells and
they are not meaningful data.
Row Index and Column Index Row index and
column index are individual cells that are used to
index data records in the row or column orientation,
e.g., blue cells and green cells in Figure 1. Index
cells are also meaningful data. For instance, in
vertical tables, data cells in the primary key column
are unique identifiers of each row.
Pure Data Pure data cells are the core body of a
table. They do not have the function of describing
or indexing other cells and their meanings should
be understood with the help of above header cells.

We instructed annotators in distinguishing 5 cell
types and asked them to annotate cell ID lists of
attribute and index cells, as shown in Figure 3 (c).
Other table cells are deemed pure data cells.

3.4 QA Pairs Construction

After identifying header cells, we asked annota-
tors to raise questions about data cells and label
answer cell IDs, as illustrated in Figure 3 (d). To
avoid annotation artifacts from the homogeneous
patterns of questions, e.g., always using the same
question expression, annotators were asked to use
diverse language expressions to raise questions and

answers’ locations should change frequently. An-
notators were also encouraged to paraphrase ques-
tions to increase difficulty.

Questions about table are broadly classified into
two types: Lookup and Aggregation (Glass et al.,
2021). Lookup questions require selecting table
cells as answers whereas Aggregation questions are
answered by performing arithmetic operations over
a subset of cells, such as Sum(). In this work, our
primary focus is on Lookup questions and we leave
the annotation of more complex aggregation and
numerical reasoning questions in the future. Be-
sides single-cell answer, annotators were allowed
to select one row or one column or arbitrary table
cells as answer. Figure 4 shows the distribution of
question types. Four questions were raised for each
vertical and horizontal table, and five questions for
every hierarchical and complex table.

3.5 Data Review
In order to guarantee annotation quality, before
each annotation task began, all annotators con-
ducted a trial annotation with 50 samples and the re-
sults were checked. Feedback and sufficient Q&As
were given to corresponding annotators until they
fully comprehended the annotation requirements.
After all annotation tasks finished, we and two most
experienced annotators performed the final review
to fix labeling errors. We inspected annotations for
the correctness of cell type annotations and answer
cell annotations. We also inspected the grammar
and wording and filtered questions with obvious
mistakes. We checked for offensive content and
identifiers, and replaced identifying information
with mono-directional hashes. Finally, we preserve
1,200 tables and 5,000 questions. Inner-annotator
agreement and annotation instruction screenshots
are shown in App. A and E respectively.

3.6 Dataset Analysis and Comparison
Table 1 shows a comprehensive comparison of IM-
TQA to related TQA datasets. The advantages of
the proposed dataset are as follows: (1) It is the
first TQA dataset that contains implicit and multi-
type table structures, especially complex tables ig-
nored by former datasets. Though AIT-QA (Katsis
et al., 2022), HiTab (Cheng et al., 2022) and Mul-
tiHiertt (Zhao et al., 2022) include vertical and
hierarchical tables, they ignore the other two types.
(2) It is annotated with cell functional roles and
QA pairs, which supports both CTC and TQA task.
Diverse table structures in our dataset challenge ex-
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Dataset Language Table source #Tables #Questions Avg.
Q len Implicit Table type Task

Ver Hor Hie Com CTC TQA
NL2SQL (Sun et al., 2020) Chinese Reports, Spreadsheets 6,029 64,891 11 - ✓ - - - - ✓
Cspider (Min et al., 2019) Chinese Spider 876 9,691 11.9 - ✓ - - - - ✓
DuSQL (Wang et al., 2020b) Chinese Baidu Baike, Reports, Forums 813 28,762 19.3 - ✓ - - - - ✓
CHASE (Guo et al., 2021) Chinese DuSQL, SParC 1,280 17,940 13 - ✓ - - - - ✓
WTQ (Pasupat and Liang, 2015) English Wikipedia 2,108 22,033 10 - ✓ - - - - ✓
WikiSQL (Zhong et al., 2017) English Wikipedia 26,521 80,654 11.7 - ✓ - - - - ✓
Spider (Yu et al., 2018) English College data,WikiSQL 1,020 10,181 13.2 - ✓ - - - - ✓
ToTTo (Parikh et al., 2020) English Wikipedia 83,141 - - - ✓ - ✓ - - -
AIT-QA (Katsis et al., 2022) English Annual reports 116 515 12.9 - ✓ - ✓ - - ✓
HiTab (Cheng et al., 2022) English Stat. reports, Wiki 3,597 10,672 16.5 - ✓ - ✓ - - ✓
MultiHiertt (Zhao et al., 2022) English FinTabNet 9,775 10,440 16.8 - ✓ - ✓ - - ✓
IM-TQA(ours) Chinese Reports, Baidu Encyclopedia 1200 5000 13.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of IM-TQA to related TQA datasets. Implicit represents implicit table structures. Ver, Hor,
Hie and Com denotes vertical, horizontal, hierarchical and complex table respectively.

Train Valid Test Total
# table structures 466 40 80 586
# tables 936 111 153 1,200
# questions 3,909 464 627 5,000
# vertical tables 224 31 45 300
# horizontal tables 230 34 36 300
# hierarchical tables 231 35 34 300
# complex tables 251 11 38 300

Table 2: Dataset split statistics

Figure 4: Distribution of domains and question types.

isting CTC and TQA models. (3) Compared with
single-domain datasets like AIT-QA and WTQ, IM-
TQA includes tables from various domains.

