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Abstract

Discovering new intents is of great significance
for establishing the Task-Oriented Dialogue
System. Most prevailing approaches either can-
not transfer prior knowledge inherent in known
intents or fall into the dilemma of forgetting
prior knowledge in the follow-up. Furthermore,
such approaches fail to thoroughly explore the
inherent structure of unlabeled data, thereby
failing to capture the fundamental characteris-
tics that define an intent in general sense. In
this paper, starting from the intuition that dis-
covering intents should be beneficial for identi-
fying known intents, we propose a probabilistic
framework for discovering intents where in-
tent assignments are treated as latent variables.
We adopt the Expectation Maximization frame-
work for optimization. Specifically, In the E-
step, we conduct intent discovery and explore
the intrinsic structure of unlabeled data by the
posterior of intent assignments. In the M-step,
we alleviate the forgetting of prior knowledge
transferred from known intents by optimizing
the discrimination of labeled data. Extensive
experiments conducted on three challenging
real-world datasets demonstrate the generality
and effectiveness of the proposed framework
and implementation. Codes is publicly avail-
able.1

1 Introduction

Unknown intent detection (Zhou et al., 2022) in
the Task-Oriented Dialogue System (TODS) has
gradually attracted more and more attention from
researchers. However, detecting unknown intent is
only the first step. For the TODS, intent discovery
is crucial but also more challenging. Because the
pre-defined intent set in the TODS is limited to
cover all intents, the TODS should discover poten-
tial new intents automatically during interactions

∗Equal contribution.
†Corresponding author.

1https://github.com/zyh190507/Probabilistic-discovery-
new-intents

with the users. And as a practical matter, a large
number of valuable unlabeled data will be gener-
ated within the interaction between users and the
dialogue system. Considering the limited labeled
corpus and time-consuming annotating, which also
requires expertise, the TODS should adaptively dis-
cover intents from those unlabeled data with the
aid of limited labeled data.

Just as discovering new intents plays a crucial
role in establishing the TODS, discovering new in-
tents has raised a lot of research interest just like un-
known intent detection. Unsupervised cluster learn-
ing is a popular paradigm to solve this problem.
Specifically, previous works (Hakkani-Tür et al.,
2013, 2015; Shi et al., 2018; Padmasundari, 2018)
formulate intent discovery as an unsupervised clus-
tering process. However, these methods mainly
focus on constructing pseudo-supervised signals
to guide the clustering process while neglecting
the prior knowledge embedded in the available la-
beled data. In real user-facing scenarios, we often
possess a small amount of labeled data in advance,
which contains prior knowledge that can guide the
intent discovery process, and a substantial volume
of unlabeled data generated in the interaction with
the dialogue system mentioned above, which con-
tains both known intents and unknown intents to
be discovered.

How do discover intents in the unlabeled cor-
pus using the labeled data? Recently, the semi-
supervised methods (Lin et al., 2020; Zhang et al.,
2021) have become popular. DeepAligned (Zhang
et al., 2021) is the most typical and has also in-
spired a series of effective works (Shen et al., 2021;
Zhang et al., 2022) recently. DeepAligned first
generalizes the prior knowledge into the semantic
features of unlabeled data by pre-training. Then, to
learn cluster-friendly representations, DeepAligned
assigns a pseudo label to each unlabeled utterance
and re-trains the model under the supervision of
those pseudo labels.
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Figure 1: The catastrophic forgetting of DeepAligned
(Blue). During clustering in DeepAligned, we test the
performance of the model on the verification set used
in the transferring prior knowledge stage and show that
with the advancement of clustering, the model con-
stantly forgets the knowledge learned from labeled data.
The brown line represents the baseline obtained by the
model after transferring prior knowledge. In contrast,
our method (Red) can alleviate forgetting well. See Sec-
tion 5.6 for more discussion.

Nevertheless, DeepAligned suffers from many
problems. Firstly, when the model is re-trained
with the pseudo supervision signal, the model will
forget the knowledge transferred in the transferring
stage, which is demonstrated in Figure 1. Then, the
model could be misled by inaccurate pseudo labels,
particularly in large-sized intent space (Wang et al.,
2021). More importantly, softmax loss formed by
pseudo labels cannot explore the intrinsic structure
of unlabeled data, so it can not provide accurate
clustering supervised signals.

Different from the previous methods, we start
from the intuition that the intent discovery should
not damage the identification of the known intents.
Ideally, the two processes should achieve a win-win
situation. The knowledge contained in labeled data
corpus (as known intents) can be used to guide the
discovery, and the information learned from the
unlabeled corpus during discovery could improve
the identification of the known intents.

