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Abstract

Large Language Models have demonstrated re-
markable few-shot performance, but the per-
formance can be sensitive to the selection of
few-shot instances. We present PATRON, a
prompt-based data selection method for pre-
trained language model fine-tuning under cold-
start scenarios, i.e., no initial labeled data are
available. In PATRON, we design (1) a prompt-
based uncertainty propagation approach to es-
timate the importance of data points and (2)
a partition-then-rewrite (PTR) strategy to pro-
mote sample diversity when querying for anno-
tations. Experiments on six text classification
datasets show that PATRON outperforms the
strongest cold-start data selection baselines by
up to 6.9%. Besides, with 128 labels only, PA-
TRON achieves 91.0% and 92.1% of the fully
supervised performance based on vanilla fine-
tuning and prompt-based learning respectively.
Our implementation of PATRON is available at
https://github.com/yueyu1030/Patron.

1 Introduction

Pre-trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019; Raffel et al., 2020) have
achieved competitive performance with limited la-
beled data (Gao et al., 2021a; Schick and Schütze,
2021a,b) for many natural language processing
(NLP) tasks. However, there still exists a non-
negligible gap between the performance of few-
shot and fully-supervised PLMs. Besides, when the
task-specific data for fine-tuning is small, the per-
formance of PLMs can have high variance (Bragg
et al., 2021). As illustrated in Figure 1, when
fine-tuning RoBERTa-base (Liu et al., 2019) on
different subsets of AG News dataset with 32 la-
bels, the performance on the test set varies up to
10% for vanilla fine-tuning and 5% for prompt-
based learning (Gao et al., 2021a). Such large vari-
ations demonstrate the crucial need for strategical
selection of training data to improve PLMs’ perfor-
mance under low-data regimes.
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Figure 1: The performance with large variances of
vanilla fine-tuning and prompt-based learning on 5 ran-
dom samplings, compared with better performance with
low variances of PATRON (our proposed selection strat-
egy) on AG News (Zhang et al., 2015) with 32 labels.

To solicit training data intelligently, active learn-
ing (AL) (Settles, 2011) has been proposed to adap-
tively annotate unlabeled data (Ash et al., 2020;
Ein-Dor et al., 2020; Zhang and Plank, 2021; Mar-
gatina et al., 2021, 2022). Despite their efficacy,
most of these works assume there are hundreds, or
even thousands of labels in the initial stage, and
query similarly significant amounts of labeled data
in each AL round. In practice, however, we usually
do not have any startup labels to initialize the AL
process, and the labeling budget can also be limited.
This hinders the application of such techniques, as
they often rely on a well-trained model with decent
uncertainty (Margatina et al., 2021), or gradient
estimations (Ash et al., 2020) to perform well.

To facilitate training instance selection on such
a challenging low-data regime, cold-start data se-
lection (also known as cold-start AL (Yuan et al.,
2020)) has been proposed, where we have only
unlabeled data and zero initial labels, and need to
design acquisition functions to effectively query
samples for PLM fine-tuning.

However, cold-start data selection can be nontriv-
ial for PLMs. Due to the absence of labeled data,
the estimated uncertainty for unlabeled data from
the PLM can be biased over classes (Zhao et al.,
2021). As a result, uncertainty-based approaches
can underperform even the random selection strat-
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egy (Hacohen et al., 2022). Moreover, cold-start
data selection requires greater care to ensure the
sample diversity compared to the traditional AL,
as fine-tuning PLMs on few redundant data will
lead to poor generalization. Existing approaches
often first cluster the whole unlabeled data, and
then greedily select samples from each cluster with
predefined heuristics (Müller et al., 2022), which
fails to control the distance between selected sam-
ples and thus cannot yield optimal sample diversity
because they fail to control the distance between
samples from different clusters. In addition, un-
der cold-start scenarios, it is critical to harness
the knowledge from PLMs for sample selection.
While there are several methods that leverage pre-
trained embeddings (Hacohen et al., 2022; Chang
et al., 2021) or masked language modeling (MLM)
loss (Yuan et al., 2020) to assist data selection,
the mismatch between pre-training and fine-tuning
tasks hurts their efficacy.

To address the above challenges, we propose
PATRON1, a prompt-based data-selection strategy
tailored for PLMs. To estimate model uncertainty
without access to any labeled data under the cold-
start setting, PATRON leverages prompts (Gao et al.,
2021a), which convert the classification task into a
cloze-style task with customized templates and ver-
balizers, to generate the task-aware pseudo labels
for unlabeled data by predicting the surface name
for the [MASK] token. In this way, we also bridge
the gap between pre-training and downsteam tasks,
and distill task-specific knowledge from PLMs to
facilitate data selection. However, one important
issue for such pseudo labels is they can be inaccu-
rate and biased even after calibration (Zhao et al.,
2021). To remedy this, we further propose uncer-
tainty propagation to first measure the correlation
between samples based on kernel similarity in the
embedding space, and then propagate their predic-
tion uncertainty to their neighbors. Thus, a sample
will have higher propagated uncertainty only when
the predictive uncertainty for both itself and its
neighbors are high, indicating the model is less
certain for the local region around this sample.

To select a batch of diverse samples, we go be-
yond existing techniques and propose a two stage
method named partition-then-rewrite (PTR), which
is initially proposed for combinatorial optimiza-
tion (Chen and Tian, 2019), to dynamically adjust

1Prompt-based data selection for few-shot PLM fine-
tuning.

the selected sample within each cluster. Concretely,
we first use K-Means clustering to partition the
unlabeled data and select one sample from each
cluster to initialize our solution. We then build a
neighbor graph based on k-nearest-neighbor (kNN)
to encode the neighborhood relationships among
selected data and explicitly control the distances
between them. After that, we add an additional
regularization term to prevent the selected sample
in each cluster from being too close to samples in
its neighbor clusters. We iterate the above process
for several rounds to gradually refine our solution
and promote diversity in data selection.