We split tables of each type based on table struc-
tures. If the location distributions of header cells in
two tables are exactly same, i.e., same cell type at
the same table position, we consider they share the
same table structure. Table structures are randomly
split into train (80%), valid (7%) and test set (13%).
Tables of the same structure and questions of the
same table are assigned to the same split. Table
2 shows the basic statistics of each split. More
statistics are shown in App. A.

4 Method

We propose the RGCN-RCI framework for IM-
TQA, shown in Figure 5. RGCN-RCI consists
of an RGCN-based cell type classification module
and an RCI-based table question answering module.
CTC module uses an RGCN to aggregate neigh-
bour cell information and predicts cell’s functional

role. Based on the predictions of CTC module,
TQA module adopts an improved RCI model to
predict whether a row or column contains the an-
swer or not. Final answer cells are selected from
intersections of positive rows and positive columns.

4.1 Cell Type Classification Module

We convert the table into a graph, where nodes
are table cells, and neighbouring relations between
cells are edges. The resulted graph is processed by
an RGCN to predict cell types.

Cell Features The initial node representation
vector consists of two parts: hand-crafted fea-
tures and semantic features extracted from the pre-
trained language model. We select 24 available
manual features from Koci et al. (2016) such as the
cell text length (listed in App. B.3). The 24-dim
integer vectors are transformed into 32-dim contin-
uous numerical vectors by a trained auto encoder.
We input cell text to the pre-trained BERT (Devlin
et al., 2019) and take the 768-dim output vector
of the special [CLS] token as semantic features of
the whole cell. In the end, hand-crafted features
and semantic features are concatenated to produce
800-dim initial node representation.

Edges We design four directed edges which
point from each cell to its surrounding neighbour
cells: top to down, left to right, down to top, right
to left. We argue that neighbour cell information is
important for predicting cell functional roles. For
example, most data cells are surrounded by other
data cells. As the table is converted to a heteroge-
neous graph, a relational graph convolutional net-
work (RGCN) (Schlichtkrull et al., 2017) is used to
aggregate neighbour cell information in different
orientations and updates node representations. The
updated node representations are input to the final
linear layer to predict cell types.
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Figure 5: Overview of the proposed RGCN-RCI framework, with the table of Figure 1 (d) as a running example.

4.2 Table Question Answering Module
RCI (Glass et al., 2021) is a state-of-the-art TQA
model for Lookup questions. It concatenates a text
sequence representation of each row (or column) to
the question text, and uses a pre-trained language
model like ALBERT (Lan et al., 2020) to predict
whether the row/column contains the answer or not.
Cells on the intersection of positive rows and posi-
tive columns are final answers. When constructing
the textual representation of each row (or column),
RCI incorporates the structure of vertical table. The
row textual representation is the concatenation of
“column header : cell text”, and the column tex-
tual representation is the concatenation of column
header and all cell texts in this column.

However, this representation method does not
fit other types of tables. Due to the inability to
understand implicit and diverse table structures,
this method may include irrelevant headers or miss
useful header information. For example, when con-
structing the representation of the third row in Fig-
ure 1 (b), RCI treats all cells in the first row as
column headers and gives wrong textual represen-
tation:

Name : Listed height | Tim Duncan : 6 ft 11 in
(2.11 m) |

where “:” is a delimiter token between column
header and cell text, and “|” is a delimiter token
between different cells. When building the repre-
sentation of the fourth column in Figure 1 (d), it
will lose relevant headers in the third column and
output representation without necessary informa-
tion:

Major Parameter | 37 | 120±23 V | 700A | 624kV |

To overcome the defect of RCI’s original textual
representation method, we propose a new represen-
tation method with the help of predicted cell types
from CTC module and cell ID matrix. Specifically,
when constructing row textual representation, we
locate the nearest column attribute and column in-
dex for every data cell in this row. These column
headers are regarded as relevant headers and will
be concatenated with the corresponding data cell.
Similarly, when constructing column textual repre-
sentation, the nearest row attribute and row index
will be concatenated with the corresponding data
cell in this column. Again, let’s take the third row
in Figure 1 (b) as an example. Based on CTC
module’s predicted result and cell ID matrix, “Tim
Duncan” is the nearest column index to the data
cell “6 ft 11 in (2.11 m)”, and “Name” is a row
attribute irrelevant to cells in the third row. The
new row textual representation is:

Listed height | Tim Duncan : 6 ft 11 in (2.11 m) |

For the fourth column in Figure 1 (d), its new
column representation is:

Major Parameter | On-Load Tap Changer of #1
Transformer - Tap number : 37 | On-Load Tap
Changer of #1 Transformer - Voltage regulation
range : 120±23 V | . . . |

where “-” is a delimiter token between index cell
and attribute cell. Compared with original textual
representation method, our proposed method helps
RCI exclude irrelevant headers and include useful
headers, which contributes to final predictions.
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Model
All tables Complex tables

