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Abstract

Classic approaches to content moderation typi-
cally apply a rule-based heuristic approach to
flag content. While rules are easily customiz-
able and intuitive for humans to interpret, they
are inherently fragile and lack the flexibility or
robustness needed to moderate the vast amount
of undesirable content found online today. Re-
cent advances in deep learning have demon-
strated the promise of using highly effective
deep neural models to overcome these chal-
lenges. However, despite the improved per-
formance, these data-driven models lack trans-
parency and explainability, often leading to mis-
trust from everyday users and a lack of adoption
by many platforms. In this paper, we present
Rule By Example (RBE): a novel exemplar-
based contrastive learning approach for learn-
ing from logical rules for the task of textual
content moderation. RBE is capable of pro-
viding rule-grounded predictions, allowing for
more explainable and customizable predictions
compared to typical deep learning-based ap-
proaches. We demonstrate that our approach
is capable of learning rich rule embedding rep-
resentations using only a few data examples.
Experimental results on 3 popular hate speech
classification datasets show that RBE is able to
outperform state-of-the-art deep learning clas-
sifiers as well as the use of rules in both su-
pervised and unsupervised settings while pro-
viding explainable model predictions via rule-
grounding.

1 Introduction

Content moderation is a major challenge con-
fronting the safety of online social platforms
such as Facebook, Twitter, YouTube, Twitch, etc.
(Vaidya et al., 2021). Major technology corpora-
tions are increasingly allocating valuable resources
towards the development of automated systems for

*This work was done as Christopher’s internship project at
Microsoft.

Figure 1: Generalization problem of rules. Logical rules,
while easy to explain, are inherently fragile to the nuances of
natural language.

the detection and moderation of harmful content in
addition to hiring and training expert human mod-
erators to combat the growing menace of negativity
and toxicity online (Wagner and Bloomberg, 2021;
Liu et al., 2022).

Despite the popularity of deep learning ap-
proaches, many practical solutions used in products
today are comprised of rule-based techniques based
on expertly curated signals such as block lists, key
phrases, and regular expressions (Gillespie, 2018;
Zhang, 2019; Dada et al., 2019). Such methods
are widely used due to their transparency, ease of
customization, and interpretability. However, they
have the disadvantage of being difficult to maintain
and scale, in addition to being inherently fragile
and noisy (Zhang, 2019; Davidson et al., 2017; Lee,
2022; Lai et al., 2022). Figure 1 shows an example
where logical rules, while explainable in nature,
face the problem of being inflexible to their context
of use in natural language. While a given rule may
be too specific and fail to capture different varia-
tions of usage commonly found in content online,
rules can also be too broad and incorrectly block
lexically similar content.

In contrast to the challenges faced by rule-based
methods, data-driven deep learning approaches
have shown great promise across a wide range of
content moderation tasks and modalities (Malik
et al., 2022; Shido et al., 2022; Lai et al., 2022).
Fueled by large amounts of data and deep neural
networks, these complex models are capable of
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learning richer representations that better general-
ize to unseen data. The impressive performances
of these models have resulted in significant indus-
try investment in content moderation as-a-service.
Several technology companies such as Google 1,
OpenAI 2, and Microsoft 3 use these models to
offer services to aid in content moderation. How-
ever, despite their significant investment, they face
adoption challenges due to the inability of cus-
tomers to understand how these complex models
reason about their decisions (Tarasov, 2021; Haim-
son et al., 2021; Juneja et al., 2020). Additionally,
with the increasing attention around online content
moderation and distrust amongst consumers, ex-
plainability and transparency are at the forefront of
demands (Kemp and Ekins, 2021; Mukherjee et al.,
2022). This presents the challenging open question
of how we can leverage the robustness and predic-
tive performance of complex deep-learning models
whilst allowing the transparency, customizability,
and interpretability that rule-based approaches pro-
vide.

Prior works such as Awasthi et al. (2020); Seo
et al. (2021); Pryzant et al. (2022) have explored
learning from rules for tasks such as controlling
neural network learning, assisting in human anno-
tation, and improving self-supervised learning in
low data scenarios. Awasthi et al. (2020) propose
a rule-exemplar training method for noisy super-
vision using rules. While performant in denoising
over-generalized rules in the network via a soft
implication loss, similar to other ML approaches,
this method lacks the ability to interpret model pre-
dictions at inference time. Pryzant et al. (2022)
propose a general-purpose framework for the auto-
matic discovery and integration of symbolic rules
into pre-trained models. However, these symbolic
rules are derived from low-capacity ML models
on a reduced feature space. While less complex
than large deep neural networks, these low-capacity
models are still not easily interpretable by humans.
Therefore, the task of combining the explainability
of rules and the predictive power of deep learning
models remains an open problem.

