
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2522–2540

July 9-14, 2023 ©2023 Association for Computational Linguistics

Training-free Neural Architecture Search for RNNs and Transformers

Aaron Serianni,
Princeton University

serianni@princeton.edu

Jugal Kalita
University of Colorado Colorado Springs

jkalita@uccs.edu

Abstract

Neural architecture search (NAS) has allowed
for the automatic creation of new and effec-
tive neural network architectures, offering an
alternative to the laborious process of manu-
ally designing complex architectures. However,
traditional NAS algorithms are slow and re-
quire immense amounts of computing power.
Recent research has investigated training-free
NAS metrics for image classification archi-
tectures, drastically speeding up search algo-
rithms. In this paper, we investigate training-
free NAS metrics for recurrent neural net-
work (RNN) and BERT-based transformer ar-
chitectures, targeted towards language model-
ing tasks. First, we develop a new training-
free metric, named hidden covariance, that pre-
dicts the trained performance of an RNN ar-
chitecture and significantly outperforms exist-
ing training-free metrics. We experimentally
evaluate the effectiveness of the hidden covari-
ance metric on the NAS-Bench-NLP bench-
mark. Second, we find that the current search
space paradigm for transformer architectures
is not optimized for training-free neural archi-
tecture search. Instead, a simple qualitative
analysis can effectively shrink the search space
to the best performing architectures. This con-
clusion is based on our investigation of existing
training-free metrics and new metrics devel-
oped from recent transformer pruning literature,
evaluated on our own benchmark of trained
BERT architectures. Ultimately, our analysis
shows that the architecture search space and
the training-free metric must be developed to-
gether in order to achieve effective results. Our
source code is available at https://github.
com/aaronserianni/training-free-nas.

1 Introduction

Recurrent neural networks (RNNs) and BERT-
based transformer models with self-attention have
been extraordinarily successful in achieving state-
of-the-art results on a wide variety of language
modeling-based natural language processing (NLP)

tasks, including question answering, sentence clas-
sification, tagging, and natural language infer-
ence (Brown et al., 2020; Palangi et al., 2016; Raf-
fel et al., 2020; Sundermeyer et al., 2012; Yu et al.,
2019). However, the manual development of new
neural network architectures has become increas-
ingly difficult as models are getting larger and more
complicated. Neural architecture search (NAS) al-
gorithms aim to procedurally design and evaluate
new, efficient, and effective architectures within a
predesignated search space (Zoph and Le, 2017).
NAS algorithms have been extensively used for de-
veloping new convolutional neural network (CNN)
architectures for image classification, with many
surpassing manually-designed architectures and
achieving state-of-the-art results on many classi-
fication benchmarks (Tan and Le, 2019; Real et al.,
2019). Some research has been conducted on NAS
for RNNs and transformers (So et al., 2019, 2021;
Jing et al., 2020), particularly with BERT-based
architectures (Yin et al., 2021; Xu et al., 2021; Gao
et al., 2022; Tuli et al., 2022; Chitty-Venkata et al.,
2022), but NAS is not widely used for designing
these architectures.

While NAS algorithms and methods have been
successful in developing novel and effective archi-
tectures, there are two main problems that current
algorithms face. The search space for various ar-
chitectures is immense, and the amount of time and
computational power to run NAS algorithms is pro-
hibitively expensive (Mehta et al., 2022). Because
traditional NAS algorithms require the evaluation
of candidate architectures in order to gauge perfor-
mance, candidate architectures need to be trained
fully, each taking days or weeks to complete. Thus,
past attempts at NAS have been critiqued for being
computationally resource-intensive, consuming im-
mense amounts of electricity, and producing large
amounts of carbon emissions (Strubell et al., 2019).
These problems are especially true for transformers
and RNNs, as they have more parameters and take

2522

https://github.com/aaronserianni/training-free-nas
https://github.com/aaronserianni/training-free-nas


longer to train when compared to other architec-
tures (So et al., 2019; Zhou et al., 2022).

Recently, there has been research into training-
free NAS metrics and algorithms, which offer
significant performance increases over traditional
NAS algorithms (Abdelfattah et al., 2020; Mellor
et al., 2021a; Zhou et al., 2022). These metrics aim
to partially predict an architecture’s trained accu-
racy from its initial untrained state, given a subset
of inputs. However, prior research has focused on
developing training-free NAS metrics for CNNs
and Vision Transformers with image classification
tasks. In this work, we apply existing training-free
metrics and create our own metrics for RNNs and
BERT-based transformers with language modeling
tasks. Our main contributions are:

• We develop a new training-free metric for RNN
architectures, called “hidden covariance,” which
significantly outperforms existing metrics on
NAS-Bench-NLP.

• We develop a NAS benchmark for BERT-based
architectures utilizing the FlexiBERT search
space and ELECTRA pretraining scheme.

• We evaluate existing training-free metrics on our
NAS BERT benchmark, and propose a series of
new metrics adapted from attention head pruning.

• Finally, we discuss current limitations with
training-free NAS for transformers due to the
structure of transformer search spaces, and pro-
pose an alternative paradigm for speeding up
NAS algorithms based on scaling laws of trans-
former hyperparameters.

2 Related Work

Since the development and adoption of neural ar-
chitecture search, there has been research into iden-
tifying well-performing architectures without the
costly task of training candidate architectures.

2.1 NAS Performance Predictors

Prior attempts at predicting a network architec-
ture’s accuracy focused on training a separate per-
formance predictor. Deng et al. (2017) and Istrate
et al. (2019) developed methods called Peephole
and Tapas, respectively, to embed the layers in an
untrained CNN architecture into vector represen-
tations of fixed dimension. Then, both methods
trained LSTM networks on these vector representa-
tions to predict the trained architecture’s accuracy.
Both methods achieved strong linear correlations

between the LSTMs’ predicted accuracy and the ac-
tual trained accuracy of the CNN architectures. In
addition, the LSTM predictors can quickly evaluate
many CNN architectures. The main limitation of
these methods is that the LSTM predictors require
large amounts of trained CNN architectures to ac-
curately train the predictors, thus not achieving the
goal of training-free NAS.

2.2 Training-free Neural Architecture Search

Mellor et al. (2021a) presented a method for scor-
ing a network architecture without any training and
prior knowledge of trained network architectures.
They focused on CNN architectures in the sam-
ple space of various NAS benchmarks, predicting
the accuracy of the architectures on the CIFAR-
10, CIFAR-100, and ImageNet image classifica-
tion benchmarks. While Mellor et al.’s proposed
method showed a correlation between their score
and actual trained accuracy, it decreased with more
complex datasets like ImageNet and architectures
with high accuracy. Mellor et al. found that the
images chosen for the mini-batch and initialization
weights of the model have negligible impact on
their score. Their method can predict accuracies
of architectures in seconds, and is easily combined
with traditional NAS algorithms.