Gap(%)↓Per-class F1(%)↑ Macro
F1(%)↑

Macro F1-
header(%)↑

Per-class F1(%)↑ Macro
F1(%)↑

Macro F1-
header(%)↑PD CA RA CI RI PD CA RA CI RI

RF 95.0 80.4 69.4 78.6 65.2 77.7±0.2 73.4±0.3 92.0 67.2 64.4 29.8 53.6 61.4±1.4 53.8±1.6 16.3
MLP 95.8 79.8 76.2 78.3 72.3 80.5±0.4 76.7±0.7 91.8 64.8 80.0 43.8 54.3 66.9±0.5 60.7±0.8 13.6
CNN-BERT† 96.6 87.4 84.4 71.0 75.8 83.0±0.8 79.7±0.8 93.8 81.0 86.6 33.4 58.8 70.7±1.2 65.0±1.4 12.3
Bi-LSTM 97.2 91.4 87.4 79.0 79.4 86.9±0.3 84.3±0.5 93.8 86.6 90.2 60.4 72.2 80.6±0.7 77.4±0.8 6.30
RAT 96.0 85.3 82.5 82.0 78.3 84.8±0.3 82.0±0.4 92.3 73.0 85.0 69.5 61.0 76.2±0.5 72.1±0.5 8.60
RGCN (ours) 98.8 92.4 89.6 85.6 85.4 90.4±0.5 88.3±0.7 97.2 89.4 93.0 69.6 79.4 85.7±0.6 82.9±0.9 4.70

Table 3: CTC results on all tables and complex tables. PD, CA, RA, CI and RI are acronyms of five cell types,
e.g., PD denotes Pure Data. † represents our implementation. RF stands for random forest. ± stands for standard
deviation over 5 repeated experiments. More CTC results are shown in App. C.1 due to space limitation.

5 Experiments

5.1 Cell Type Classification

5.1.1 Experimental Setup
Considered baselines are as follows. Random For-
est (Koci et al., 2016): A random forest classi-
fier is used to conduct CTC task based on man-
ual features. CNN-BERT (Dong et al., 2019): A
method using BERT to extract semantic features
and a CNN to learn spatial correlations between
cells. Bi-LSTM (Ghasemi Gol et al., 2019): Two
bidirectional LSTM are used to capture dependen-
cies between different cells, one observing the se-
quence of cells in each row, and the other in each
column. MLP: Directly applying a two-layer neu-
ral network to cell features to predict cell types
without neighbour information. RAT (Shaw et al.,
2018): The Relation-Aware-Transformer whose
self-attention mechanism is extended to consider
the edge label between each pair of nodes. In this
setting, the table can be seen as a directed complete
graph where each cell can communicate with all
the other cells to update its node representations.
Implementation details can be found in App. B.1.

5.1.2 Experimental Results
Table 3 shows CTC results on all tables and com-
plex tables, averaged over 5 repeated experiments.
Models are evaluated with F1 score. Macro F1-
header represents the macro F1 on four header
types. Gap represents the Macro F1 difference
between all tables and complex tables.

From the results shown in Table 3, we can ob-
serve that: (1) RGCN achieves the best macro
F1 on all tables and complex tables, beating the
best-performing baseline Bi-LSTM by 3.5% and
5.1% respectively, which demonstrates the effec-
tiveness of our proposed graph-based CTC model
over various table types, especially complex ta-
ble. (2) CNN-BERT, Bi-LSTM, RAT and RGCN
aggregates information from different neighbour

Model Exact Match Acc(%)
All Ver Hor Hie Com

Ernie-Layout 11.6±0.5 11.5 4.10 5.66 22.6
Tapex 13.1±0.8 14.9 10.7 8.18 17.4
RAT† 18.5±0.9 34.5 33.6 5.03 4.07
TAPAS 33.2±0.8 58.0 31.1 26.4 15.7
RCI 47.2±0.3 68.4 45.1 56.0 19.2
RCI-AIT 49.6±0.4 69.5 43.4 60.4 23.8
RGCN-RCI (ours) 53.4±0.4 70.7 45.9 62.9 32.0
RGCN-RCI
+ Oracle headers 55.3±0.3 73.0 46.7 66.7 33.1

Human 95.1±0.6 96.6 95.1 94.3 94.1

Table 4: TQA results on the proposed dataset. † rep-
resents our implementation. Ver, Hor, Hie and Com
denotes four table types, respectively. ± stands for stan-
dard deviation over 5 repeated experiments.

cells. The best performance of RGCN indicates
that neighbour information in a local area is most
important for CTC task. This is consistent with
the intuition that human can determine cell types
based on a small part of the table and do not need to
read the whole table. (3) Performance on complex
tables is worse than overall performance, showing
that CTC models struggle in comprehending com-
plex table structures with flexible header locations.
More analyses are shown in App. C.1.