We apply PATRON to various setups: vanilla fine-
tuning, prompt-based learning, semi-supervised
learning and standard multi-round AL to improve
the data efficiency for PLM fine-tuning. Our key
contributions are as follows: (i) a cold-start data
selection paradigm PATRON for addressing the la-
bel scarcity issue for few-shot PLM fine-tuning;
(ii) an prompt-based uncertainty propagation ap-
proach to query most informative samples; (iii) a
partition-then-rewrite (PTR) strategy for balancing
diversity and informativeness of queried samples
and (iv) experiments on six datasets demonstrating
PATRON improves the label efficiency over base-
lines by 3.4%–6.9% on average.

2 Related Work

Few-shot Language Model Fine-tuning. Our
method is closely relevant to label-efficient learn-
ing paradigms in NLP such as cold-start fine-
tuning (Zhang et al., 2020b; Shnarch et al., 2022),
prompt-based learning2 (Gao et al., 2021a; Schick
and Schütze, 2021a,b; Min et al., 2022; Zhang
et al., 2022c; Hu et al., 2022), semi-supervised
learning (Du et al., 2021; Wang et al., 2022; Xie
et al., 2020; Xu et al., 2023). These works assume
a small set of labeled data is given and focus on
training strategies design. Instead, we aim to select
the most valuable instances from the unlabeled cor-
pus, which is orthogonal to and can be combined
with the above methods to enhance label efficiency,
as shown in Sec. 5.3 and 5.4.
Training Data Selection. Designing better strate-
gies to selectively annotate training data is a widely
studied topic. One important line of research lies in
active learning (Zhang et al., 2020a; Schröder et al.,
2022; Yu et al., 2022), which improves the label

2In this work, we refer prompt-based learning to Fixed-
prompt PLM Tuning mentioned in (Liu et al., 2021b).
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efficiency of deep NLP models. However, most of
them need a large number of clean labels to first
train the model before data selections (Ru et al.,
2020; Zhang and Plank, 2021). Differently, we aim
to facilitate training data selection with minimal
supervision, where no initial labeled data is given.

The idea of such cold-start data selection has
been applied for image classification (Wang et al.,
2021; Hacohen et al., 2022) and speech process-
ing (Park et al., 2022), but has not been fully
explored for the NLP domain. For this setting,
Chang et al. (2021) focus on data selection with
pre-trained embeddings, but fail to leverage the
task-specific knowledge from PLMs. Yuan et al.
(2020) use the MLM loss as a proxy for uncer-
tainty measurement, and Liu et al. (2021a); Su
et al. (2022) study few-shot sample selection for
billion-scale language models (Brown et al., 2020),
but mainly focus on in-context learning. Different
from them, we aim to leverage prompts to facilitate
sample selection, and design additional techniques
(i.e., uncertainty propagation and PTR) to boost the
performance of few-shot PLM fine-tuning.

3 Background

3.1 Problem Formulation
We study cold-start data selection for text classifi-
cation with c classes formulated as follows: Given
a pool of unlabeled samples Du = {xj}Uj=1 and an
empty training set Dl = ∅, we aim to fine-tune a
pre-trained language model M denoted as f(·; θ)
under limited labeling budget |B| interactively: In
each round, we use an acquisition function F(·)
to query b samples denoted as Q from Du. Next,
the acquired samples are labeled and moved from
Du to Dl. Then we fine-tune the pre-trained lan-
guage model f(·; θ) with Dl to maximize the per-
formance on downstream classification tasks. The
above steps can either be one-round (Chang et al.,
2021; Hacohen et al., 2022) (b = |B| in this case)
or repeated for multiple rounds (Yuan et al., 2020)
(b = |B|/|Rounds|) until reaching the budget |B|.

3.2 Prompt-based Learning for PLMs

Prompting methods have been proposed to bridge
the gap between the pre-training and fine-tuning
stage via applying the cloze-style tasks to fine-tune
PLMs (Schick and Schütze, 2021a,b). Formally,
there are two key components in prompts: a prede-
fined template T , and a verbalizer V . For each in-
put sample x, it will be wrapped with the template

which contains a piece of natural language text to-
gether with a [MASK] token before being fed into
the PLM M. Then, the verbalizer V is used to map
the task labels y to individual words V(y) in the vo-
cabulary. Take the binary sentiment classification
as an example, for input sentence x, a template T
could be T (x) = [x. It was [MASK].], and the ver-
balizer for the positive and negative sentiment can
be “good” and “terrible”, respectively.

With the template and verbalizer, we can calcu-
late the probability distribution over the label set Y
via Mask Language Modeling (MLM) as

p (y | x) = p ([MASK] = V(y) | T (x))

=
exp

(
wT

V(y)h[MASK]

)
∑

y′∈Y exp
(
wT

V(y′)h[MASK]

) (1)

where h[MASK] is the hidden embedding of the
[MASK] token and wV(y) denotes the embedding of
the label word V(y) from M. As these tokens’ em-
beddings have been optimized during pre-training
with the MLM objective, the use of prompts nar-
rows the gap between pre-training and fine-tuning.
In other words, prompts serve as a source of prior
knowledge when adapting PLMs to new tasks.

4 Methodology

In this section, we present our method, PATRON,
that exploits prompts for cold-start data selection.
We first introduce how to leverage prompts for
uncertainty estimation under cold-start scenarios.
With the estimated uncertainty, we then propose
two key designs, namely uncertainty propagation
and partition-then-rewrite (PTR) strategy to balance
informativeness and diversity for sample selection.
The overall procedure is shown in Figure 2.

4.1 Uncertainty Estimation with Prompts
We first describe how to estimate the uncertainty
for unlabeled data to facilitate PATRON. Given the
pre-trained language model (PLM) M without la-
beled data, we leverage prompts to generate pseudo
labels3 for uncertainty estimation. According to
Eq. 1, we are able to obtain the occurring proba-
bility for different label words on each sample x,
based on the prediction of the [MASK] token.

However, directly adopting this probability can
be problematic as PLMs suffer from the mis-
calibration issue (Zhao et al., 2021; Hu et al., 2022),

3In this study, we use the manual prompts and verbalizers
from existing works (Hu et al., 2022; Schick and Schütze,
2021a) due to their simplicity and competitive performance.
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Sentence 𝑥

Best movie of this year.