Therefore, with the help of optimizing the iden-
tification of labeled data given the whole data cor-
pus, we propose a principled probabilistic frame-
work for intent discovery, where intent assignments
as a latent variable. We adopt Expectation Max-
imization as a principal template for optimizing
this typical latent variable model. Specifically, in
the E-step, we use the current model to discover
intents and calculate a specified posterior proba-
bility of intent assignments to explore the intrinsic
structure of data. In the M-step, the probability of
identification of labeled data including those newly
discovered from unlabeled data, and the posterior

probability of intent assignments, which is to help
learn friendly-discovery features, are maximized si-
multaneously to optimize and update model param-
eters. Extensive experiments conducted in three
benchmark datasets demonstrate our method can
achieve substantial improvements over strong base-
lines. Our contributions are as follows:

(Theory) We introduce a principled probabilistic
framework for discovering new intents and provide
a learning algorithm based on Expectation Maxi-
mization. To the best of our knowledge, this is the
first complete theoretical framework in this field
and we hope it can inspire follow-up research.

(Methodology) We provide an efficient imple-
mentation based on the proposed probabilistic
framework. After transferring prior knowledge,
we use a simple yet effective method to alleviate
forgetting. Furthermore, we propose a new con-
trastive paradigm to explore the intrinsic structure
of unlabeled data, which avoids the model shift
towards inaccurate pseudo labels but helps to better
learn the friendly-discovery features.

(Experiments and Analysis) We conduct exten-
sive experiments and detailed analyses on a suite
of real-world datasets to demonstrate the generality
and effectiveness of our proposed framework and
implementation.

2 Related Work

Our work is mainly related to two lines of research:
Unsupervised and Semi-supervised clustering.

Unsupervised Clustering Extracting meaning-
ful information from unlabeled data has been
studied for a long time. Traditional approaches
like K-means (MacQueen et al., 1967) and Ag-
glomerative Clustering (AC) (Gowda and Krishna,
1978) are seminal but hardly perform well in high-
dimensional space. Recent efforts are devoted to
using the deep neural network to obtain good clus-
tering representations. Xie et al. (2016) propose
Deep Embedded Cluster (DEC) to learn and refine
the features iteratively by optimizing a clustering
objective based on an auxiliary distribution. Unlike
DEC, Yang et al. (2017) propose Deep Clustering
Network (DCN) that performs nonlinear dimen-
sionality reduction and k-means clustering jointly
to learn friendly representation. Chang et al. (2017)
(DAC) apply unsupervised clustering to image clus-
tering and proposes a binary-classification frame-
work that uses adaptive learning for optimization.
Then, DeepCluster (Caron et al., 2018) proposes
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an end-to-end training method that performs cluster
assignments and representation learning alternately.
However, the key drawback of unsupervised meth-
ods is their incapability of taking advantage of prior
knowledge to guide the clustering.
Semi-supervised Clustering By virtue of a few la-
beled data, semi-supervised clustering usually pro-
duces better results compared with unsupervised
counterparts. PCK-Means (Basu et al., 2004) pro-
poses that the clustering can be supervised by pair-
wise constraints between samples in the dataset.
KCL (Hsu et al., 2017) transfers knowledge in the
form of pairwise similarity predictions first and
learns a clustering network to transfer learning.
Along this line, MCL (Hsu et al., 2019) further
formulates multi-classification as meta classifica-
tion that predicts pairwise similarity and general-
izes the paradigm to various settings. DTC (Han
et al., 2019) extends the DEC algorithm and pro-
poses a mechanism to estimate the number of new
images categories using labeled data. When it
comes to the field of text clustering, CDAC+ (Lin
et al., 2020) combines the pairwise constraints and
target distribution to discover new intents while
DeepAligned (Zhang et al., 2021) introduces an
alignment strategy to improve the clustering con-
sistency. Recently, SCL (Shen et al., 2021) incor-
porates a strong backbone MPNet in the Siamese
Network structure with pairwise contrastive loss
to learn the sentence representations. Similarly,
MTP (Zhang et al., 2022) enhances sentence rep-
resentation through multi-task pre-training strategy
and extra data. Although these methods take known
intents into account, they may suffer from knowl-
edge forgetting during the training process. More
importantly, these methods are insufficient in the
probe into the intrinsic structure of unlabeled data,
making it hard to distinguish the characteristics that
form an intent.