Abdelfattah et al. (2020) introduced a series of
additional training-free metrics for CNNs with im-
age classification tasks, based in network pruning
literature, aiming to improve performance. They
also tested their metrics on other search spaces
with different tasks, including NAS-Bench-NLP
with RNNs and NAS-Bench-ASR, but found signif-
icantly reduced performance in these search spaces.

3 Training-free NAS Metrics

A series of training-free NAS metrics have been
proposed in recent literature. These metrics look at
specific aspects of an architecture, such as param-
eter gradients, activation correlations, and weight
matrix rank. Most metrics can be generalized to any
type of neural network, but have only been tested
on CNN architectures. For transformer architec-
tures, we also adapt various attention parameter
pruning metrics as training-free metrics, scoring
the entire network.

3.1 Jacobian Covariance

Jacobian Covariance is a training-free NAS met-
ric for CNN networks proposed by Mellor et al.

2523



(2021b). Given a minibatch of input data, the
metric assesses the Jacobian of the network’s loss
function with respect to the minibatch inputs, J =(

∂L
∂x1

· · · ∂L
∂xN

)
. Further details of the metric can

be found in the original paper.
Celotti et al. (2020) expand on Jacobian Covari-

ance with a series of variations on the metric, aim-
ing to speed up computation and refine the metric’s
effectiveness. These include using cosine similarity
instead of a covariance matrix to calculate similar-
ity (Jacobian Cosine),

S = 1− 1

N2 −N

N∑

i=1

∣∣JnJ t
n − I

∣∣ 1
20 ,

where Jn is the normalized Jacobian and I is the
identity matrix, with a minibatch of N inputs. In
their Large Noise and More Noised scores, they
add various noise levels to the input minibatch, hy-
pothesizing that an architecture with high accuracy
will be robust against noise.

3.2 Synaptic Saliency
In the area of network pruning, Tanaka et al. (2020)
proposed synaptic saliency, a score for approximat-
ing the change in loss when a specific parameter
is removed. Synaptic saliency is based on the idea
of preventing layer collapse while pruning a net-
work, which significantly decreases the network’s
accuracy. Synaptic saliency is expressed by

S(θ) =
∂L
∂θ

⊙ θ, (1)

where L is the loss function, θ is the network’s
parameters, and ⊙ is the Hadamard product. Ab-
delfattah et al. (2020) generalize synaptic saliency
as a training-free metric for NAS by summing
over all N parameters in the network: S =∑N

i=1 S(θi). Abdelfattah et al. (2020) found that
synaptic saliency slightly outperforms Jacobian co-
variance on the NAS-Bench-201 CNN benchmark.

3.3 Activation Distance
In a revised version of their paper, Mellor et al.
(2021a) developed a more efficient metric that di-
rectly looks at the ReLU activations of a network.
Given a minibatch of inputs fed into the network,
the metric calculates the similarity of the activa-
tions within the initialized network between each
input using their Hamming distance. Mellor et al.
conclude that the more similar the activation map
for a given set of inputs are to each other, the harder

it is for the network to disentangle the representa-
tions of the inputs during training.

3.4 Synaptic Diversity
Zhou et al. (2022) developed a metric specific for
vision transformers (ViT) (Dosovitskiy et al., 2021).
Synaptic diversity is based upon previous research
on rank collapse in transformers, where for a set
of inputs the output of a multi-headed attention
block converges to rank 1, significantly harming the
performance of the transformer. Zhou et al. use the
Nuclear-norm of an attention heads’s weight matrix
Wm as an approximation of its rank, creating the
synaptic diversity score:

SD =
∑

m

∣∣∣∣
∣∣∣∣
∂L
∂Wm

∣∣∣∣
∣∣∣∣
nuc

⊙ ||Wm||nuc.

3.5 Hidden Covariance
We propose a new metric specific for RNNs, based
on the hidden states between each layer of the RNN
architecture. Previous NAS metrics focus on either
the activation functions within an architecture, or
all parameters of the architecture. The hidden state
of an RNN layer encodes all of the information of
the input, before being passed to the next layer or
the final output. We hypothesize that if the hidden
states of an architecture given a minibatch of inputs
are similar to each other, the more difficult it would
be to train the architecture, similar to Mellor et al.
(2021a).

Given the hidden state H(X) of a specific layer
of the RNN with a minibatch of N inputs X =
{xn}Nn=1, observe the covariance matrix to be

C = (H−MH)(H−MH)T ,

where MH is the matrix with the entries
(MH)ij =

1
N

∑N
n=1Hin. Then, calculate the Pear-

son product-moment correlation coefficients matrix

Rij =
Cij√
CiiCjj

.

As with Mellor et al.’s Jacobian Covariance score
(2021b), the final metric is calculated with the Kull-
back–Leibler divergence of the kernel of R, which
has the N eigenvalues λ1, · · · , λN :

S(H) = −
N∑

n=1

(
log(λn + k) +

1

λn + k

)
,

where k = 10−5.

2524



3.6 Attention Confidence, Importance, and
Softmax Confidence

For transformer-specific metrics, we look into cur-
rent transformer pruning literature. Voita et al.
(2019) propose pruning the attention heads of a
trained transformer encoder block by computing
the “confidence” of a head using a sample mini-
batch of input tokens. Confident heads attend their
output highly to a single token, and, hypotheti-
cally, are more important to the transformer’s task.
Behnke and Heafield (2020) attempt to improve
on attention confidence by looking at the proba-
bility distribution provided by an attention head’s
softmax layer. Alternatively, Michel et al. (2019)
look at the sensitivity of an attention head to its
weights being masked, by computing the product
between the output of an attention head with the
gradient of its weights. These three attention scores
are summarized by:

Confidence: Ah(X) =
1

N

N∑

n=1

|max(Atth(xn))|

Softmax
Confidence

: Ah(X) =
1

N

N∑

n=1

|max(σh(xn))|

Importance: Ah(X) =

∣∣∣∣Atth(X)
∂L(X)

∂Atth(X)

∣∣∣∣

where X = {xn}Nn=1 is a minibatch of N inputs, L
is the loss function of the model, and Atth and σh
are an attention head and its softmax respectively.
We expand these scores into an metric for the entire
network by averaging over all H attention heads:
A(X) =