Prompt 𝒯(𝑥)

Best movie of this year. It was [MASK].

𝑢(𝑥)

too-close 

initialization

+1(pos)
-1(neg)

PLM

Pseudo Label  Uncertainty

refined 

selection

1. Uncertainty Estimation with Prompts 2. Uncertainty Propagation 3. Partition-then-rewrite (PTR)

Figure 2: The illustration of the overall procedure for PATRON.

i.e., label words may have varying occurring fre-
quencies, making some of them less likely to be
predicted than the others. Thus, the prediction in
Eq. 1 and the estimated uncertainty can be biased.

Being aware of this, we adopt the method in (Hu
et al., 2022) to calculate the contextualized prior
of the label words. We first construct a support set
S by choosing k samples with highest p(yi|x) for
each class i as

S =
⋃

i∈{1,2,...,c}
Top-k
x∈Du

p(yi|x). (2)

Then, the contextualized prior is approximated by

P (v) ≈ 1

|S|
∑

x∈S
PM ([MASK] = v | x) , (3)

which is used to calibrate the pseudo labels as

ŷi =

(
p(yi|x)
P (V(yi))

)
/




C∑

j=1

p(yj |x)
P (V(yj))


 . (4)

After obtaining the pseudo labels, we use en-
tropy (Lewis and Gale, 1994) as the measurement
of uncertainty for each sample x as

u(x) = −
C∑

i=1

ŷi log ŷi. (5)

4.2 Uncertainty Propagation for Data Utility
Estimation

Although we have mitigated the bias for the prompt-
based pseudo labels, such pseudo labels can still
be inaccurate due to insufficient supervision un-
der zero-shot settings. Under this circumstance,
directly using the uncertainty in Eq. 5 for sample
selection yields suboptimal results as it can be sen-
sitive to outliers, which naturally have large model
uncertainty but are less beneficial for model learn-
ing (Karamcheti et al., 2021).

To remedy this issue, we use SimCSE (Gao et al.,
2021b) to generate embeddings for sample x as
z = g(x; θ)4, and leverage the kernel similarity

4Notably, we use the version of princeton-nlp/
unsup-simcse-roberta-base.

in the embedding space to measure the correla-
tion between data points and propagate the model
uncertainty: for each data point x, we first calcu-
late its K-nearest neighbors based on its Euclidean
distance as XKNN(x) = KNN(x,Du). Then, we
choose the radial basis function (RBF) (Scholkopf
et al., 1997) as the similarity metric for two data
points xi and xj , denoted as

κ (xi, xj) = exp
(
−ρ ∥zi − zj∥22

)
, (6)

where zi is the embedding of xi from the SimCSE,
and ρ is a hyper-parameter controlling the weight of
propagation. Formally, the propagated uncertainty
for x can be represented as

ûprop(x) = u(x) +

∑
xi∈XKNN(x)

κ(x, xi) · u(xi)
|XKNN(x)|

.

(7)
We highlight that only when the sample has higher
uncertainty for both itself and its neighbors will re-
sult in higher propagated uncertainty, indicating the
PLMs are uncertain about the surrounding regions
around the sample. In this case, actively annotating
such samples will be most beneficial for PLMs.

4.3 Partition-then-rewrite (PTR) for
Diversity-Promoting Data Selection

Instead of querying one sample at a time, modern
AL methods usually query a batch of samples to
improve the query efficiency. In this case, querying
samples without considering their correlations will
lead to a redundant query set with limited perfor-
mance gain (Ein-Dor et al., 2020). We now present
our PTR strategy for diversity-promoting sample
selection underpinned by the estimated uncertainty.
Initialization of Selection with Partition. As
PLMs implicitly learn sentence representations
clustered by topics (Aharoni and Goldberg, 2020),
we first employ K-Means clustering to partition the
unlabeled pool Du into different clusters based on
their embeddings and enforce the coverage over
different topics of selected samples. We follow ex-
isting works (Chang et al., 2021; Hacohen et al.,
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2022) to set the number of clusters equal to b, de-
noted as Ci (1 ≤ i ≤ b)5. We then use a greedy
method to select one sample qi from Ci to initialize
the selected data pool Q as

qi = argmax
xj∈Ci

(
ûprop(xj)− β ∥zj − z̄i∥22

)
, (8)

where z̄i =
1

|Ci|
∑

xj∈Ci zj is the centroid for the
cluster i and β is a hyperparameter. In this way,
data points with higher propagated uncertainty
while not being faraway from most of the data
points are selected to balance between the uncer-
tainty and diversity.

Sample Refinement with Rewriting. Although
the previous steps attempt to select the most in-
formative samples within each cluster, they fail
to model the relations among samples in different
clusters. As a result, samples can still be very close
to other selected samples in adjacent clusters, lead-
ing to the limited overall diversity. To tackle this
issue, we build an additional KNN graph to retrieve
the nearest query samples from other clusters as

Xc-KNN,i = KNN(qi,Q). (9)
Note that we use c-KNN to denote the cluster-level
KNN to differentiate from the sample-level KNN
in Sec. 4.2. To update the selected pool Q, for
cluster i, we add an additional regularization term
to Eq. 8 to prevent samples in adjacency clusters
from being overly close:

q̃i =argmax
xj∈Ci

(ûprop(xj)− β ∥zj − z̄i∥2

− γ
∑

qk∈Xc-knn,i

[
m− ∥zj − zk∥2

]
+
),

(10)

where γ is the weight for the penalty term, m =
0.5 is the pre-defined margin, [·]+ = max(·, 0) is
the gating function. To interpret the regularization
term, we argue that when the distance between the
selected samples in adjacency clusters is smaller
than m, the regularization will be greater than 0 to
discourage them from being selected together.

We run the above rewriting steps several times
until convergence (e.g., the selected samples do
not change anymore) to obtain the final set Q =
{q̃i}bi=1, which usually takes 2-3 iterations6. The
algorithm of PATRON is in Alg. 1.

5Here we use one-round AL for better illustration. We
provide the details for adapting PTR to the multi-round AL
setting in Appendix D.

