
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3640–3663

July 9-14, 2023 ©2023 Association for Computational Linguistics

CODE4STRUCT: Code Generation for Few-Shot Event Structure
Prediction

Xingyao Wang and Sha Li and Heng Ji
University of Illinois Urbana-Champaign, IL, USA

{xingyao6, shal2, hengji}@illinois.edu

Abstract

Large Language Model (LLM) trained on
a mixture of text and code has demon-
strated impressive capability in translating
natural language (NL) into structured code.
We observe that semantic structures can be
conveniently translated into code and pro-
pose CODE4STRUCT to leverage such text-to-
structure translation capability to tackle struc-
tured prediction tasks. As a case study, we for-
mulate Event Argument Extraction (EAE) as
converting text into event-argument structures
that can be represented as a class object using
code. This alignment between structures and
code enables us to take advantage of Program-
ming Language (PL) features such as inheri-
tance1 and type annotation2 to introduce exter-
nal knowledge or add constraints. We show
that, with sufficient in-context examples, for-
mulating EAE as a code generation problem is
advantageous over using variants of text-based
prompts. Despite only using 20 training event
instances for each event type, CODE4STRUCT
is comparable to supervised models trained on
4,202 instances and outperforms current state-
of-the-art (SOTA) trained on 20-shot data by
29.5% absolute F1. By leveraging the inheri-
tance feature of PL, CODE4STRUCT can use
10-shot training data from a sibling event type
to predict arguments for zero-resource event
types and outperforms the zero-shot baseline
by 12% absolute F1. 3

1 Introduction

Large Language Model (LLM) trained on massive
corpora of code mixed with natural language (NL)
comments and docstrings4 (e.g., Chen et al. 2021,

1Inheritance is a way to create a hierarchy of classes in PL.
A child class can base upon another class, retaining similar
implementation.

2Developers use type annotations to indicate the data types
of variables and input/outputs of functions.

3All code and resources are publicly available at https:
//github.com/xingyaoww/code4struct.

4Text used to document a specific segment of code.

class Transport(Movement):
 ...

Transport
(Event Type)

GPE or ORG or PER

FAC or ORG or PER
or VEH or WEA

LAC or GPE or LOC

FAC or GPE or LOC

VEHagent

artifact

destination

origin

vehicle

(1) Event Ontology

(2) Event Definition

"""
Translate the following sentence into an instance of Transport.
The trigger word(s) of the event is marked with **trigger word**.
"Kelly , the US assistant secretary for East Asia and Pacific
Affairs , **arrived** in Seoul from Beijing Friday to brief Yoon ,
the foreign minister ."
"""
transport_event = Transport(
 artifact=[
 PER("Kelly"),
],
 destination=[
 GPE("Seoul"),
],
 origin=[
 GPE("Beijing"),
],
)

Input Sentence

Generated
Code

(3) Event Instantiation

Convert to Python class

Transport
(Event Instance)

PER: Kelly

GPE: Seoul
GPE: Beijing

agent

destination
origin

Prompt LLM

Figure 1: Event Argument Extraction using code gen-
eration. We convert the existing event type ontology to
PYTHON class definitions. Conditioned on these defi-
nitions, we put the input sentence for event argument
extraction into a docstring as the prompt for code gen-
eration. The generated code (colored in green) can be
mapped to an instance graph of Transport event.

Nijkamp et al. 2022) has demonstrated the abil-
ity to translate natural language instructions into
structured code. We ask if this conversion between
language and code can serve as a bridge to build a
connection between language and semantic struc-
ture, which is the goal of many structured predic-
tion tasks (e.g., semantic parsing, information ex-
traction) in Natural Language Processing (NLP). In
particular, the target structure (e.g., event-argument
graph in Figure 1) can be mapped to code more
straightforwardly compared to natural language,
which often requires careful prompt engineering
(Hsu et al. 2022, Li et al. 2021, Table 2). In addi-
tion, code written in programming languages has
an inherent advantage in representing complex and

3640

https://github.com/xingyaoww/code4struct
https://github.com/xingyaoww/code4struct

Event Argument Extraction Programming Language (Python)

Event / Entity Type
Transport, VEH

Class definition
class Transport, class VEH

Hierarchical Event Ontology
Movement:Transport

Inheritance
Inheritance is a way to create a hierarchy of classes in PL. A child class can base upon another class,
retaining similar implementation.

class Transport(Movement)

Event Arguments
vehicle

Function arguments
def function(vehicle=...)

Argument Constraint
Each argument can has a list of multiple
entities; Argument vehicle should be entities of
type VEH.

Type Annotation & Argument Default Value
Type annotations are used by developers to indicate the data types of variables and input/outputs of
functions. If a function is called without the argument, the argument gets its default value (a list in this
case).
def function(
 vehicle: List[VEH] = [], …
)

Weakly-supervised Information
Transport Event describes someone transporting
something in a vehicle from one place to another
place.

Docstring or Comments
class Transport(Movement):
 """
 self.agent transported self.artifact in self.vehicle vehicle from self.origin
place to self.destination place.
 """

Table 1: Mapping between Event Argument Extraction requirements and features of Python programming lan-
guage.

interdependent structures (Miller, 1981; Sebrechts
and Gross, 1985) with features such as inheritance
and type annotation.

As a case study, we showcase our proposed
CODE4STRUCT on the Event Argument Extrac-
tion (EAE) task, which aims to extract event struc-
tures from unstructured text. EAE is the ideal
testbed for our method due to the close alignment
between EAE and PL as shown in Table 1. In
CODE4STRUCT (Figure 1), we first translate the
entity and event type ontology into Python class
definitions. Conditioned on the relevant class defi-
nitions and the input sentence, we prompt an LLM
to generate an instantiation of the event class, from
which we can extract the predicted arguments.

By leveraging the alignment between PL and
NLP problems, CODE4STRUCT enjoys various ad-
vantages as shown in Table 1. Using PL features
like type annotation and argument default value,
we can naturally enforce argument constraints for
output structures. This allows CODE4STRUCT to
handle multiple or zero argument fillers for the
same argument role by annotating the expected
type (i.e., expect a list of entities) and setting the
default value for each argument (i.e., an empty list
without any entity by default). Furthermore, we can
naturally utilize the event hierarchy by leveraging
inheritance. Inheritance allows a child event class
(e.g., Transport) to reuse most components of
its parent class (e.g., Movement) while preserving
its unique properties. We demonstrate that hierar-
chical event types allow zero-resource event types
to use annotated training examples from their high-

resource sibling types (§4.6).
We outline our contributions as follows:

• We propose CODE4STRUCT to tackle struc-
tured prediction problems in NLP using
code generation. As a case study, we use
CODE4STRUCT for Event Argument Extrac-
tion (EAE).

• We perform extensive experiments contrast-
ing the performance of code-based prompt
and two variants of text prompt on different
LLMs and show that code prompt is generally
advantageous over text prompt when sufficient
in-context examples are provided (§4.2).

• We demonstrate that 20-shot CODE4STRUCT

rivals fully-supervised methods trained on
4,202 instances. CODE4STRUCT outperforms
a SOTA approach by 29.5% absolute F1 gain
when 20-shot data are given to both. 0-
shot CODE4STRUCT can even outperform the
SOTA on both 20 and 50 shots (§4.5).

• We show that integrating the event ontology
hierarchy by class inheritance can improve
prediction. Compared to the zero-shot base-
line, we see 12% F1 gains for zero-resource
event types when using 10-shot examples
from their sibling event types (§4.6).

2 Code Generation Prompt Construction

In Event Argument Extraction (EAE) task, a model
is provided with an event ontology and the tar-

3641

from typing import List

class Entity:
 def __init__(self, name: str):
 self.name = name
class Event:
 def __init__(self, name: str):
 self.name = name

class Movement(Event): # Inherit from `Event` class
 ... # omitted for space
class Transport(Movement):
 """
 self.agent transported self.artifact in self.vehicle vehicle from
self.origin place to self.destination place.
 """
 def __init__(
 self,
 agent: List[GPE | ORG | PER] = [],
 artifact: List[FAC | ORG | PER | VEH | WEA] = [],
 destination: List[FAC | GPE | LOC] = [],
 origin: List[FAC | GPE | LOC] = [],
 vehicle: List[VEH] = [],
):
 self.agent = agent
 self.artifact = artifact
 self.destination = destination
 self.origin = origin
 self.vehicle = vehicle

"""
Translate the following sentence into an instance of
Transport. The trigger word(s) of the event is marked
with **trigger word**.
"Kelly , the US assistant secretary for East Asia and
Pacific Affairs , **arrived** in Seoul from Beijing
Friday to brief Yoon , the foreign minister ."
"""
transport_event = Transport(

"""

Translate the following sentence into an instance of Transport. The trigger

word(s) of the event is marked with **trigger word**.