3 Approach

3.1 Problem Definition

Given as input an labeled dataset Dl = {xli, i =
1, . . . , N} where intents Y l = {yli, i = 1, . . . , N}
are known and an unlabeled dataset Du = {xui , i =
1, . . . ,M}. Our goal is to produce intent assign-
ments as output by clustering (or partitioning) the
whole dataset D, which denotes D = Dl ∪ Du.
Directly optimizing the goal is intractable as the
lack of knowledge about new intents and the in-
trinsic structure of unlabeled data. As analyzed

in Section 1, discovering intents should not dam-
age but be beneficial for the identification of
known intents, which can be formulated to opti-
mize p(Y l|Dl, D; θ). Since Dl⊂D, the optimiza-
tion objective can be written as: p(Y l|D; θ).

Denote our latent variable (representing intent
assignments obtained by clustering on D) by Z and
let ZD be a possible value of Z. Using Bayes rule,
p(Y l|D; θ) can be calculated as:

p(Y l|D) =
∑

ZD∈Z
p(Y l|ZD, D; θ)p(ZD|D; θ).

(1)
Exactly optimizing Eq.(1) is intractable due to its
combinatorial nature. Consider a specific value
ZD, the log-likelihood can be simplified as:

Lobj = log p(Y l|ZD, D; θ) + log p(ZD|D; θ).
(2)

Our goal is get better ZD (i.e.intent discovery) by
optimizing Lobj , and a better ZD can also help
optimize Lobj .

3.2 Intent Representation and Transferring
Knowledge

Before optimizing Lobj , we want to transfer knowl-
edge from the labeled corpus to initialize the model.
Transferring knowledge has been widely studied
and types of transferred knowledge have been pro-
posed for a variety of circumstances. Consider-
ing the excellent generalization of the pre-trained
model, we fine-tune BERT (Devlin et al., 2018)
with labeled corpus under the supervision of cross
entropy as suggested in (Zhang et al., 2021). Given
the i-th labeled utterance xi, we first get its con-
textual embeddings by utilizing BERT and then
perform mean-pooling to get sentence semantic
representation zi. The objective of fine-tune Lce

as:

Lce = − 1

N

N∑

i=1

log
exp(ϕ(zi)

yi)
∑Kl

j=1 exp(ϕ(zi)
j)
, (3)

where ϕ(·) represents a linear classifier and ϕ(zi)
j

denotes the logits of the j-th class, K l denotes the
total number of known intents.

3.3 EM Framework for Optimization
Intent Assignments Z (In the following, we omit
the subscript D of ZD for clarity.) Specific in-
tent assignments Z involves two components: how
to determine K representing how many intents in
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dataset D and how to assign the utterance in the
dataset to corresponding intent. Many methods
(Han et al., 2019; Shen et al., 2021) have been
proposed to estimate K. Considering the tradeoff
between efficiency and effect, we follow Zhang
et al. (2021) (see Appendix D for discussions on
more accurate estimating K under our framework)
and first set a rough value K (e.g., the multiple of
the ground truth number) for K and then refine
it by dropping clusters (formed by grouping the
dataset D into K semantic clusters using k-means)
whose size is less than a certain threshold. Af-
ter estimating how many intents are contained in
the dataset, we perform k-means to assign cluster
assignments as (pseudo) intent to each utterance.
Next, we discuss in detail how to further optimize
Eq.(2) with Expectation-Maximization (EM) algo-
rithm framework.

E-Step We have assigned a specific intent as-
signment Z to latent variable Z based on prior
knowledge. We expect that the intent assignments
Z should reflect what characteristics make a good
intent in general rather than specific intents. There-
fore, the standard cross entropy loss formed by spe-
cific pseudo labels adopted by Caron et al. (2018);
Zhang et al. (2021) can not achieve this purpose,
and even the model may be confused by the false
pseudo labels according to Wang et al. (2021). To
better reflect the intrinsic structure of dataset D and
learn friendly features for intent assignments, we
hope that intent assignments Z can make utterances
with the same intent close enough and pull utter-
ances with different intents far away in the seman-
tic feature space. Inspired by contrastive learning
paradigm, we estimate the posterior p(Z|D; θ):

p(Z|D; θ) =
∏

Ck∈Z
p(Ck|D; θ) (4)

=
∏

Ck∈Z

∏

x∈Ck

p(x ∈ Ck|D; θ) (5)

∝
∏

Ck∈Z

∏

x∈Ck

∑
x+∈Ck

exp(x · x+)∑
xp∈D\{x} exp(x · xp) ,

(6)

where Ck is a cluster produced by Z , and x ·
x+ is calculated by consine between features.
To optimize Eq.(2), we also need to compute
p(Y l|Z, D; θ). Exactly computing is difficult as
the label space in Z does not match that of Y l. Con-
sider the catastrophic forgetting as in Deepaligned

mentioned above, we approximate p(Y l|Z, D; θ):

p(Y l|Z, D; θ) =p(Y l|Z, Dl, Du; θ) (7)

∝ p(Y l|Dl, D̂l(Du,Z); θ) (8)

∝
∏

x∈Dl∪D̂l

exp(ϕ(x)y)
∑Kl

j=1 exp(ϕ(x)
j)
,

(9)

where ϕ(·) denotes same linear classifier as Eq.(3),
y denotes the label of x, K l denotes the total num-
ber of known intents and Dl denotes labeled data
in D. D̂l(Du,Z) refers to the set of samples in
Du that can be considered as known intents after
the operation of Z .