In order to tackle this problem, we introduce
Rule By Example (RBE): a novel exemplar-based

1https://perspectiveapi.com/
2https://openai.com/blog/

new-and-improved-content-moderation%
2Dtooling/

3https://azure.microsoft.com/
en-us/products/cognitive-services/
content-moderator/

contrastive learning approach for learning from log-
ical rules for the task of textual content moderation.
RBE is comprised of two neural networks, a rule
encoder, and a text encoder, which jointly learn
rich embedding representations for hateful content
and the logical rules that govern them. Through the
use of contrastive learning, our framework uses a
semantic similarity objective that pairs hateful ex-
amples with clusters of rule exemplars that govern
it. Through this approach, RBE is able to provide
more explainable predictions by allowing for what
we define as Rule-grounding. This means that our
model is able to ground its predictions by showing
the corresponding explainable logical rule and the
exemplars that constitute that rule.

We evaluate RBE in both supervised and un-
supervised settings using a suite of rulesets. Our
results show that with as little as one exemplar per
rule, RBE is capable of outperforming state-of-the-
art hateful text classifiers across three benchmark
content moderation datasets in both settings. In
summary, the contributions of this paper are:

• Rule By Example (RBE): a novel exemplar-
based contrastive learning approach to learn
from logical rules for the task of textual con-
tent moderation.4

• We demonstrate how RBE can be easily in-
tegrated to boost model F1-score by up to
4% on three popular hate speech classification
datasets.

• A detailed analysis and insights into the cus-
tomizability and interpretability features of
RBE to address the problem of emerging hate-
ful content and model transparency.

2 Rule By Example Framework

In this section, we outline the Rule By Example
framework, define its operational terms, and de-
scribe its end-to-end architecture. We first formally
describe the two main operational terms used in
our framework: 1) Ruleset - a ruleset is comprised
of a series of executable functions that when given
text as input “fire” if and only if all conditions de-
fined in the rule are met by the input. Figure 1
shows an example of a simple rule that is triggered
if a given text contains the keywords “hate” or

4https://github.com/ChrisIsKing/
Rule-By-Example

365

https://perspectiveapi.com/
https://openai.com/blog/new-and-improved-content-moderation%2Dtooling/
https://openai.com/blog/new-and-improved-content-moderation%2Dtooling/
https://openai.com/blog/new-and-improved-content-moderation%2Dtooling/
https://azure.microsoft.com/en-us/products/cognitive-services/content-moderator/
https://azure.microsoft.com/en-us/products/cognitive-services/content-moderator/
https://azure.microsoft.com/en-us/products/cognitive-services/content-moderator/
https://github.com/ChrisIsKing/Rule-By-Example
https://github.com/ChrisIsKing/Rule-By-Example


Figure 2: Rule By Example Framework: RBE is comprised of two neural networks, a rule encoder and a text encoder, which
jointly learn rich embedding representations for hateful content and the logical rules that govern them. Through Contrastive
learning, RBE utilizes a semantic similarity objective that pairs hateful examples with clusters of rule exemplars that govern it.

“loathe” and contains “women”. Rules can be any
programmable function that acts on text such as
regular expressions, blocklists, keywords, etc. In
the scope of this work, we only consider simple
rules that humans can easily interpret. As such an
ML model cannot be considered a rule, given their
black-box nature. 2) Exemplar - an exemplar is
a given textual example that well-defines the type
of content governed by a rule. For example, X1

and X2 in Figure 1 can be considered exemplars of
rule R1 since they correctly match the conditions
of R1.

Consider a ruleset of rule-exemplar pairs
R“tpr1, e1q, pr2, e2q, ..., prn, enqu where ri de-
notes a defined rule and ei denotes an ex-
emplar for which ri correctly fires. For a
given corpus X comprising labeled examples
X“tpx1, y1q, px2, y2q, ..., pxm, ymqu, each rule ri
can be used as a black-box function Ri : x Ñ
tyi,Hu to noisily label each instance x such that
it assigns a label y or no label at all. An instance
may be covered by more than one rule or no rule at
all. Additionally, the cover set C denotes the set of
instances in X where a rule ri fires. The general-
ization problem that arises when rules are applied
noisily is two-fold. When rules are too broad the
cover set C is large and incorrectly labels a large
amount of non-hateful content. Likewise, when
rules are too strict and fragile, the cover set C is
too small, and lexically and semantically similar
content that is hateful ends up being ignored. Our
goal is to leverage these rules and their exemplars
to facilitate explainable model learning.