"Kelly , who declined to talks to reporters here , **travels** to Tokyo Sunday

for talks with Japanese officials ."

"""

transport_event = Transport(

 artifact=[PER("Kelly"),],

 destination=[GPE("Tokyo"),],

)

Relevant Entity Definition(s)

class ORG(Entity):
 """Corporations, agencies, and other groups of people
defined by an established organizational structure..."""
 def __init__(self, name: str):
 super().__init__(name=name)

class GPE(Entity):
 """Geopolitical entities such as countries, provinces,
states, cities, towns, etc. GPEs are composite entities,
consisting of ..."""
 def __init__(self, name: str):
 super().__init__(name=name)

Base Class
Definition

"""
Translate the following sentence into an instance of Transport. The trigger
word(s) of the event is marked with **trigger word**.
"Renowned Hollywood madam Heidi Fleiss has been **flown** to Melbourne as guest
of honour at Thursday's market debut and , according to Harris , has already
played a key role in attracting worldwide media attention to the event ."
"""
transport_event = Transport(
 artifact=[PER("Heidi Fleiss"),],
 destination=[GPE("Melbourne"),],
)

(optional) k In-context Examples

Event Definition

Ontology
Code
Representation

Task
Prompt

Groundtruth Code

Trigger Marking

LLM Prompt

Event templateHierarchical
Ontology

Entity Type Annotation

Figure 2: Prompt components. (1) Ontology code representation contains definitions of entity and event classes,
colored in yellow and blue (§2.1). (2) k-shot examples for in-context learning, colored in orange (§2.3). (3) The
task prompt, appended at the end with partial class instantiation for LLM completion, colored in green (§2.2).

get text to extract from. Similarly, we prompt an
LLM with the ontology that consists of definitions
of event types and argument roles, and input sen-
tences to generate code that instantiates the given
event type. We breakdown the input prompt into
three components: (1) ontology code representa-
tion which consists of Python class definitions for
entity types and an event type (§2.1); (2) optional
k-shot in-context learning examples for the event
type defined in (1) (§2.3); (3) task prompt for com-
pletion (§2.2). We show a breakdown of the full
prompt in Figure 2.

2.1 Ontology Code Representation

To represent the event ontology as code, we con-
catenate the base class definition, entity class defi-
nitions, and event class definitions.

Base Class Definition We define base type
Entity and Event to be inherited by other
classes.

Entity Class Definition We use entity type def-
initions from the Automatic Content Extraction
(ACE) program5. We construct Python classes that
inherit from Entity and use the entity type as the
class name (e.g., class GPE(Entity)). We
add a natural language description as a docstring
of the defined class for each entity type.

5https://www.ldc.upenn.edu/
collaborations/past-projects/ace

2.1.1 Event Class Definition
We define the event class using the name of the
event type (e.g., class Transport). As ACE
defines its event types in a hierarchical ontology,
mimicking class definitions in Object-Oriented PL,
we inherit the event class definition from its par-
ent (e.g., class Transport(Movement)) or
root event type if the event class does not has a par-
ent (e.g., class Movement(Event)). An ex-
ample of hierarchical event definition can be found
in Figure A.9.

We define the argument roles (e.g., destination
of Transport) as input arguments of the con-
structor __init__6. We specify the type of each
argument role using Python type annotation, a com-
monly used PL feature: For example, agent:
List[GPE | ORG | PER] means that the
agent argument accepts a list of entities which
could be either of type GPE (Geo-Political Entity),
ORG (Organization), or PER (Person). We assign
each input argument (e.g., agent) to a class mem-
ber variable of the same name.

We include event description templates into the
docstring of the class definition. The event descrip-
tion templates are modified from Li et al. (2021)
by replacing each role with their corresponding
member variable (e.g., self.agent).

2.2 Task Prompt
The task prompt consists of a docstring describing
the task and incomplete event instantiation code for

6A constructor is a special function that initializes an in-
stance of a class.

3642

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace

Prior Work Language Template

DEGREE (Hsu et al., 2022) somebody was moved to somewhere from some place by some way. somebody or some organization was
responsible for the movement. something was sent to somewhere from some place. somebody or some
organization was responsible for the transport.

BART-Gen (Li et al., 2021) <arg1> transported <arg2> in <arg3> vehicle from <arg4> place to <arg5> place
Text2Event (Lu et al., 2021) ((Transport returned (Agent <arg>) (Artifact <arg>) (Destination <arg>) (Origin <arg>) (Vehicle <arg>))

Table 2: Example of language templates for Event Argument Extraction used by Hsu et al. (2022); Li et al. (2021);
Lu et al. (2021).

completion. An example of a task prompt can be
found in Figure 2. The text-based docstring con-
tains a task instruction and an input sentence. We
mark the ground truth trigger words for the input
text by surrounding them with **. We choose to
use ** as it is used to set text to bold in Markdown
(a markup language for creating formatted text),
which is commonly found in code bases and web
data on which our LLM is trained. The incomplete
code prompt assigns a partial instantiation of an
event class to a variable to trigger the model for
completion, for example, transport_event
= Transport(.

We observed that LLM tends to generate addi-
tional sentences paired with extracted arguments
if no stopping constraint is applied. To focus on
the given EAE task, we stop the code generation
whenever any of the following patterns is generated
by the model: """, class, print, or #.

2.3 In-context Learning

Optionally, we can include in-context learning ex-
amples, which are task prompts (§2.2) paired with
completed event instantiations using ground-truth
arguments (see Figure 2 for a specific example).
For k-shot learning, we concatenate k such exam-
ples together. Given a task prompt, we determin-
istically gather k learning examples by collecting
training instances with the same event type, follow-
ing the order of occurrences in the training set.

3 Why Represent Event Structure in PL?

A wide range of NLP tasks have benefited from
LLM (Brown et al., 2020; Hoffmann et al., 2022;
Chowdhery et al., 2022) trained on web-scale lan-
guage corpora. To effectively use LLM trained on
language for EAE, one of the biggest challenges is
to specify the desired output, namely event struc-
tures in our case, using natural language.

There is a tradeoff between the effort put into
defining the output or designing the prompt (e.g.,
Text2Event in Table 2) and the benefit from pre-

training in natural language (e.g., DEGREE and
BART-Gen in Table 2). Text2Event (Lu et al., 2021)
resides at one end of the spectrum with a concise
but unnatural output format. As a result, this formu-
lation under-utilizes the pretraining power of the
model and does not work in low-resource settings
as shown in Table 4. Towards the other end, Hsu
et al. (2022); Li et al. (2021) design manual tem-
plates for the model to fill in. We also design two
variants of language prompt as shown in Figure A.5
and A.6 miciking our code prompt and BART-Gen
style prompt for comparison. Note that these natu-
ral language prompts are much more verbose and,
as shown in §4.2, usually result in sub-optimal per-
formance with sufficient in-context examples.

Essentially, this tradeoff is a result of the mis-
match between the pretraining corpora and task
output formats. Instead of using LLM trained on
only unstructured text, we turn to LLM trained with
a mixture of text and code, where the text is often
aligned in semantics with the accompanying code.
Such Code-LLMs have the ability to convert text
into corresponding code as demonstrated by (Chen
et al., 2021; Nijkamp et al., 2022). Then we can
map the desired output event structure into code
in a straightforward manner and leverage the full
pretraining power of these models. PLs like Python
offer features (e.g., class, docstrings, type annota-
tions, inheritance) that have a significant presence
in the pre-training corpus of Code-LLM due to
frequent usage. CODE4STRUCT leverages these
features to succinctly describe event structures,
which makes it better aligned with Code-LLM. By
leveraging LLM’s learned knowledge from diverse
pre-training domains, CODE4STRUCT can work
well in open-domain, achieving non-trivial zero-
shot performance given unseen event types (§4.5).
CODE4STRUCT is also data-efficient as exempli-
fied by reaching comparable performance to fully-
supervised methods with much fewer annotated
examples (20 per event type) (§4.5).