D̂l = {(x, yl)|x ∈ NZ(xl), (xl, yl) ∈ Dl}, (10)

where xl is the sample from Dl, yl is the label of xl.
NZ(xl) is the unlabeled nearest neighbor samples
set that belongs to the same cluster (divided by
Z) as xl. See Appendix E for specific benefits
from D̂l. The labeled data is tailored to model
training. On the one hand, the model will not lose
the knowledge transferred from labeled data, on
the other hand, the model can constantly explore
the intrinsic structure of the dataset by utilizing it.

M-Step In the M-step, we update the θ in Eq. (2).
In addition to bringing Eq. (4) and Eq. (7) into
Eq. (2), we introduce two hyper-parameters to help
optimize objectives. The overall loss L can be
formulated as follows:

L = λ ·
∑

Ck∈Z

∑

x∈Ck

log

∑
x+∈Ck

exp(x·x
+

τ )
∑

xp∈D\{x} exp(
x·xp

τ )

(11)

+ (1− λ) ·
∑

x∈Dl∪D̂l

log
exp(ϕ(x)y)

∑Kl

j=1 exp(ϕ(x)
j)
,

(12)

where λ is to balance the proportion of two log-
likelihoods (discussed in Section 5.3) during train-
ing, τ is a hyper-parameter for temperature scaling
which often appears in contrastive learning.

We summarize the whole training process of
the EM framework in Algorithm 1 and the model
architecture of our approach as shown in Figure 2.

It is worth noting that our method actually pro-
poses a framework where probability estimation
can flexibly adopt different ways for a variety of
circumstances.
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Figure 2: The model architecture of our implementation based on the proposed probabilistic framework. (a) Firstly,
we transfer knowledge by fine-tuning BERT with labeled data. (b) Then, we perform intent assignments on full data
(labeled and unlabeled data) and reflect the intrinsic structure of data in E-step. (c) And alleviate the forgetting of
prior knowledge and update model parameters in M-step. The snow mark represents this step only needs forward
without calculating the gradient.

Algorithm 1 EM algorithm for optimization
Input: Dl = {xli, i = 1, . . . , N}, Y l = {yli, i =
1, . . . , N}, Du = {xui , i = 1, . . . ,M}.
Parameter: Model parameters θ.

1: Intialize θ by transferring knowledge.
2: while not converged do
3: Perform intent assignment (Z) using K-

means; \\ E-Step
4: Compute P (Y l|Z, D; θ) and P (Z|D; θ) us-

ing current parameters θ; \\ E-Step
5: Update model parameters θ to maximize the

log-likelihood L in Eq. (11). \\ M-Step
6: end while
7: return θ

4 Experiments

4.1 Datasets
We conduct experiments on three challenging
datasets to verify the effectiveness of our proposed
method. The detailed statistics are shown in Ap-
pendix A.

CLINC (Larson et al., 2019) is a popular intent
dataset designed for out-of-domain intent detection,
which contains 150 intents from 10 domains and
22500 utterances.

BANKING (Casanueva et al., 2020) is a banking
dataset covering 77 intents and containing 13083
utterances.

StackOverflow represents a dataset dispersed

through Kaggle.com, encompassing 20 intents and
20000 utterances. We adopt the dataset processed
by Xu et al. (2015).

4.2 Baseline and Evaluation Metrics

We follow Lin et al. (2020); Zhang et al. (2021)
and divide the baselines to be compared into two
categories: Unsupervised (Unsup.) and Semi-
supervised (Semi-sup.). All methods are intro-
duced in Related Work (Section 2). For fairness,
we uniformly use BERT as the backbone network
when compared with the above methods. We also
note that SCL (Shen et al., 2021) uses a stronger
backbone network to obtain semantically mean-
ingful sentence representations, and we also use
the same backbone network in comparison with
these methods. Similarly, when comparing with
MTP-CLNN (Zhang et al., 2022), we use the same
additional data and multi-task pre-training to en-
hance sentence representation.