Algorithm 1 Supervised Dual Encoder Training
Require: Rule Encoder Θr Text Encoder Θt

Input: Training Data X“px1, y1q...pxn, ynq, Ruleset
R“pr1, e1q, ..., prn, enq

Output: Updated parameters Θr , Θt

1: Initialize Θr and Θt

2: while not converged do
3: Get mini-batch Xb

4: for each instance xi in Xb do
5: Get exemplars ei “ doRulesetpR, xiq
6: Concatenate exemplars ei
7: end for
8: Get ΘrpEbq and ΘtpXbq
9: Compute L“ 1

2
pYbD

2 ` p1 ´ Ybqmaxpmargin ´
D, 0q2q

10: Update parameters of Θr and Θt

11: end while

2.1 Dual Encoder Architecture
The Dual-Encoder architecture, as illustrated in Fig-
ure 2, is commonly used in dense retrieval systems
and multi-modal applications (Clarke et al., 2022;
Reimers and Gurevych, 2019; Xu et al., 2022). Our
architecture consists of a Rule Encoder Θr and a
Text Encoder Θt. These are two Bert-like bidirec-
tional transformer models (Devlin et al., 2018) each
responsible for learning embedding representations
of their respective inputs. This Dual Encoder archi-
tecture enables pre-indexing of exemplars allowing
for faster inference at runtime after training.

Encoding Pipeline Given an input text xt, we
first extract the set of applicable rules and their
respective exemplars from the ruleset R. We
then concatenate each extracted exemplar to form
xe. In the event that no rules are applicable to
xt, we randomly sample exemplars from the en-
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tire ruleset to form xe. Using the form xe “␣rCLSs , e11, ..., e1m, rSEP s , en1 , ...., enk
(

, we then
use rule encoder Θr to encode xe into hidden states
he “ ␣

vrCLSs, v1, ..., vrSEP s
(

where enk is the k-th
token of the n-th exemplar and rSEP s and rCLSs
are special tokens. Similarly, using the text encoder
Θt, we encode xt. In order to obtain a dense rep-
resentation, we apply a mean pooling operation to
the hidden states and derive a fixed-sized sentence
embedding. After obtaining the representation for
both the exemplars xe and the text xt, we use the
cosine function to measure the similarity between
them:

simpxe, xtq “ Θrpxeq ¨ Θtpxtq
}Θrpxeq} }Θtpxtq} (1)

We employ a contrastive loss (Hadsell et al., 2006)
to learn the embedding representations for our rule
and text encoder. Contrastive learning encourages
the model to maximize the representation similar-
ity between same-label examples and to minimize
it for different-label examples. This enables the
embedding representations of our encoded rule-
set to match the representation of the text cor-
rectly covered by cover set C. Likewise, for be-
nign examples that rules incorrectly cover, our con-
trastive learning objective increases the distance
between those representations, thus restricting the
over-generalization of certain rules in the ruleset.
Let Yt be the correct label of the texts Xt, D be the
cosine distance of pxe, xtq and m be the margin,
our contrastive learning loss function is defined as
follows:

L “ 1

2
pYtD

2 ` p1 ´ Ytqmaxpm ´ D, 0q2q (2)

The training loop, with the encoding pipeline and
constrastive loss step, are detailed in Algorithm 1.

2.2 Rule-Grounding

By taking an embeddings-based approach to learn-
ing representations, RBE enables what we define
as rule-grounding. Rule-grounding enables us to
trace our model predictions back to the explainable
ruleset accompanied by the exemplars that define
each rule. For any input xt that has been marked
as positive by our dual encoder, we perform a rules
search to find which rules fire on that input as well
as an embedding similarity search to find the near-
est exemplars and the rules those exemplars belong
to. Table 2 shows an example of this.

3 Experimental Setup

Training We train all models with AdamW op-
timizer and weight decay of 0.01 on all data. We
employ early stopping with a ceiling of 10 epochs,
a learning rate of 2e-5, batch size of 8, and linear
learning rate warmup over the first 10% steps with
a cosine schedule. Our models are trained with
NVIDIA Tesla V100 32GB GPUs using Azure
Machine Learning Studio. We pre-process data
and train all models with different random seeds
over multiple runs. Our implementation of RBE is
based on Huggingface Transformers (Wolf et al.,
2020) and Sentence Transformers (Reimers and
Gurevych, 2019). RBE utilizes two Bert-based net-
works consisting of 110 million parameters each.
Approximately 2,000 GPU hours were required to
train all hyperparameter variations of RBE plus the
Bert baseline across all 3 test sets.

Baselines We evaluate our training algorithms in
both supervised and unsupervised settings. We
compare against the baselines of applying logi-
cal rules as is and the current SOTA approach
of training transformer-based sequence classifiers
(Mathew et al., 2020).

3.1 Datasets

We evaluate RBE across three datasets on the task
of hate-speech classification. Across each dataset,
we frame the problem as a binary classification task
of detecting whether a given text is hateful or non-
hateful. We augment each dataset with rulesets that
we manually curate. More information on each
dataset and ruleset is provided below.

