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Abstract

Establishing retrieval-based dialogue systems
that can select appropriate responses from the
pre-built index has gained increasing attention.
Recent common practice is to construct a two-
stage pipeline with a fast retriever (e.g., bi-
encoder) for first-stage recall followed by a
smart response reranker (e.g., cross-encoder)
for precise ranking. However, existing stud-
ies either optimize the retriever and reranker
in independent ways, or distill the knowledge
from a pre-trained reranker into the retriever in
an asynchronous way, leading to sub-optimal
performance of both modules. Thus, an open
question remains about how to train them for a
better combination of the best of both worlds.
To this end, we present a cooperative training of
the response retriever and the reranker whose
parameters are dynamically optimized by the
ground-truth labels as well as list-wise super-
vision signals from each other. As a result, the
two modules can learn from each other and
evolve together throughout the training. Exper-
imental results on two benchmarks demonstrate
the superiority of our method.

1 Introduction

The development of a smart human-computer con-
versation system has been a longstanding objective
in the field of artificial intelligence. Recent years
have seen an increase in interest in constructing
dialogue systems through data-driven approaches,
leveraging advancements in deep learning tech-
niques (Vaswani et al., 2017; Devlin et al., 2019).
With the help of information retrieval (IR) tech-
niques to select an appropriate response from a
pre-built index (Lowe et al., 2015; Whang et al.,
2020), or text generation techniques to synthesize a
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response (Zhang et al., 2019), existing neural mod-
els are now capable of providing natural replies
to user queries. In this paper, we concentrate on
retrieval-based dialogue systems (Lowe et al., 2015;
Boussaha et al., 2019; Yu et al., 2021; Su et al.,
2021), which can deliver smooth and informative
responses, and have powered industrial applica-
tions (Shum et al., 2018; Ram et al., 2018).

Retrieval-based dialogue systems usually fol-
low the retrieval-reranking paradigm (Wang et al.,
2013; Li et al., 2017), i.e., two-stage retrieval
model, where the model first retrieves a bundle of
response candidates from a pre-built index by a fast
retriever and then selects an appropriate one with a
more sophisticated yet costly response reranker.
Specifically, as for the retriever, early methods
based on hand-crafted features (Robertson et al.,
2004; Qiu et al., 2017) (e.g., BM25) for fast re-
trieval, however suffering from vocabulary mis-
match problem, especially in context-to-response
retrieval. A recent trend is resorting to deep neural
model to represent text as dense embeddings in
latent semantic space, which is known as Siamese
encoder or bi-encoder (Lowe et al., 2015; Hender-
son et al., 2019a; Humeau et al., 2020; Henderson
et al., 2019b; Lan et al., 2021). Attributed to the
separate encoding paradigm, it can calculate the
embeddings of large-scale response candidates to
pre-build vector retrieval index, benefiting from
high efficiency during online inference. However,
it sacrifices fine-grained interactions between a con-
text and the response candidates but only remains
sentence-level metric learning, leading to inferior
ranking performance. As a remedy, a common prac-
tice is to apply a costly yet effective reranker to the
retrieved candidates for more precise response se-
lection (Whang et al., 2020; Gu et al., 2020; Whang
et al., 2021). This is usually achieved by a cross-
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encoder operating on the text concatenation of the
context and each response for its reranking score.

In existing two-stage retrieval models from IR
tasks, the retriever and reranker are usually opti-
mized in independent ways (Henderson et al., 2020;
Lan et al., 2021; Yang et al., 2021), or distill the
knowledge from a pre-trained reranker into the re-
triever in an asynchronous fashion (Tahami et al.,
2020; Yu et al., 2021). While the knowledge dis-
tillation from the reranker can improve the perfor-
mance of the retriever, the reranker’s parameters
are usually frozen so it cannot learn from the feed-
back from the retriever for a positive loop – the
feedback can be (i) the retriever built upon a het-
erogeneous structure can offer a distinct view to
regularize the reranker, and (ii) the reranker con-
versely can provide more effective supervision to
make the retriever more generalizable. However,
how to train these two modules in a joint way is
still an open question.

