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Abstract

The EAE task extracts a structured event record
from an event text. Most existing approaches
train the EAE model on each dataset indepen-
dently and ignore the overlap knowledge across
datasets. However, insufficient event records
in a single dataset often prevent the existing
model from achieving better performance. In
this paper, we clearly define the overlap knowl-
edge across datasets and split the knowledge
of the EAE task into overlap knowledge across
datasets and specific knowledge of the target
dataset. We propose APE model to learn the
two parts of knowledge in two serial learn-
ing phases without causing catastrophic forget-
ting. In addition, we formulate both learning
phases as conditional generation tasks and de-
sign Stressing Entity Type Prompt to close the
gap between the two phases. The experiments
show APE achieves new state-of-the-art with a
large margin in the EAE task. When only ten
records are available in the target dataset, our
model dramatically outperforms the baseline
model with average 27.27% F1 gain.1

1 Introduction

Event extraction (EE) is a pivotal task in informa-
tion extraction. Typically, the event extraction task
can be divided into two sub-tasks: event detec-
tion (ED) and event argument extraction (EAE).
Thanks to recent works (Liu et al., 2022a; Sheng
et al., 2022; Lai et al., 2020), event detection has
achieved significant progress. The main challenge
of EE lies in the EAE task.

The EAE task aims to extract a structured event
record from an event text. Since different datasets
often have various event types and argument struc-
tures, most studies (Ma et al., 2022; Lu et al., 2021;
Liu et al., 2022b) train the EAE model on each
dataset independently, such as ACE 2005 (Dod-
dington et al., 2004), RAMS (Ebner et al., 2020),

∗Corresponding author.
1https://github.com/ZKH-1999/APE

Figure 1: The illustration of overlap knowledge

and WikiEvents (Li et al., 2021). However, one sin-
gle dataset often cannot provide sufficient event
records, which seriously prevents those models
from achieving better performance. Especially
in some industrial applications, the in-domain
event record collection incurs expensive and time-
consuming manual annotation. We argue that there
is abundant transferable all-purpose knowledge of
the EAE task among different datasets, called over-
lap knowledge. Exploring the overlap knowledge
from existing datasets can significantly improve
the model’s performance and reduce the need for
newly annotated data.

How to transfer knowledge across datasets has
yet to be well studied. Only Zhou et al. (2022)
attempted to introduce variational information bot-
tleneck to retain the shared knowledge between two
datasets and achieved considerable success. Never-
theless, their model architecture restricts that they
can only obtain overlap knowledge from up to two
datasets. Moreover, it has not explicitly defined
what is the overlap knowledge among the different
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datasets. Therefore, they use the EAE task’s train-
ing objective to train the model on two datasets
jointly and roughly let the model distinguish what
knowledge is shareable across datasets. The impre-
cise training objectives perplex the model to learn
the overlap knowledge better.

In this work, we propose a Seek Common
ground while Reserving Differences (SC-RD)
framework to define the overlap knowledge clearly.
SC-RD suggests defining overlap knowledge based
on a cross-dataset common ground and isolating
other knowledge into specific knowledge. As
shown in Figure 1, every argument role in different
datasets can be attached to an entity type. We in-
troduce a finite entity type set (shown in Appendix
Table 6) as the common ground across datasets.
Based on the entity type set, we define the overlap
knowledge as identifying entity words associated
with the event by a given entity type. The spe-
cific knowledge is defined as identifying arguments
based on the output of overlap knowledge. As il-
lustrated in Figure 1, the two knowledge split the
EAE task into two steps: In the first step, the model
uses the overlap knowledge to focus on the entity
word associated with the event. The second step
finishes the EAE task based on the specific knowl-
edge. Therefore, the EAE task can be reformulated
as the product of two conditional probabilities:

p (A|X , K) ∝ p (w|X , ko) p (A|w,X , ks) (1)

where A is the event argument, w are event-related
entity words, and X donates the event text. ko ∈ K
represents overlap knowledge, and ks ∈ K repre-
sents specific knowledge. p (w|X , ko) is indepen-
dent of datasets and can be learned from a pseudo-
entity recognition (PER) task on multi-datasets
straightforwardly. The PER only identifies the en-
tity words associated with the event so that EAE
labels can be converted to PER labels by a manual
mapping function. The structure definition of A
varies with the dataset, so we learn p (A|w,X , ks)
from the EAE task on the target dataset based on
the overlap knowledge.