HateXplain (Mathew et al., 2020) is a large-scale
benchmark dataset for explainable hate speech de-
tection that covers multiple aspects of hate speech
detection. It consists of „20k samples across 3
labels “hateful”, “offensive”, and “normal”. Ad-
ditionally, each sample is accompanied by a cor-
responding target group and explainable ratio-
nales. In our experiments, we combine the output
classes of hateful and offensive into one resulting
in „8k/1k/1k hateful samples and „6k/781/782
non-hateful samples for train/validation/test respec-
tively. Additionally, we utilize the accompanying
rationales for ruleset construction.
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Jigsaw5 is a large-scale dataset of Wikipedia
comments labeled by human raters for toxic be-
havior. The defined types of toxicity are “toxic”,
“severe toxic”, “obscene”, “threat”, “insult”, and
“identity hate”. Each comment can have any one
or more of these labels. In total, it contains „230k
samples. In our experiments, we define examples
of the “identity hate” class as hateful and the rest as
non-hateful resulting in a dataset of 1405/100/712
hateful samples and „158k/1k/63k non-hateful ex-
amples for train/validation/test respectively.

Contextual Abuse Dataset (CAD) (Vidgen
et al., 2021) is annotated dataset of „25k Red-
dit entries labeled across six conceptually distinct
primary categories of “Identity-directed”, “Person-
directed”, “Affiliation directed”, “Counter Speech”,
“Non-hateful Slurs”, and “Neutral”. In our experi-
ment, we define examples of the “identity-directed”
class as hateful and treat the remaining examples as
non-hateful resulting in a dataset of 1353/513/428
hateful samples and „12k/4k/4k non-hateful sam-
ples for train/validation/test.

3.2 Ruleset Construction

Hate+Abuse List We utilize a ruleset targeting
identity hate which we’ll refer to as Hate+Abuse
List. It consists of a list of n-grams represent-
ing harmful language such as slurs or hate verbs.
Hate+Abuse List is similar to the publically avail-
able bad word lists commonly found online. We
treat each n-gram entry in Hate+Abuse List as its
own rule that proposes a positive label if the n-
gram is in the input text. In total, Hate+Abuse List
consists of 2957 distinct identity hate rules.

HateXplain Rationale Ruleset Using the la-
beled annotator rationales included in the HateX-
plain dataset, we programmatically generate a Rule-
set for HateXplain. To do so, we extract 1, 2, and
3-gram substrings from the annotator rationales and
cluster them by annotator-identified target demo-
graphic groups. We then take the top N n-grams per
each demographic group and automatically create
rules for each of them. This results in rules similar
in nature to our Hate+Abuse List. Using a default
cluster size of 100 across the 25 target categories
defined in HateXplain, we generated a total of 670
distinct rules for HateXplain.

5https://www.kaggle.com/competitions/
jigsaw-toxic-comment-classification%
2Dchallenge

Contextual Abuse Rationale Ruleset Similar to
our derived HateXplain ruleset we programmati-
cally generate a Ruleset for the Contextual Abuse
Dataset using annotator-labeled rationales. Fol-
lowing the identical process outlined before, this
results in a total of 2712 distinct rules for CAD.

Exemplar Selection For each dataset we com-
plete our Ruleset construction by pairing each rule
with accompanying exemplars. To achieve this,
we first run our Ruleset on the dataset trainset and
extract instances for which a rule correctly fires.
For each rule that correctly fires, we then randomly
select N instances to act as the exemplars. Addi-
tionally, to restrict potentially overgeneralized rules
we enforce the condition that no two rules can be
mapped to the same exemplar. Unless stated other-
wise, we report results using just one exemplar per
rule in our experiments.

3.3 Unsupervised Setting

In addition to evaluating RBE in supervised set-
tings, we investigate the applicability of RBE in un-
supervised settings where no labeled data is present.
In this setting, we are presented with a large un-
labeled corpus T and a given ruleset R. This set-
ting is particularly challenging due to the inherent
generalization problem of rules. Loosely apply-
ing rules as is in this setting results in the model
overfitting to the distribution of the ruleset as seen
in Table 3. To combat this issue, we design three
different semantic clustering-based strategies for
determining rule quality in an unsupervised setting:
Mean, Concat, and Distance clustering. Given
an unlabeled corpus T “ tt1, t2, ..., tnu, ruleset
R “ tpr1, e1q, ..., prn, enqu, and a threshold k, we
first encode the entire corpus T using a pre-trained
sentence embedding model EΘ. In our case, we
use a fine-tuned version of MPNet (Song et al.,
2020) from the Sentence Transformers library. Af-
ter receiving our encoded corpus EΘpT q, for the
Mean and Concat, we construct a rule embedding
riΘ for each rule ri in the ruleset. In the Mean strat-
egy, this is obtained by taking the mean of all rule
exemplars µpriΘq “ p 1

m

řm
i eimq. For Concat, this

is calculated by concatenating all rule exemplars
µpriq “ EΘpei1 } ... } eimq and encoding the con-
catenated representation. Once riΘ is constructed,
we then label each text in the corpus whose cosine
similarity is within the threshold k:
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Content Moderation Using Rules (Fully Supervised)
HateXplain Jigsaw CAD