6The efficiency analysis of PATRON is in Appendix E.

Algorithm 1: Process of PATRON Strategy.
Input: Unlabeled samples Xu; Pre-trained LM

M = f(·; θ), number of acquired samples B,
the number of iterations T (T=2 in this work).

// Step 1: Uncertainty Propagation for Utility
Estimation.

1a. Calculate uncertainty for samples x ∈ Xu with
prompts based on Eq. (5).

1b. Estimate uncertainty ûprop with Eq. (6) and (7).
// Step 2: Predict-then-propagate (PTR) for Diversity

Promoting Selection.
2a. Run K-Means on Xu with k=B until convergence.
2b. Select initial sample set Q(0) based on Eq. (8).
for t = 1, 2, · · · , T do

2c. Building the additional KNN graph to obtain
Xc-KNN with Eq. (9).

2d. Update Q(t) by optimizing the selected
sample within each cluster q̃ with Eq. (10).

Output: The final selected labeled data Q(T ).

5 Experiments
5.1 Experiment Setup
Datasets. We use six NLP classification tasks in
our experiments: IMDB (Maas et al., 2011), Yelp-
full (Meng et al., 2019), AG News (Zhang et al.,
2015), Yahoo! Answers (Zhang et al., 2015), DB-
Pedia (Lehmann et al., 2015), and TREC (Li and
Roth, 2002). All the datasets are in English, and
their detailed statistics, as well as the template for
prompts, are shown in Appendix A. Besides, we
use 3 additional datasets to evaluate the out-of-
distribution (OOD) performance, the details are in
Appendix A.3 and G.1.

Evaluation Setup. Following (Chang et al.,
2021; Chen et al., 2021), we focus on one-round
data selection in our main experiments because it
can more faithfully reflect the performance of dif-
ferent strategies. We choose the labeling budget
|B| from {32, 64, 128} to simulate the few-shot sce-
nario and align with existing works (Müller et al.,
2022; Shnarch et al., 2022). We also apply PATRON

for standard multi-round AL (see Sec. 5.4).

Implementation Details. We choose RoBERTa-
base (Liu et al., 2019) from the Hugging Face
codebase (Wolf et al., 2020) for all the compared
methods. For prompt-based learning, we use Open-
Prompt (Ding et al., 2022) as the codebase. More
details settings are in Appendix C.

5.2 Baselines

We mainly compare PATRON with the following
baselines.
⋄ Random: It acquires annotations randomly.
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Task c |B| Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON (Ours)

IMDB 2
32 80.2 ± 2.5 81.9 ± 2.7 77.8 ± 2.4 79.2 ± 1.6 74.5 ± 2.9 76.7 ± 3.5 82.2 ± 3.0 82.8 ± 2.2 85.5 ± 1.5∗∗
64 82.6 ± 1.4 84.7 ± 1.5 81.2 ± 3.4 84.9 ± 1.5 82.8 ± 2.5 84.0 ± 2.0 86.1 ± 0.9 84.0 ± 0.9 87.3 ± 1.0∗∗
128 86.6 ± 1.7 87.1 ± 0.7 87.9 ± 0.9 88.5 ± 1.6 87.8 ± 0.8 88.2 ± 1.0 87.5 ± 0.8 88.1 ± 1.4 89.6 ± 0.4 ∗

Yelp-F 5
32 30.2 ± 4.5 32.7 ± 1.0 36.6 ± 1.6 35.2 ± 1.0 32.9 ± 2.8 32.7 ± 0.4 36.8 ± 1.8 32.6 ± 1.5 35.9 ± 1.6
64 42.5 ± 1.7 36.8 ± 2.1 41.2 ± 0.2 39.3 ± 1.0 39.9 ± 3.4 39.8 ± 1.2 40.3 ± 2.6 39.7 ± 1.8 44.4 ± 1.1 ∗

128 47.7 ± 2.1 41.3 ± 1.9 45.7 ± 1.3 46.4 ± 1.3 49.4 ± 1.6 47.1 ± 1.2 45.1 ± 1.0 46.8 ± 1.6 51.2 ± 0.8∗∗

AG News 4
32 73.7 ± 4.6 73.7 ± 3.0 69.4 ± 4.5 79.1 ± 2.7 78.6 ± 1.6 75.1 ± 1.8 78.4 ± 2.3 80.7 ± 1.8 83.2 ± 0.9∗∗
64 80.0 ± 2.5 80.0 ± 2.2 78.5 ± 3.7 82.4 ± 2.0 82.0 ± 1.5 81.1 ± 2.2 82.6 ± 2.5 83.0 ± 2.4 85.3 ± 0.7∗∗
128 84.5 ± 1.7 82.5 ± 0.8 81.3 ± 0.9 85.6 ± 0.8 85.2 ± 0.6 85.7 ± 0.3 84.3 ± 1.7 85.7 ± 0.3 87.0 ± 0.6∗∗

Yahoo! Ans. 10
32 43.5 ± 3.0 23.0 ± 1.6 26.6 ± 2.5 46.8 ± 2.1 22.0 ± 2.3 34.0 ± 2.5 47.7 ± 2.3 36.9 ± 1.8 56.8 ± 1.0∗∗
64 53.1 ± 3.1 37.6 ± 2.0 30.0 ± 1.7 52.9 ± 1.6 45.7 ± 3.7 44.4 ± 2.8 55.3 ± 1.8 54.0 ± 1.6 61.9 ± 0.7∗∗
128 60.2 ± 1.5 41.8 ± 1.9 41.1 ± 0.9 61.3 ± 1.0 56.9 ± 2.5 52.1 ± 1.2 60.8 ± 1.9 58.2 ± 1.5 65.1 ± 0.6∗∗