5.2 Table Question Answering

5.2.1 Experimental Setup
We include following TQA baselines. RCI (Glass
et al., 2021): A state-of-the-art model with its orig-
inal textual representation method. RCI-AIT (Kat-
sis et al., 2022): A variant of RCI for AIT-QA
dataset with the textual representation method de-
signed for hierarchical tables. TAPAS (Herzig
et al., 2020): A classic table pre-training model
which takes the linearization of question and ta-
ble cells as input and outputs token representa-
tions for answer cell selection. Tapex (Liu et al.,
2022): A recent table pre-training model based
on BART (Lewis et al., 2020) which can directly
generate answer text given the flattened table and
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the question. Ernie-Layout (Peng et al., 2022): A
visually-rich document understanding pre-training
model which conducts TQA via prompting. RAT:
Table cells and question are converted to a graph
and cell representations are updated by an RAT
model. We follow Mueller et al. (2019) to use
cell-level relations such as cell to column header.
Human: We evaluate the average performance of
five annotators with bachelor degree. Implementa-
tion details are shown in App. B.2.

5.2.2 Experimental Results
Table 4 shows exact match accuracy on the IM-
TQA test set, averaged over 5 repeated experi-
ments. “RGCN-RCI” denotes our proposed frame-
work. “RGCN-RCI + Oracle headers” represents
using new representation with annotated headers.

From the results shown in Table 4, we can find
that: (1) Existing TQA models struggle on our
dataset. The best baseline RCI-AIT achieves an
overall accuracy of 49.6%, and its accuracy on com-
plex tables is only 23.8%. This shows that models
designed for specific table types cannot achieve a
great generalization on multi-type tables, especially
previously ignored complex tables. (2) Compared
with baselines which lack the ability to compre-
hend implicit and diverse table structures, RGCN-
RCI framework achieves better performance and
improves the accuracy on all tables and complex ta-
bles by 3.8% and 8.2% respectively, which demon-
strates the effectiveness of our proposed textual
representation method. RGCN-RCI + Oracle head-
ers can achieve more performance boost, which
further proves that correctly understanding table
structure is beneficial to question answering over
implicit and multi-type tables. A case study is
shown in App. C.3. (3) Table pre-training mod-
els like TAPAS and Tapex still cannot generalize
well on various table types. This is probably be-
cause they were originally designed for and only
pre-trained on vertical tables with explicit struc-
tures available. Considering more diverse table
types in pre-training stage may improve their per-
formance on multi-type tables. (4) Interestingly,
Ernie-Layout performs better on complex tables
than other tables. An explanation might be that
it is biased by layout information from document
where answer text is often next to the keywords in
reference text, which makes it more difficult for
the model to locate answers that are far from their
header cells. More discussions are given in App.
D. (5) The performance of RAT is poor because

it treats input tables as vertical tables to build the
graph. When handling other tables, the resulted
graph will contain wrong relations between dif-
ferent cells which hinder the model from locating
correct answers. (6) Compared with human base-
line, even with an oracle providing correct headers,
RGCN-RCI only achieves 33.1% accuracy on com-
plex tables. Therefore there is a long way to go for
TQA models to accurately find correct answers in
complicated tables. More analyses are shown in
App. C.2.

5.2.3 Error Analysis
We randomly selected 100 error cases of RGCN-
RCI framework to conduct error analysis. Er-
ror cases fall into four categories: (1) Row mis-
takes(40%): model fails to select the correct row
which contains answer. (2) Column mistakes(28%):
model fails to select the correct column. This
shows that predicting the correct column is usu-
ally easier than predicting the correct row. (3) Row
and column mistakes(14%): model selects wrong
row and wrong column at the same time, which is
common in complex tables(57%). (4) Missing rows
or columns(18%): model mistakenly predicts that
none of rows or columns contains answer, which
often results from the paraphrased question expres-
sion such as synonyms. Model may need external
knowledge to perform better on these questions.

We also analyse the performance of RGCN-RCI
on different question types. The exact match score
(51.2%) on the questions whose answers are arbi-
trary several cells is lower than that on the other
questions whose answers are single cell (54.9%),
cells in one column (55.6%) and cells in one row
(55.0%). This shows that it is more difficult for
the model to find answer cells with flexible and
discontinuous locations.

5.2.4 Ablation Study of Header Cells
To analyse the contribution of different header cells
to the final TQA prediction, we conduct ablation
study by removing different headers when con-
structing new textual representation for each row
and column. We use different textual representa-
tion to train and evaluate RCI models. As we can
see from the results shown in Table 5, header cells
have different contributions to the final TQA re-
sults. The attribute header cells are more important
than index cells as they are most significant for un-
derstanding simple data cells. And the row attribute
cells seem to be more important than column ones.
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If we remove all header cells and simply concate-
nate every cell to build row/column representation,
the model performance would suffer a dramatic de-
crease to 46.3% which is worse than original RCI
method designed for vertical tables. This further
validates that header cells are beneficial for RCI
model to locate the correct answer cells.

Model Exact Match Acc(%)
All Ver Hor Hie Com

RGCN-RCI + Oracle CTC 55.3 73.0 46.7 66.7 33.1
w/o Column Attribute 51.5 64.9 47.5 62.9 30.2
w/o Row Attribute 49.3 70.7 40.2 58.5 25.6
w/o Column Index 53.3 70.1 44.2 64.8 31.9
w/o Row Index 52.6 68.9 42.6 65.4 31.4
w/o Attribute Cells 47.7 69.5 44.3 52.2 23.8
w/o Index Cells 48.6 59.1 39.3 63.5 30.8
w/o All Headers 46.3 62.6 41.8 61.0 19.2

Table 5: TQA results based on different textual repre-
sentation methods by removing different header cells.