To this end, we propose to unify the training
process for both the retriever and the reranker for
their mutual benefits in a retrieval-based dialogue
system. Specifically, we introduce a cooperative
training of the retriever and the response reranker
(named CORE) whose parameters are dynamically
optimized by the ground-truth labels as well as list-
wise supervision signals from each other, which en-
ables two models to learn from each other through-
out the training process. By combining the fast
dense retriever and smart response reranker with
a unified architecture and a cooperative training
manner, our framework achieves impressive perfor-
mance while demonstrating acceptable efficiency.

We conduct experiments on two benchmarks,
i.e., Ubuntu Dialogue Corpus (Lowe et al., 2015)
and the response selection track of Dialog Sys-
tem Technology Challenge 7 (abbr. DSTC7) (Gu-
nasekara et al., 2019), where the model is required
to select the best response from a candidate pool.
Evaluation results indicate our model is signifi-
cantly better than existing models on the bench-
marks, and the cooperative training brings con-
sistent improvements over both the retriever and
reranker. To sum up, our main contributions are
three-fold:

• Exploration of combining the efficient re-
sponse retriever and effective reranker for dia-
logue retrieval;

• Proposal of training the response retriever and
response reranker cooperatively with the su-

pervision of list-wise ranking signals provided
by each other;

• Empirical verification of the proposed ap-
proach on two public benchmarks.

2 Related Works

Retrieval-based Dialogues. In the past, retrieval-
based dialogue systems focused on single-turn
response selection using message-response pairs
as inputs for matching models, as demonstrated
in early studies such as (Wang et al., 2013; Ji
et al., 2014; Wang et al., 2015). However, more
recent attention has been given to multi-turn re-
sponse selection using context-response matching.
This includes methods such as dual-LSTM (Lowe
et al., 2015), multi-view matching model (Zhou
et al., 2016), deep attention matching network
(DAM) (Zhou et al., 2018), and multi-hop selector
network (MSN) (Yuan et al., 2019). With the suc-
cess of pre-trained language models (Devlin et al.,
2019; Liu et al., 2020) in various NLP tasks, re-
searchers have started to apply them to response se-
lection. For instance, Vig and Ramea (2019) used
BERT to represent utterance-response pairs and
fused these representations to calculate the match-
ing score. Similarly, Whang et al. (2020) treated
context as a long sequence and conducted context-
response matching with BERT. Furthermore, Gu
et al. (2020) incorporated speaker-aware embed-
dings into BERT to enhance the ability of multi-
turn context understanding.

Efficient Information Retrieval. Existing infor-
mation retrieval models (Wang et al., 2013; Qiu
et al., 2017; Nogueira and Cho, 2019; Nogueira
et al., 2019) usually adopt a pipeline method where
an efficient first-stage retriever retrieves a small
set of candidates from the entire corpus, and then
a powerful but slow second-stage ranker reranks
them. However, most of the models rely on tra-
ditional lexical-based methods (such as BM25) to
perform the first stage of retrieval and the rank-
ing models of different stages are learned sepa-
rately. Recently, as a promising approach, Dense
Retrieval (DR) has been widely used for Ad-hoc
retrieval (Zhan et al., 2020; Chang et al., 2020;
Luan et al., 2021) and open-domain question an-
swering (Lee et al., 2019; Karpukhin et al., 2020;
Xiong et al., 2020) because it is as fast as traditional
methods and can achieve impressive performance.
In retrieval-based dialogue, Humeau et al. (2020)
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presents the Poly-encoder, an architecture with an
additional learned attention mechanism that repre-
sents more global features from which to perform
self-attention, resulting in performance gains over
Bi-encoders and large speed gains over PLM-based
models. Besides, Henderson et al. (2020) introduce
ConveRT which is a compact dual-encoder pre-
training architecture for neural response selection.
Tahami et al. (2020) utilize knowledge distillation
to compress the cross-encoder network as a teacher
model into the student bi-encoder model.