∑H
h=1

1
H Atth(X).

4 Methods

4.1 NAS Benchmarks

Because of the large search space for neural ar-
chitectures, it is challenging to have direct com-
parisons between various NAS algorithms. A se-
ries of NAS benchmarks (Mehta et al., 2022) have
been created, which evaluate a set of architec-
tures within a given search space and store the
trained metrics in a lookup table. These bench-
marks include NAS-Bench-101 (Ying et al., 2019),
NAS-Bench-201 (Dong and Yang, 2020), and NAS-
Bench-301 (Siems et al., 2021) with CNNs for
image classification, NAS-Bench-ASR with con-
volutional LSTMs for automatic speech recogni-
tion (Mehrotra et al., 2021), and NAS-Bench-NLP

with RNNs for language modeling tasks (Klyuch-
nikov et al., 2022). Because the architectures in a
NAS benchmark have already been trained, they
allow for easier development of NAS algorithms
without the large amounts of computational power
required to train thousands of architectures. There
are no existing NAS benchmarks for transformer or
BERT-based architectures, due to the longer time
and higher computing power required to train trans-
formers.

To evaluate training-free metrics on RNNs, we
utilize the NAS-Bench-NLP benchmark (Klyuch-
nikov et al., 2022), which consists of 14,322 RNN
architectures trained for language modeling with
the Penn Treebank dataset (Marcus et al., 1993),
each with precomputed loss values. The archi-
tecture search space is defined by the operations
within an RNN cell, connected in the form of an
acyclic digraph. The RNN architecture consists of
three identical stacked cells with an input embed-
ding and connected output layer. Further details
on the architectures are provided in Klyuchnikov
et al.’s paper. In our experiments, the architec-
tures which did not complete training within the
benchmark or whose metrics could not be calcu-
lated were discarded, leaving 8,795 architectures
that were evaluated on.

4.2 BERT Benchmark for NAS

Because no preexisting NAS benchmark exists for
BERT-based architectures, we needed to pretrain
and evaluate a large set of various BERT architec-
tures in order to evaluate our proposed training-free
NAS metrics. Certain choices were made in order
to speed up pretraining while preserving relative
model performance. These included: using the
ELECTRA pretraining scheme (Clark et al., 2020),
choosing a search space consisting of small BERT
architectures, and shortening pretraining.

4.2.1 BERT Search Space
BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) consists
of a series of encoder layers with multi-headed
self-attention, taken from the original transformer
model proposed by Vaswani et al. (2017). Numer-
ous variations on the original BERT model have
been developed. For our architecture search space,
we utilize the FlexiBERT search space (Tuli et al.,
2022), which has improvements over other pro-
posed BERT search spaces. Foremost is that the
encoder layers in FlexiBERT are heterogeneous,

2525



Architecture Element Hyperparameters Values
Hidden dimension {128, 256}
Number of Encoder Layers {2, 4}
Type of attention operator {self-attention, linear transform, span-based dynamic convolution}
Number of operation heads {2, 4}
Feed-forward dimension {512, 1024}
Number of feed-forward stacks {1, 3}
Attention operation parameters

if self-attention {scaled dot-product, multiplicative}
if linear transform {discrete Fourier, discrete cosine}
if dynamic convolution convolution kernel size: {5, 9}

Table 1: The FlexiBERT search space, with hyperparameter values spanning those found in BERT-Tiny and BERT-
Mini. Hidden dimension and number of encoder layers is fixed across the whole architecture; all other parameters
are heterogeneous across encoder layers. The search space encompasses 10,621,440 architectures.

each having their own set of architecture elements.
FlexiBERT also incorporates alternatives to the
multi-headed self-attention into its search space.
The search space is described in Table 1.

The architectures in the FlexiBERT search space
are relatively small, as the hyperparameter values in
the FlexiBERT search space spans those in BERT-
Tiny and BERT-Mini (Turc et al., 2019). However,
Kaplan et al. (2020) show that many attributes of a
transformer architecture, including number of pa-
rameters, scale linearly with the architecture’s per-
formance. Thus, a transformer architecture can be
scaled up in order to achieve greater performance
while preserving its overall structure. This method-
ology was utilized in EcoNAS algorithm (Zhou
et al., 2020), which explores a reduced search space,
before scaling up to produce the final model.

To allow for simpler implementation of the Flex-
iBERT search space and the utilization of absolute
positional encoding, we keep the hidden dimen-
sion constant across all encoder layers. In total,
this search space encompasses 10,621,440 differ-
ent transformer architectures.

4.2.2 ELECTRA Pretraining

Instead of the traditional masked language model-
ing (MLM) task used to pretrain BERT-based mod-
els, we implemented the ELECTRA pretraining
scheme (Clark et al., 2020), which uses a combina-
tion generator-discriminator model with a replaced
token detection task. As the ELECTRA task is
defined over all input tokens, instead of only the
masked tokens as in MLM, it is significantly more
compute efficient and results in better finetuning
performance when compared to masked-language

modeling. Notably, ELECTRA scales well with
small amounts of compute, allowing for efficient
pretraining of small BERT models.

4.2.3 Architecture Training and Evaluation
We pretrain a random sample of 500 architectures
from the FlexiBERT subspace using ELECTRA
with the OpenWebText corpus, consisting of 38
GB of tokenized text data from 8,013,769 docu-
ments (Gokaslan and Cohen, 2019). OpenWebText
is an open-sourced reproduction of OpenAI’s Web-
Text dataset (Radford et al., 2019). We finetune
and evaluate the architectures on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019), without the WNLI task.
The hyperparameters used for pretraining and fine-
tuning are the same as those used for ELECTRA-
Small. The sampled architectures were only pre-
trained for 100,000 steps for the best trade-off be-
tween pretraining time and GLUE score. Further
details are discussed in the Appendix.

5 Experimental Results of Training-free
Metrics

For the training-free NAS metrics presented, we
empirically evaluate how well the metric performs
in predicting the trained performance of an archi-
tecture. We use Kendall rank correlation coefficient
(Kendall τ ) and Spearman rank correlation coeffi-
cient (Spearman ρ) to quantitatively measure the
metrics’ performance.