6 Related Work

Table QA methods can be categorized into two
types: semantic-parsing-based methods which
transform the question into an executable logical
form such as SQL (Wang et al., 2020a; Hui et al.,
2022; Guo et al., 2019), and non-semantic-parsing
methods which directly output final answers with-
out generating logical forms (Yang et al., 2022;
Liu et al., 2022). Researchers also proposed vari-
ous TQA datasets (Iyyer et al., 2017; Chen et al.,
2020). Most of previous datasets consist of vertical
tables with regular structure except HiTab (Cheng
et al., 2022), AIT-QA (Katsis et al., 2022) and Mul-
tiHiertt (Zhao et al., 2022), which also consider
hierarchical tables but ignore other table types es-
pecially complex tables. By contrast, IM-TQA is
the first dataset that include tables with implicit and
multi-type structures.

Cell type classification is crucial for table struc-
ture understanding, which aims at recognizing ta-
ble cells’ functional roles. Previous work proposed
different taxonomies of cell types, which mainly
focused on spreadsheet tables (Dong et al., 2019;
Zhang et al., 2021; Koci et al., 2016). Coarse-
grained taxonomies classify table cells according
to their roles in basic table structure (Sun et al.,
2021), e.g., header, metadata, data. Fine-grained
taxonomies will subdivide header cells or data cells
according to more specific functions (Zhang et al.,
2021). The proposed taxonomy belongs to coarse-
grained taxonomies and we focus on headers that
are helpful to locating answers.

Document Understanding is another interest-

ing and related research direction, which requires
model to answer questions over a document im-
age that may also contain tables (Borchmann et al.,
2021; Zhu et al., 2022; Huang et al., 2022). Com-
pared with TQA models which usually consider
table as semi-structured text data, document under-
standing models consider table as a part of docu-
ment picture and try to understand table structures
based on visual information. These actually rep-
resents two different perspectives to tackle table
data. We give more discussion about document
understanding in App. D.

7 Conclusion

We propose a new problem, table question answer-
ing over implicit and multi-type table structures,
and construct a corresponding dataset named IM-
TQA by collecting tables from various domains.
Tables in our dataset range from the traditional sim-
ple table with fixed headers to the complex table
with flexible headers, which poses a new challenge
to previous methods. Besides QA pairs, we also an-
notate functional roles of table cells to promote the
understanding of implicit table structures. In exper-
iments, we benchmark recent methods on CTC and
TQA tasks on IM-TQA, and propose a two-stage
RGCN-RCI framework that outperforms existing
methods. Experimental results show that IM-TQA
can provide a challenging and valuable testbed for
future research.

8 Limitations

Our proposed dataset is in Chinese and focuses
on single tables. Though we translate the dataset
from Chinese into English, we think it is better
to directly construct a corresponding large-scale
English TQA dataset in consideration of data qual-
ity. To build such a dataset with limited resource,
one can fully utilize abundant tables in existing
English TQA datasets. As an exploration of table
question answering over implicit and multi-type
structures, this work focuses on Lookup questions
and we leave annotations of Aggregation and other
numerical reasoning questions in the future work.

The proposed RGCN-RCI framework is not an
end-to-end model. We look forward to seeing more
end-to-end models which can simultaneously learn
table structures and question answering with the
help of our dataset. In addition, it takes more time
to convert very large tables into graph structures
which are used to recognize cell functional roles.
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9 Ethical Considerations

Our proposed benchmark is a free and open re-
source for the community to study table question
answering over implicit and multi-type tables. We
follow existing works AITQA (Katsis et al., 2022)
and DuSQL (Wang et al., 2020b) to select data
sources when building our dataset. Tables are col-
lected from the public organization China Securi-
ties Regulatory Commission and Baidu Encyclo-
pedia of Baidu Company. We got the reply and
permission from these two organizations which
allow us to share and redistribute data for non-
commercial use. Tables in these annual reports
and web pages are open to public so there is no
privacy risk.

In the annotation process, we asked annotators
to check if there exist any offensive content such
as insulting or discriminatory speech. They did
not find any such content in our benchmark. We
also checked for identifiers and replaced identi-
fying information with mono-directional hashes.
We recruit 10 professional annotators with bache-
lor degree (6 males and 4 females) and pay them
at a price of 6.5 dollars per hour (above the av-
erage local payment of similar jobs). The total
time cost for annotation is 1,200 working hours.
Annotators were informed that these labeled data
would be used as a table question answering dataset.
The data collection protocol was approved by an
ethics review board of an IT company. Main exper-
iments in this paper can be run on a single NVIDIA
GeForce RTX 3090 GPU. Our dataset follows the
Computational Use of Data Agreement v1.06.
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A More Information about Dataset
Construction and Statistics

Table 6 shows IM-TQA’s basic statistical informa-
tion such as average question number, row number,
column number per table. We also count the num-
ber of distinct table structures. We think that table
structure is represented by the distribution of loca-
tions of header cells. If header cells of two tables
are distributed in the same way, i.e., same cell type
at the same table position, we consider they share
the same table structure. As expected, due to much
more flexible header locations, structure number of
complex tables (241) and hierarchical tables (153)
are larger than that of vertical tables (103) and
horizontal tables (89). Table 7 shows number of
different table headers.