3643

4 Experiments

4.1 Experiment Setup

LLM We use CODEX code-davinci-002
(Chen et al., 2021), a GPT-3 (Brown et al.,
2020) model finetuned on code, which supports
up to 8k input tokens. We compare its perfor-
mance with InstructGPT (Ouyang et al., 2022)
text-davinci-002 and its improved version
text-davinci-003, both support up to 4k in-
put tokens. We access these LLMs through OpenAI
API7.

Hyperparameters We prompt LLM to generate
code that instantiates an event using sampling tem-
perature t = 0 (i.e., greedy decoding). We set the
max number of new tokens for each generation to
128, which fits all code outputs for the test set.

Evaluation Tasks We use ground truth event
type and gold-standard trigger words to perform
Event Argument Extraction.

Dataset We evaluate our performance of EAE on
the English subset of Automatic Content Extraction
2005 dataset (ACE05-E)8 (Doddington et al., 2004).
We follow Wadden et al. (2019); Lin et al. (2020)
for dataset processing. ACE05-E has hierarchical
event types with 8 parent types and 33 child types.
Among all child types, roughly half of the event
types (14 out of 33) in ACE05-E have less than
50 event instances in the training set. We show
statistics for each event type in Table A.4.

Evaluation metrics We use Argument F1-
score following prior work (Ji and Grishman, 2008;
Li et al., 2021; Hsu et al., 2022): We consider an
argument to be correctly identified when the head
word span of predicted text9 matches that of the
human-annotated text (denoted as Arg-I); We con-
sider an argument to be correctly classified if the
role (e.g., agent) of a correctly identified argu-
ment matches that of the human annotation (de-
noted as Arg-C).

4.2 Comparison with Text Prompt

To compare our code-based prompt with text-based
prompts, we design two variants of text prompt:

7https://openai.com/api/
8https://www.ldc.upenn.edu/

collaborations/past-projects/ace
9We find the span of predicted text in the given sentence,

then use spacy library to find its head word.

T (1) mimicking our code prompt (i.e., code im-
itation, Figure A.5) and T (2) following BART-
Gen style prompt (Li et al., 2021) (Figure A.6)
which resembles natural language more compared
to T (1). Both text prompts have similar compo-
nents as our code-based prompt in Figure 2. Text
prompts rely on natural language to define the re-
quirement and format of the desired output, while
the code prompt utilizes PL syntax. We com-
pare the F1 score difference between the code
prompt (§2) and two variants of text prompts (i.e.,
∆

(i)
C−T = F1code − F1(i)text, i ∈ {1, 2}) on different

LLMs in Table 3. We include exact performance
numbers of text prompts in Table A.3. We summa-
rize our findings as follows:

• Code prompt outperforms both text prompts
on Arg-C F1 (i.e., ∆

(i)
C−T > 0) for two

text prompt variants and all LLMs except
text-davinci-003 when sufficient in-
context examples are given (i.e., k ≥ 5).

• For *-davinci-002 LLMs, there are more
significant performance gains from using a
code prompt (i.e., increasing ∆

(i)
C−T for all i)

when the number of in-context examples k
increases (for k ≥ 5).

• There is no clear trend on Arg-I F1 to dif-
ferentiate code and text prompts, except for
text-davinci-003, which exhibits simi-
lar behavior that code prompt performs better
with larger k.

• Text prompt T (2) (BART-Gen style), which
resembles natural language more, performs
poorly under low-shot (k ≤ 1), primarily
due to the LLM being unable to produce the
desired structure output described using lan-
guage in T (2), causing the low-shot code-text
performance gap ∆

(2)
C−T to be larger compared

to T (1). These low-shot performance differ-
ences between T (1) and T (2) further signify
the need to prompt engineering for language-
based prompts to work well in a low-shot set-
ting.

4.3 Comparison with different LLM
We measure the performance of the same
CODE4STRUCT code prompt across differ-
ent foundational LLMs in §4.1. LLM per-
formance comparison can be found in Fig-
ure 3. text-davinci-002 is an InstructGPT

3644

https://openai.com/api/
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace

Table 3: Performance of the code prompt on the Arg-I and Arg-C metrics and its F1 score difference ∆
(i)
C−T with

two text prompt variants described in §4.2 (i.e., F1code − F1(i)text). On Arg-C, there is a trend that the code prompt
performs better (i.e., ∆

(i)
C−T > 0) when more in-context examples are provided, except on text-davinci-003.

Model code-davinci-002 text-davinci-002 text-davinci-003
k-shot Arg-I ∆

(1)
C−T ∆

(2)
C−T Arg-C ∆

(1)
C−T ∆

(2)
C−T Arg-I ∆

(1)
C−T ∆

(2)
C−T Arg-C ∆

(1)
C−T ∆

(2)
C−T Arg-I ∆

(1)
C−T ∆

(2)
C−T Arg-C ∆

(1)
C−T ∆

(2)
C−T

0 50.6 0.7 50.6 36.0 -2.2 36.0 48.9 -2.6 20.2 35.0 -2.4 13.1 49.9 -2.1 15.3 37.8 -1.4 12.6
1 57.3 0.1 4.7 47.8 -1.0 4.7 55.8 1.8 5.3 45.2 3.0 4.9 56.0 -1.5 1.1 44.7 -3.2 1.1
5 58.0 1.1 1.9 52.5 2.9 1.1 56.0 -2.0 1.0 48.8 3.0 1.4 59.2 -0.9 -0.7 51.7 1.4 -2.1

10 57.2 -1.4 -0.2 52.8 0.8 0.1 60.6 2.7 2.9 53.9 6.4 5.0 62.8 3.1 0.6 56.3 5.0 -1.2
20 62.1 1.7 0.2 58.5 3.6 2.4 59.9 0.9 3.7 56.5 8.0 5.8 65.0 3.5 0.7 60.4 7.8 -0.4

(Ouyang et al., 2022) model finetuned with human
demonstrations based on code-davinci-002,
yet these two LLMs perform similarly in Arg-C F1.
Although having a similar code prompt Arg-C per-
formance, text-davinci-002 generally has a
larger ∆

(i)
C−T compared to code-davinci-002

of the same k in Table 3 (e.g., +3.6 vs. +8.0, +2.4
vs. +5.8 on 20-shot for both text prompt variants),
suggesting the degradation of text prompt perfor-
mance after finetuning with human demonstrations.
text-davinci-003, which uses reinforce-

ment learning (RL) with reward models to align
with human preference10 (Ouyang et al., 2022),
outperforms other LLMs for k > 5. In Table 3,
text-davinci-003 obtains superior Arg-C F1
performance (60.4% vs. 56.5% on 20-shot) com-
pared to text-davinci-002. This suggests
RL with reward models effectively improves EAE
performance (i.e., Arg-C) on code prompt.

Interestingly, text-davinci-003 has a very
different ∆

(i)
C−T pattern for text prompt T (2) com-

pared to T (1). Like text-davinci-002, in Ta-
ble 3, Arg-C ∆

(1)
C−T for text prompt T (1) has an

increasing trend with a similar magnitude (e.g.,
+7.8 vs. +8.0 on 20-shot). That is, in both LLMs,
the code prompt is always better than text prompt
T (1) with k ≥ 5. However, for text prompt T (2)

which is more similar to natural sentences, the gap
∆

(2)
C−T exhibits a vastly different pattern compared

to other models: code prompt performs on par
or even slightly worse than T (2) for k ≥ 5. We
also notice that for zero-shot prediction, T (2) on
text-davinci-003 performs better compared
to other LLMs. This indicates that aligning LLM
with RL and reward models helps improve LLM’s
ability to follow zero-shot language instructions.

Even though code prompt still performs supe-
rior to both text prompt variants on 002 LLMs, re-
sults from text-davinci-003 suggest a better-

10https://beta.openai.com/docs/
model-index-for-researchers

aligned language model can perform equally well
on a natural text prompt T (2) when sufficient in-
context examples are provided.