Joint Training of Bi- and Cross-Encoder. Few
works in passage/document retrieval have been pro-
posed to train the bi- and cross-encoder jointly but
stand with different motivations or/and targets. For
example, AR2 (Zhang et al., 2021) proposes an
adversarial method, where it regards the bi-encoder
as a retrieval-based generator for the hard nega-
tives to fool the discriminator built upon a cross-
encoder; RocketQAv2 (Ren et al., 2021) passes the
ground-truth labels to cross encoder and learns bi
encoder based solely on the ranking scores from the
cross-encoders. To the best of our knowledge, this
paper makes the first attempt to combine the effi-
cient dense retriever and smart response selector for
building an effective response retrieval system. Be-
sides, different from traditional single-directional
distillation (from reranker to retriever) (Tahami
et al., 2020) in dialogue, we jointly learn response
retriever and selector with a cooperative training
framework, where reranker also receives weak list-
wise supervision signals provided by the retriever.
Our training schema is similar to the idea of mutual
learning (Zhang et al., 2018) and enables mutual
knowledge transfer in a synchronous way. Evalu-
ation results also reveal that the retriever and the
reranker can co-improve and our full-ranking per-
formance is better than existing distillation meth-
ods.

3 Methodology

Problem Formalization Given a data set D =
{(y, c, r)z}Nz=1 where c = {u1, ..., unc} represents
a nc turns of conversation context with ui the i-
th turn, r is a response candidate, and y ∈ {0, 1}
denotes a label with y = 1 indicating r a proper
response for c and otherwise y = 0. The goal of
the task of response selection is to build a matching
model ϕ(·, ·) from D. For any input context c and
a candidate response r, ϕ(c, r) gives a score that
reflects the matching degree between c and r. Ac-

cording to ϕ(c, r), one can rank a set of response
candidates for response selection. In particular, the
definition of ϕ(·, ·) can be a single-stage model or
a two-stage model.

Overall Framework Retrieval models re-use ex-
isting human conversations and select a proper re-
sponse from a group of candidates for new user
input. Our method is designed within the retrieval-
then-rerank paradigm. Specifically, given a mes-
sage or a conversation context (i.e., a message with
several previous turns as conversation history), we
use a fast dense retrieval method based on a pre-
trained bi-encoder architecture as the retriever. In
the response re-ranking stage, we employ a more
powerful architecture (such as a cross-encoder) to
re-rank a small number of the most promising can-
didates provided by the fast retrieval model. To
further improve the effectiveness of the overall sys-
tem, we introduce a cooperative training of the
retriever and the response reranker whose parame-
ters are dynamically optimized by the ground-truth
labels and list-wise supervision signals provided by
each other, which enables two modules to evolve
together and learn from each other throughout the
joint training.

3.1 Response Retriever

Inspired by the recent dense retrieval (Lee et al.,
2019; Zhan et al., 2020; Karpukhin et al., 2020), we
use a bi-encoder architecture to construct a learn-
able retriever. The architecture utilizes a separated
pre-trained encoder to cast the input context mes-
sage and index entries into dense representations
in a vector space and relies on fast maximum inner-
product search (MIPS) to complete the retrieval.
Without loss of generality, we use two BERT (De-
vlin et al., 2019) models for both encoders, as it
is trained on large amounts of unlabelled data and
provides strong “universal representations" that can
be finetuned on task-specific data to achieve good
performance on downstream tasks.

Specifically, given the i-th example with the
context ci and a response candidate ri,j , we
first concatenate all utterances in the context
as a consecutive token sequence with special
tokens separating them, formulated as x =
{[CLS], u1, [SEP], . . . , unc , [SEP]}. Here [CLS]
and [SEP] are the classification symbol and the seg-
ment separation symbol. For each word in x, token,
position and segment embeddings are summated
and fed into BERT, giving us the contextualized
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𝐑𝟏 Yes, of course.

𝐑𝟐 Our English lessons are free.

𝐑𝟑 What lesson?

𝐑𝟒 Yes, please bring your drum

𝐑𝟓 We do not have coaches

Retriever
ℛ(𝑐,𝑟)

Response Index

I am going to hold a drum class

Interesting! Can I have a free
lesson?

How are you going?

Yes, please bring your drum

𝐑𝟒 Yes, please bring your drum

𝐑𝟏 Yes, of course.

𝐑𝟑 What lesson?

𝐑𝟓 We do not have coaches

𝐑𝟐 Our English lessons are free.