In our formal annotation process, every annota-
tor handled annotation of different samples to meet
the annotation schedule. To further quantitatively
study the inner-annotator agreement, we randomly
selected three annotators and asked them to anno-
tate the same 100 samples in two annotation tasks.
The resulted Fleiss’ Kappa of cell type annotation
task and answer cell annotation task are 0.86 and
0.88 respectively, which can be interpreted as ‘Al-
most perfect agreement’ (Landis and Koch, 1977).

Characteristic Value
Avg. question number per table 4.1
Row number per table (median/mean) 6/7.3
Column number per table (median/mean) 5/5.2
Cell number per table (median/mean) 23/31.6
Header cell number per table (median/mean) 10/12.7
Avg. answer num per question 1.68

Table 6: Dataset basic statistics

Ver Hor Hie Com Total
# table structures 103 89 153 241 586
# Column Attribute 1,158 99 2,185 1,434 4,876
# Row Attribute 145 1,445 831 3,649 6,070
# Column Index 0 1,092 16 268 1,376
# Row Index 1,355 0 872 781 3,008

Table 7: Different table structure and header number.

B Implementation Details

B.1 Implementation Details for CTC
Experiments

In this paper, we use PaddlePaddle7 and PGL8 to
implement our model and build graphs. We use
valid set for model selection and hyper-parameter

7https://www.paddlepaddle.org.cn/
8https://github.com/PaddlePaddle/PGL

tuning, and then evaluate the best model on test
set. We use bert-base-chinese to extract cell se-
mantic features. For the RGCN model, the graph
neural network (GNN) layer number is 4, the di-
mension of hidden layers is 800, and the ReLu
activation is used between adjacent GNN layers.
We train RGCN for 20 epochs. The Adam opti-
mizer is adopted with learning rate of 1e-4. To mit-
igate the class-imbalance in the CTC task, we fol-
low Ghasemi Gol et al. (2019) and use a weighted
Cross Entropy Loss as our loss function. We set
the weight wk of cell type k to be inversely propor-
tional to the number of cells with class type k in
train set ntrain

k , i.e., wk = 1− ntrain
k∑5

k′=1
ntrain
k′

.

For RAT baseline, we follow the implementation
in Wang et al. (2020a). The RAT layer number
and the attention head number is 8. The probabil-
ity for dropout layers is set to 0.1. The AdamW
optimizer is adopted with learning rate of 2e-5,
warmup fraction of 0.1 and weight decay of 0.01.
We train RAT for 50 epochs with batch size of
16. For MLP baseline, we adopt a multilayer per-
ceptron of one hidden layer with hidden size 800
and ReLu activation. For CNN-BERT baseline,
we adopt a text CNN (Kim, 2014) on cell feature
matrix along the row direction. For other base-
lines, we follow the original experimental setup in
their papers. PSLRF (Sun et al., 2021) is a very
recent CTC model, but the code has not been pub-
licly available. Thus, we do not compare with this
method.

B.2 Implementation Details for TQA
Experiments

We follow the original paper to train RCI model
with our proposed textual representation method.
We use bert-base-chinese as the sequence-pair clas-
sifier, which is trained for 3 epochs with batch size
of 64. The AdamW optimizer is adopted with learn-
ing rate of 2e-5, warmup fraction of 0.1 and weight
decay of 0.01. The probability of dropout layers is
set to 0.1. The max grad norm is set to 1.0. For RAT
baseline, to achieve better performance in multi-
turn TQA task, Mueller et al. (2019) also introduce
a node in the graph representing the answer of last
question. We do not use these unnecessary designs.
For TAPAS baseline, We pre-train a TAPAS-base
model on about 6 million Chinese tables. The pre-
training was run on four Tesla V100 GPU for about
one week. The table corpus used for pre-training
was collected from Baidu Encyclopedia. In fine-
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Model Number of
Parameters

Training
Time

Pretrained BERT 110M -
Auto Encoder <0.01M 10.5 minutes
Random Forest n_estimators=100 2 minutes
MLP 6M 1.5 minutes
CNN-BERT <0.1M 3 minutes
Bi-LSTM 1.5M 10 minutes
RAT <80M 1 hour
RGCN 30M 7 minutes

TAPAS 110 M pre-training: 1 week
finetune: 1 hour

Tapex 121M 1 hour
RCI 110 M×2 1 hour
RCI-AIT 110 M×2 1 hour

Table 8: Model parameter number and training time.

tuning stage, we concatenate output representations
of the first and the last character in the cell text as
cell representation, which is used to predict the
probability of selecting the cell as answer. Note
that out of resource limitation, we only pretrained
TAPAS for once. For Tapex baseline, we are un-
able to pre-train a new Tapex model for Chinese
due to the lack of synthetic Chinese SQL corpus.
As an alternative, we adopt a commercial machine
translation model9 to translate tables and questions
in IM-TQA from Chinese into English and fine-
tune a pre-trained Tapex-base model with the of-
ficial fine-tuning script. But it should noted that
the performance of the model maybe influenced
by the translation quality. For Ernie-Layout base-
line, we transform tables into document images
and adopt the official released model to evaluate its
performance on our dataset. For RCI-AIT baseline,
we use the same transformations from the original
paper to transform all tables into vertical tables.
Transformations include taking row headers as ta-
ble cells in a new column and flatting hierarchical
headers by concatenating parent header text with
children text. Main model parameter number and
training time are listed in Table 8. Main experi-
ments in this paper can be run on a single NVIDIA
GeForce RTX 3090 GPU.