01 5 10 20 30 50

50

52

54

56

58

60

62

64

Arg-I F1

01 5 10 20 30 50
35

40

45

50

55

60
Arg-C F1

Number of In-context Examples (k-shot)

code-davinci-002 text-davinci-002 text-davinci-003

Figure 3: CODE4STRUCT performance (in F1%) with
different k. We observe improvements with dimin-
ishing returns when we increase the number of in-
context examples. Exact performance numbers can
be found in Table A.3 (code prompt). We stop at
k = 20 for text-davinci and k = 50 for
code-davinci-002 as including more examples
would exceed the input length limitation imposed by
corresponding LLM.

4.4 Comparison with different k
We examine the performance of code prompts with
varying numbers of examples in Figure 3. We ob-
serve that F1 scores for all metrics generally in-
crease with diminishing returns when providing
more in-context learning examples. The initial
in-context example (k = 1) brings the largest
absolute performance gain (+11.8, +10.2, +6.9
Arg-C F1 for three LLMs). For k ≥ 20 on
code-davinci-002, the Arg-I and Arg-C per-
formance plateaus or even slightly degrade, as not
all event types have enough in-context examples
to benefit from increasing k (i.e., only 19 out of
33 event types have more than 50 examples for
in-context learning). To further investigate why the
performance plateaus, we analyze how the sentence
variability (or diversity) of in-context examples in-
fluences Arg-C performance in §A.4; We find that

3645

https://beta.openai.com/docs/model-index-for-researchers
https://beta.openai.com/docs/model-index-for-researchers

Arg-C performance is positively correlated with the
variability of in-context examples which plateaus
as k increases, hinting that in-context learning per-
formance may eventually plateau with increasing
k due to little variability gains from the additional
data.

4.5 Comparison with Supervised Models

Baselines Unlike prior methods trained on the
entire training set, CODE4STRUCT learns from up
to 50 examples (i.e., 39 examples per event type on
average, roughly 1% among all training instances)
to predict arguments for each test event type. To
ensure a fair comparison, for each event type t
in the test set, we train a Text2Event model (Lu
et al., 2021) and a DEGREE model (SOTA, Hsu
et al. (2022)) on 20-shot and 50-shot in-context
examples CODE4STRUCT used while providing
gold-standard trigger words. We evaluate both
models trained on event type t on a partition of
the test set that only contains instances of event
type t. We then aggregate F1 scores (micro F1)
across all 31 event types on the test set and report
them in Table 4. Following Hsu et al. (2022), we
also compare with classification-based (DyGIE++
Wadden et al. (2019), BERT_QA Du and Cardie
(2020), OneIE Lin et al. (2020)) or generation-
based (TANL (Paolini et al., 2021), BART-Gen Li
et al. (2021), DEGREE Hsu et al. (2022)) models
trained on the full training set.

Results We report the performance of
CODE4STRUCT using LLMs (§4.1) in com-
parison with prior work in Table 4. We report
the performance of supervised models using the
full dataset from Hsu et al. (2022). Note that
50-shot results for text-davinci are not
available as the 50-shot input prompt will exceed
LLM’s input token length limitation, hence we use
code-davinci-002 for 50-shot comparison.

In the few-shot setting, 20-shot CODE4STRUCT

using text-davinci-003 can surpass DE-
GREE (Hsu et al., 2022), the current state-of-
the-art, by a large margin (+29.5% Arg-C F1).
Our zero-shot CODE4STRUCT using the best-
performing text-davinci-003 model can al-
ready achieve higher Arg-I and Arg-C perfor-
mance than the 20-shot and 50-shot DEGREE.
Despite only learning from 20 examples, 20-shot
CODE4STRUCT achieves comparable performance
with other fully-supervised models trained on 100%
of the training data (4,202 instances).

Model Data Arg-I F1 Arg-C F1

DyGIE++ Full 66.2 60.7
BERT-QA Full 68.2 65.4
OneIE Full 73.2 69.3
TANL Full 65.9 61.0
BART-Gen Full 69.9 66.7
DEGREE Full 76.0 73.5
CODE4STRUCTtext-davinci-003 0-shot 49.9 37.8
Text2Event 20-shot* 23.1 19.1
DEGREE 20-shot* 33.0 30.9
CODE4STRUCTtext-davinci-003 20-shot* 65.0 60.4
Text2Event 50-shot* 30.6 26.0
DEGREE 50-shot* 40.8 37.3
CODE4STRUCTcode-davinci-002 50-shot* 62.3 58.1

Table 4: Performance (in F1%) comparison between
best-performing CODE4STRUCT LLM and existing su-
pervised approaches. Performance numbers for all
LLMs can be found in Table A.3. *Some event types
do not have 20 or 50 examples for in-context learning;
on average, we have 39 examples per type for a 50-shot
prompt and 18 examples per type for 20-shot.

4.6 Event Type Hierarchy Improves
Zero-resource EAE

In this section, we show that CODE4STRUCT, when
provided with hierarchical event definitions and
few-shot training instances Des from a sibling
event type es ∈ Siblings(e) under the same par-
ent event type, can improve performance for child
event type e as good as if training instances De

from the same event type e were used. This al-
lows zero-resource event types without annotated
data to exploit the event type hierarchy and bene-
fit from their high-resource siblings. We include
an example task prompt with sibling examples in
Figure A.11 and report our results in Table 5.

Setup We split the child types for each parent
type into training and testing types by selecting the
high-resource child type with the largest amount
of training instances to be the training type and
have the rest be testing types. The train-test split
for ACE types can be found in Table A.5. Un-
der the same parent event type, we use data in-
stances from the training type (i.e., a sibling of test-
ing types) as in-context examples to predict argu-
ments for each testing type. We include event class
definition (Figure 2) for parent event type (e.g.,
Transaction), child training (sibling) event
type (e.g., Transfer_Money), and child testing
event type (e.g., Transfer_Ownership). We
show an example of event definition with sibling
type in Figure A.10. The few-shot performance
when using data from a sibling type Des is denoted
with (sibling type) in Table 5. To demonstrate the

3646

effectiveness of using data from sibling event types,
we compare it with using training instances from
the testing event type itself De (denoted as (same
type)) and from a random non-sibling event type
(denoted as (non-sibling type)).

Arg-I Arg-C

0-shot 52.8 42.9
1-shot (same type) 54.3 50.2
1-shot (sibling type) 57.2 51.9
1-shot (non-sibling type) 56.3 50.3
10-shot (same type) 58.7 55.2
10-shot (sibling type) 60.8 54.9
10-shot (non-sibling type) 58.5 51.0

Table 5: code-davinci-002 performance (in F1%)
when using examples from the same, sibling or non-
sibling event types for in-context learning. To ensure
a fair comparison, F1 scores are aggregated from 23
test event types in Table A.5 that contains more than 10
training instances.

Results We observe that CODE4STRUCT, when
prompted with training examples from sibling type,
performs on par with the prompt that uses train-
ing examples from the testing type itself on 1-shot
and 10-shot. The substantial performance gain
(+9% Arg-C F1 on 1-shot, +12% Arg-C F1 on 10-
shot, compared with 0-shot) contributed by sibling-
type training examples demonstrate the potential
of applying CODE4STRUCT to zero-resource event
types with no training data by exploiting their hi-
erarchical relationship with other high-resource
event types. Surprisingly, similar to the observation
made by Min et al. (2022), using in-context exam-
ples from a random non-sibling type also benefits
CODE4STRUCT performance, albeit not as helpful
as sibling examples under 10-shot.

5 Related Work

Code-LLM for Structured Task Sun et al.
(2019); Singh et al. (2022) focus on procedural
tasks that aim to control situated agents in an em-
bodied environment by representing the procedure
plan in code. Madaan et al. (2022) uses Code-
LLM to generate a structured commonsense rea-
soning graph represented in code, which is similar
in spirit to our work but in a different task. Gao et al.
(2022) tackles math and symbolic reasoning tasks
by decomposing the natural language problem into
runnable steps using Code-LLM and delegating

solution calculation to a PL interpreter. We lever-
age PL features (e.g., inheritance, type annotation)
to introduce extra information and constraints for
structured prediction, which is largely overlooked
by prior work.