Model Precision Recall F1 Acc Precision Recall F1 Acc Precision Recall F1 Acc
HateXplain Rules 0.609 0.983 0.752 0.615 - - - - - - - -
Hate+Abuse Rules 0.755 0.687 0.719 0.682 0.164 0.361 0.226 0.972 0.586 0.193 0.290 0.909
CAD Rules - - - - - - - - 0.110 0.842 0.194 0.325
BERT` 0.808 0.841 0.824 0.787 0.459 0.729 0.563 0.987 0.445 0.421 0.433 0.893
MPNet^ 0.795 0.854 0.823 0.783 0.510 0.674 0.581 0.989 0.519 0.417 0.463 0.906
Rule By Example`△ 0.758 0.903 0.824 0.771 0.581 0.625 0.602 0.991 0.416 0.478 0.445 0.885
Rule By Example^△ 0.790 0.891 0.837 0.795 0.508 0.746 0.604 0.989 0.484 0.468 0.476 0.900
Rule By Example`˚ 0.738 0.912 0.816 0.756 - - - - - - - -
Rule By Example^˚ 0.779 0.893 0.832 0.786 - - - - - - - -
Rule By Example`; - - - - - - - - 0.512 0.378 0.435 0.905
Rule By Example^; - - - - - - - - 0.508 0.448 0.476 0.905

Table 1: Experiment Results in Fully Supervised Setting on hate speech classification datasets. `Uses BERT (Devlin et al.,
2018) as the base model. ^Uses MPNet (Song et al., 2020) as the base model. ˚Uses HateXplain ruleset. △Uses Hate+Abuse
ruleset. ;Uses CAD Ruleset. Note: The HateXplain Ruleset and Contextual Abuse Dataset (CAD) Ruleset are only applicable to
their respective datasets.

fptiq “
#
1, if simpriΘ, EΘptiqq ě k

0, otherwise
(3)

In contrast to the Mean and Concat strate-
gies, the Distance strategy takes a rule elimina-
tion approach. Given an unlabeled corpus T “
tt1, t2, ..., tnu, ruleset R “ tpr1, e1q, ..., prn, enqu,
and a threshold k, we first noisily label the en-
tire corpus using the ruleset Ri : xt Ñ t1,Hu
such that each rule is paired with a cover set
R “ tpr1, e1, c1q, ..., prn, en, cnqu where ci is the
set of texts in covered by ri. Next, for each rule, we
encode text in its cover set EΘpciq and calculate the
average cosine distance between each embedding
and its neighboring examples in ci.

avgDistpEΘpciqq “ 1

n

nÿ

i

distpcij , cij´1q (4)

Lastly, once the average distance for each rule is
calculated, using the defined threshold k, we flip
any weakly labeled examples in the cover set if the
average distance for that rule is above the threshold
k:

fptiq “
#
1, if avgDistpriq ě k

0, otherwise
(5)

4 Results and Discussion

We analyze the results of our experiments, detail
our insights, and discuss the implications of apply-
ing RBE for explainable hate speech detection.

Evaluation Metrics: The precision, recall, and
F1 score for each dataset in a supervised setting
are reported in Table 1. Due to the highly skewed
class distribution, we favor macro F1 scores as our
main evaluation metric. We also report accuracy
scores (the fraction of entries for which the full set
of labels matches) as another metric.

4.1 Supervised Performance

Table 1 reports our results on three hate speech
classification datasets in the supervised setting. We
observe that RBE is able to outperform SOTA
transformer-based models BERT and MPNet by
1.3/1.4%, 4.1/2.3%, and 4.3/1.3% in F1-score on
HateXplain, Jigsaw, and CAD respectively. This
improvement highlights the impact of leveraging
rules in the training process of our framework. Ad-
ditionally, it is important to note that this increase
was achieved using only 1 exemplar per rule in the
ruleset. These exemplars were also used to train
the comparative baseline models, ensuring that all
approaches were trained on the same number of
samples. This further showcases how lightweight
and flexible RBE is to integrate into a content mod-
eration workflow. For HateXplain, our experiments
show that the combination of MPNet as the initial-
ized encoder with both the HateXplain Rationale
and Hate+Abuse Ruleset delivers the best perfor-
mance. Upon deeper analysis, we find that this is
due to two main factors:

1) Ruleset Size and Alignment - As explained
in Section 3.2 the HateXplain Rationale Ruleset
was automatically crafted using rationale labels
from expert annotators. This results in a powerful
ruleset capable of identifying a large amount of
hateful content in the HateXplain dataset as shown
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Rule By Example Rule Grounding
Dataset Text Fired Rules Exemplar
HateXplain fully agree every personal interaction

with these queers reinforces what i al-
ready knew severe mental illness and
obnoxious to boot

if contains("queers") Ñ
1, 0

yes but queers are too self righteous to let them be included originally the
gay and pedophile communities were working together nambla was started by
gay men who liked boys now all subsets of pedophiles are members assuming
nambla still exists

Jigsaw Why do they put so many gay people on
the damn show since when it was okay
to be gay.

if contains("so" ^”gay”q Ñ 1, 0 stop reverting my edit your so f**** gay get a f**** life your f**** or go get
laid or something

CAD What a little b**** if contains("b****") Ñ 1, 0 Nope, today is tuna b****

Table 2: Example of Rule-grounding explanations. This table shows examples of traced model predictions produced by RBE.
By displaying the rules and exemplars responsible, rule authors and users are better able to understand model predictions and can
automatically adjust their ruleset to further improve model performance.

by the high recall score of the HateXplain Rationale
Ruleset in Table 1. Additionally, when applied to
the HateXplain dataset, the HateXplain Rationale
Ruleset produces a total of 577 rules compared to
the 377 rules derived from the Hate+Abuse Rule-
set, allowing for more rule representations for the
model to contrast against.

2) Embedding Initialization - Out of the box,
pre-trained BERT does not produce meaningfully
distinct sentence representations. In practice, the
BERT [CLS] token as well as averaged BERT out-
puts can contain useful information after down-
stream fine-tuning. This is shown by the BERT
performance in Table 1. However, when the pre-
trained model output is pooled across all dimen-
sions and used for calculating semantic similarity,
this results in similar representations even for com-
pletely different input text. As a result, if applied
to the HateXplain dataset without any fine-tuning,
BERT embeddings obtain a precision, recall, and
F1-score of 59%, 100%, and 75% respectively,
where every example is labeled as hateful. This
lack of varied sentence representation coupled with
a verbose ruleset such as the HateXplain Rationale
Ruleset results in an initial biasing towards hate-
ful examples as shown by the high recall scores.
As such, utilizing a pre-trained sentence embedder,
such as MPNet, with a pre-train task more opti-
mized for semantic embeddings results in better
performance. We observe a similar trend when uti-
lizing our derived ruleset for CAD. Note: When
trained longer, the bias of the BERT model de-
creases as more varied sentence representations are
learned.

On Jigsaw and Contextual Abuse datasets using
the Hate+Abuse List and derived CAD Ruleset,
RBE outperforms SOTA by an increased margin
of 4.1/2.3%, and 4.3/1.3% respectively. Contrary
to HateXplain, these two datasets are more heav-
ily imbalanced toward non-hateful examples and
thus more representative of the real-world case of
content moderation where most content is consid-

ered benign. This increased performance highlights
the power of incorporating logical rules to assist
model learning and also the ability of RBE to better
generalize rules. As seen in Table 1, on its own
the Hate+Abuse ruleset performs poorly on each
dataset in both precision and recall. Despite RBE’s
reliance on this ruleset to guide model learning,
when combined with labeled training data, RBE is
capable of both restricting over-generalized rules
and leveraging its understanding of semantic simi-
larity to extend fragile rules regardless of the base
model. Additionally, when using the CAD rule-
set which is heavily overfitted to the CAD dataset,
as shown by the skewed recall score, RBE is still
capable of outperforming the baselines.

Out-of-domain Rulesets Our Hate+Abuse rule-
set is a generic ruleset unrelated to any of the
datasets evaluated, and thereby an out-of-domain
ruleset. This provides an example of out-of-domain
performance using rules not derived from the tar-
get dataset. We observe that even when applying
RBE with the Hate+Abuse ruleset we are able to
outperform the baselines on each dataset. When
applying RBE to new domain settings, all that is
required is the authoring of additional rules for this
new domain. This can be done manually, or more
scalably by automatically deriving rules from the
new domain data.

4.2 Interpretability

In addition to its improved performance, another
advantage of RBE lies in its ability to perform
Rule-grounding. As explained in section 2.2, Rule-
grounding enables us to trace our model predic-
tions back to their respective rule accompanied by
the exemplars that define that rule. Table 2 shows
Rule-grounding examples extracted from each of
our tested datasets. By nature, Rule-grounding en-
ables two main features in RBE:

1) Customizability/Ruleset Adaptation: Given
the vast reach of online applications, content mod-
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Content Moderation Using Rules (Unsupervised)
HateXplain Jigsaw CAD