To evaluate clustering results, we follow existing
methods (Lin et al., 2020; Zhang et al., 2021) and
adopt three widely recognized metrics: Normalized
Mutual Information (NMI), Adjusted Rand Index
(ARI), and clustering accuracy (ACC). It should be
noted that when calculating ACC, the Hungarian
algorithm is adopted to find the optimal alignment
between the pseudo labels and the ground-truth
labels as following Zhang et al. (2021).
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Methods
CLINC BANKING StackOverflow

NMI ARI ACC NMI ARI ACC NMI ARI ACC

Unsup.

K-means 70.89 26.86 45.06 54.57 12.18 29.55 8.24 1.46 13.55
AC 73.07 27.70 44.03 57.07 13.31 31.58 10.62 2.12 14.66
SAE-KM 73.13 29.95 46.75 63.79 22.85 38.92 32.62 17.07 34.44
DEC 74.83 27.46 46.89 67.78 27.21 41.29 10.88 3.76 13.09
DCN 75.66 31.15 49.29 67.54 26.81 41.99 31.09 15.45 34.26
DAC 78.40 40.49 55.94 47.35 14.24 27.41 14.71 2.76 16.30
DeepCluster 65.58 19.11 35.70 41.77 8.95 20.69 - - -

Semi-sup.

PCKMeans 68.70 35.40 54.61 48.22 16.24 32.66 17.26 5.35 24.16
KCL(BERT) 86.82 58.79 68.86 75.21 46.72 60.15 8.84 7.81 13.94
MCL(BERT) 87.72 59.92 69.66 75.68 47.43 61.14 - - -
CDAC+ 86.65 54.33 69.89 72.25 40.97 53.83 69.84 52.59 73.48
DTC(BERT) 90.54 65.02 74.15 76.55 44.70 56.51 - - -
DeepAligned 93.95 80.33 87.29 79.91 54.34 66.59 76.47 62.52 80.26

Ours 95.010.49 83.001.54 88.991.05 84.020.82 62.922.00 74.031.37 77.321.02 65.702.07 80.501.14

Table 1: The main results on three datasets. We re-run the result of DeepAligned by its release code. The other
baselines on CLINC and BANKING are retrieved from Zhang et al. (2021). The baselines on StackOverflow are
retrieved from Lin et al. (2020). All reported results are averaged over different seeds and the subscripts represent
the corresponding standard deviations. See text for details.

4.3 Experimental Settings

For each dataset, 75% of all intents are randomly
selected as known intent, with the remaining desig-
nated as unknown. Furthermore, 10% of the known
intents data are chosen randomly as labeled data.
We set the number of intents as ground truth in line
with previous methods Lin et al. (2020); Zhang
et al. (2021, 2022). Our other experimental settings
are mostly the same as Lin et al. (2020); Zhang
et al. (2021, 2022) for a fair comparison. We take
different random seeds to run at least three rounds
on the test set and report the final averaged results.

Our main experiments use pre-trained BERT,
which is implemented in the Huggingface Trans-
formers2, as the network backbone. We also re-
place the backbones of the compared baselines
with the same BERT as ours. Only when compar-
ing with SCL (Shen et al., 2021), which definitely
point out that they use pre-trained MPNet (Reimers
and Gurevych, 2019) as the backbone network, will
we adopt the same backbone network for a fair com-
parison. Similarly, we will use the same additional
data and the same pre-training strategy for fair com-
parison only when we compare with MTP (Zhang
et al., 2022).

Moreover, considering the efficiency of the train-
ing process and the capacity of GPU, we only fine-
tune the last transformer layer parameters during
transferring knowledge and freeze all but the latter
6 transformer layers parameters during performing

2https://github.com/huggingface/transformers

the EM algorithm. See Appendix B for training
details and parameters.

Methods
CLINC BANKING

NMI ARI ACC NMI ARI ACC

SMPNET 93.39 74.28 83.24 82.22 58.82 71.82
SCL 94.75 81.64 86.91 85.04 65.43 76.55
SCL(EP) 95.25 83.44 88.68 84.77 64.44 75.18
SCL(IP) 94.95 82.32 88.28 84.82 64.51 74.81
SCL(AA) 95.11 83.09 88.49 85.02 64.91 75.66
SCL(AC) 94.04 78.99 84.58 83.52 62.18 73.09

Ours 95.940.24 85.690.90 90.440.77 86.850.40 69.280.32 79.320.91

Table 2: The results compared with SCL and vari-
ants. IP, EP, AA, and AC represent four pseudo label
training strategies:inclusive pairing, exclusive pairing,
Alignment-A, and Alignment-C respectively. The base-
lines are retrieved from Shen et al. (2021).