Event Extraction Li et al. (2013); Nguyen et al.
(2016); Yang and Mitchell (2016); Wadden et al.
(2019); Lin et al. (2020) use classification mod-
els and mitigate error propagation from pipeline
models by leveraging global features to predict
event triggers and arguments jointly. Recent work
such as Liu et al. (2020) formulates event extrac-
tion as a reading comprehension problem and Li
et al. (2021); Huang et al. (2021); Paolini et al.
(2021); Hsu et al. (2022) converts event extraction
to a text generation task to better exploit label se-
mantics from pretrained language models. The
most similar work to ours is Text2Event (Lu et al.,
2021), which uses controlled generation to gener-
ate structures in a manually specified linearized
format directly, hindering the model in leveraging
pre-trained NL knowledge. On the other hand, our
approach CODE4STRUCT directly generates struc-
ture in PL instead of using a manually designed
format to fully exploit LLM’s knowledge of PL.

6 Conclusions and Future Work

We propose CODE4STRUCT for structured predic-
tion tasks in NLP by leveraging LLMs trained
on language and code. As a case study, we use
CODE4STRUCT to extract event arguments from
natural language sentences through code genera-
tion. We show that, with sufficient in-context ex-
amples, formulating EAE as a code generation
problem is advantageous over using text-based
prompts. Our proposed CODE4STRUCT rivals
fully-supervised models trained on 4,202 data in-
stances only using 20-shot. It also outperforms a
SOTA model by 29.5% absolute F1 when both
are given the same 20-shot data. Furthermore,
benefitting from hierarchical event definitions,
CODE4STRUCT can predict arguments for zero-
resource event types only using 10-shot training in-
stances from its sibling event type and outperforms
0-shot baseline by 12% absolute F1 score. Going
forward, we plan to expand CODE4STRUCT to a
broader range of more complex structured predic-
tion tasks (e.g., relation prediction, schema match-
ing). We would further explore the executable na-
ture of PL to improve LLM’s ability for structured
prediction.

3647

Limitations

In this work, our approach assumes event trig-
gers and argument templates (i.e., ontology) are
given. This limits our approach’s applicability, as
it requires an event detection system to produce
event triggers and event types before LLMs can be
prompted to generate event arguments.

We only explore hierarchical events with only 2
levels from the ACE05-E ontology and data, which
has limited coverage of real-world complex event
hierarchy. Similar to prior event argument extrac-
tion work, our approach relies on a human-curated
hierarchical ontology. We leave automatically dis-
cover hierarchical ontology for future work.

Despite LLMs performing well on EAE with
few-shot data, compared to existing supervised
approaches, their inference is relatively slow and
costly11 since the LLMs we used are generally
more than 100x larger in the number of parameters.
Prior work (Zhao et al., 2021; Lu et al., 2022) has
demonstrated a strong relationship between per-
formance and in-context demonstrations; however,
for ease of comparison to supervised baselines, we
use the same set of examples from the training set
for in-context learning. We expect better selecting
(Liu et al., 2021) and ordering (Lu et al., 2022) in-
context examples can benefit CODE4STRUCT per-
formance, which we leave for future work.

Ethical Considerations

Since event argument extraction only requires pre-
dicting arguments from the given text, the risk of
generating toxic languages is relatively low as long
as the given test is not toxic. This is because the
prediction can be grounded in the input sentence,
eliminating potential toxic tokens that did not ap-
pear in the original sentence. However, discrim-
ination and bias are possible, as observed in the
foundational LLMs we used (Brown et al., 2020;
Chen et al., 2021; Ouyang et al., 2022), which we
refer to Brown et al. (2020) for detailed discussion.

Acknowledgement

We thank the anonymous reviewers for their helpful
suggestions and comments. This research is based
upon work supported by U.S. DARPA KAIROS

11We perform most of our experiments on
code-davinci-002 which is in free public beta at
the time of the experiment. For text-davinci models,
around 700 USD was used to access its API to perform
relevant experiments in this paper.

Program No. FA8750-19-2-1004, U.S. DARPA
AIDA Program No. FA8750-18-2-0014 and U.S.
DARPA ITM Program No. FA8650-23-C-7316.
The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of DARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extraction
(ACE) program – tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Xinya Du and Claire Cardie. 2020. Event extrac-
tion by answering (almost) natural questions. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 671–683, Online. Association for Computa-
tional Linguistics.

3648

https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. ArXiv, abs/2211.10435.

Maria Halkidi, Yannis Batistakis, and Michalis Vazir-
giannis. 2001. On clustering validation techniques.
Journal of Intelligent Information Systems, 17:107–
145.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. DEGREE: A data-efficient
generation-based event extraction model. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1890–1908, Seattle, United States. Association for
Computational Linguistics.

Kung-Hsiang Huang, Sam Tang, and Nanyun Peng.
2021. Document-level entity-based extraction as
template generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5257–5269, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through unsupervised cross-document in-
ference. In In Proceedings of the Annual Meeting of
the Association of Computational Linguistics (ACL
2008). Ohio, USA.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-
level event argument extraction by conditional gener-
ation. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 894–908, Online. Association for Com-
putational Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What

makes good in-context examples for gpt-3? In Work-
shop on Knowledge Extraction and Integration for
Deep Learning Architectures; Deep Learning Inside
Out.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Associa-
tion for Computational Linguistics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian
Riedel, and Pontus Stenetorp. 2022. Fantastically or-
dered prompts and where to find them: Overcoming
few-shot prompt order sensitivity. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8086–8098, Dublin, Ireland. Association for
Computational Linguistics.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of
code are few-shot commonsense learners. arXiv
preprint arXiv:2210.07128.

L. A. Miller. 1981. Natural language programming:
Styles, strategies, and contrasts. IBM Systems Jour-
nal, 20(2):184–215.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? ArXiv,
abs/2202.12837.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 300–309, San Diego,
California. Association for Computational Linguis-
tics.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2022. A conversational paradigm
for program synthesis. arXiv preprint.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,

3649

https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2021.emnlp-main.426
https://doi.org/10.18653/v1/2021.emnlp-main.426
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.1147/sj.202.0184
https://doi.org/10.1147/sj.202.0184
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034

Luke E. Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul Francis Christiano, Jan Leike,
and Ryan J. Lowe. 2022. Training language models
to follow instructions with human feedback. ArXiv,
abs/2203.02155.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation be-
tween augmented natural languages. arXiv preprint
arXiv:2101.05779.

Marc M. Sebrechts and Paul Gross. 1985. Program-
ming in natural language: A descriptive analysis.
Behavior Research Methods, Instruments, & Com-
puters, 17:268–274.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2022. Prog-
Prompt: Generating situated robot task plans using
large language models.

Shao-Hua Sun, Te-Lin Wu, and Joseph J Lim. 2019.
Program guided agent. In International Conference
on Learning Representations.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 289–299, San Diego, California. Association
for Computational Linguistics.

Zixuan Zhang and Heng Ji. 2021. Abstract Meaning
Representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49, On-
line. Association for Computational Linguistics.

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language models.
ArXiv, abs/2102.09690.

A Appendix

A.1 Qualitative Analysis

We show examples of 0-shot and 50-shot
CODE4STRUCT argument extraction result in Fig-
ure A.1. CODE4STRUCT can leverage implicit
commonsense knowledge in LLM to infer argu-
ments not presented in the text. In the first 0-
shot example, the model inferred the place of
Welch’s retirement is in the United States. This
is a reasonable guess since Welch, in this exam-
ple, is the former CEO of General Electric (GE),
whose headquarter is in the United States. In the
second 0-shot example, our model inferred that
the Justice:Fine event should take place in
a court, which matches our commonsense knowl-
edge. Interestingly, we observe that increasing the
number of in-context examples from 0-shot to 50-
shot inhibits LLM from generating arguments (i.e.,
making LLMs more conservative), including these
inferred arguments and a correctly predicted argu-
ment (i.e., SEC) in 0-shot predictions.

A.2 Prompt Component Analysis

In this section, we present an empirical analysis
of other prompt component candidates. We com-
pare different prompt components in Table A.1
using code-davinci-002 and following the
same hyper-parameters described in §4.1.

• Event Keywords We augment event-related
keywords into the docstring of event definition
for CODE4STRUCT (illustrated in Figure A.8).
We follow the same keywords used by Li et al.
(2021).

• AMR Zhang and Ji (2021) have demonstrated
the effectiveness of utilizing Abstract Mean-
ing Representation (AMR) (Banarescu et al.,
2013) for information extraction. We exper-
iment with AMR-augmented prompts. We
use armlib 12 to predict AMR, and append
the AMR structure after the NL sentence in
the task prompt §2.2 (see Figure A.7 for an
example).