5.1 Training-free Metrics for RNNs

We ran the training-free metrics on 8,795 archi-
tectures in NAS-Bench-NLP. A summary of our

2526



Figure 1: Plots of training-free metrics evaluated on 8,795 RNN architectures in NAS-Bench-NLP, against test loss
of the architectures assessed on the Penn Treebank dataset when trained. Loss values are from NAS-Bench-NLP,
and Kendall τ and Spearman ρ also shown. Only our Hidden Covariance metric performed on the first and second
layer of the RNN showed a substantial correlation between the metric and trained test loss. Some other metrics do
have some minor positive correlations.

results are show in Figure 1. Most metrics preform
poorly on predicting the loss of a trained RNN ar-
chitecture, including all the existing training-free
metrics designed for CNN architectures. No ex-
isting metric surpassed a Kendall τ value of 0.28.
Our proposed Hidden Covariance score preforms
the best out of all metrics, achieving a Kendall τ
value of 0.37. Thus, the hidden states contain the
most salient information for predicting the RNN’s
trained accuracy.

5.2 Training-free Metrics for BERT
Architectures

We investigated the series of training-free metrics
on our own NAS BERT benchmark of 500 archi-
tectures sampled from the FlexiBERT search space.
Results are shown in Figure 2. Compared to their
performance on NAS-Bench-NLP, all the training-
free metrics, including our proposed attention head

pruning metrics, performed poorly. Only the Atten-
tion Confidence metric had a weak but significant
positive correlation, with a Kendall τ of 0.27.

A notable reference point for training-free met-
rics is the number of trainable parameters in a trans-
former architecture. Previous research has shown
a strong correlation between number of parame-
ters and model performance across a wide range
of transformer sizes and hyperparameters (Kaplan
et al., 2020). Our NAS BERT Benchmark dis-
plays this same correlation (Figure 3). In fact, the
Kendall τ value for number of parameters is 0.44,
significantly surpassing all training-free metrics.

Great care must be used when developing
training-free metrics to ensure that the metric is
normalized for number of parameters or other high-
level features of the network. Many training-free
metrics are computed on individual network fea-
tures, which are then summed together to produce

2527



Figure 2: Plots of training-free metrics evaluated on 500 architectures randomly sampled from the FlexiBERT
search space, against GLUE score of the pretrained and finetuned architecture. All metrics are normalized against
number of features. Only our Attention Confidence metric displayed any positive correlation between the metric
and final GLUE score.

Figure 3: Correlation between number of parameters
in a BERT-based architecture and its pretrained and
finetuned GLUE score, for 500 architectures from the
FlexiBERT search space. Number of parameters shows
a strong correlation with architecture performance, sub-
stantially outperforms all training-free metrics evalu-
ated.

a final score for the network. In Zhou et al.’s DSS-
indicator score for vision transformers (a combi-
nation of synaptic saliency and synaptic diversity
metrics), the score was not normalized for the num-
ber of features in the network (2022). Instead, the

Figure 4: Attention Confidence metric evaluated on ar-
chitectures from the FlexiBERT search space, without
normalization for number of features. The metric’s per-
formance substantially improves when not normalized,
and its plot and Kendall τ value mirrors that of number
of parameters.

DSS-indicator corresponds to the number of param-
eters in an architecture, as shown in their figures,
thus yielding their high Kendall τ of 0.70. We wit-
nessed a similar pattern with our metrics. Attention
Confidence had a Kendall τ of 0.49 without nor-
malization for number of features, but decreased to
0.30 with normalization (Figure 4).

2528



6 Discussion

Neural architecture search for transformers is a fun-
damentally different task than neural architecture
search for CNNs and RNNs. Almost all search
spaces for transformers rely on the same fundamen-
tal paradigm of an attention module followed by a
feed-forward module within each encoder/decoder
layer, connected linearly (Wang et al., 2020; Yin
et al., 2021; Zhao et al., 2021). Conversely, most
search spaces for CNNs and RNNs, including NAS-
Bench-201 and NAS-Bench-NLP, use a cell-based
method, typically with an acyclic digraph represent-
ing the connections between operations (Dong and
Yang, 2020; Jing et al., 2020; Klyuchnikov et al.,
2022; Tan et al., 2019), allowing for significantly
more flexibility in cell variation. For CNN and
RNN search spaces, the connections between op-
erations within a cell have a greater impact on the
architecture’s performance than number of param-
eters. In NAS-Bench-NLP, there is no correlation
between number of parameters and model perfor-
mance (Figure 5); hence, previous studies did not
need to normalize their training-free metrics for
number of parameters or features. We hypothesize
that for transformer search spaces, the number of
parameters in an architecture dominates the model
performance, explaining the poor performance for
training-free NAS metrics.

Figure 5: Plot of number of parameters against test
loss for 8,795 RNN architectures in NAS-Bench-NLP.
Unlike the architectures in the FlexiBERT search space,
there is no correlation between number of parameters
and architecture performance for the architectures in
NAS-Bench-NLP.

The dependence on number model size for trans-
former models reveals a significant problem re-

garding transformer architecture search: the inflex-
ibility of current transformer search spaces. Un-
less transformer search spaces adopt the variability
of connections provided by a cell-based methods,
as used by CNN and RNN search spaces, simple
heuristics such as number of parameters and fea-
tures will be the primary training-free predictors
of transformer model performance. To our knowl-
edge, only three works have utilized cell-based
methods for transformer search spaces, the orig-
inal transformer architecture search paper, “The
Evolved Transformer” by So et al. (2019), its suc-
cessor “Primer” (So et al., 2021), and “AutoBERT-
ZERO” (Gao et al., 2022). Some research has been
done with cell-based search spaces for Conform-
ers (Shi et al., 2021) and Vision Transformers (Guo
et al., 2020), but only on the convolution modules
of the architectures. Ultimately, there is significant
opportunity for growth regarding transformer archi-
tecture search, and with it training-free NAS metric
for transformers.

7 Conclusion

In this paper, we presented and evaluated a series
of training-free NAS metrics for RNN and BERT-
based transformer architectures, trained on lan-
guage modeling tasks. We developed new training-
free metrics targeted towards specific architectures,
hidden covariance for RNNs, and three metrics
based on attention head pruning for transform-
ers. We first verified the training-free metrics on
NAS-Bench-NLP, and found our hidden covari-
ance metric outperforms existing training-free met-
rics on RNNs. We then developed our own NAS
benchmark for transformers within the FlexiBERT
search space, utilizing the ELECTRA scheme to
significantly speed up pretraining. Evaluating the
training-free metrics on our benchmark, our pro-
posed Attention Confidence metric performs the
best. However, the current search space paradigm
for transformers is not well-suited for training-free
metrics, and the number of parameters within a
model is the best predictor of transformer perfor-
mance. Our research shows that training-free NAS
metrics are not universally successful across all ar-
chitectures, and better transformer search spaces
should be developed for training-free metrics to
succeed. We hope that our work is a foundation
for further research into training-free metrics for
RNNs and transformers, in order to develop better
and more efficient NAS techniques.