We implement the above idea in APE, which
Assembles two Parameter-Efficient tuning meth-
ods to harmonize two parts of knowledge in one
single model. Specifically, we introduce two learn-
ing phases (illustration in Figure 2) to learn overlap
and specific knowledge, respectively. In the over-
lap learning phase, we merge multi-datasets and
convert their unaligned EAE labels to aligned PER

labels to optimize the Prefix, which is introduced
to save overlap knowledge. In the specific learn-
ing phase, we load and freeze the trained Prefix
and tune the Adapter’s parameters with the EAE
task in the target dataset to save specific knowl-
edge. All the pre-trained model’s parameters will
be frozen like traditional parameter-efficient tun-
ing methods. Furthermore, to ensure the overlap
knowledge plays a part in the EAE task, we format
both training tasks as conditional generation tasks
and propose the Stressing Entity Type Prompt to
ignite the overlap knowledge in the EAE task.

To the best of our knowledge, we are the first
to clearly define the overlap knowledge across
datasets, so we can give the model a transparent
training objective to help it learn the overlap knowl-
edge. Our model expands parameter-efficient tun-
ing methods to the transfer learning scene. Since
APE optimizes different parameters in two learn-
ing phases, learning the specific knowledge will
not trigger catastrophic forgetting (McCloskey and
Cohen, 1989) of the overlap knowledge.

We have conducted extensive experiments on
three widely used datasets. The experimental re-
sults show that our proposed APE outperforms
baselines with a large margin (2.7%, 2.1%, 3.4%
F1 gain absolutely on three benchmarks). More-
over, it achieves 27.27% F1 score gain average over
three datasets when only ten samples of the target
dataset are available, indicating our model’s few-
shot learning ability. Further analysis in Section 4.3
confirms the efficacy of the main components in
our model.

2 Method

As illustrated in Figure 2, APE learns two parts
of knowledge in two learning phases sequentially.
To overcome catastrophic forgetting, our model
(Section 2.2) assembles Prefix (Li and Liang, 2021)
to save overlap knowledge and Adapter (Houlsby
et al., 2019) to save specific knowledge, respec-
tively. To fully use the overlap knowledge learned
from multi-datasets, we carefully design the Task
Formulation (Section 2.1) and the Stressing Entity
Type Prompt (Section 2.3) of two learning phases.

2.1 Task Formulation

Our approach introduces PER task to learn overlap
knowledge and EAE task to learn specific knowl-
edge. Every NLP task can be treated as a “text-to-
text” problem (Raffel et al., 2020). Our approach
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Figure 2: The framework of our APE model

formats both learning phases as conditional genera-
tion problems to narrow the gap between the two
learning phases.

Specifically, we define the event dataset as D =
{(Ci, ei, Ti,Ai)|i < |D|}, where Ci is the ith event
context. ei and Ti are the event type and trigger of
the ith event separately. Ai = {(rj , spanj), . . .} is
the argument set of the event, where rj denotes the
argument role, and spanj is the offset of the argu-
ment. For both phases, the input of our model is a
designed promptP and a context Ci. The target out-
put string is an answered prompt G containing the
answer to the task. The language model (LM) mod-
els the conditional probability of answered prompt
G as:

p (G|X , θ) =
|G|∏

i=1

p (gi|g<i,X ) (2)

X = [P; [SEP ] ; Ci] (3)

Where X is the input of the model, θ donates the
parameters of LM. The construction of P and G in
two learning phases will be respectively described
in section 2.3.

2.2 Model Architecture
Our APE model assembles Prefix and Adapter into
pre-trained encoder-decoder Transformer (Vaswani
et al., 2017). The model can acquire two parts of
knowledge without causing catastrophic forgetting
by optimizing different parameter regions in two
learning phases.

For overlap knowledge, we equip each self-
attention module with a short Prefix vector P ∈

R|P |×dmodel to represent and save it. In each layer,
the new self-attention module with overlap knowl-
edge intervention is formalized as:

H ← LayerNorm (H
′
+H

)
(4)

H ′ = MHSA (P ⊕H)|P |:|P⊕H| (5)

Where MHSA(•) denotes the multi-head self-
attention mechanism, and (•)a:b donates the slic-
ing operation on the seq_len dim from a to b. The
Prefix will be assembled into the model in both
learning phases since we use the overlap knowl-
edge in the specific knowledge learning phase too.
We optimize the Prefix P only in the overlap knowl-
edge learning phase, and freeze it in the specific
knowledge learning phase.