Context Message (𝑐)

Input

Output Response (𝑟)

Cooperative Training
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BERT&
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BERT'
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BERT𝒢
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Figure 1: Overall architecture of our model (CORE). R(c, r) in the left dotted box means the response retriever in
the first stage, and G(c, r) in the right dotted box refers to the response-reranker in the second stage.

embedding sequence. The output [CLS] represen-
tation denoted as Eci is the final context representa-
tion aggregating dialogue history information. We
then follow the same scheme to obtain the response
representation Eri,j for a response candidate ri,j .
Lastly, the retrieval score is computed as

R(ci, ri,j ; ΘR) = EciE
⊤
ri,j . (1)

For each training sample, the loss function of the
response retriever is defined by

LCE(ci, r
+
i , r

−
i,1, . . . , r

−
i,δr

; ΘR)

= − log(
expR(ci,r

+
i )

expR(ci,r
+
i )+

∑δr
j=1 exp

R(ci,r
−
i,j)

),

(2)
where r+i is the true response for a given ci, r−i,j
is the j-th negative response candidate randomly
sampled from the training set, δr denotes the num-
ber of negative response candidate, ΘR represents
the parameters of the retriever.

3.2 Response Reranker
To further re-rank a small number of promising
candidates provided by the fast dense retrieval, we
consider a powerful pre-trained cross-encoder ar-
chitecture (Devlin et al., 2019) to build the response
reranker, as it has demonstrated impressive results
on various response selection task (Whang et al.,
2020; Gu et al., 2020). Consistent with previous
works (Whang et al., 2020), we also select BERT
as the backbone for a fair comparison.

Specifically, we first concatenate all utterances
in the context as well as the response can-
didate as a single consecutive token sequence
with special tokens separating them formulated

as x = {[CLS], u1, [SEP], . . . , [SEP], unc , [SEP],
r, [SEP]}. Similarly, token, position and seg-
ment embeddings are also used. After being pro-
cessed by BERTG , the input sequence is trans-
formed into a contextualized embedding sequence.
BERTG[CLS] is an aggregated representation vec-
tor that contains the semantic interaction infor-
mation for the context-response pair. We then
fed BERTG[CLS] into a multi-layer perception
to obtain the final matching score for the context-
response pair:

G(c, r; ΘG) = σ(W1 · BERTG[CLS]) + b1,

where W1 and b1 are trainable parameters, σ(·) is
the sigmoid function. ΘG denotes the parameters
of the reranker. Finally, the training objective of the
response reranker LCE(ci, r

+
i , {r−i,j}δrj=1; ΘG) can

also be defined as the negative log-likelihood loss
similar to Equation (2).

3.3 Cooperative Training for Response
Retrieval (CORE)

Traditional supervised method either individually
trains two models to predict the correct labels or
transfer knowledge from a well-trained reranker
into the retriever via vanilla distillation (Tahami
et al., 2020). To improve the effectiveness of our
overall systems, we propose to optimize the re-
triever and the response reranker at the same time in
a cooperative training manner, which enables two
models to learn or transfer knowledge from each
other throughout the training process. Formally,
for the i-th training examples {ci, ri,j}δr+1

j=1 (where
each dialogue context corresponds to a response
candidate list), the probability that ⟨ci, ri,m⟩(m ∈
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Algorithm 1: Our cooperative learning method
Input: Training set D, learning rate η, number of

epochs ne, number of iterations nk,
parameters of Retriever ΘR, parameters of
Reranker ΘG

1 for e = 1, 2, ..., ne do
2 for t = 1, 2, ..., nk do
3 Fetch a batch of training data B;
4 Compute predictions A and K;
5 Compute the gradient and update ΘR:
6

ΘR ← ΘR + η
∂JΘR(B)

∂ΘR

Compute the gradient and update ΘG :
7

ΘG ← ΘG + η
∂JΘG (B)

∂ΘG

8 end
9 end

Output: ΘR, ΘG .

[1, δr + 1]) is a true context-response pair given by
the response retriever ΘR is computed as

Ai,m =
exp(R(ci, ri,m)/τ)

∑δr+1
j=1 exp(R(ci, ri,j)/τ)

, (3)

where R(ci, ri,j) is the output logit of response
retriever, τ is the temperature to soften R(ci, ri,j).
Therefore, we can construct a vector of matching
scores Ai = [A1, · · · ,Aδr+1] for the response
candidate list. The output probability of response
selector can be computed by replacing R(·, ·) with
G(·, ·) and is denoted as Ki = [K1, · · · ,Kδr+1].