Model Precision Recall F1 Acc Precision Recall F1 Acc Precision Recall F1 Acc
HateXplain Rules 0.609 0.983 0.752 0.615 - - - - - -
Hate+Abuse Rules 0.755 0.687 0.719 0.682 0.164 0.361 0.226 0.972 0.586 0.193 0.290 0.909
CAD Rules - - - - - - - - 0.110 0.842 0.194 0.325
BERT`˚ 0.606 0.990 0.752 0.613 - - - - - - - -
BERT`△ 0.747 0.717 0.732 0.688 0.234 0.461 0.310 0.977 0.587 0.205 0.303 0.909
BERT`; - - - - - - - - 0.107 0.865 0.191 0.290
MPNet`˚ 0.611 0.991 0.756 0.621 - - - - - - - -
MPNet`△ 0.652 0.850 0.738 0.641 0.247 0.501 0.331 0.977 0.642 0.199 0.304 0.912
MPNet`; - - - - - - - - 0.111 0.840 0.196 0.335
Rule By Example (Distance)˚ 0.614 0.983 0.756 0.623 - - - - - - - -
Rule By Example (Distance)△ 0.629 0.955 0.758 0.639 0.358 0.284 0.317 0.986 0.280 0.322 0.299 0.854
Rule By Example (Distance); - - - - - - - - 0.166 0.522 0.252 0.701
Rule By Example (Concat)˚ 0.621 0.950 0.751 0.626 - - - - - - - -
Rule By Example (Concat)△ 0.612 0.985 0.755 0.621 0.189 0.052 0.081 0.987 0.175 0.437 0.250 0.747
Rule By Example (Concat); - - - - - - - - 0.178 0.437 0.253 0.750
Rule By Example (Mean)˚ 0.612 0.983 0.754 0.620 - - - - - - - -
Rule By Example (Mean)△ 0.636 0.944 0.760 0.646 0.188 0.124 0.149 0.984 0.294 0.273 0.283 0.866
Rule By Example (Mean); - - - - - - - - 0.189 0.411 0.259 0.772

Unsupervised Pre-Training
Rule By Example (Mean)△ 0.641 0.954 0.767 0.656 0.166 .626 0.262 0.961 0.260 0.320 0.287 0.846
Rule By Example (Distance)△ 0.617 0.968 0.753 0.624 0.203 0.465 0.283 0.974 0.484 0.236 0.317 0.902

Table 3: Unsupervised Performance across all clustering strategies. ˚Uses HateXplain ruleset. △Uses Hate+Abuse ruleset.
;Uses CAD ruleset. Note: The HateXplain Ruleset is not applicable to Jigsaw and Contextual Abuse Dataset (CAD).

eration systems need to be easily adaptable to ever-
emerging trends of hateful content. Particularly in
online social settings, expert users of these plat-
forms continually find new and interesting ways
to bypass moderation systems. Additionally, new
terminologies and slang are being introduced ev-
ery day. RBE is seamlessly capable of addressing
these concerns by facilitating rule-guided learning.
By defining a new rule and adding at least one
exemplar, RBE is able to capture emerging con-
tent without the need for re-training. Additionally,
users of RBE can easily modify existing rules that
may be too broad and add additional exemplars to
further refine predictions in a controllable manner.

2) Prediction Transparency: By facilitating
model interpretations via rule-grounding, users of
online systems are offered tangible guidance should
their content be flagged, potentially increasing user
trust in the system. Additionally, this acts as a di-
rect indicator of the type of content the rule authors
want to moderate.

4.3 Unsupervised Performance

Table 3 reports our results in the unsupervised set-
ting. We observe that RBE is able to outperform
SOTA trained on noisy rules labeled samples for
the HateXplain and Jigsaw dataset while also out-
performing the ruleset as is on all three datasets.
Across each dataset, we find that RBE’s Distance
based strategy produces the most consistent perfor-
mance, outperforming SOTA on HateXplain and

CAD while performing on par with SOTA on Jig-
saw. We observe that this stability in performance
is due to this strategy’s rule elimination objective.
As opposed to the Mean and Concat strategies
which focus on deriving rule representations in a
self-supervised manner, the Distance strategy in-
stead focuses on eliminating over-generalized rules
whose cover set of examples are semantically dis-
similar. This is particularly useful in cases where
precision scores are low due to a large number of
false positives.

For Jigsaw, we observe a slight decrease in per-
formance compared to SOTA. Upon further anal-
ysis, we posit that this is a result of RBE’s over-
reliance on the ruleset in this setting, particularly
for the Mean and Concat strategies. This is because
the ruleset directly influences the derived rule em-
bedding due to its labeling of the cover set C. As
such when the ruleset is over-generalized, as is the
case of Hate+Abuse rules on Jigsaw, RBE is likely
to match the distribution of the ruleset. We find
that performing self-supervised model pre-training
(Gao et al., 2021) on the target corpus circumvents
this trend for the Mean and Concat strategy. As
such, with a more refined ruleset, a performance in-
crease is expected as seen in HateXplain and CAD.