For specific knowledge, we adopt an Adapter
parallel with the feed-forward module to represent
and save it. The Adaptor locates behind the Prefix
to model the order of knowledge utilization in the
SC-RD framework. The specific knowledge will be
involved in the computation of Had, and the new
feed-forward module with Adapter is formalized
as:

H ← LayerNorm (H +Hffd +Had) (6)

Had = Wup σ (WdownH) (7)

Where Wdown ∈ Rdmodel×dadapter and Wup ∈
Rdadapter×dmodel are tunable parameters in the
Adapter, σ(•) is a nonlinear activation function,
and Hffd represents the output of the feed-forward
layer. Only in the specific knowledge learning
phase, we assemble the Adapter into the model
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and optimize it. Like traditional parameter-efficient
tuning methods, the pre-trained parameters of the
Transformer are frozen in both phases.

2.3 Stressing Entity Type Prompt

The Stressing Entity Type Prompt can indicate the
model to generate words with the corresponding
entity type in the designated location. We design
the prompts under the same style in two learning
phases, which uses identical special tokens to mark
entity types. In the EAE task, those special tokens
will ignite the overlap knowledge.

2.3.1 Overlap Knowledge Learning Phase

We introduce the PER task to align the diverse
datasets and learn overlap knowledge from them.
To convert EAE labels to PER labels, we manually
create a mapping functionM(r) which maps each
argument role r to an entity type.

Prompt Construction The overlap knowledge
is independent of datasets, so all datasets’ prompt
in the overlap knowledge learning phase is identi-
cal. Entity-type special tokens mark the position
expected to be filled by the model and the corre-
sponding entity types. The model should recognize
the right entity words by referring to the context
Ci. The manual overlap knowledge prompt Po was
designed as:

[person/organization] are a participant in the
event, the event happened at [location], [object]
are relate to the event, [definition] are the
terminology in the event, the event taken place
at [time], [money] was used in this event.

[•] represents an entity-type special token, and the
prompt natively contains the congruent relationship
between the special token and entity type. Further-
more, we concatenate the event trigger Ti of the
given event with the prompt to help the model focus
on the correct event.

Target Output String Construction As shown
in Figure 2 ①, for an event context Ci and its argu-
ments Ai sampled from any event dataset, we first
convertAi to the PER label according toM. Then,
we construct the ground truth generation sequence
Go,Ai by filling the PER label into Po. If several
words are categorized as the same type, they will be
concatenated by “and”. If there is an empty set of
some entity types, we fill “none” into Po to replace
the special token.

2.3.2 Specific Knowledge Learning Phase
We learn the specific knowledge by finishing the
EAE task based on the overlap knowledge. To ig-
nite the overlap knowledge contained in the Prefix,
we inherit entity-type special tokens from the over-
lap knowledge learning phase and build prompts
according to the target dataset with those special
tokens.

Prompt Construction In the target dataset, for
each event type ei, we refer pre-defined prompt
from Ma et al. (2022) and replace the textual ar-
gument roles in the prompt with the above entity-
type special token according to M. The entity-
type special token hints to the model what entity
type of words are most likely to serve as this ar-
gument role. For example, given an event type
e: Life.Die.Unspecified, the renovated prompt Ps,e
can be got as:

Prompt from Ma et al. (2022):
Killer killed Victim at Place by MedicalIssue
Renovated prompt:
[person/organization] killed
[person/organization] at [location] by
[definition]

As shown in Figure 2 ②, following Ma et al. (2022),
we concatenate the event type ei and the event trig-
ger Ti of the given event sample with the renovated
prompt.

Target Output String Construction For each
event record (Ci, ei, Ti,Ai) sampled from the tar-
get dataset, as shown in Figure 2 ②, we construct
the ground truth generation sequence Gs,ei,Ai by
filling Ai into Ps,ei . Like the overlap knowledge
learning phase, arguments with the same role will
be concatenated by “and” and the uninvolved argu-
ment role will be filled by “none”.