In order to enhance the generalization perfor-
mance of the response retriever R(·), we leverage
the response reranker G(·) to provide training ex-
perience through its posterior probability Ki. We
adopt the Kullback Leibler (KL) Divergence (Kull-
back, 1997) to measure the discrepancy between
the predictions of the two models, i.e., Ai predicted
by R(·) and Ki predicted by G(·). Formally, the
KL loss is defined as:

DKL(Ai∥Ki) =
N∑

i=1

M∑

m=1

Ai,m log
Ki,m

Ai,m
. (4)

Therefore, the overall loss function JΘR for re-
sponse retriever (ΘR) can be re-defined as

JΘR(D) =
∑

ci∈D
LCE(ci; ΘR)+γR·DKL(Ki∥Ai),

(5)
where LCE(ci; ΘR) is the cross-entropy loss de-
fined in Equation 2. γR is the weight for the trade-
off of two losses.

We also utilize the posterior probability of a less
sophisticated retriever ΘR to provide a training
experience for the response reranker ΘG . Our mo-
tivation stems from the fact that the retriever built
upon a heterogeneous structure can offer a distinct
perspective to regularize the reranker. Thus, the
loss function JΘG for response reranker is accord-
ingly re-defined as

JΘG (D) =
∑

ci∈D
LCE(ci; ΘG)+γG ·DKL(Ai∥Ki).

(6)
where LCE(ci; ΘG) is the cross-entropy loss for the
reranker, and γG is the parameter for the trade-off
of two losses. In the above loss function, the re-
triever can provide more fine-grained supervision
(via list-wise distribution) using KL loss, which can
help the training of the reranker and enhance its
generalizability. Yuan et al. (2020) explained such
knowledge distillation process as a type of learned
label smoothing regularization, and showed that
a weaker student can also transfer knowledge and
bring improvement to a stronger teacher in com-
puter vision tasks. Our experimental results also
affirm the value of incorporating feedback from the
less sophisticated response retriever.

Thereby, both the response retriever and reranker
learn to correctly predict the true label of training
instances (supervised loss) as well as to match the
probability estimate of its counterpart (KL loss).
After learning models from D, we first rank the
response index according to R(c, r) and then select
top nr response candidates {r1, . . . , rnr} for the
subsequent response re-ranking process. Algorithm
1 gives a pseudo-code of our method.

Remark. Firstly, our proposed cooperative train-
ing method differs from the vanilla distillation em-
ployed in two-stage IR models (Tahami et al., 2020;
Yu et al., 2021), which involves transferring knowl-
edge from a pre-trained reranker to the retriever
via a point-wise distillation loss. Instead, our ap-
proach jointly optimizes the retriever and reranker
through a list-wise supervision loss, enabling them
to improve each other. Secondly, while our cooper-
ative training shares similarities with mutual learn-
ing (Zhang et al., 2018) and co-teaching (Han et al.,
2018) in machine learning, our focus is on jointly
training different architectures that combine the fast
dense retriever and the smart reranker. Moreover,
our cooperative training transfers knowledge be-
tween the two modules using list-wise supervision
signals, as opposed to point-wise class signals.
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4 Experiments

We evaluate the proposed method on two bench-
mark datasets for both single-state and two-stage
multi-turn response selection tasks.

4.1 Datasets and Evaluation Metrics
The first dataset is the track 2 of Dialog System
Technology Challenge 7 (DSTC7) (Gunasekara
et al., 2019). The dataset is constructed by applying
a new disentanglement method (Kummerfeld et al.,
2018) to extract conversations from an IRC channel
of technical help for the Ubuntu system. We use
the copy shared by Humeau et al. (2020) which
contains about 2 million context-response pairs for
training. At test time, the systems were provided
with conversation histories, each paired with a set
of response candidates that could be the next ut-
terance in the conversation. Systems are needed
to rank these options. We test our model on two
sub-tasks. For each dialog context in sub-task 1, a
candidate pool of 100 is given and the contestants
are expected to select the best next utterance from
the given pool. In sub-task 2, a large candidate
pool of 120, 000 utterances is shared by validation
and testing sets. The next best utterance should be
selected from this large pool. In both sub-tasks,
there are 5, 000 and 1, 000 dialogues for validation
and testing respectively.