DBPedia 14
32 67.1 ± 3.2 18.9 ± 2.4 14.6 ± 1.5 83.3 ± 1.0 64.0 ± 2.8 55.1 ± 2.2 77.5 ± 4.0 78.2 ± 1.8 85.3 ± 0.9∗∗
64 86.2 ± 2.4 37.5 ± 3.0 20.7 ± 2.0 92.7 ± 0.9 85.2 ± 0.8 78.0 ± 4.1 89.7 ± 1.1 88.5 ± 0.7 93.6 ± 0.4∗∗
128 95.0 ± 1.5 47.5 ± 2.3 26.8 ± 1.4 96.5 ± 0.5 89.4 ± 1.5 85.6 ± 1.9 95.7 ± 0.4 95.7 ± 0.6 97.0 ± 0.2 ∗

TREC 6
32 49.0 ± 2.6 46.6 ± 1.4 23.8 ± 3.0 60.3 ± 1.5 47.1 ± 3.6 49.5 ± 1.2 60.5 ± 3.7 42.0 ± 4.4 64.0 ± 1.2∗∗
64 69.1 ± 2.7 59.8 ± 3.2 28.8 ± 3.1 77.3 ± 2.0 75.7 ± 3.0 63.0 ± 2.5 73.0 ± 2.0 72.6 ± 2.1 78.6 ± 1.6∗∗
128 85.6 ± 2.5 75.0 ± 1.8 50.5 ± 1.9 87.7 ± 1.5 87.6 ± 3.0 80.5 ± 2.8 87.3 ± 3.6 83.0 ± 3.8 91.1 ± 0.8∗∗

Average
32 57.2 46.1 41.5 64.0 53.2 53.8 63.9 58.9 68.4 (↑ 6.9%)
64 68.9 56.1 46.8 71.6 68.5 65.1 71.2 70.3 75.2 (↑ 5.0%)
128 76.6 62.5 55.6 77.6 76.1 73.2 76.8 76.3 80.2 (↑ 3.4%)

Table 1: Main results of cold-start data selection on six datasets with 10 runs. Here c means the number of classes
and |B| is the number of acquired samples. We use accuracy as the metric, and the higher value indicates better
performance. Since TREC is an imbalanced dataset, we report the F1 score in Appendix G.2. Bold and underline
indicate the best and second best results for each setting respectively. We use ± to indicate standard deviation and
use */** to indicate statistical significant results according to student’s t-test at level 0.05/0.01. (Same as belows.)

⋄ Uncertainty (Schröder et al., 2022): It acquires
annotations on samples with the highest uncertainty
in Eq. 5 after calibration. We use ENTROPY (Lewis
and Gale, 1994) as the uncertainty estimate.
⋄ CAL (Margatina et al., 2021): It selects samples
based on the KL divergence between the prediction
of itself and that of its neighbors.
⋄ Coreset (Sener and Savarese, 2018): It selects
samples such that the largest distance between a
data point and its nearest center is minimized.
⋄ BERT-KM (Chang et al., 2021): It first uses K-
Means to cluster pre-trained embeddings and then
selects one example from each cluster that is clos-
est to the center of the cluster.
⋄ Margin-KM (Müller et al., 2022): It utilizes
K-Means clustering to group pre-trained embed-
dings, followed by the selection of samples with
the minimum margin between the two most likely
probabilities from each cluster.
⋄ ALPS (Yuan et al., 2020): It uses the masked
language model (MLM) loss of BERT to generate
surprisal embeddings to query samples.
⋄ TPC (Hacohen et al., 2022): It is the most recent
method for CSAL, which first calculates the den-
sity for each data point, and then selects those with
the highest density from each cluster.

5.3 Main Results
Table 1 reports the performance of PATRON and
the baselines under different budgets |B| on 10

runs. We have also shown the performance with
full labeled data in Table 4 for reference7. From
these results, we have the following observations:
(1) Compared with the baselines, PATRON achieves
the best overall performance on the six datasets,
with an average gain of 3.4%–6.9% over the
strongest baselines under different annotation bud-
gets. Moreover, with 128 labels only (<0.5% of
total labeled data), PATRON obtains 91.0% of the
fully supervised performance on the average of six
datasets. It is also worth noting that PATRON also
lead to more stable results — it achieves lower stan-
dard deviations when compared with baselines on
14 of 18 cases. These results justify the benefits of
PATRON in cold-start setting.
(2) We observe the performance gains are more sig-
nificant for datasets with larger number of classes
(e.g. TREC, Yahoo!). This observation further
strengthens the benefits of PATRON in resolving
label scarcity issue brought by cold-start setting,
because for datasets with more classes, each class
would have less labeled data given a fixed budget.
(3) Similar to the findings in (Hacohen et al., 2022),
pure uncertainty-based AL methods (e.g. CAL) do
not perform well under cold-start settings. The rea-
son is two-fold: (1) these methods focus on choos-
ing ‘hard samples’ without considering the sample
diversity, leading to imbalanced label distribution

7More detailed quantitative analysis of PATRON and base-
lines are deferred to Appendix F due to the space limit.
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Task c |B| Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON (Ours)

IMDB 2
32 81.8 ± 2.5 82.4 ± 1.7 79.6 ± 1.6 81.7 ± 1.3 85.5 ± 1.1 86.0 ± 1.2 83.5 ± 2.6 84.5 ± 0.9 86.5 ± 0.9
64 85.6 ± 1.3 86.0 ± 1.4 81.1 ± 1.9 84.2 ± 0.9 87.8 ± 0.6 87.6 ± 0.7 84.4 ± 1.6 85.8 ± 1.2 88.8 ± 0.8∗
128 87.7 ± 0.4 88.4 ± 0.5 83.0 ± 2.0 88.5 ± 0.8 88.9 ± 0.5 89.1 ± 0.4 88.9 ± 0.3 88.0 ± 0.5 89.3 ± 0.3

Yelp-F 5
32 48.9 ± 1.3 46.6 ± 0.9 47.9 ± 0.6 45.5 ± 1.0 46.0 ± 1.5 47.5 ± 1.1 47.0 ± 1.0 49.8 ± 0.5 50.5 ± 0.8∗
64 51.0 ± 0.8 49.9 ± 0.8 49.4 ± 1.1 51.9 ± 0.5 48.8 ± 1.2 52.6 ± 0.6 52.8 ± 0.5 52.3 ± 0.7 53.6 ± 0.3∗∗
128 51.3 ± 0.9 50.8 ± 0.6 48.7 ± 1.6 51.5 ± 1.4 53.7 ± 1.1 54.2 ± 0.7 51.7 ± 0.5 51.0 ± 0.7 55.6 ± 0.6∗∗