2.4 Training, Inference, and Decoding

Training First, in the overlap knowledge learning
phase, the trainable parameters of our model are
only the Prefix P in each layer and the embedding
of entity-type special tokens. The Adapter will be
disabled. The training objective is to maximize
p (w|X , ko) of Equation 1, which is equivalent to
minimizing the negative loglikelihood loss in multi-
datasets D = {D1,D2 . . .}:

Lo = −
D∑

D

D∑

(Ci,Ti,Ai)

log (P (Go,Ai |Ci, Ti,Po))

(8)
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Then, in the specific knowledge learning phase, we
load and freeze all parameters learned from the
overlap knowledge learning phase and assemble
the Adapter into our model to save the specific
knowledge. Only Wdown and Wup in the Adapter
will be optimized. The training objective is to max-
imize p (A|w,X , ks) by minimizing the negative
loglikelihood in the target dataset Dt:

Ls = −
Dt∑

(Ci,ei, Ti,Ai)

log (P (GS,ei,Ai |Ci, Ti,Ps,ei , P ))

(9)
Where P is the Prefix.

Inference In the inference stage, we assemble
the trained Prefix and Adapter into the model. The
input of APE is as same as the specific learning
phase. Our model generates sequence by beam
search strategy with width = 10. The maximum
sequence length is set to 100 tokens, which is plenty
for every dataset.

Decoding Routinely, we decode the arguments
from generated sequence by using regular expres-
sions according to the Ps,e for each sample. It is
rare, but not all generated sequences are valid. For
the argument roles we cannot decode from the gen-
erated sequence, we set “none” to them. Following
Lu et al. (2021), we obtain the offset of the argu-
ment by finding the nearest matched string to the
event trigger Ti.

3 Experiments Setup

3.1 Datasets
We evaluate our model on three popular datasets:
ACE 2005 (Doddington et al., 2004), RAMS
(Ebner et al., 2020), and WikiEvents (Li et al.,
2021). ACE05 is a classical sentence-level dataset.
We follow Wadden et al. (2019)’s pre-processing
scripts on ACE05. RAMS and WikiEvents are
both document-level datasets. Since the con-
text of the document-level dataset sometimes ex-
ceeds the constraint, we follow Ma et al. (2022),
which adds a window centering on the trigger
words and only encodes the words within the
window. The statistics of the datasets are listed
in Appendix Table 7. The multi-datasets D =
{ACE05, RAMS, WikiEvents} in this work.

3.2 Baselines
We compare our APE model with the following
state-of-the-art baseline models: (1) OneIE (Lin
et al., 2020) jointly extracts the globally optimal IE

result from a context. (2) EEQA (Du and Cardie,
2020) regards the event argument extraction task as
an end-to-end question-answering (QA) task. (3)
BART-Gen (Li et al., 2021) proposes a conditional
generation approach to complete document-level
EAE task. (4) PAIE (Ma et al., 2022) utilizes multi-
role prompts under extractive settings to capture ar-
gument interactions. (5) PAIE-Joint uses the same
model in PAIE, but joint train the model in three
datasets for a fair comparison with our model. (6)
UnifiedEAE (Zhou et al., 2022) introduces vari-
ational information bottleneck to explore shared
knowledge from two EAE datasets.

3.3 Evaluation Metric
Following baseline models, we adopt two metrics:
Arg-I and Arg-C. Following Li et al. (2021), we
add Head-C for WikiEvents datasets. Please refer
to Appendix A for the detail of evaluation metric.

3.4 Implementation Details
We initialize the weight of the Transformer with
BART model (Lewis et al., 2020). The length |P |
of Prefix is set to 70, and the inter-dim dadapter
of the Adapter is set to 512 for BART-base model
and 768 for BART-large model. For simplicity,
we initialize the Prefix and the Adapter randomly.
We optimized our models on NVIDIA A40 GPU
by AdamW (Loshchilov and Hutter, 2019) with
β1 = 0.9, β2 = 0.999, ϵ = 1e − 8, and 10%
warmup steps. We set the learning rate to 1e-3
for Prefix and 1e-4 for Adapter. To ensure the
confidence of the result, we repeated the model
training five times with five fixed seeds [14, 21, 28,
35, 42]. The reported experimental results are the
average score. We exhibit some examples ofM(r)
(Table 10) and prompts (Table 11) in the Appendix.
The completeM(r) and prompts of each dataset
are available in our codebase.

4 Results and Analyses

To investigate the efficacy of our APE model, we
compare our model with several state-of-the-art
baseline models (4.1). Then, we verify the signif-
icance of transfer overlap knowledge (4.2) in the
few-shot setting. We also perform ablation studies
and further analysis to examine the effectiveness of
the main components in our model (4.3).