Prompts that include event keywords and AMR
all perform slightly better than CODE4STRUCT un-
der the zero-shot setting on all metrics (Table A.1).

12https://github.com/bjascob/amrlib, parse_xfm_bart_large
v0.1.0

3650

http://arxiv.org/abs/2209.11302
http://arxiv.org/abs/2209.11302
http://arxiv.org/abs/2209.11302
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://github.com/bjascob/amrlib

Earlier documents in the case have included embarrassing

details about perks Welch [Entity: PER] received as part of

his retirement [Event: Personnel:End-Position] package from

GE [Entity: ORG] at a time when corporate scandals were

sparking outrage.

argument: entity

argument: person

United States [Entity: LOC]
(inferred by the model)

argument: place

Under terms of the agreement, to be submitted as early as

Monday to a judge presiding over the case, MCI [Entity: ORG]

would agree to pay the largest fine [Event: Justice:Fine]

imposed so far by the SEC [Entity: GPEORG] on a company that

is not a broker - dealer , the Journal said, citing sources

close to the matter .

argument: adjudicator

argument: adjudicator

Court [Entity: FAC]
(inferred by the model)

argument: place

missing argument: adjudicator

missing entity [Entity: PER]

Earlier documents in the case have included embarrassing

details about perks Welch [Entity: PER] received as part of

his retirement [Event: Personnel:End-Position] package from

GE [Entity: ORG] at a time when corporate scandals were

sparking outrage.

argument: entity

argument: person

Under terms of the agreement, to be submitted as early as

Monday to a judge presiding over the case, MCI [Entity: ORG]

would agree to pay the largest fine [Event: Justice:Fine]

imposed so far by the SEC on a company that is not a broker

- dealer , the Journal said, citing sources close to the

matter .

missing argument: adjudicator

argument: adjudicatormissing argument: adjudicator

missing entity [Entity: PER]

missing entity [Entity: ORG]

0-shot Predictions 50-shot Predictions

Figure A.1: Examples of 0-shot and 50-shot CODE4STRUCT event argument prediction using
code-davinci-002 on ACE05-E. In both 0-shot examples, LLM can infer an entity that does not
present in the text as an argument (marked with a yellow span). CODE4STRUCT predicts fewer arguments when
the examples are increased to 50-shot. We mark incorrect predictions with strikethrough text. Entities that LLM
failed to predict are marked in red font.

Arg-I F1 Arg-C F1
k-shot 0 1 10 20 50 0 1 10 20 50

CODE4STRUCT 50.6 57.3 57.2 62.1 62.3 36.0 47.8 52.8 58.5 58.1
+ amr 51.1 54.7 55.6 - - 37.2 44.2 51.3 - -
+ keywords 52.3 57.3 58.0 61.7 61.7 36.4 47.3 53.5 57.7 57.9

Table A.1: Prompt components analysis on code-davinci-002. The best scores (in %) are bolded. - means
the result is unavailable due to the input prompt exceeding the corresponding LLM’s supported input token length.

Arg-I F1 Arg-C F1
k-shot 0 1 10 20 50 0 1 10 20 50

CODE4STRUCT 50.6 57.3 57.2 62.1 62.3 36.0 47.8 52.8 58.5 58.1
- trigger 48.8 54.4 53.0 57.6 56.6 33.8 44.1 48.9 53.8 51.5
- description 51.4 56.7 56.2 61.1 61.6 36.1 47.2 51.6 57.1 57.8
- type annotation 49.4 57.2 58.0 61.5 61.4 35.7 48.0 54.5 57.6 57.5
- hierarchy 49.4 56.6 55.5 59.9 60.4 34.3 46.8 50.0 55.4 55.9

Table A.2: Ablation study on code-davinci-002. The best scores (in %) are bolded. - means the result is
unavailable due to the input prompt exceeding the corresponding LLM’s supported input token length.

A.3 Ablation Study
In Table A.2, we ablate different prompt compo-
nents described in §2, including event trigger mark-
ing, event description in natural language, type
annotation, and hierarchical ontology. We perform
this ablation study using code-davinci-002.

Event Trigger Marking We find that removing
event trigger marking consistently degrades per-

formance on all metrics over varying numbers of
in-context examples.

Event Description Event descriptions generally
provide a small F1 gain under the few-shot setting.
However, removing event descriptions improves
CODE4STRUCT’s zero-shot performance on argu-
ment identification. 0-shot Arg-I precision is rela-
tively unchanged after removing event descriptions

3651

(37.4 vs. 37.2). We argue that removing event
descriptions loosens entity-related constraints and
allows LLM to identify more relevant entities. This
is supported by the improvement of 0-shot Arg-I re-
call (78.7 to 81.8) after description removal, which
mainly accounts for the increase in 0-shot Arg-I F1.
Despite being helpful in argument identification
by boosting 0-shot Arg-I recall, we do not see the
benefit of removing descriptions in few-shot Arg-C,
where it performs consistently worse compared to
CODE4STRUCT.

Type Annotation Type annotation is more help-
ful when more in-context examples are provided
(k ≥ 20). Under a low-shot setting, the F1 dif-
ference resulting from type annotation removal
is small and inconsistent across different shots.
Prompts with type annotation consistently outper-
forms prompts without it when sufficient in-context
examples are provided (k ≥ 20). We hypothe-
size that type annotations help disambiguate entity
types accepted for each argument, and such disam-
biguation ability is only needed when the number
of entity instances that appeared in in-context ex-
amples passes a certain threshold (e.g., k ≥ 20).

Hierarchical Event Definition Providing hier-
archical event definition (i.e., the parent class
definition of a given child event class) benefits
CODE4STRUCT performance in high-shot setting
(k ≥ 20). Prompts without parent class defini-
tion perform on par with CODE4STRUCT under
k < 20.

A.4 In-context Example Variability Analysis

1 5 10 20 50
Number of in-context examples (k-shot)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Av
er

ag
e

eu
cli

de
an

 d
ist

an
ce

 fr
om

 c
en

tro
id

5-shot: 0.75

20-shot: 0.84 50-shot: 0.86

Variability of in-context examples across different event types

std
mean

Figure A.2: The variability of k-shot in-context exam-
ples (i.e., average euclidean distance from centroid ex-
ample) across different event types increases with di-
minishing returns when k increases.

0.60 0.65 0.70 0.75 0.80 0.85
Variability of in-context examples

40

45

50

55

60

Ar
g-

C
F1

Arg-C F1 vs. Variability of in-context examples
code-davinci-002
text-davinci-002
text-davinci-003

Figure A.3: The variability of in-context examples is
positively correlated with code prompt Arg-C perfor-
mance.

To investigate why the Arg-C performance
plateaus with an increasing number of in-context
examples k as shown in Figure 3, we analyze
the sentence variability of a fixed set of in-
context examples (§2.3). We consider the set of
k-shot in-context examples for each event type
e as a cluster De where |De| ≤ k and use
sentence-transformer13 to embed all the
input sentences from De into a cluster of vectors
Ve.

We use the average euclidean distance from the
centroid example similar to (Halkidi et al., 2001)
to measure the variability of in-context examples
for each event type e:

Variability(e) =
1

|Ve|
∑

v∈Ve

d(v, v̄)

where d(·, ·) is the euclidean distance between two
vectors and v̄ = 1

|Ve|
∑

v∈Ve
v is the centroid exam-

ple of the cluster Ve.
We calculate the mean Variability(e) across all

e for k ∈ {1, · · · , 50}. In Figure A.2, similar to
Arg-C performance in Figure 3, we find the mean
Variability(e) across all e increases with diminish-
ing returns with increasing k. Furthermore, we
find that, in Figure A.3, Arg-C F1 performance is
positively correlated with the mean Variability(e)
across all e. This suggests the lack of in-context
example variability improvement could be one of
the reasons Arg-C F1 plateaus, even when more
examples are given.