B.3 Complete Manual Features

We list all manual features in Table 9. We consider
15 content features and 9 spatial features. We fol-
low Ghasemi Gol et al. (2019) and train an auto
encoder to transform 24-dim integer vectors into
32-dim continuous numerical vectors. We train
the auto encoder by a vector reconstruction task.
The auto encoder tries to reconstruct the input inte-
ger vector at its output, and generates continuous
vector representations at the output of the encoder

9https://cloud.baidu.com/product/mt/text_trans

layer. Mean square error is used as loss function.
At test time, we feed the 24-dim integer manual
vectors into the trained auto encoder and gain the
32-dim continuous vector from the encoder output.

Manual Cell Features
LENGTH#(character-level)
NUM OF TOKENS#(word-level)
LEADING SPACES#
IS NUMERIC?
STARTS WITH NUMBER?
STARTS WITH SPECIAL?
IS CAPITALIZED?
IS UPPER CASE?
IS ALPHABETIC?
CONTAINS SPECIAL CHARS?
CONTAINS PUNCTUATIONS?
CONTAINS COLON?
WORDS LIKE TOTAL?
WORDS LIKE TABLE?
IN YEAR RANGE?
ROW NUMBER#
COL NUMBER#
NEIGHBOUR CELL NUM#
HAS 0 NEIGHBORS?
HAS 1 NEIGHBORS?
HAS 2 NEIGHBORS?
HAS 3 NEIGHBORS?
HAS 4 NEIGHBORS?
IS MERGED CELL?

Table 9: Manual Feature List

C More Experimental Analyses

C.1 More CTC Experimental Analyses

(4) The performance of MLP baseline is the worst
among methods based on neural networks, which
proves that neighbour information is essential for
distinguishing divergent types of cells. (5) F1
scores on the column index (CI) and row index
(RI) are lower than that on the column attribute
(CA) and row attribute (RA). This indicates that,
compared with attribute cells that are not data, it
is more difficult for CTC models to distinguish
index cells from pure data cells. (6) CTC results
on vertical, horizontal and hierarchical tables are
shown in Table 10, Table 11 and Table 12, which
demonstrates that our graph-based method achieves
a better generalization on tables of different types.

Model
Vertical tables

per-class F1(%) Macro F1(%) Macro F1
-Header(%)PD CA RA CI RI

RF 93.5 92.3 35.2 - 78.7 74.9 68.7
MLP 98.5 87.5 40.5 - 86.3 78.2 71.4
CNN-BERT 98.0 93.8 56.6 - 87.8 84.1 79.4
Bi-LSTM 98.8 98.4 61.8 - 88.8 87.0 83.0
RAT 97.1 95.2 55.3 - 87.4 83.8 79.3
RGCN 99.3 96.3 62.7 - 94.6 88.2 84.5

Table 10: CTC results on vertical tables.
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Model
Horizontal tables

per-class F1(%) Macro F1(%) Macro F1
-Header(%)PD CA RA CI RI

RF 94.0 8.20 79.3 90.1 - 67.9 59.2
MLP 95.0 16.0 88.5 81.5 - 70.3 62.0
CNN-BERT 97.2 18.0 94.8 81.4 - 72.9 64.7
Bi-LSTM 98.6 18.8 94.2 79.6 - 72.8 64.2
RAT 96.3 15.0 90.4 88.2 - 72.5 64.5
RGCN 99.4 20.4 95.6 92.4 - 77.0 69.5

Table 11: CTC results on horizontal tables.

Model
Hierarchical tables

per-class F1(%) Macro F1(%) Macro F1
-Header(%)PD CA RA CI RI

RF 93.3 92.6 50.7 - 64.4 75.3 69.2
MLP 98.6 95.1 51.6 - 73.0 79.6 73.2
CNN-BERT 98.8 95.8 55.6 - 75.6 81.4 75.7
Bi-LSTM 98.4 98.4 67.6 - 75.2 84.9 80.4
RAT 99.2 98.1 64.5 - 83.7 86.4 82.1
RGCN 99.6 98.0 68.4 - 82.0 87.0 82.8

Table 12: CTC results on hierarchical tables.