4.1 Overall Performance
Table 1 present the main result of all baseline mod-
els and APE on three datasets. APE refers to our
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Table 1: The Overall performance of our model and baselines. We bold the best result and underline the second
best. b in column PLM denotes base model and l is large model.

Model PLM
ACE05 RAMS WikiEvents

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Head-C

OneIE
BERT-b 65.9 59.2 - - - - -
BERT-l 73.2 69.2 - - - - -

EEQA
BERT-b 68.2 65.4 46.4 44.0 54.3 53.2 56.9
BERT-l 70.5 68.9 48.7 46.7 56.9 54.5 59.3

BART-Gen
BART-b 59.6 55.0 50.9 44.9 47.5 41.7 44.2
BART-l 69.9 66.7 51.2 47.1 66.8 62.4 65.4

PAIE
BART-b 73.6 69.8 54.7 49.5 68.9 63.4 66.5
BART-l 75.7 72.7 56.8 52.2 70.5 65.3 68.4

PAIE-Joint
BART-b 73.8 69.5 53.3 48.3 69.3 63.7 65.9
BART-l 75.1 72.4 55.9 51.8 70.1 65.2 67.9

UnifiedEAE BART-b 76.1 71.9 55.5 49.9 69.8 64.0 66.3

APE(Single)
BART-b 74.1 70.1 54.8 49.6 66.2 62.1 64.9
BART-l 75.3 72.9 56.3 51.7 70.6 65.8 68.4

APE
BART-b 75.5 72.9 56.1 51.6 70.7 66.0 68.7
BART-l 78.2 75.4 58.1 54.3 73.7 68.7 70.8

full model, which optimizes the Prefix in multi-
datasets. APE(Single) refers to the APE model
trained in the transfer-disable setting, which opti-
mizes the Prefix only in the target dataset. In the
APE(Single), the overlap knowledge degrades into
shared knowledge between different event types
within the same target dataset.

From Table 1, we have the following observa-
tions. First, APE achieves the highest F1 score on
every evaluation metric compared with all the base-
lines model. Our base model obtained +1%, +1.7%,
and +2% gain of Arg-C F1 scores on ACE05,
RAMS, and WikiEvents, respectively. The large
model expands the margin to +2.7%, +2.1%, and
+3.4%. The results show that there is abundant over-
lap knowledge in multi-datasets, and our model
can fully utilize it in the target dataset. Second,
despite not relying on transfer learning, APE (Sin-
gle) also achieves state-of-the-art performance on
ACE05 and WikiEvents, and a competitive score
on RAMS, which suggests that knowledge shared
between different event types in a single dataset
can also boost performance. Third, the PAIE-Joint
even slightly worse than the PAIE. It donate that it
is difficult for the model to find overlap knowledge
by itself from datasets with various event structures,
event types, and even different annotation guide-
lines. The APE can exploit the overlap knowledge
from the transparent training objective of the PER
task, and achieve better performance.

Table 2: Arg-C F1 score on few-shot setting

Dataset ACE05 RAMS Wiki.

PAIE

10 3.3±2.1 4.3±1.4 5.7±3.6

50 35.2±5.3 25.2±6.1 31.4±4.6

100 39.6±2.5 30.4±2.1 42.1±3.2

200 51.2±1.3 35.8±1.9 53.2±1.7

APE

10 32.1±7.1 26.3±4.2 36.7±8.3

50 42.5±3.9 33.4±4.1 47.6±5.4

100 53.2±1.7 38.5±1.6 55.6±2.6

200 59.3±0.9 41.1±1.2 59.5±1.5

4.2 Few-shot Setting

APE is exceptionally suited for lacking in-domain
labeled data because APE can learn from out-
domain event records. Therefore, we conduct a
few-shot experiment to verify the ability of APE to
reduce the dependence on target dataset samples.
Specifically, we optimize Prefix on the other two in-
tact datasets and train Adapter on the target dataset
with few samples.

Table 2 reports the Arg-C F1 score in the target
dataset with 10, 50, 100, and 200 random sam-
pled event records. From the results, we obtain the
following observations. 1). APE significantly out-
performs the state-of-the-art baseline PAIE model
in three benchmarks. 2). Especially in the case of
only ten samples, APE achieves 27.27% F1 score
gains average in three datasets. 3). APE with 200
samples achieves competitive scores with some
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Table 3: The performance of different variants on
ACE05

Variant
Param

ACE05
overlap specific

APE Prefix Adapter 72.9
APEreversed Adapter Perfix 72.1
w/o Prefix BART Adapter 71.5

w/o Adapter Prefix BART 71.7
BART BART BART 69.4

baseline model trained on the whole WikiEvents
or ACE05 dataset. The results indicate that APE
significantly reduces the need for the scale of the
target dataset.