13all-mpnet-base-v2 model

3652

Model code-davinci-002 text-davinci-002 text-davinci-003
Metric Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

Prompt k-shot

code

0 50.6 36.0 48.9 35.0 49.9 37.8
1 57.3 47.8 55.8 45.2 56.0 44.7
5 58.0 52.5 56.0 48.8 59.2 51.7

10 57.2 52.8 60.6 53.9 62.8 56.3
20 62.1 58.5 59.9 56.5 65.0 60.4
30 62.2 58.4 - - - -
50 62.3 58.1 - - - -

text (code imitation)

0 49.9 38.2 51.5 37.4 52.0 39.2
1 57.2 48.8 54.0 42.2 57.5 47.9
5 56.9 49.6 58.0 45.8 60.1 50.3

10 58.6 52.0 57.9 47.5 59.7 51.3
20 60.4 54.9 59.0 48.5 61.5 52.6

text (BART-Gen style Li et al. (2021))

0 0.0 0.0 28.7 21.9 34.6 25.2
1 52.6 43.1 50.5 40.3 54.9 43.6
5 56.1 51.4 55.0 47.4 59.9 53.8

10 57.4 52.7 57.7 48.9 62.2 57.5
20 61.9 56.1 56.2 50.7 64.3 60.8

Table A.3: Performance of the code and two variants of the text prompts on the Arg-I and Arg-C metrics. 50-
shot results for text-davinci and text prompts are unavailable since the 50-shot prompt length exceeds such
LLM’s input token limitation. Examples of text prompt variants can be found in Figure A.5 (code imitation) and
Figure A.6 (BART-Gen style).

Anne - Marie [Entity: PER] sued [Event: Justice:Sue]

Crichton [Entity: PER] for divorce in September after

their marriage broke down .

Anne - Marie [Entity: PER] sued [Event: Justice:Sue]

Crichton [Entity: PER] for divorce in September after

their marriage broke down .
GPT-3 + text prompt (20-shot)

Codex + code prompt (20-shot)

argument: defendant

argument: plaintiffargument: adjudicator

argument: defendant

argument: plaintiff

Figure A.4: Example prediction of 20-shot text prompt T (1) using text-davinci-002 and code prompt using
code-davinci-002. In this example, 20-shot text prompt using text-davinci-002 incorrectly predicts
the same entity Anne-Marie as both adjudicator and plaintiff of the Justice:Sue event.

3653

Description of base entity types:
GPE: Geopolitical entities such as countries, provinces, states, cities, towns,
etc. GPEs are composite entities, consisting of a physical location, a government,
and a population. All three of these elements must be present for an entity to be
tagged as a GPE. A GPE entity may be a single geopolitical entity or a group.
... (other types omitted for space)

Role definition of event type Movement (Parent type: Event):
1. agent (need to be one of GPE or ORG or PER)
2. artifact (need to be one of FAC or ORG or PER or VEH or WEA)
3. destination (need to be one of FAC or GPE or LOC)
4. origin (need to be one of FAC or GPE or LOC)
5. vehicle (need to be one of VEH)
Role definition of event type Transport (Parent type: Movement):
1. agent (need to be one of GPE or ORG or PER)
2. artifact (need to be one of FAC or ORG or PER or VEH or WEA)
3. destination (need to be one of FAC or GPE or LOC)
4. origin (need to be one of FAC or GPE or LOC)
5. vehicle (need to be one of VEH)
Multiple entities can be extracted for the same role, each entity is a
double-quote enclosed string.
Each extracted entity should look like: (Base Entity Type) "content of extracted
string"
If entity is not present in the text, write: () ""
Different entities are delimited by a comma.
In this event: [agent] transported [artifact] in [vehicle] vehicle from [origin]
place to [destination] place.

(1) Entity Definition(s)

(2) Event Definition

Translate the following sentence into an instance of Transport event. The trigger
word(s) of the event is marked with **trigger word**.
"Kelly , the US assistant secretary for East Asia and Pacific Affairs ,
arrived in Seoul from Beijing Friday to brief Yoon , the foreign minister ."
1. agent: () ""
2. artifact: (PER) "Kelly"
3. destination: (GPE) "Seoul"
4. origin: (GPE) "Beijing"
5. vehicle: () "" (4) Event Instantiation

Translate the following sentence into an instance of Transport event. The
trigger word(s) of the event is marked with **trigger word**.
"Kelly , who declined to talks to reporters here , **travels** to Tokyo
Sunday for talks with Japanese officials ."
1. agent: () ""
2. artifact: (PER) "Kelly"
3. destination: (GPE) "Tokyo"
4. origin: () ""
5. vehicle: () ""

Translate the following sentence into an instance of Transport event. The
trigger word(s) of the event is marked with **trigger word**.
"Renowned Hollywood madam Heidi Fleiss has been **flown** to Melbourne as
guest of honour at Thursday's market debut and , according to Harris , has
already played a key role in attracting worldwide media attention to the
event ."
1. agent: () ""
2. artifact: (PER) "Heidi Fleiss"
3. destination: (GPE) "Melbourne"
4. origin: () ""
5. vehicle: () "" (3) k In-context Examples

Figure A.5: Natural language prompt for EAE task following our code prompt design described in section 2. We
ask a LLM to generate event instantiation marked in green.

3654

Translate the following sentence into an instance of Transport event. The trigger
word(s) of the event is marked with **trigger word**.
"Kelly , the US assistant secretary for East Asia and Pacific Affairs ,
arrived in Seoul from Beijing Friday to brief Yoon , the foreign minister ."
In this event: [] transported ["Kelly"] in [] vehicle from ["Beijing"] place to
["Seoul"] place.

Description of base entity types:
GPE: Geopolitical entities such as countries, provinces, states, cities, towns,
etc. GPEs are composite entities, consisting of a physical location, a government,
and a population. All three of these elements must be present for an entity to be
tagged as a GPE. A GPE entity may be a single geopolitical entity or a group.
... (other types omitted for space)

Role definition of event type Movement (Parent type: Event):
1. agent (need to be one of GPE or ORG or PER)
2. artifact (need to be one of FAC or ORG or PER or VEH or WEA)
3. destination (need to be one of FAC or GPE or LOC)
4. origin (need to be one of FAC or GPE or LOC)
5. vehicle (need to be one of VEH)
Role definition of event type Transport (Parent type: Movement):
1. agent (need to be one of GPE or ORG or PER)
2. artifact (need to be one of FAC or ORG or PER or VEH or WEA)
3. destination (need to be one of FAC or GPE or LOC)
4. origin (need to be one of FAC or GPE or LOC)
5. vehicle (need to be one of VEH)
Multiple entities can be extracted for the same role, each entity is a
double-quote enclosed string.
Different entities are delimited by a comma.
Each pair of brackets below contains a role name (e.g., [role_1])
Fill in the corresponding role [brackets] with the extracted entities (e.g.,
["entity_1_for_role_1", "entity_2_for_role_1"]).
If an entity is not present in the text, write: []
In this event: [agent] transported [artifact] in [vehicle] vehicle from [origin]
place to [destination] place.

(1) Entity Definition(s)

(2) Event Definition

(4) Event Instantiation

Translate the following sentence into an instance of Transport event. The
trigger word(s) of the event is marked with **trigger word**.
"Kelly , who declined to talks to reporters here , **travels** to Tokyo
Sunday for talks with Japanese officials ."
In this event: [] transported ["Kelly"] in [] vehicle from [] place to
["Tokyo"] place.

Translate the following sentence into an instance of Transport event. The
trigger word(s) of the event is marked with **trigger word**.
"Renowned Hollywood madam Heidi Fleiss has been **flown** to Melbourne as
guest of honour at Thursday 's market debut and , according to Harris , has
already played a key role in attracting worldwide media attention to the
event ."
In this event: [] transported ["Heidi Fleiss"] in [] vehicle from [] place
to ["Melbourne"] place.

(3) k In-context Examples

Figure A.6: BART-Gen style (Li et al., 2021) natural language prompt for EAE task. We ask a LLM to generate
event instantiation marked in green. Brackets and double-enclosed strings are designed for ease of parsing free
form natural language.

3655

"""
Translate the following sentence into an instance of Transport. The trigger
word(s) of the event is marked with **trigger word**.
"Kelly , the US assistant secretary for East Asia and Pacific Affairs ,
arrived in Seoul from Beijing Friday to brief Yoon , the foreign minister ."