Methods
BANKING Stackoverflow

NMI ARI ACC NMI ARI ACC

MTP 85.17 64.37 74.20 80.70 71.68 83.74
MTP(DAC) 85.78 65.28 75.43 80.89 71.17 84.20
MTP(CLNN) 87.68 70.43 79.61 81.30 73.29 86.56

Ours 88.610.96 73.612.61 83.152.93 81.930.24 74.760.55 87.030.21

Table 3: The results compared with MTP and variants.
DAC and CLNN are different strategies for intent dis-
covery (see (Zhang et al., 2022) for details). We re-run
the result of MTP(CLNN) by its released code. The
other baselines are retrieved from Zhang et al. (2022).
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5 Results and Discussion

5.1 Main results

We present the main results in table 1, where the
best results are highlighted in bold. It is clear from
the results that our method achieves substantial
improvements in all metrics and all datasets, espe-
cially in the BANKING dataset, where the number
of samples in each class is imbalanced. These re-
sults illustrate the effectiveness and generalization
of our method. At the same time, we note that
most semi-supervised methods are better than un-
supervised as a whole, which further verifies the
importance of labeled data. From this perspective,
we can explain why our method can be better than
DeepAligned as it will constantly forget the knowl-
edge existing in labeled data as shown in Section 1,
and our method tailors the labeled data into model
training to guide clustering so that our method can
achieve better results.

To make a fair comparison with SCL (Shen et al.,
2021), we also replace the backbone network in
our method with the same MPNet as SCL, keeping
other parts of our method unchanged. We present
the results of our comparison with SCL and various
variants (See Shen et al. (2021) for the calculation
of specific strategies) on CLINC and BANKING in
Table 2, where the best results are also highlighted
in bold. Table 3 is the result of the comparison be-
tween our method and MTP, where DAC and CLNN
are different strategies for intent discovery after pre-
training. To make a fair comparison, we only adopt
the same additional data and pre-training strategies
(based on its released code) as MTP in the first step
(Finetune stage in Figure 2), and the rest of the
methods remain unchanged.

Methods
Known Unknown

NMI ARI ACC NMI ARI ACC

DeepAligned 95.45 85.69 91.05 91.69 78.91 86.31
Ours(Clinc) 97.16 91.61 95.20 92.50 81.10 87.37

DeepAligned 82.13 60.62 72.00 78.11 61.23 74.74
Ours(Banking) 88.06 74.53 85.23 78.46 61.89 74.78

DeepAligned 78.77 61.83 81.86 59.36 52.83 75.20
Ours(Stackover.) 80.34 74.85 87.55 60.72 57.96 81.07

Table 4: Comparison results on Known and Unknown in-
tents respectively. From top to bottom, there are CLINC,
BANKING and Stackoverflow datasets (the name of the
dataset is filled in parentheses).

5.2 A Closer Look at Effectiveness

To better verify the effectiveness of our proposed
method, we analyze the comparison results be-
tween our method and DeepAligned in a more fine-
grained way. We separate the known intents and
the unknown intents from the test set and com-
pare our method with DeepAligned on these two
sub-datasets respectively (the experimental settings
remain unchanged). The results are shown in Ta-
ble 4, which demonstrates that our method can not
only effectively apply to known intents, but also
can more effectively discover new intents, and the
effect of improvement is substantial. This also fully
conforms to our expectations that the two processes
of intent discovery and recognition of known in-
tents can be “win-win”.
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Figure 3: The effects of λ on CLINC and BANKING.
Detailed performance are available in Appendix C.

5.3 Effect of Exploration and Utilization

In objective function Eq. (11), we use λ to reconcile
the effects of the two log-likelihoods. Intuitively,
the first term is used to explore the intrinsic struc-
ture of unlabeled data, and the second term is used
to strengthen the knowledge transferred from la-
beled data to utilize. We vary the value of λ and
conduct experiments on CLINC and BANKING
to explore the effect of λ, which also reflects the
inference of exploration and utilization. As shown
in Figure 3, only utilizing labeled data (λ = 0.0)
or only exploring(λ = 1.0) the intrinsic structure
will not achieve good results (below average). In-
terestingly, on all metrics and datasets, the effect
of λ shows a similar trend (increase first and then
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decrease), which indicates that we can adjust the
value of λ to give full play to the role of both so that
the model can make better use of known knowledge
to discover intents accurately. This result shows
that if the model wants to achieve good results,
exploration and utilization are indispensable.
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Figure 4: The effect of the initial number of intents on
datasets(Left: CLINC, Right: BANKING). The com-
pared results are retrieved from Zhang et al. (2021).