2529



8 Limitations

In our paper, we presented existing and novel
training-free NAS metrics for RNNs and transform-
ers. Benchmarks are required to evaluate the effec-
tiveness of these metrics on various architectures.
While there exists a robust benchmark for RNN
architectures (NAS-Bench-NLP), there is none for
transformer models. Thus, we had to create our
own NAS benchmark. For our work, we were lim-
ited by the computational resources available to
us, so we were only able to pretrain and finetune
500 models for our NAS BERT benchmark. A
larger sample size would give a more accurate eval-
uation of the training-free NAS metrics. Further-
more, we only investigated the FlexiBERT search
space. While FlexiBERT has a diverse search
space, having heterogeneous layers and alternative
attention operators, the variation between possible
architectures is limited and still dependent on the
linear paradigm of BERT. Alternative transformer
search spaces using cell-based methods, such as
those presented in “Primer” (So et al., 2021) and
“AutoBERT-ZERO” (Gao et al., 2022), do not have
this limitation. We were ultimately unable to inves-
tigate the performance of training-free NAS metrics
on this type of search space, as there are no avail-
able benchmarks for these search spaces, and their
greater variability necessitates a copiously large
sample size that is well outside our computational
capabilities.

Another limitation is that we only evaluated the
effectiveness of the presented metrics on encoder-
only transformer architectures, and not encoder-
decoder or decoder-only architectures. Further-
more, while the training-free NAS metrics are data-
agnostic, the benchmarks they were evaluated on
were only trained and evaluated on English datasets
and tasks.

9 Ethics Statement

The work presented in our paper is dependent on ex-
isting open source datasets and benchmarks, includ-
ing OpenWebText (Gokaslan and Cohen, 2019),
NAS-Bench-NLP (Klyuchnikov et al., 2022), and
GLUE (Wang et al., 2019). Therefore, our work
inherently contains the ethical issues and limita-
tions present in them. However, the ethics of these
datasets and benchmark are largely unknown (de-
spite OpenWebText and GLUE being widely used),
as they were released without model or dataset
cards and their authors do not discuss the societal

impacts of their work.
In our work, we adhere to best practices for

reproducibility and descriptive statistics by suffi-
ciently documenting our experimental setup and
parameters, sharing our code and benchmark, and
conducting ablation studies. One concern is the
environmental and energy impact of creating our
NAS BERT benchmark through the computation-
ally intensive task of training of 500 unique trans-
former architectures. We decreased the environ-
mental impact of our benchmark by reducing the
size of the architectures, utilizing the more com-
putationally efficient ELECTRA scheme pretrain-
ing, and limiting pretraining to 100,000 steps. We
hope that the environmental impact is mitigated by
openly sharing the benchmark, and the potential
for training-free NAS metrics to drastically speed
up NAS algorithms. Because metrics and NAS
benchmark presented in our work are largely for
theoretical purposes and only aid the creation of
new architectures through NAS algorithms, the risk
for harmful effects and uses resulting directly from
our work is minimal.

The NAS-Bench-NLP (Klyuchnikov et al.,
2022), ELECTRA (Clark et al., 2020), and the
HuggingFace implementation of ELECTRA are
released under the Apache License 2.0, which per-
mits for commercial and non-commercial use, dis-
tribution, and modification. While the contents of
the OpenWebText corpus was scraped from pub-
lic websites without consent, the packaging of the
corpus is released into the public domain under
the Creative Commons CC0 license. The creators
of OpenWebText allow individuals to submit take
down requests of their own copyrighted works
in the corpus. The Penn Treebank dataset (Mar-
cus et al., 1993) is released under the Linguis-
tic Data Consortium User Agreement for Non-
Members, which permits use of the dataset for
non-commercial research only, without distribu-
tion. In our work and the distribution of our code
and dataset, we abide by the intended use of the
code and datasets that we utilized, consistent with
the terms of their licenses. We distribute our code
under the Apache License 2.0 and our dataset un-
der the Creative Commons Attribution 4.0 Interna-
tional Public License.

2530



References
Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz

Dudziak, and Nicholas Donald Lane. 2020. Zero-
Cost Proxies for Lightweight NAS. In Ninth Inter-
national Conference on Learning Representations
(ICLR), Online.

Maximiliana Behnke and Kenneth Heafield. 2020. Los-
ing Heads in the Lottery: Pruning Transformer At-
tention in Neural Machine Translation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2664–2674, Online. Association for Computational
Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language Models are Few-Shot Learners. In 34th
Conference on Neural Information Processing Sys-
tems (NeurIPS 2020), volume 33, pages 1877–1901,
Vancouver, Canada.

Luca Celotti, Ismael Balafrej, and Emmanuel
Calvet. 2020. Improving Zero-Shot Neural
Architecture Search with Parameters Scoring.
Https://openreview.net/forum?id=4QpDyzCoH01.

Krishna Teja Chitty-Venkata, Murali Emani, Venka-
tram Vishwanath, and Arun K. Somani. 2022. Neu-
ral Architecture Search for Transformers: A Sur-
vey. IEEE Access, 10:108374–108412. Conference
Name: IEEE Access.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. ArXiv:2003.10555.

Boyang Deng, Junjie Yan, and Dahua Lin. 2017. Peep-
hole: Predicting Network Performance Before Train-
ing. ArXiv:1712.03351v1.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. ArXiv:1810.04805.

Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201:
Extending the Scope of Reproducible Neural Archi-
tecture Search. In Eighth International Conference
on Learning Representations (ICLR), Online.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An Image

is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In Ninth International
Conference on Learning Representations (ICLR),
Online.

Jiahui Gao, Hang Xu, Han Shi, Xiaozhe Ren, Philip
L. H. Yu, Xiaodan Liang, Xin Jiang, and Zhenguo Li.
2022. AutoBERT-Zero: Evolving BERT Backbone
from Scratch. In Proceedings of the Thirty-Sixth
AAAI Conference on Artificial Intelligence, volume
36(10), pages 10663–10671, Online. AAAI Press.

Aaron Gokaslan and Vanya Cohen. 2019. OpenWeb-
Text Corpus. Accessed: 2022-07-06.

Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian
Chen, Peilin Zhao, and Junzhou Huang. 2020. NAT:
Neural Architecture Transformer for Accurate and
Compact Architectures. ArXiv:1910.14488.

R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos,
C. Bekas, and A. C. I. Malossi. 2019. TAPAS: Train-
Less Accuracy Predictor for Architecture Search. In
Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence, volume 33(01), pages 3927–
3934, Honolulu, Hawaii. AAAI Press.

Kun Jing, Jungang Xu, and Hui Xu Zugeng. 2020.
NASABN: A Neural Architecture Search Framework
for Attention-Based Networks. In 2020 International
Joint Conference on Neural Networks (IJCNN), vol-
ume Online, pages 1–7.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling Laws for Neural Language Models.
ArXiv:2001.08361.

Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova,
Mikhail Salnikov, Maxim Fedorov, Alexander Filip-
pov, and Evgeny Burnaev. 2022. NAS-Bench-NLP:
Neural Architecture Search Benchmark for Natu-
ral Language Processing. IEEE Access, 10:45736–
45747.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: the Penn Treebank. Computa-
tional Lingustics, 19(2):313–330.

Abhinav Mehrotra, Alberto Gil C. P. Ramos, Sourav
Bhattacharya, Lukasz Dudziak, Ravichander Vip-
perla, Thomas Chau, Mohamed S. Abdelfattah,
Samin Ishtiaq, and Nicholas Donald Lane. 2021.
NAS-Bench-ASR: Reproducible Neural Architec-
ture Search for Speech Recognition. In Ninth In-
ternational Conference on Learning Representations
(ICLR), Online.

Yash Mehta, Colin White, Arber Zela, Arjun Krishnaku-
mar, Guri Zabergja, Shakiba Moradian, Mahmoud
Safari, Kaicheng Yu, and Frank Hutter. 2022. NAS-
Bench-Suite: NAS Evaluation is (Now) Surprisingly
Easy. In Tenth International Conference on Learning
Representations (ICLR), Online.

2531

https://openreview.net/forum?id=0cmMMy8J5q
https://openreview.net/forum?id=0cmMMy8J5q
https://doi.org/10.18653/v1/2020.emnlp-main.211
https://doi.org/10.18653/v1/2020.emnlp-main.211
https://doi.org/10.18653/v1/2020.emnlp-main.211
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/ACCESS.2022.3212767
https://doi.org/10.1109/ACCESS.2022.3212767
https://doi.org/10.1109/ACCESS.2022.3212767
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1712.03351
http://arxiv.org/abs/1712.03351
http://arxiv.org/abs/1712.03351
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://doi.org/10.48550/arXiv:2010.11929v2
https://doi.org/10.48550/arXiv:2010.11929v2
https://doi.org/10.48550/arXiv:2010.11929v2
https://doi.org/10.1609/aaai.v36i10.21311
https://doi.org/10.1609/aaai.v36i10.21311
http://skylion007.github.io/OpenWebTextCorpus
http://skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/1910.14488
http://arxiv.org/abs/1910.14488
http://arxiv.org/abs/1910.14488
https://doi.org/10.1609/aaai.v33i01.33013927
https://doi.org/10.1609/aaai.v33i01.33013927
https://doi.org/10.1109/IJCNN48605.2020.9207600
https://doi.org/10.1109/IJCNN48605.2020.9207600
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.1109/ACCESS.2022.3169897
https://doi.org/10.1109/ACCESS.2022.3169897
https://doi.org/10.1109/ACCESS.2022.3169897
https://openreview.net/forum?id=CU0APx9LMaL
https://openreview.net/forum?id=CU0APx9LMaL
http://arxiv.org/abs/2201.13396
http://arxiv.org/abs/2201.13396
http://arxiv.org/abs/2201.13396


Joe Mellor, Jack Turner, Amos Storkey, and Elliot J.
Crowley. 2021a. Neural Architecture Search without
Training. In Proceedings of the 38th International
Conference on Machine Learning, pages 7588–7598,
Online. Proceedings of Machine Learning Research
(PMLR). ArXiv:2006.04647v3.

Joseph Mellor, Jack Turner, Amos Storkey,
and Elliot J. Crowley. 2021b. Neu-
ral Architecture Search without Training.
Https://openreview.net/forum?id=g4E6SAAvACo.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are Sixteen Heads Really Better than One? In 33rd
Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), volume 32, Vancouver, Canada.
Curran Associates, Inc.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng
Gao, Xiaodong He, Jianshu Chen, Xinying Song,
and Rabab Ward. 2016. Deep Sentence Embed-
ding Using Long Short-Term Memory Networks:
Analysis and Application to Information Retrieval.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 24(4):694–707.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and others. 2019. Lan-
guage models are unsupervised multitask learners.
Accessed: 2022-08-02.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research,
21(140):1–67.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V. Le. 2019. Regularized Evolution for Image
Classifier Architecture Search. ArXiv:1802.01548.

Xian Shi, Pan Zhou, Wei Chen, and Lei Xie. 2021. Ef-
ficient Gradient-Based Neural Architecture Search
For End-to-End ASR. In Companion Publication of
the 2021 International Conference on Multimodal
Interaction, pages 91–96, New York, New York. As-
sociation for Computing Machinery.

Julien Niklas Siems, Lucas Zimmer, Arber Zela,
Jovita Lukasik, Margret Keuper, and Frank Hut-
ter. 2021. NAS-Bench-301 and the Case for Sur-
rogate Benchmarks for Neural Architecture Search.
Https://openreview.net/forum?id=1flmvXGGJaa.

David So, Quoc Le, and Chen Liang. 2019. The
Evolved Transformer. In Proceedings of the 36th In-
ternational Conference on Machine Learning, pages
5877–5886, Long Beach, California. Proceedings of
Machine Learning Research (PMLR).

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai,
Noam Shazeer, and Quoc V Le. 2021. Searching
for Efficient Transformers for Language Modeling.
In 35th Conference on Neural Information Process-
ing Systems (NeurIPS 2021, volume 34, pages 6010–
6022, Virtual. Curran Associates, Inc.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and Policy Considerations for
Deep Learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, Florence, Italy. Association for Compu-
tational Linguistics.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language mod-
eling. In Thirteenth Annual Conference of the In-
ternational Speech Communication Association (IN-
TERSPEECH 2012), Portland, Oregon. International
Speech Communication Association.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-
van, Mark Sandler, Andrew Howard, and Quoc V. Le.
2019. MnasNet: Platform-Aware Neural Architec-
ture Search for Mobile. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 2815–2823, Long Beach, California.
IEEE.