Abstract Meaning Representation of the given sentence:
(a / arrive-01
 :ARG1 (p / person
 :name (n / name
 :op1 "Kelly")
 :ARG0-of (h / have-org-role-91
 :ARG1 (g / government-organization
 :name (n2 / name
 :op1 "East"
 :op2 "Asia"
 :op3 "and"
 :op4 "Pacific"
 :op5 "Affairs")
 :poss (c / country
 :name (n3 / name
 :op1 "US")))
 :ARG2 (s / secretary
 :mod (a2 / assistant))))
 :ARG3 (c2 / city
 :name (n4 / name
 :op1 "Beijing"))
 :ARG4 (c3 / city
 :name (n5 / name
 :op1 "Seoul"))
 :time (d / date-entity
 :weekday (f / friday))
 :purpose (b / brief-01
 :ARG0 p
 :ARG1 (p2 / person
 :name (n6 / name
 :op1 "Yoon")
 :ARG0-of (h2 / have-org-role-91
 :ARG2 (m / minister
 :topic (f2 / foreign))))))
"""
transport_event = Transport(

Figure A.7: Example of an AMR-augmented task prompt. We append the AMR prediction after the input sentence.
Different prompt components compared to CODE4STRUCT are highlighted in yellow.

class Transport(Movement):
 """
 self.agent transported self.artifact in self.vehicle vehicle from self.origin place to self.destination place.
 Event keywords: transport, move, travel, head.
 """
 def __init__(
 self,
 agent: List[GPE | ORG | PER] = [],
 artifact: List[FAC | ORG | PER | VEH | WEA] = [],
 destination: List[FAC | GPE | LOC] = [],
 origin: List[FAC | GPE | LOC] = [],
 vehicle: List[VEH] = [],
):
 self.agent = agent
 self.artifact = artifact
 self.destination = destination
 self.origin = origin
 self.vehicle = vehicle

Event Keywords

Figure A.8: Example of an event-keywords-augmented event definition. Different prompt components compared
to CODE4STRUCT are highlighted in yellow. We use event keywords from Li et al. (2021).

3656

class Event:
 def __init__(self, name: str):
 self.name = name

class Movement(Event):
 def __init__(
 self,
 agent: List[GPE | ORG | PER] = [],
 artifact: List[FAC | ORG | PER | VEH | WEA] = [],
 destination: List[FAC | GPE | LOC] = [],
 origin: List[FAC | GPE | LOC] = [],
 vehicle: List[VEH] = [],
):
 self.agent = agent
 self.artifact = artifact
 self.destination = destination
 self.origin = origin
 self.vehicle = vehicle

class Transport(Movement):
 """self.agent transported self.artifact in self.vehicle
vehicle from self.origin place to self.destination place."""
 def __init__(
 self,
 agent: List[GPE | ORG | PER] = [],
 artifact: List[FAC | ORG | PER | VEH | WEA] = [],
 destination: List[FAC | GPE | LOC] = [],
 origin: List[FAC | GPE | LOC] = [],
 vehicle: List[VEH] = [],
):
 super().__init__(
 agent=agent,
 artifact=artifact,
 destination=destination,
 origin=origin,
 vehicle=vehicle,
)

Parent Event Type

Child event Transport
inherit from parent Movement

Transport calls the __init__
method of its parent Movement

Figure A.9: Example of a hierarchical event definition. Different prompt components compared to CODE4STRUCT
are highlighted in yellow.

3657

class Transaction(Event):

 def __init__(

 self,

 artifact: List[FAC | ORG | PER | VEH | WEA] = [],

 beneficiary: List[GPE | ORG | PER] = [],

 buyer: List[GPE | ORG | PER] = [],

 giver: List[GPE | ORG | PER] = [],

 place: List[FAC | GPE | LOC] = [],

 recipient: List[GPE | ORG | PER] = [],

 seller: List[GPE | ORG | PER] = [],

):

 self.artifact = artifact

 self.beneficiary = beneficiary

 self.buyer = buyer

 self.giver = giver

 self.place = place

 self.recipient = recipient

 self.seller = seller

class Transfer_Money(Transaction):

 """self.giver gave money to self.recipient for the benefit of

self.beneficiary in self.place place."""

 def __init__(

 self,

 beneficiary: List[GPE | ORG | PER] = [],

 giver: List[GPE | ORG | PER] = [],

 place: List[FAC | GPE | LOC] = [],

 recipient: List[GPE | ORG | PER] = [],

):

 super().__init__(

 beneficiary=beneficiary,

 giver=giver,

 place=place,

 recipient=recipient,

)

class Transfer_Ownership(Transaction):

 """self.seller gave self.artifact to self.buyer for the benefit of

self.beneficiary at self.place place."""

 def __init__(

 self,

 artifact: List[FAC | ORG | PER | VEH | WEA] = [],

 beneficiary: List[GPE | ORG | PER] = [],

 buyer: List[GPE | ORG | PER] = [],

 place: List[FAC | GPE | LOC] = [],

 seller: List[GPE | ORG | PER] = [],

):

 super().__init__(

 artifact=artifact,

 beneficiary=beneficiary,

 buyer=buyer,

 place=place,

 seller=seller,

)

Parent Event Type

Child event Transfer_Money
inherit from parent Transaction

Child event Transfer_Ownership
inherit from parent Transaction

Transfer_Ownership is a
sibling event type of
Transfer_Money

Figure A.10: Example of a hierarchical event definition with a sibling event type. Different prompt components
compared to Figure A.9 are highlighted in yellow.

3658

"""

Translate the following sentence into an instance of Transfer_Money. The

trigger word(s) of the event is marked with **trigger word**.

"If the budget goes through as is , why do n't Mr. Begala and Mr. Carville

just **donate** the extra tax money they do n't want ?"

"""

transfer_money_event = Transfer_Money(

 giver=[

 PER("Begala"),

 PER("Carville"),

],

)

"""

Translate the following sentence into an instance of Transfer_Ownership.

The trigger word(s) of the event is marked with **trigger word**.

"" The **acquisition** of Banco Zaragozano builds on our existing business

creating the sixth largest private sector banking group in Spain " by

assets , added Jacobo Gonzalez - Robatto , chief executive of Barclays

Spain ."

"""

transfer_ownership_event = Transfer_Ownership(

 artifact=[

 ORG("Banco Zaragozano"),

],

)

In-context example from
sibling type
Transaction:Transfer_Money

Make prediction for Transaction:Transfer_Ownership

Figure A.11: Example of a task prompt with a 1-shot example from sibling event type. Event definitions for the
task prompt is shown in Figure A.10. Groundtruth prediction is colored green.

3659

of Test Instances # of Train Example
Parent Event Type Child Event Type

Business

Declare-Bankruptcy 2 39
End-Org 5 24
Merge-Org 0 13
Start-Org 17 21

Conflict
Attack 90 1211
Demonstrate 7 62

Contact
Meet 49 194
Phone-Write 8 104

Justice

Acquit 1 4
Appeal 6 30
Arrest-Jail 6 72
Charge-Indict 8 95
Convict 6 61
Execute 2 12
Extradite 1 6
Fine 6 22
Pardon 0 2
Release-Parole 1 44
Sentence 11 83
Sue 4 60
Trial-Hearing 5 103

Life

Be-Born 3 44
Die 17 516
Divorce 9 20
Injure 1 125
Marry 10 71

Movement Transport 47 561

Personnel

Elect 13 156
End-Position 17 143
Nominate 1 11
Start-Position 11 87

Transaction
Transfer-Money 12 121
Transfer-Ownership 27 85

Table A.4: The number of Train/Test event instances for 33 event types in ACE05-E.

3660

Parent Event Type Child Event Type (Train) Child Event Type (Test)

Business Declare-Bankruptcy
End-Org
Merge-Org*
Start-Org

Conflict Attack Demonstrate
Contact Meet Phone-Write

Justice Trial-Hearing

Acquit
Appeal
Arrest-Jail
Charge-Indict
Convict
Execute
Extradite
Fine
Pardon*
Release-Parole
Sentence
Sue

Life Die

Be-Born
Divorce
Injure
Marry

Personnel Elect
End-Position
Nominate
Start-Position

Transaction Transfer-Money Transfer-Ownership

Table A.5: Train/Test split for each parent event type. * denotes child event types that do not have examples in the
ACE05-E test set.

3661

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 7: First section after the conclusion

�3 A2. Did you discuss any potential risks of your work?
Section 8: Second section after the conclusion

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1 (Introduction)

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
In the appendix

C �3 Did you run computational experiments?
Section 4

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We prompt OpenAI hosted language model; we include the cost in the limitation section.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

3662

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and the Ablation study in the appendix

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4 and Appendix

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

3663