The second dataset is the Ubuntu Dialogue Cor-
pus (v2.0) (Lowe et al., 2015), which consists of
multi-turn English dialogues about technical sup-
port and is collected from chat logs of the Ubuntu
forum. We use the copy shared of Jia et al. (2020),
which has 1.6 million context-response pairs for
training, 19, 560 pairs for validation, and 18, 920
pairs for test. The ratio of positive candidates and
negative candidates is 1 : 9 in all three sets.

Following Humeau et al. (2020), we employ
hits@k and Mean Reciprocal Rank (MRR) as eval-
uation metrics, where hits@k measures the proba-
bility of the positive response being ranked in top
k positions among candidates.

4.2 Baselines
We compare our method on both the traditional
multi-turn response selection scenario as well as
the two-stage retrieval scenario. In particular, the
following multi-turn response selection models are
selected to compare with our results.

• DAM (Zhou et al., 2018) follows the
represent- match-aggregate paradigm, where

the representation is derived using both self
and cross-attention mechanisms.

• ESIM (Chen and Wang, 2019) is a exten-
sion of the original ESIM (Chen et al., 2017)
which was developed specifically for natural
language inference tasks.

• IMN (Gu et al., 2019) is a hybrid model
with sequential characteristics at the matching
layer and hierarchical characteristics at the
aggregation layer.

• Bi-Enc (Humeau et al., 2020) share the same
architecture as our pre-retriever, but is only
optimized with cross-entropy loss.

• Bi-Enc (Distillation) (Humeau et al., 2020)
share the same architecture as our pre-
retriever and is trained by distilling knowledge
from a well-trained cross-encoder.

• Poly-Enc (Humeau et al., 2020) represents the
context and response candidates separately,
and then employs an improved attention mech-
anism to allow the response to interact with
the context.

• Cross-Enc (Humeau et al., 2020) has the
same architecture as our reranker and is opti-
mized by cross-entropy loss. The model is the
SOTA model based on PLMs.

4.3 Implementation Details
Following Humeau et al. (2020), we select English
uncased BERTbase pre-trained on Reddit corpus1

as the context-response matching model. The max-
imum lengths of the context and response are set
to 300 and 72. Intuitively, the last tokens in the
context and the previous tokens in the response
candidate are more important, so we cut off the
previous tokens for the context but do the cut-off in
the reverse direction for the response candidate if
the sequences are longer than the maximum length.
We choose 8 as the size of mini-batches for training.
We implement the MIPS with Facebook AI Similar-
ity Search library (Faiss2). During training, we set
γR and γG to be 1.0 and 3.0 respectively through
a simply parameter search. We set the number

1https://github.com/facebookresearch/
ParlAI/blob/master/projects/polyencoder/
README.md

2https://github.com/facebookresearch/
faiss
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Sub-task1 of DSTC7 UbuntuV2

Model hits@1 hits@10 MRR hits@1 hits@2 hits@5 MRR

DAM (Zhou et al., 2018) 34.7 66.3 35.6 - - - -
ESIM (Chen and Wang, 2019) 64.5 90.2 73.5 73.4 86.6 97.4 83.5
IMN (Gu et al., 2019) - - - - 77.1 88.6 97.9
Bi-Enc (Humeau et al., 2020) 70.9 90.6 78.1 83.6 - 98.8 90.1
Poly-Enc (Humeau et al., 2020) 71.2 91.5 78.2 83.9 - 98.8 90.3
Cross-Enc (Humeau et al., 2020) 71.7 92.4 79.0 86.5 - 99.1 91.9

Bi-Enc (Our implementation) 67.5 91.6 76.1 83.1 92.7 98.8 89.9
Cross-Enc (Our implementation) 71.2 93.2 78.8 86.6 94.3 99.3 92.0

Bi-Enc (Distillation) 69.5 92.2 77.1 84.5 93.1 98.9 90.7

Bi-Enc (CORE) 72.4◦ 93.5◦ 80.0◦ 85.7◦ 93.8◦ 99.0◦ 91.5◦

Cross-Enc (CORE) 74.5◦⋆ 93.7◦⋆ 81.4◦⋆ 87.4◦⋆ 94.7◦⋆ 99.5◦ 92.6◦⋆

Table 1: Results on UbuntuV2 and sub-task1 of DSTC7. Numbers marked with ◦ and ⋆ mean that improvement to
the original models and to the state-of-the-art is statistically significant (t-test, p < 0.05) respectively.