4.3 Detailed Analysis
In this section, we study the effectiveness of the
main components in our model and take a deeper
look at what contributes to APE’s final perfor-
mance. All experiments will be based on the base-
version model and report the average Arg-C F1
scores on five seeds. The experimental conclusions
are also proper for the large version model.

4.3.1 Model Architecture Design
We first explore the effectiveness of APE model ar-
chitecture in preventing catastrophic forgetting. We
tried variants of APE as follows: 1) APEreversed:
it has the same model architecture as APE but
saves overlap knowledge in the Adapter and spe-
cific knowledge in the Prefix. 2) w/o Prefix: it
is an APE without Prefix, which updates all pre-
trained parameters to save overlap knowledge. 3)
w/o Adapter: pre-trained parameters will be up-
dated to save specific knowledge. 4) BART: it
is a standard BART model without additional pa-
rameters. We optimize the model in the overlap
knowledge learning phase and fine-tune it in the
specific knowledge learning phase.

The result of ACE05 is summarized in Table 3,
and the result of other datasets is in Appendix Ta-
ble 8. All variants that save overlap and specific
knowledge into different parameters outperform the
plain BART model significantly. Since the plain
BART model saves overlap and specific knowledge
in the same parameters, serial learning phases will
lead to catastrophic forgetting of previous knowl-
edge.

Suppose we save both knowledges into new pa-
rameter regions (APE, APEreversed). In this case,
we can also obtain a considerable performance gain

Table 4: The performance of different learning tasks

Task ACE05 RAMS Wiki.
Joint EAE Task 69.9 49.4 64.1

PER Task 72.9 51.6 66.0

Table 5: The performance of different prompt styles

prompt style
ACE05 RAMS Wiki.

overlap specific
ST ST 72.9 51.6 66.0
NL NL 72.1 51.1 65.3
NL ST 69.5 49.3 63.5

because our task formulation is similar to the pre-
train task of BART, where the entity-type special
tokens can be seen as [MASK] tokens. Retaining
the pre-training parameter is helpful to take the best
advantage of PLM’s knowledge.

Finally, there is a slightly negative effect when
we reverse the parameter regions to save over-
lap and specific knowledge. We conjecture that
APEreversed cannot model the order of knowledge
utilization in the SC-RD framework.

4.3.2 Overlap Knowledge Learning Task
To investigate the effect of the PER task and its
transparent training objective (Equation 8) in learn-
ing the overlap knowledge, we throw out the SC-
RD framework and replace the PER task with Joint
EAE Task like the previous work. The Joint EAE
Task ignores the difference of datasets and merges
multi-datasets to force the model directly learn
overlap knowledge from the EAE training objec-
tive. The input and the target output string of the
Joint EAE Task are as same as the specific knowl-
edge learning phase. Two versions of Prefix will
be respectively learned from the Joint EAE Task
and the PER task and used in target datasets.

It can be observed in Table 4 that there is a 3.0%,
2.2%, and 1.9% decrease for the Arg-C F1 score on
three datasets when changing the task. It is difficult
for the model to discern the overlap knowledge
from the imprecise EAE training objective. The
PER task provides a transparent training objective
to indicate the overlap knowledge explicitly.

4.3.3 Stressing Entity-Type Prompt
As aforementioned, prompts that keeping the same
style in two learning phases can ignite the utiliza-
tion of overlap knowledge in the specific knowl-
edge learning phase and EAE inference scene. In
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Figure 3: The performance of different multi-datasets

order to verify it, we propose another prompt style
named Natural Language Pronouns (NL), which
replaces the entity-type Special Token (ST) with
pronouns. The conversion between the two styles is
shown in Appendix Table 9. We observe in Table 5
that there is a huge F1 score decrease of about 3.4%
on the ACE05 dataset when we build prompts with
different styles in two learning phases. The result
indicates that narrowing the gap between the two
phases is crucial to ignite the overlap knowledge.
Meanwhile, the special token is a more powerful
way to alert the model to the entity type than natural
language.