Mingxing Tan and Quoc Le. 2019. EfficientNet: Re-
thinking Model Scaling for Convolutional Neural
Networks. In Proceedings of the 36th International
Conference on Machine Learning, pages 6105–6114,
Long Beach, California. Proceedings of Machine
Learning Research (PMLR).

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and
Surya Ganguli. 2020. Pruning neural networks with-
out any data by iteratively conserving synaptic flow.
In 34th Conference on Neural Information Process-
ing Systems (NeurIPS 2020), volume 33, pages 6377–
6389, Vancouver, Canada. Curran Associates, Inc.

Shikhar Tuli, Bhishma Dedhia, Shreshth Tuli, and Ni-
raj K. Jha. 2022. FlexiBERT: Are Current Trans-
former Architectures too Homogeneous and Rigid?
ArXiv:2205.11656.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-Read Students Learn Better:
On the Importance of Pre-training Compact Models.
ArXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In 31st Conference on Neural Information
Processing Systems (NIPS 2017), volume 30, Long
Beach, California. Curran Associates, Inc.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing Multi-Head
Self-Attention: Specialized Heads Do the Heavy Lift-
ing, the Rest Can Be Pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019. GLUE: A Multi-Task Benchmark and Anal-
ysis Platform for Natural Language Understanding.
ArXiv:1804.07461.

2532

https://proceedings.mlr.press/v139/mellor21a.html
https://proceedings.mlr.press/v139/mellor21a.html
https://openreview.net/forum?id=g4E6SAAvACo
https://openreview.net/forum?id=g4E6SAAvACo
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://doi.org/10.1109/TASLP.2016.2520371
https://doi.org/10.1109/TASLP.2016.2520371
https://doi.org/10.1109/TASLP.2016.2520371
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
https://doi.org/10.1145/3461615.3491109
https://doi.org/10.1145/3461615.3491109
https://doi.org/10.1145/3461615.3491109
https://openreview.net/forum?id=1flmvXGGJaa
https://openreview.net/forum?id=1flmvXGGJaa
https://proceedings.mlr.press/v97/so19a.html
https://proceedings.mlr.press/v97/so19a.html
https://proceedings.neurips.cc/paper/2021/hash/2f3c6a4cd8af177f6456e7e51a916ff3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2f3c6a4cd8af177f6456e7e51a916ff3-Abstract.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html
https://doi.org/10.48550/arXiv.2205.11656
https://doi.org/10.48550/arXiv.2205.11656
https://doi.org/10.48550/arXiv.1908.08962
https://doi.org/10.48550/arXiv.1908.08962
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.48550/arXiv.1804.07461
https://doi.org/10.48550/arXiv.1804.07461


Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020. HAT:
Hardware-Aware Transformers for Efficient Natural
Language Processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7675–7688, Online. Association
for Computational Linguistics.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li,
Tao Qin, and Tie-Yan Liu. 2021. NAS-BERT: Task-
Agnostic and Adaptive-Size BERT Compression with
Neural Architecture Search. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, pages 1933–1943, New York,
NY, USA. Association for Computing Machinery.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang,
Xiao Chen, and Qun Liu. 2021. AutoTinyBERT:
Automatic Hyper-parameter Optimization for Effi-
cient Pre-trained Language Models. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 5146–5157, Online. Association
for Computational Linguistics.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban
Real, Kevin Murphy, and Frank Hutter. 2019. NAS-
Bench-101: Towards Reproducible Neural Architec-
ture Search. In Proceedings of the 36th International
Conference on Machine Learning, pages 7105–7114,
Long Beach, California. Proceedings of Machine
Learning Research (PMLR). ISSN: 2640-3498.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun
Zhang. 2019. A Review of Recurrent Neural Net-
works: LSTM Cells and Network Architectures. Neu-
ral Computation, 31(7):1235–1270.

Yuekai Zhao, Li Dong, Yelong Shen, Zhihua Zhang,
Furu Wei, and Weizhu Chen. 2021. Memory-
Efficient Differentiable Transformer Architecture
Search. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
4254–4264, Online. Association for Computational
Linguistics.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang,
Chen Change Loy, Shuai Yi, Xuesen Zhang, and
Wanli Ouyang. 2020. EcoNAS: Finding Proxies for
Economical Neural Architecture Search. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11396–11404,
Seattle, Washington. IEEE.

Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing
Sun, Yonghong Tian, Jie Chen, Rongrong Ji, and
Peng Cheng Laboratory. 2022. Training-free Trans-
former Architecture Search. In Proceedings of the
2022 IEEE/CVF Computer Vision and Pattern Recog-
nition Conference, New Orleans, Louisiana. IEEE.

Barret Zoph and Quoc V. Le. 2017. Neural Architecture
Search with Reinforcement Learning. In Fifth In-
ternational Conference on Learning Representations
(ICLR), Toulon, France.

2533

https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.18653/v1/2021.acl-long.400
https://doi.org/10.18653/v1/2021.acl-long.400
https://doi.org/10.18653/v1/2021.acl-long.400
https://proceedings.mlr.press/v97/ying19a.html
https://proceedings.mlr.press/v97/ying19a.html
https://proceedings.mlr.press/v97/ying19a.html
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.18653/v1/2021.findings-acl.372
https://doi.org/10.18653/v1/2021.findings-acl.372
https://doi.org/10.18653/v1/2021.findings-acl.372
https://ieeexplore.ieee.org/document/9157571
https://ieeexplore.ieee.org/document/9157571
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578


A NAS BERT Benchmark Training
Details

In the development of our NAS BERT benchmark,
we did not aim to highly optimize the performance
of the architectures on GLUE tasks. The goal of
our benchmark was to compare transformer archi-
tectures solely with each other using training-free
metrics, not to achieve state-of-the-art results sur-
passing other architectures. We want to have a
large enough sample size of transformer architec-
tures, even with our constrained compute capability.
Thus, we chose to only use one pretraining dataset
(OpenWebText (Gokaslan and Cohen, 2019)), no
hyperparameter optimization (Section A.1), only
a single finetuning run on the GLUE benchmark
for each architecture, and a reduced number of
pretraining steps (Section A.2). Even with our sub-
optimal training choices, the architectures in our
benchmark achieve comparable GLUE scores to
other BERT-based models of the same size (Tuli
et al., 2022; Turc et al., 2019).