5 Related Work

There has been active work on detecting hate
speech in language (Poletto et al., 2021; Al-
Makhadmeh and Tolba, 2020; Schmidt and Wie-
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gand, 2017). Hate Speech detection has proven
to be a nuanced and difficult task, leading to the
development of approaches and datasets targeted at
various aspects of the problem (Vidgen et al., 2021;
Mathew et al., 2020; Mody et al., 2023). How-
ever, few attempts have been made to focus on the
explainability of these models, which is an increas-
ing area of concern surrounding their use online
(Tarasov, 2021; Haimson et al., 2021), thus lead-
ing to the continued utilization of less powerful
but more explainable methods such as rules. Prior
works have explored incorporating logical rules
into model learning. Awasthi et al. (2020) pro-
posed to weakly learn from rules by pairing them
with exemplars and training a denoising model.
However, this requires defining rules for all output
classes, making it inapplicable to the task of hate
speech detection. Additionally, this method only
focuses on decreasing rule scope to solve the over-
generalization problem. It does not simultaneously
tackle the over-specificity problem demonstrated
in Figure 1. Finally, this method does not provide
a way for interpreting model predictions during
inference. Seo et al. (2021) proposes a way to con-
trol neural network training and inference via rules,
however, their framework represents rules as differ-
entiable functions requiring complex perturbations
to incorporate, making it more suitable to numer-
ical rules such as those defined in healthcare and
finance as opposed to the complex nuances of lan-
guage. Pryzant et al. (2022) proposes a framework
for the automatic induction of symbolic rules from
a small set of labeled data. However, these rules
are derived from low-capacity ML models and are
as a result not human-readable or explainable.

6 Conclusion

We introduce Rule By Example, an exemplar-based
contrastive learning framework that enables learn-
ing from logical rules for accurate and explain-
able hate speech detection. Specifically, we pro-
pose a novel dual-encoder model architecture de-
signed to produce meaningful rule and text repre-
sentations. RBE leverages a novel exemplar-based
contrastive learning objective that converges the
representations of rules and text inputs of similar
classes. We share results on three public datasets
for hate speech detection that validate the Rule By
Example framework can not only vastly outper-
form the initial ruleset but also outperform baseline
SOTA classification methods in both supervised

and unsupervised settings. Moreover, RBE enables
rule-grounding which allows for more explainable
model prediction benefits not available in SOTA
classification methods alongside additional flexibil-
ity via Ruleset Adaptation.

7 Limitations

In this section, we discuss some of the limitations
of the Rule by Example method.

7.1 Dependence on Supervision

The requirement of both a set of rules and an ex-
ample per rule in our Rule by Example method
means that some amount of expert supervision is
required, even for the ’unsupervised’ experimental
setups. This could be a prohibitive cost in some
scenarios. There are potential methods to select an
example per rule in an unsupervised manner, such
as clustering the examples the rules fires on, that
could be explored in future work. However, the
creation of the rules themselves means some form
of expert supervision that distills knowledge about
the classification task into a parseable function.

7.2 Increased Cost Compared to Rules

Although the Rule by Example method produces
a Dual Encoder model that is shown to be much
more performant than the ruleset it is derived from,
it still has the cost limitations of other deep learning
methods. The Dual Encoder requires far more ex-
pensive compute (GPUs) to initially train and later
inference in a production setting. And even with
using expensive GPUs, the latency cost is unavoid-
ably much higher than most simple logical rules.
For some applications, the quality gain of the Dual
Encoder model may not be worth the increased
operational cost.

7.3 Reliance on Quality Rules and Exemplars

Since the Rule by Example method is based on
having a ruleset and associated exemplars to learn
from, the quality of those rules and exemplars could
affect downstream Dual Encoder model quality.
If the authored ruleset and chosen exemplars are
not high quality, intuitively the quality of the Dual
Encoder model would suffer. This is especially
true in the unsupervised setting, where the rules
are used as noisy labeling functions. A possible
future extension is studying the effect of rule and
exemplar quality on the performance of the derived
Dual Encoder model.
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8 Ethics

Hate speech detection is a complex task. Reducing
the task to authoring a set of simple logical rules
can potentially lead to rule authors encoding hard
biases in those rules. This can cause problems of
erasure, for example, if an in-group word or an
identity term is used as a rule to identify content as
hate speech.

The Rule by Example method can potentially
reduce these cases, for example by learning a better
rule representation and identifying when a term
is used as in-group speech as opposed to being
used as an insult or slur. However, the derived
Dual Encoder is also at the risk of propagating and
amplifying these biases (Hall et al., 2022), causing
greater unintended harm than the original ruleset.

Whether using a ruleset or using a more compli-
cated model, it is important to support classifiers
with additional Responsible AI work streams, such
as reviews of classifier behavior and measurements
of fairness.
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