AG News 4
32 83.1 ± 1.2 82.8 ± 2.0 81.4 ± 1.0 84.9 ± 0.9 85.1 ± 1.5 84.6 ± 1.7 84.2 ± 0.8 85.6 ± 1.0 86.8 ± 0.3∗∗
64 84.5 ± 1.3 84.3 ± 1.4 82.6 ± 1.2 86.5 ± 0.8 86.4 ± 1.3 85.9 ± 0.7 86.2 ± 0.5 85.6 ± 0.5 87.4 ± 0.6∗
128 84.9 ± 0.5 83.1 ± 0.8 83.0 ± 0.9 87.6 ± 0.4 87.5 ± 0.3 87.1 ± 0.4 87.5 ± 0.4 87.0 ± 0.6 87.8 ± 0.3

Yahoo! Ans. 10
32 58.5 ± 4.0 55.0 ± 3.0 54.0 ± 1.5 61.4 ± 1.8 55.3 ± 2.1 57.8 ± 2.6 61.9 ± 0.9 57.0 ± 1.6 63.2 ± 1.2∗
64 62.2 ± 1.0 60.4 ± 0.7 58.6 ± 1.3 62.8 ± 0.7 59.5 ± 0.7 58.8 ± 1.2 63.3 ± 0.8 60.8 ± 0.7 66.2 ± 0.3∗∗
128 64.7 ± 1.3 63.0 ± 1.2 60.1 ± 1.8 65.4 ± 1.2 62.7 ± 1.0 65.4 ± 0.7 65.9 ± 0.7 66.2 ± 0.6 67.6 ± 0.5∗∗

DBPedia 14
32 89.1 ± 3.0 77.9 ± 2.8 58.9 ± 1.3 94.1 ± 1.4 92.0 ± 0.6 90.6 ± 0.7 91.2 ± 2.8 94.3 ± 0.5 95.4 ± 0.4∗∗
64 95.5 ± 1.2 86.3 ± 1.0 63.5 ± 1.7 95.8 ± 0.7 96.1 ± 0.4 95.5 ± 0.6 95.4 ± 0.7 95.6 ± 0.5 96.9 ± 0.2∗∗
128 96.0 ± 0.6 87.8 ± 0.7 78.1 ± 2.0 97.2 ± 0.2 96.4 ± 0.5 96.6 ± 0.4 96.8 ± 0.3 97.0 ± 0.3 97.4 ± 0.1∗

TREC 6
32 69.4 ± 2.8 66.4 ± 3.5 41.6 ± 2.5 68.1 ± 2.3 61.0 ± 4.6 64.8 ± 2.7 72.1 ± 2.3 59.5 ± 3.3 76.1 ± 1.1∗∗
64 75.4 ± 1.4 68.0 ± 2.3 49.8 ± 1.5 78.8 ± 2.0 78.6 ± 1.3 74.2 ± 1.4 80.6 ± 0.9 77.8 ± 1.5 81.9 ± 1.3∗
128 85.0 ± 2.1 78.8 ± 2.0 67.2 ± 2.7 85.6 ± 1.8 84.2 ± 2.4 78.0 ± 1.9 86.5 ± 2.0 80.6 ± 1.4 88.9 ± 1.0∗∗

Average
32 71.9 68.6 60.4 72.6 71.0 71.9 73.2 71.8 76.5 (↑ 4.5%)
64 75.7 72.5 64.2 76.7 69.5 75.7 77.1 76.3 79.5 (↑ 3.1%)
128 78.2 75.3 70.0 79.3 78.9 78.4 79.5 78.3 81.1 (↑ 2.0%)

Table 2: Experimental result for prompt-based learning (Gao et al., 2021a) on six datasets with 10 runs.

for acquired samples; (2) they do not consider the
potential bias in uncertainty estimation.
(4) Diversity-based methods (e.g. ALPS, BERT-
KM) generally achieve better performance over the
uncertainty-based strategies. Intriguingly, we find
that directly using K-Means performs better than
other hybrid approaches with more complicated
operations (e.g. TPC, ALPS) for data selection, es-
pecially for datasets with larger number of classes.
This is because these complex methods often ig-
nore the diversity of selected samples in adjacent
clusters and therefore underperform PATRON.

5.4 Adapting PATRON to Other Settings

Here, we adapt PATRON to other related settings to
demonstrate its general applicability.
Multi-round Low-budget Active Learning. PA-
TRON can also be applied in standard multi-round
active learning. We study an AL setting where the
labeling budget is set to 512 and the queries to 64
labels in each round (8 rounds in total). More de-
tails are in Appendix B.4. Figure 3 shows the result
of PATRON and the baselines on 3 datasets (Re-
sult of the other 3 datasets are in Appendix G.3).
From the results, we observe that PATRON also
achieves competitive performance when compared
with baselines. One exception is the IMDB dataset,
where uncertainty-based methods outperform PA-
TRON when the annotation size is larger than 256.
This phenomenon indicates that when the labels
are abundant and the cold-start issue is mitigated,
uncertainty-based methods can be employed to fur-
ther enhance the performance (Yuan et al., 2020).
In this case, we can design hybrid strategies to