5.4 Effect of the Initial Number of Intents

Because we do not know the actual number of in-
tents, we usually need to assign an initial number
of intents (i.e., K) in advance as we do earlier. This
also requires us to investigate the sensitivity of the
model to the initial K. We investigate the perfor-
mance of our method in the datasets by varying ini-
tial values (leaving others unchanged). As shown
Figure 4, compared with others, our method can
better adapt to different initial values.
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Figure 5: The effect of known class ratio on datasets
(Left: BANKING, Right: CLINC). The compared re-
sults are retrieved from Zhang et al. (2021).

5.5 Effect of the Known Intent Ratio

We also investigate the effect of known intent ra-
tios on performance by adopting different known
class ratios (25%, 50% and 75%). As shown in Fig-
ure 5, our method also shows better performance
compared with other baselines. Interestingly, The
advantage of our method in dataset BANKING is
significant. We speculate that this may be related to
the unbalanced number of samples in BANKING.

Although there are more known intents, it does not
mean that enough labeled and balanced samples
are provided. As a result, the previous methods
(e.g. DeepAligned) not only failed to transfer more
prior knowledge but also exacerbated the speed
of forgetting in the follow-up process. This also
provides room for future research.
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Figure 6: The knowledge curves of our method (Blue).
During intent assignments, our performance is not only
not forgotten, but also constantly strengthened com-
pared with the pre-transfer stage (Red, approximated by
the initial performance in clustering stage).

5.6 More Than Remembering Knowledge
We show knowledge forgetting in DeepAligned
in Section 1. After fine-tuning with labeled data,
the prior knowledge is stored in the model in the
form of model parameters. With the subsequent
clustering steps, the parameters change gradually
(the forgetting process is step by step from the
forgetting curve in previous works).

However, as shown in Figure 6, we observe that
our method does not have the catastrophic forget-
ting that occurs in DeepAligned. On the contrary,
with the iteration (EM algorithm), our performance
is better than that in the pre-transfer stage. We sur-
mise that this improvement is brought by the sam-
ple set D̂l discovered in the unlabeled data (also
can improve the intent discovery in Appendix E)
corpus helps the identification of the known intents.

6 Conclusion

In this paper, we provide a probabilistic frame-
work for intent discovery. This is the first complete
theoretical framework for intent discovery. We
also provide an efficient implementation based on
this proposed framework. Compared with the ex-
isting methods, our method effectively alleviates
the forgetting of prior knowledge transferred from
known intents and provides intensive clustering
supervised signals for discovering intents. Exten-
sive experiments conducted in three challenging
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datasets demonstrate our method can achieve sub-
stantial improvements. The subsequent analysis
also shows that our method can better estimate the
number of intents and adapt to various conditions.
In the future, we will try different methods to per-
form intent assignments and explore more methods
to approximate p(Y l|Z, D; θ) and p(Z|D; θ).

Limitations

To better inspire the follow-up work, we summa-
rize the limitations of our method as follows: 1)
From our experimental results the Appendix D, we
can see that the estimation of the number of intents
in our proposed can be further improved. 2) We
do not try more means to prevent knowledge from
forgetting. We can probe into the intrinsic structure
of unlabeled data in a more fine-grained way by im-
proving the posterior estimation. 3) According to
Section 5.3, we have verified that both exploration
and utilization are indispensable, but at the same
time, we only empirically choose the specific pro-
portion of both, without theoretical analysis of the
most appropriate proportion for each dataset. We
look forward to making progress in the follow-up
research on the above limitations.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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A Statistics of Datasets

We present detailed statistics of datasets in our ex-
periments in Table 6.
CLINC (Larson et al., 2019) is a dataset designed
for Out-of-domain intent detection, which contains

λ
BANKING CLINC

NMI ARI ACC NMI ARI ACC

0.0 80.65 54.11 63.83 93.27 76.12 81.69
0.1 82.83 58.99 70.06 94.36 80.23 86.13
0.3 84.43 62.62 72.53 94.73 81.79 88.09
0.5 84.81 63.91 74.38 95.32 83.41 89.07
0.7 84.73 63.95 74.58 95.36 83.26 88.40
0.9 85.16 65.34 75.94 95.69 84.97 90.31
1.0 82.94 61.98 73.21 93.35 78.46 85.51

Table 5: Detailed Results about the Effect of Exploration
and Utilization.

150 intents from 10 domains and 22500 utterances.
BANKING (Casanueva et al., 2020) is a dataset
covering 77 intents and containing 13083 utter-
ances.
StackOverflow (Xu et al., 2015) represents a
dataset dispersed through Kaggle.com, encompass-
ing 20 intents and 20000 utterances. We adopt the
dataset processed by (Xu et al., 2015).