We used the GLUE benchmark as it is widely
used to evaluated BERT-based and other language
modeling architectures (Wang et al., 2019) (see
GLUE leaderboard). We did not evaluated on the
WNLI task, as the creators of the GLUE benchmark
found that no model exceeds an accuracy of 65.1%
due to improper labeling of the train/dev/test sets.
The scores for each GLUE task are Spearman’s
rank correlation coefficient for STS, Matthews’s
correlation coefficient for CoLA, and accuracy for
all other tasks. These scores were averaged to-
gether into the final GLUE score. All GLUE results
are from the dev set.

All transformer architectures were trained on
TPUv2s with 8 cores and 64 GB of memory, us-
ing Google Collabortory. The entire process of
pretraining and finetuning our benchmark took ap-
proximately 25 TPU days. Evaluation of training-
free metrics occurred on 2.8 GHz Intel Cascade
Lake processors with either 16 or 32 cores and 32
GB of memory.

A.1 Hyperparameters

For pretraining and finetuning the architectures in
our NAS BERT benchmark, we used the same hy-
perparameters as use to train ELECTRA-Small,
except for number of training steps (further dis-
cussion in main paper and Appendix Section A.2).
These hyperparameters are listed in Table 2 and
Table 3.

Hyperparameter
Generator Size Multiplier 1\4
Mask Percentage 15%
Training Steps 100,000
Learning Rate Decay Linear
Warmup Steps 10,000
Learning Rate 5e-4
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Dropout 0.1
Weight Decay 0.01
Train Batch Size 128
Evaluation Batch Size 128
Vocabulary Size 30522

Table 2: Pretraining hyperparameters used to pretrain
all architectures in our NAS BERT benchmark. Same
parameters as used to pretrain ELECTRA-Small, except
for number of training steps.

Hyperparameter
Learning Rate 3e-4
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Learning Rate Decay Linear
Layerwise LR decay 0.8
Warmup Fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.01
Batch Size 32
Vocabulary Size 30522
Train Epochs 10 for RTE and STS

3 for all other tasks

Table 3: Finetuning hyperparameters used to finetune all
architectures in our NAS BERT benchmark on all tasks
in the GLUE benchmark. Same parameters as used to
finetune ELECTRA-Small.

A.2 Number of Training Steps

As discussed in Section 4.2.3 of the main paper,
we chose to reduce the number of steps used
for pretraining the architectures to be 100, 000,
as opposed to the 1, 000, 000 used to pretrain
ELECTRA-Small. This choice was based on an
ablation study of 10 architectures sampled from the
benchmark (Figure 6). 100, 000 pretraining steps
was determined to be the best trade-off between
model performance on the GLUE benchmark and

2534



Figure 6: Pretraining ablation study of 10 architectures
randomly sampled from the FlexiBERT search space in-
vestigating number of steps, using the hyperparameters
in 3. Dotted lines represent GLUE score of each indi-
vidual architecture, and the blue line is average score of
all architectures.

training time.

B Ablation Studies

Our evaluation of training-free metrics on both
NAS-Bench-NLP and our NAS BERT bench-
mark requires random initialization of architec-
tures, and many metrics require a mini-batch of
input data, which we randomly sampled from re-
spective datasets. To investigate the impact of ini-
tialization weights and input data, we conduct a
series ablation studies for the training-free metrics
on both benchmarks.

Figures 7 and 8 show how the various training-
free metrics evaluated on 10 architectures from
NAS-Bench and our NAS BERT benchmark each
differ with 10 different initialization weights. Over-
all, initialization weight has minimal impact on
the evaluations of training-free metrics, and the
metrics’ scores are well distinguished between dif-
ferent architectures. While some metrics when
evaluated on NAS-Bench-NLP architectures have
larger variations, such as the More Noised Jacobian
metric, the high performing metrics like Hidden Co-
variance can isolate better performing architectures.
All metrics when evaluated on architectures from
our NAS BERT benchmark have minimal variation
between different initialization weights.

Likewise, Figures 9 and 10 show the impact of
10 different input minibatches on training-free met-
rics. There is little variation in the metrics’ evalua-
tions for all metrics on both RNNs and BERT-based
architectures.

These ablation studies demonstrate that training-
free metrics, when evaluated on RNN and trans-
former architectures, capture intrinsic properties

contained within the architecture, rather than tran-
sient information in the specific input data or ini-
tialization.

C Non-Normalized Metrics on NAS
BERT Benchmark

Continuing the discussion from Section 5.2 in the
main paper, Figure 11 shows the non-normalized
training-free metrics when evaluated on our NAS
BERT Benchmark. All metrics when not normal-
ized for number of features increase in perfor-
mance, with most showing some positive correla-
tion. Head Confidence remains the best performing
metric.

2535



Figure 7: Ablation study showing the effect of different initialization weights on training-free metrics, evaluated
using RNN architectures from NAS-Bench-NLP. 10 architectures were sampled from the benchmark, one in
each decile range of test loss (eg. 0-10%, 10-20%, . . . , 90-100%). 10 different random seeds were used for the
initialization weights.

Figure 8: Ablation study showing the effect of different initialization weights on training-free metrics, evaluated
using transformer architectures from our NAS BERT benchmark. 10 architectures were sampled from the benchmark,
one in each decile range of GLUE score (eg. 0-10%, 10-20%, . . . , 90-100%). 10 different random seeds were used
for the initialization weights.

2536



Figure 9: Ablation study showing the effect of different minibatch inputs on training-free metrics, evaluated using
RNN architectures from NAS-Bench-NLP. 10 architectures were sampled from the benchmark, one in each decile
range of test loss (eg. 0-10%, 10-20%, . . . , 90-100%). The same 10 minibatches of size 128, randomly selected
from the Penn Treebank dataset, were used for each architecture and metric.

Figure 10: Ablation study showing the effect of different minibatch inputs on training-free metrics, evaluated using
transformer architectures from our NAS BERT benchmark. 10 architectures were sampled from the benchmark,
one in each decile range of test loss (eg. 0-10%, 10-20%, . . . , 90-100%). The same 10 minibatches of size 128,
randomly selected from the OpenWebText dataset, were used for each architecture and metric.

2537



Figure 11: Plots of non-normalized training-free metrics evaluated on 500 architectures randomly sampled from the
FlexiBERT search space, against GLUE score of the pretrained and finetuned architecture.

2538



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8

�3 A2. Did you discuss any potential risks of your work?
9

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4

�3 B1. Did you cite the creators of artifacts you used?
4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
9

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
9

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
5, A

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

2539

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5, A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5, B

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
A

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

2540