combine PATRON and uncertainty-based methods
for acquiring labeled data.
Prompt-based Few-shot Learning. Prompt-based
Learning (Liu et al., 2021b) is another popu-
lar approach to promote the data efficiency for
PLMs. To demonstrate the compatibility of PA-
TRON with prompt-based learning, we leverage
the same prompt as the pseudo label generation
part (Sec. 4.2), and use the same pipeline as LM-
BFF (Gao et al., 2021a) to fine-tune the PLM. Ta-
ble 2 shows the result of few-shot prompt-based
learning using {32, 64, 128} samples. From the
result, we find that LM-BFF performs better than
vanilla fine-tuning with 12.5% gain on average,
which makes further improvements difficult. How-
ever, PATRON still outperforms the best baseline by
2.0%–4.5%. We remark that PATRON is naturally
suitable for prompt-based learning, as we leverage
the uncertainty derived from prompt-based predic-
tions to assist data selection.
Semi-supervised Learning. When there are large
amounts of unlabeled data, Semi-supervised Learn-
ing (SSL) methods can be used to improve AL
performance. Here, we choose two representa-
tive SSL methods: unsupervised data augmentation
(UDA) (Xie et al., 2020) and self-training (ST) (Yu
et al., 2021). Different from the vanilla SSL set-
ting which randomly selects labeled data from the
whole unlabeled corpus, the labeled data is chosen
from the unlabeled corpus based on the designed
data selection strategies. Table 3 exhibits the results
for PATRON and baselines. Notably, when the selec-
tion strategy is sub-optimal, directly adopting SSL
approaches cannot bring additional performance
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Figure 3: The comparision of PATRON with other baselines under standard multi-
round AL setting. The results of other three datasets are deferred to Appendix G.3.
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Figure 4: The compari-
son of PATRON and random
sampling with various vol-
ume of labeled data.

Dataset (→) AG News TREC
Method (↓) UDA ST UDA ST
Random 78.0 ± 2.1 82.9 ± 1.5 56.5 ± 3.0 56.0 ± 2.5
Uncertainty 74.5 ± 1.6 71.9 ± 2.0 51.6 ± 1.5 44.2 ± 2.3
CAL 71.0 ± 2.0 66.8 ± 2.7 23.5 ± 2.1 22.4 ± 2.1
BERT-KM 83.4 ± 1.0 85.2 ± 1.1 68.4 ± 1.6 67.2 ± 2.1
Coreset 82.1 ± 1.0 85.4 ± 0.6 51.1 ± 2.0 48.0 ± 2.4
Margin-KM 77.1 ± 1.2 83.1 ± 1.4 54.4 ± 1.8 50.5 ± 1.6
ALPS 82.7 ± 0.8 84.5 ± 0.8 68.8 ± 1.6 71.0 ± 1.2
TPC 83.8 ± 0.5 85.5 ± 0.4 48.0 ± 1.9 48.8 ± 2.1
PATRON 84.9 ± 0.5 86.4 ± 0.3 71.7 ± 1.0 73.6 ± 0.5

Table 3: Experimental results for combining two semi-
supervised learning: unsupervised data augmentation
(UDA) and self-training (ST) with different data selec-
tion strategies on 2 datasets with the budget of 32 labels.

gains. This is because the PLM fine-tuned on those
samples is likely to produce incorrect pseudo la-
bels. As a result, such incorrect labeled samples
will hurt the final performance. In contrast, we ob-
serve that PATRON leads to better performance for
PLMs than baselines, which indicates the potentials
of combining PATRON with SSL approaches.

5.5 Label Efficiency Analysis

Figure 4 demonstrate the average performance on
six datasets with different volume of labeled data
selected via random sampling and PATRON. The
label efficiency curve for each dataset is shown in
Fig. 9. We notice that PATRON largely alleviates
the label scarsity bottleneck: with 128 labels as the
budget, PATRON achieves better performance with
2X labels. Furthermore, after collecting 512 labels
with multi-round AL (Sec. 5.4), PATRON achieves
95% of the fully-supervised performance on av-
erage, which is comparable with the performance
using 3X labels based on random sampling. These
results clearly justify that PATRON is capable of
promoting the label efficiency of PLMs.

5.6 Ablation Study

We study the effects of different components of PA-
TRON, including the prompt-based uncertainty cali-

bration in Eq. 4 and propagation in Eq. 7 (Prompt,
UC and UP respectively), the feature encoder (Sim-
CSE)8, as well as the PTR strategy. We evaluated
on the TREC and Yahoo! datasets with 32 labels
as the budget. The results in Fig. 5(a) show that
all these components contribute to the final perfor-
mance of PATRON. We find that the SimCSE brings
considerable performance gains, as the embeddings
generated via RoBERTa-base suffer from the de-
generation issue (Li et al., 2020) and become less
discriminative. Besides, the usage of prompts, UC,
and UP enable us to complement the SimCSE em-
beddings with the prompt-based pseudo labels and
improve the performance significantly. Lastly, PTR

is beneficial for AL by regularizing the distance
among selected samples.

5.7 PATRON is Robust to Hyperparameters

PATRON introduces three additional hyperparam-
eters (ρ in Eq. 6, β in Eq. 8 and γ in Eq. 10), and
Figure 5(b)–5(d) show the effects of them in PA-
TRON on two datasets with 32 labels as the budget.
The results on other datasets are in Appendix G.4.

In general, the model is robust to them as the
PATRON outperforms the baselines in most cases
with different hyperparameters. We also notice that
the performance is not sensitive to γ. Besides, the
performance first increases then decreases for both
ρ and β. For ρ, setting it too large makes the propa-
gated uncertainty too small, and setting it too small
makes the influence of neighbor samples too strong
and hurt data utility estimation. For β, the sampled
data is less informative with a too large β, while be-
ing too close from others during initialization with
a too small β. To sum up, the additional hyperpa-
rameters of PATRON will not increase the burden of
hyperparameter tuning, but improve the modeling

8For PATRON w/o Prompt, we use the same value 1 to
substitute the uncertainty in Eq. 5. For PATRON w/o SimCSE,
we use the RoBERTa-base to generate document embeddings.

2506



40

45

50

55

60

Yahoo!
50

55

60

65

70

TREC

w/o SimCSE
w/o PTR
w/o Prompt

w/o UP
w/o UC
PATRON

(a) Ablation Study

0.01 0.05 0.1 1
40

45

50

55

60

65

A
cc

ur
ac

y 
(in

 %
)

Best baseline (Yahoo!)

Best baseline (TREC)

Yahoo!
TREC

(b) Effect of ρ.

0.5 1 5 10
40

45

50

55

60

65

A
cc

ur
ac

y 
(in

 %
)

Best baseline (Yahoo!)

Best baseline (TREC)

Yahoo!
TREC

(c) Effect of β.