Model hits@1 hits@2 hits@5 hits@50 MRR Test (ms/case)

BM25 1.4 2.0 4.2 11.9 10.0 -
Bi-Enc 8.6 12.2 18.7 38.1 13.6 -
Bi-Enc (CORE) 10.8 16.4 23.8 46.2 17.3 -

BM25 −→ Bi-Enc 6.9 9.6 12.4 15.8 9.3 45
BM25 −→ Poly-Enc 7.2 9.7 12.6 15.8 9.4 46
BM25 −→ Cross-Enc 8.0 10.4 13.5 15.8 10.3 188
BM25 −→ Bi-Enc (CORE) 8.1 10.1 12.7 15.6 10.0 45
BM25 −→ Cross-Enc (CORE) 8.8 11.8 13.9 15.7 11.0 188

Bi-Enc −→ Cross-Enc 10.9 16.1 23.8 44.6 17.3 188
Bi-Enc (Distillation) → Cross-Enc 11.3 16.5 24.2 45.4 17.6 188

Bi-Enc (CORE) −→ Cross-Enc (CORE) 12.9⋆ 17.4⋆ 25.2⋆ 48.3⋆ 18.8⋆ 188

Table 2: Evaluation results on task2 of DSTC7 dataset. We set nr = 100 in all two-stage models. It is worth noting
that the pre-retrieval with faiss library is very fast and we do not report this part of the time. Numbers marked with
⋆ mean that improvement to the state-of-the-art is statistically significant (t-test, p < 0.05).

of negative response candidates δr = 32 during
the training3. In the two-stage retrieval scenario,
we test nr in {10, 50, 100, 200, 500, 800} and set
nr = 100 for the trade-off the efficiency and ef-
fectiveness. The model is optimized using Adam
optimizer with a learning rate set as 5e − 5. The
learning rate is scheduled by warmup and linear
decay. τ is set as 3. A dropout rate of 0.1 is applied
for all linear transformation layers.

4.4 Evaluation Results

Results of traditional response selection. We
first validate the effectiveness of our framework
on a traditional response selection scenario. Ta-

3Noting that our implementation of Bi-Encoder achieves
worse performance than original Bi-Encoder because it con-
siders the other batch elements as negative training samples
while we fix the negative samples during training.

ble 1 reports the evaluation results on sub-task1 of
DSTC7 and UbuntuV2 where 10 and 100 response
candidates are provided for each input context re-
spectively. We can observe that the performance
of response retriever (i.e., Bi-Enc (CORE)) and re-
sponse reranker (i.e., Cross-Enc (CORE)) improve
on almost all metrics after they are jointly opti-
mized with cooperative training, indicating that the
effectiveness of the proposed method on the multi-
turn response selection task. We also see that our
cooperative training is more effective than the tradi-
tional vanilla distillation as Bi-Enc (CORE) signifi-
cantly outperforms Bi-Enc (Distillation). Notably,
cooperative training brings more significant im-
provement to the bi-encoder than the cross-encoder
on both datasets. The results may stem from the
fact that a cross-encoder (a stronger model) can
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Figure 2: The performance of our two-stage model and
average test speed for different nr when using Cross-
Enc (CORE) as the reranker on sub-task2 of DSTC7.

provide a bi-encoder (a weaker model) with more
useful knowledge during the cooperative training
phase, but less on the contrary. With cooperative
training, a simple bi-encoder even performs better
than the original cross-encoder and poly-encoder
on both datasets, although the poly-encoder and
cross-encoder involve more heavy interaction.

Results of two-stage response retrieval. We fur-
ther conduct experiments on the two-stage response
retrieval scenario. Table 2 contains the evaluation
results of the sub-task2 of DSTC7. In this task,
the model is expected to select the best response
from a shared candidate pool of 120, 000 responses,
which is more challenging. Due to the huge num-
ber of indices, we make use of the MIPS to per-
form the fast retrieval, and the time spent in this
stage is negligible compared with the response se-
lection stage. According to the results, we can
observe that: 1) Compared with using BM25 as the
retriever, Bi-Enc can bring consistent and signif-
icant improvement to the overall retrieval system
on both datasets, indicating the effectiveness of
dense retrieval on the response selection task; 2)
Cooperative training can improve the performance
of both single-stage models (e.g., Bi-Enc vs Bi-
Enc (CORE)) and two-stage model (e.g., the model
in the last row); 3) By combining the bi-encoder
model and smart cross-encoder model, our two-
stage retrieval framework can achieve impressive
performance while showing reasonable efficiency
constraints compared with other baseline methods.