4.3.4 Number of Datasets in Multi-datasets
In order to deeply observe the impact of the amount
of the training data used in the overlap knowledge
learning phase, we trained four versions of Prefix
on varying numbers of training sets and transferred
them to the target dataset. When the number of
datasets was set to 0, the Prefix was randomly ini-
tialized and used directly without training. When
the number of datasets was set to 1, we trained
Prefix on {ACE05}. When the number of datasets
was 2, we trained Prefix on {ACE05, RAMS}. Fig-
ure 3 shows the Arg-C F1 score increase as the
number of datasets used to learn the overlap knowl-
edge. The experiment result shows that with more
available out-domain event records, the APE model
can learn more abundant overlap knowledge and
achieve better performance in the target dataset.

5 Related Works

5.1 Transfer Learning in EAE
Event argument extraction (EAE) aims to extract
event arguments by the given event trigger and ar-
gument roles (Chen et al., 2015). Most existing ap-
proaches (Lin et al., 2020; Du and Cardie, 2020; Lu

et al., 2021; Nguyen et al., 2022; Ma et al., 2022)
suffer from insufficient training data and cannot
perform better. Therefore, some studies (Liu et al.,
2020b; Chen et al., 2020; Feng et al., 2020) fo-
cus on transferring knowledge from machine read-
ing comprehension (MRC) datasets. Huang et al.
(2022) leverages multilingual pre-trained models
(Liu et al., 2020a; Xue et al., 2021) to achieve
cross-lingual knowledge transfer. About transfer-
ring overlap knowledge from other available event
datasets to the target dataset, only Zhou et al. (2022)
attempt to introduce variational information bottle-
neck (Li and Eisner, 2019) to explore the overlap
knowledge from two event datasets. Unlike their
work, we clearly define the cross-dataset overlap
knowledge in the EAE task. Our model does not
limit the number of datasets and can explore over-
lap knowledge from all available datasets to achieve
better performance.

5.2 Parameter-Efficient Tuning Method

Optimizing all the parameters of the PLMs means
we need to save a complete fine-tuned model for
every downstream task. The storage cost is pro-
hibitively expensive with the increasing size of
PLMs. Several parameter-efficient tuning methods
(Houlsby et al., 2019; Hu et al., 2022; Mao et al.,
2022; He et al., 2022) were proposed to mitigate
this issue, which update a small number of task-
specific parameters while keeping other pre-trained
parameters frozen. Houlsby et al. (2019)equip each
Transformer layer with an Adapter, and only the
Adapters are tunable to save task-specific knowl-
edge of the downstream task. Inspired by signif-
icant effectiveness achieved in prompt learning
(Brown et al., 2020; Gao et al., 2021), Li and Liang
(2021) prepends Prefix vectors to the hidden state,
and only the Prefix will be trained on downstream
tasks. To the best of our knowledge, we are the first
to assemble two parameter-efficient tuning meth-
ods to separate knowledge in transfer learning and
overcome catastrophic forgetting.

6 Conclusion

In this work, we first define the shareable over-
lap knowledge across datasets and reformulate the
EAE task into two learning phases. Then, we pro-
pose APE model, which assembles two parameter-
efficient tuning methods to save the overlap and
specific knowledge. The experiment results show
the efficiency of the cross-dataset transfer learning,
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and APE achieves new SOTA with a large margin in
the EAE task. Our model significantly reduces the
need for new event records and achieves superior
performance with few samples of target datasets.
The ablation studies verify that our approach can
explore overlap knowledge from multi-datasets and
overcome the well-known catastrophic forgetting
issue. In the future, we would like to study over-
lap knowledge across datasets in other information
extraction tasks.

Limitations

This work introduces a pseudo-entity recognition
(PER) task to supervise the model learning overlap
knowledge. Since no additional entity annotation
is available, we manually create a mapping func-
tionM(r), which maps each argument role r to
an entity type. With the help of the mapping func-
tionM(r), the EAE label can be converted to the
PER label. However, because the annotation of
the EAE task is complicated, it is hard to avoid
a few exceptional samples in the prior mapping
function. Some entity words may be attached to
impertinent entity types. For example, there is a
triple of argument role, event type, and argument
in RAMS’s movement.transportartifact.preventexit
event: {Artifact, Object, Two pilots}. The "Arti-
fact" argument is mapped to "Object" inM(r), but
we expect "Two pilots" can be mapped to "Person
Or Organization". We tolerate such exceptional
samples, and the occasional noise has not affected
the training of APE.
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A Detail of Evaluation Metric

We adopt two widely-used evaluation metrics:

1. Argument Identification F1 score (Arg-I):
when the predicted argument’s offsets match
any of the gold argument labels in this event,
we consider the predicted argument is correct.