C.2 More TQA Experimental Analyses

(7) As a non-table-pre-training method, RCI beats
the TAPAS on all model types, which is consistent
with the results in Glass et al. (2021). This shows
that selecting answer cells based on column and
row information maybe better than directly predict-
ing whether a cell is the answer or not. This is
more close to the way that human locates answer
cells. (8) RCI-AIT achieves better performance
than RCI especially on hierarchical tables, which
shows the effectiveness of its special textual repre-
sentation method. But it cannot perform well on
all table types as its special representation method
aims at hierarchical table and may include irrele-
vant information when applied to other tables. (9)
Compared with TAPAS, the recent Tapex model
achieves worse performance. We suppose the rea-
son is that TAPAS contains extra position embed-
dings such as column/row ID embedding, which
may benefit the model to understand diverse ta-
ble structures to some extent. By contrast, Tapex
is totally based on BART (Lewis et al., 2020) ar-
chitecture and does not include such special de-
signs, which increases difficulty for the model to
understand various table structures except vertical
tables. In addition, Tapex autoregressively outputs
answer(s) separated by commas. We think it is also
difficult for this fashion to generate answer text in
multiple answer cells.

C.3 TQA Case Study

Figure 6 shows a QA sample on a complex table
containing parameters of an air filter. In this case,
original RCI cannot correctly determine which col-
umn contains the answer as its representation of
the fourth column lacks necessary row header infor-

Figure 6: A real case (translated to English) where RCI
fails but RGCN-RCI gives the correct answer.

mation, such as “Operating Temperature Range”.
By contrast, RGCN-RCI with our new textual rep-
resentation method could incorporate useful row
header information into its column representation
and finally locates the correct answer.

D Discussion about Document
Understanding and LayoutLM

Document understanding aims at converting a doc-
ument into meaningful information, and it involves
several subtasks including answering questions
over tables in a document. Document understand-
ing benchmarks (Borchmann et al., 2021; Zhu et al.,
2022; Mathew et al., 2020) emphasize that no struc-
tured representation of the underlying document
text is provided, such as a table structure given in
advance, and it has to be learned by models from
the input document file. From this perspective, doc-
ument understanding requires a more general “im-
plicit” structure understanding ability which needs
to handle more data structure types, such as tables,
graphs and lists and so on.

By contrast, IM-TQA mainly focuses on im-
plicit structure understanding over different tables.
However, IM-TQA considers more diverse table
types and table structures than document under-
standing benchmarks like DUE (Borchmann et al.,
2021) and TAT-DQA (Zhu et al., 2022). For in-
stance, DUE mainly considers vertical tables from
the WTQ (Pasupat and Liang, 2015) dataset and
TAT-DQA considers vertical or hierarchical tables
from the TAT-QA (Zhu et al., 2021) dataset. We
believe that it is meaningful for document under-
standing benchmarks to include more table types
and we hope IM-TQA could also serve as a useful
resource to achieve this target.

LayoutLMs (Xu et al., 2020b,a; Huang et al.,
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2022; Peng et al., 2022) are important and recent
methods for the Document Understanding task,
which shares some similarity with our motivation
of understanding implicit table structures. Lay-
outLM jointly models interactions between text and
layout information across scanned document im-
ages and it supports several downstream document
understanding tasks including answering questions
over tables in a document. We converted tables
into document images and investigated the per-
formance of a state-of-the-art Chinese LayoutLM
Ernie-Layout (Peng et al., 2022).

From the results shown in Table 4, we find that
the Ernie-Layout model struggles in dealing with
diverse table structures. Interestingly, its perfor-
mance on complex table is better than that on other
table types. We suppose the reason is that the Lay-
outLM is biased towards excessively utilizing lay-
out information from the scanned document im-
ages. For instance, in a registration form of per-
sonal information, given a key (e.g., “ID number”),
its corresponding value is much more likely on its
right or below rather than on the left or above. The
LayoutLM tends to use such layout information to
answer questions about document but such biased
information may distract the model from locating
the correct answer cells in the table. As a result,
the model performs better on complex tables where
lots of answer cells are next to their header cells,
but it struggles on other tables where answer cells
are relatively farther from their header cells.

E Instructions for Annotators

Screenshots of original instructions for annotators
have been saved and shown in this section. The
instruction for CTC annotation task is shown in
Figure 12. And the instruction for TQA annotation
task is shown in Figure 13. A real CTC annota-
tion case of complex table is shown in Figure 14.
Besides instructions, we also provided annotators
with sufficient QAs to ensure that they fully com-
prehended the annotation requirements.

F More Table and Question Examples

Figure 7, Figure 8, Figure 9, Figure 10 and Figure
11 depict more table examples and question exam-
ples. We translated them into English for reading
convenience. Different header cells are represented
with the same color as Figure 1. As demonstrated
in these examples, header cells of complex table are
more flexible than those of traditional table. They

may appear at arbitrary positions and can be mixed
with other data cells. Such table structures have not
been thoroughly investigated and challenge exist-
ing TQA methods.
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Figure 7: A vertical table example and question examples.

Figure 8: A horizontal table example and question examples.

Figure 9: A hierarchical table example and question examples.
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Figure 10: A complex table about pressure relief valves, where many row attributes are mixed with data cells.

Figure 11: A complex table about gas test requirements. A col attribute cell, a pure data cell, and three row indices
appear in sequence in the second column. Such mixed data arrangement increases difficulty for TQA models to find
the correct answer.

Figure 12: Instructions(in screenshot) for CTC annotation tasks.
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Figure 13: Instructions(in screenshot) for TQA annotation tasks.

Figure 14: A real annotation case(in screenshot).
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