B Experiment Details

Our main experiments use pre-trained BERT (bert-
uncased, with 12-layer transformer), which is im-
plemented in the Huggingface Transformers3. We
try learning rate in {1e − 5, 5e − 5} and λ in
{0.5, 0.6}. The training batch size is 512, and
the temperature scale τ is 0.1. All experiments
were conducted in the Nvidia Ge-Force RTX-3090
Graphical Card with 24G graphical memory.

C More Results on Effect of Exploration
and Utilization

In this section, we detail the results of varying
λ in the Table 5. This result can be used as a
supplement to Section 5.3, which further proves
that if the model wants to achieve better results,
both exploration and utilization are indispensable.

D Estimate the Number of Intents (K)

A key point of intent discovery is whether the
model can accurately predict the number of in-
tents. DeepAligned proposes a simple yet effec-
tive estimation method. However, due to the align-
ment operation in the iterative process of clustering
(see Zhang et al. (2021) for details), DeepAligned

3https://github.com/huggingface/transformers
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Dataset Classes |Training| |Validation| |Test| Vocabulary Size Length (Avg)

CLINC 150 18000 2250 2250 7283 8.32
BANKING 77 9003 1000 3080 5028 11.91
StackOverflow 20 18000 1000 1000 17182 9.18

Table 6: Statistics of datasets. || denotes the total number of utterances. The StackOverflow is drawn from Lin et al.
(2020)

Methods
CLINC (k̂ = 150) BANKING (k̂ = 77)

K(Pred) Error(↓) NMI ARI ACC K(Pred) Error(↓) NMI ARI ACC

MCL(BERT) 112 25.33 87.15 59.22 69.20 58 24.68 75.33 47.35 60.80
DTC(BERT) 195 30.00 89.15 63.18 66.65 110 42.86 77.61 47.50 54.94
DeepAligned 129 14.00 92.50 72.26 77.18 67 12.99 78.88 51.71 62.49

Ours 130 13.30 93.58 75.30 80.80 73 5.48 83.56 60.92 69.68

Table 7: The results of predicting K. The k̂ denotes the ground truth number of K.The compared results are
retrieved from (Zhang et al., 2021).
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Figure 7: The results of predicting K on CLINC and
BANKING. The Red line denotes ground truth, the
Brown line denotes the result of DeepAligned and the
Bule line denotes the refinement of K by our method.

needs to determine K in advance and only lim-
ited labeled data is used, while a large number of
unlabeled data are ignored. Unlikely, our method
does not directly rely on pseudo labels so that we
can continue to refine K during subsequent clus-
tering. We use the same settings as Zhang et al.
(2021) and firstly assign the number of intents (i.e.,
K in intent assignments) as two times the ground
truth number to investigate the ability to estimate
K. In the process of executing the EM algorithm,
we refine K per 10 epochs using the method as sug-
gested in Section 3.3. To effectively demonstrate
the impact and efficiency of our proposed frame-
work on the estimation of K, we did not consider
dataset D̂l in the experiment. We get the final per-
formance of the model and the results are shown in
Table 7 (Figure 7 shows the intermediate values of
K per epoch.) shows that our method can predict
the number of intents more accurately and achieve

better results at the same time. During the experi-
ment, we observed that the performance of model
exhibited fluctuations attributed to the setting of
hyperparameters. A more comprehensive and in-
depth investigation of the estimation of K will be
left for future research endeavors.

E Effect of D̂l discovered in unlabeled
data

In addition to the labeled data in hand, in Sec-
tion 3.3, we also use the sample set D̂l predicted
known intents in unlabeled data during discovery
(See Section 3.3 for the specific construction of D̂l.
The nearest neighbor measure is based on the co-
sine similarity of the sample representation in the
semantic space). In this section, we will further an-
alyze the benefits brought by these discovered sam-
ple set. We have compared the effects of adding D̂l

and not adding D̂l, and the comparison results are
shown in Table 8. From Table 8, we can easily con-
clude that the added sample set D̂l can improve the
effectiveness. This also proves the importance of
exploring the intrinsic structure of unlabeled data,
which can not only improve the effect of preventing
knowledge forgetting (Section 5.6) to improve the
identification of IND, but also improve the effect of
intent discovery, which is completely in line with
our expectations.
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Methods
CLINC BANKING Stackoverflow

NMI ARI ACC NMI ARI ACC NMI ARI ACC

Our (Dl) 94.78 82.32 88.29 83.40 61.19 72.59 77.29 63.93 80.90
+D̂l 95.01 83.00 88.99 84.02 62.92 74.03 77.32 65.70 80.50

Table 8: Ablation study on effect of D̂l. D̂l is the set of samples in Du that can be considered as known intents
after the operation of Z .
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