2. Argument Classification F1 score (Arg-C):
when the predicted argument’s argument role
also matches the gold argument label, we con-
sider the predicted argument is correct.

For the WikiEvents dataset, following Li et al.
(2021), we add argument head F1 score (Head-C),
which only focuses matching the headword of the
arguments’ offsets.
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Table 6: The finite entity type set

Entity Type Description Example
Person Or

Organization
The word that refers to a person or an organization he, she, Bill, the president, ...

Location The word that refers to a place or a region Washinton DC, London, ...
Time The word that indicates a time 10 June, 17 pm., ...

Money The word that indicates money $1,000, 6 million dollars, ...
Object The word that refers to a materiality entity The truck, bomb, gun, house, ...

Definition The proper noun or immateriality entity murder, crime of pillage

Table 7: The statistics of datasets, #Sent. is the number of sentences of the dataset, #Arg. is the number of
arguments of the dataset.

Dataset
Train Dev Test
#Sent. #Arg. #Sent. #Arg. #Sent. #Arg.

ACE05 17172 4859 923 605 832 576
RAMS 7329 17026 924 2188 871 2023
WikiEvents 5262 4552 378 428 492 566

Table 8: The performance of different variants on three datasets

Variant
Param

ACE05 RAMS Wiki.
overlap specific

APE Prefix Adapter 72.9 51.6 66.0
APEreversed Adapter Perfix 72.1 51.2 64.7
w/o Prefix BART Adapter 71.5 51.3 64.3

w/o Adapter Prefix BART 71.7 50.9 64.8
BART BART BART 69.4 49.1 63.7

Table 9: The conversion between entity-type special token and natural language pronouns

Entity Type Special Token Natural Language Pronouns
Person Or Organization [person/organization] someone

Location [location] someplace
Time [time] some time

Money [money] some money
Object [object] something

Definition [definition] some definition
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Table 10: Some examples ofM(r) in three datasets, the completeM(r) can be found in our codebase.

Dataset Event Type Event Argument Role Entity Type

ACE05

Business.Declare-Bankruptcy
Org person/organization
Place location
Time time

Business.End-Org
Place location
Org person/organization
Time time

Justice.Arrest-Jail

Person person/organization
Agent person/organization
Crime definition
Place location
Time time

RAMS

transaction.transfermoney.
purchase

recipient person/organization
beneficiary person/organization
money money
place location
giver person/organization

contact.mediastatement.
broadcast

recipient person/organization
communicator person/organization
place location

movement.transportartifact.
disperseseparate

artifact object
vehicle object
origin location
destination location
transporter person/organization

WikiEvents

Contact.RequestCommand.Meet

Communicator person/organization
Recipient person/organization
Topic definition
Place location

Justice.ChargeIndict.
Unspecified

Prosecutor person/organization
Defendant person/organization
JudgeCourt person/organization
Crime definition
Place location

Life.Die.Unspecified

Victim person/organization
Place location
Killer person/organization
MedicalIssue definition

406



Table 11: Some examples of prompt in three datasets, the complete prompts can be found in our codebase.

Dataset Event Type Prompt

ACE05
Life.Die

[person/organization] killed
[person/organization]

with [object] at [location]

Life.Injure
[person/organization] injured

[person/organization]
with [object] at [location]

Justice.Fine
[person/organization] courted or

judged fined [person/organization]
at [location] for [definition] cost [money]

RAMS
conflict.attack.stabbing

[person/organization] attacked
[person/organization]

using [object] at [location]

artifactexistence.damagedestroy.n/a
[person/organization] damaged or

destroyed [object] using [object] in [location]

movement.transportartifact.n/a
[person/organization] transported [object]

in [object] from [location] place
to [location] place

WikiEvents
Contact.Contact.Unspecified

[person/organization] communicated with
[person/organization] about

[definition] at [location]
ArtifactExistence.

ManufactureAssemble.
Unspecified

[person/organization] manufactured
or assembled or produced [object] from

[object] using [object] at [location]

Life.Illness.Unspecified
[person/organization] has

[definition] sickness or
illness at [location]
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