4.5 Discussions

The impact of nr. We first check the effective-
ness and efficiency of re-ranking performance with
respect to the number of top nr candidates returned
from the response retriever. Figure 2 illustrates
how the hit@1 score and average test speed of
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Figure 3: Hits@1 in the validation set of various models
during the training on sub-task1 of DSTC7.

the two-stage model vary under different nr when
using the Cross-Enc (CORE) as the reranker on
sub-task2 of DSTC7. We can observe the retrieval
performance increases monotonically as nr keeps
increasing and the improvement becomes smaller
when context length reaches 500. Besides, it can be
found that re-ranking as few as 10 or 50 candidates
out of 120K from dense retriever is enough to ob-
tain good performance under reasonable efficiency
constraints.

Training curve of retriever and reranker. We
are curious if the response retriever and response
reranker can co-improve when they are jointly
trained with cooperative training. Figure 3 shows
how the hits@1 score of Bi-Encoder, Cross-
Encoder, Bi-Encoder (CORE), and Cross-Encoder
(CORE) changes with the number of epochs on
the validation set of sub-task1 of DSTC7. We can
see that cooperative training can improve both the
performance of the response retriever (i.e., Bi-Enc
(CORE)) and response reranker (i.e., Cross-Enc
(CORE)), and the peer models move at almost the
same pace. The results verify our claim that by co-
operative training retriever-ranker, the two models
can get improved together. Compared to indepen-
dently optimized models, the models trained using
our CoRe converge at a slower pace. This phe-
nomenon could be due to the fact that the two mod-
els, built upon a heterogeneous structure, offer a
distinct view that enables them to mutually regulate
each other, thereby avoiding the model from reach-
ing a local optimum. In addition, we can find that
the performance improvement of Bi-Enc is greater
than that of Cross-Enc. This is because Cross-Enc
can provide Bi-Enc with more useful knowledge
during the cooperative training phase.
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Figure 4: Performance of different models across the
different lengths of contexts on sub-task1 of DSTC7.
The number of testing samples in the three bins is 339,
356, 305 respectively.

The impact of context length. We further con-
duct a study to investigate how the length of context
influences the performance of these models. Fig-
ure 4 shows how the performance of the models
changes with respect to different lengths of con-
texts on sub-task1 of DSTC7. We observe a similar
trend for all models: they increase monotonically
when context length keeps increasing. The phe-
nomenon may come from the fact that the longer
context can provide more useful information for re-
sponse matching. Besides, we can find that cooper-
ative training can bring performance improvements
for both the bi-encoder and cross-encoder across
all different context lengths, but the improvement
is more obvious in longer context (e.g., (50,360])
for cross-encoder and more obvious in the short
context (e.g., (0, 50]) for bi-encoder.

5 Conclusion

In this paper, to build an effective retrieval-based
dialogue system, we explore combining the fast
dense retriever and the smart response reranker
based on PLMs with better cooperative training
schema. Specifically, we propose optimizing the
response retriever and the reranker at the same time
via cooperative training loss, which enables the
two modules to learn from each other throughout
the training process. Experimental results on two
benchmarks demonstrate the effectiveness of our
proposed framework.

Limitation

(i) Training computation overheads: although hav-
ing the same inference complexity as any other
two-stage retrieval-based dialogue system, our ap-
proach requires more computation resources during

training as it needs to optimize the two modules in
the meantime. (ii) Static negatives: we train both
modules with a fixed number of random negative
samples for a fair comparison with baselines. Ac-
tually, more effective negatives can be dynamically
sampled by the fast retriever to the smart reranker
to further improve its performance.

Ethical Statement

Our paper primarily aims to enhance the training
method for constructing retrieval-based dialogue
systems that exhibit improved effectiveness. The
training corpora we utilize, such as the Ubuntu Cor-
pus and the response selection track of the Dialog
System Technology Challenge, are openly acces-
sible and do not give rise to any privacy concerns.
Furthermore, the algorithm we propose is designed
to be free from ethical or social bias, ensuring fair-
ness and unbiased performance.
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