0.1 0.3 0.5
40

45

50

55

60

65

A
cc

ur
ac

y 
(in

 %
)

Best baseline (Yahoo!)

Best baseline (TREC)

Yahoo!
TREC

(d) Effect of γ.

Figure 5: Ablation and Hyper-parameter Study.

(a) PATRON before PTR. (b) PATRON after PTR.

Figure 6: Illustration of PATRON on AG News Dataset. Different colors stands for different classes. Our selected
samples are denoted as red triangles.

flexibility of PATRON to adapt to different tasks.

5.8 Case Study

Figure 6 gives an example of the selected samples
of PATRON on AG News dataset. We can see that
the initialized solution after Eq. 8 still suffers from
the issue of limited coverage, and some of the sam-
ples are very close. Fortunately, after the PTR step,
the diversity of selected samples is much improved.
This result suggests the PTR has successfully ful-
filled its purpose for diversity-promoting selection.

6 Discussion

Connection to Weakly-supervised Learning.
Our method can also be considered as weakly-
supervised data selection, where only class-
indicating keywords are provided. Although
such formulations have been adopted for NLP
tasks (Meng et al., 2019, 2020; Hu et al., 2022) (see
Zhang et al. (2022a) for a detailed survey), how to
effectively leverage such weak supervision signals
for data selection has not been widely explored. In
this study, we tackle this research problem to facil-
itate few-shot PLM fine-tuning, and demonstrate

such task-specific weak supervision is beneficial
for downstream tasks.

Data Selection under Low and High Budget. In
this study, we mainly focus on cold-start setting
to select data without any labeled data. This is
different from traditional AL pipelines, and we do
not claim PATRON outperforms AL methods under
high-budget scenarios. However, experiments show
our method shines under low-budget setting, and
PATRON can also be leveraged in earlier rounds of
standard AL to improve the label efficiency.

7 Conclusion

We developed PATRON, a data selection method for
pre-trained language models (PLMs) under cold-
start scenarios. By leveraging prompts, we can
distill the task-specific knowledge from the frozen
PLM to guide data acquisition. Moreover, we de-
velop two techniques, namely uncertainty propa-
gation and predict-then-rewrite (PTR) to achieve
both sample representativeness and diversity. The
experiments on six text classification tasks demon-
strate the advantages of PATRON against baselines
for few-shot PLM fine-tuning.
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Limitations

In this work, we only focus on designing strate-
gies for PLMs with the MLM-style pre-training
objective, and do not account for other types of
pre-trained language models such as discrimina-
tive PLMs (Clark et al., 2020; Shen et al., 2021).
However, as there are recent works that aim to de-
sign prompts for discriminative PLMs (Yao et al.,
2022; Xia et al., 2022), PATRON can be potentially
combined with them to improve the data efficiency.

We are also aware that there exists advanced few-
shot fine-tuning techniques for PLMs recently (Hu
et al., 2022; Tam et al., 2021; Zhang et al., 2022b,
inter alia). We argue that PATRON does not rely
on a specific fine-tuning method, and can be com-
bined with them to further improve the perfor-
mance. Lastly, as prompting methods have been
widely adopted to other tasks such as natural lan-
guage inference (Gao et al., 2021a) and relation
extraction (Han et al., 2021), it is possible to ex-
tend our method to these tasks.

Acknowledgements

We would like to thank the anonymous review-
ers from the ACL Rolling Review for their feed-
backs. This work was supported in part by NSF
IIS-2008334, IIS-2106961, CAREER IIS-2144338,
and ONR MURI N00014-17-1-2656.

References
Roee Aharoni and Yoav Goldberg. 2020. Unsupervised

domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal. 2020. Deep
batch active learning by diverse, uncertain gradient
lower bounds. In International Conference on Learn-
ing Representations.

Jonathan Bragg, Arman Cohan, Kyle Lo, and Iz Beltagy.
2021. Flex: Unifying evaluation for few-shot nlp.
Advances in Neural Information Processing Systems,
34.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera
Demberg. 2021. On training instance selection for
few-shot neural text generation. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 8–13, Online. Asso-
ciation for Computational Linguistics.

Si Chen, Tianhao Wang, and Ruoxi Jia. 2021.
Zero-round active learning. arXiv preprint
arXiv:2107.06703.

Xinyun Chen and Yuandong Tian. 2019. Learning to
perform local rewriting for combinatorial optimiza-
tion. Advances in Neural Information Processing
Systems, 32.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
OpenPrompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 105–113, Dublin, Ire-
land. Association for Computational Linguistics.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaud-
hary, Onur Celebi, Michael Auli, Veselin Stoyanov,
and Alexis Conneau. 2021. Self-training improves
pre-training for natural language understanding. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5408–5418. Association for Computational
Linguistics.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.
Active Learning for BERT: An Empirical Study. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7949–7962. Association for Computational
Linguistics.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021a.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics

2508

https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://doi.org/10.18653/v1/2021.acl-short.2
https://doi.org/10.18653/v1/2021.acl-short.2
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2021.naacl-main.426
https://doi.org/10.18653/v1/2021.naacl-main.426
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295


and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, et al. 2020. Evaluating models’ local
decision boundaries via contrast sets. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1307–1323, Online. Association
for Computational Linguistics.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall.
2022. Active learning on a budget: Opposite strate-
gies suit high and low budgets. In Proceedings of the
39th International Conference on Machine Learning,
Proceedings of Machine Learning Research, pages
8175–8195. PMLR.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021. Ptr: Prompt tuning
with rules for text classification. arXiv preprint
arXiv:2105.11259.

Peiyun Hu, Zack Lipton, Anima Anandkumar, and Deva
Ramanan. 2019. Active learning with partial feed-
back. In International Conference on Learning Rep-
resentations.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Jingang Wang, Juanzi Li, Wei Wu, and Maosong
Sun. 2022. Knowledgeable prompt-tuning: Incor-
porating knowledge into prompt verbalizer for text
classification. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2225–2240,
Dublin, Ireland. Association for Computational Lin-
guistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, and
Christopher Manning. 2021. Mind your outliers! in-
vestigating the negative impact of outliers on active
learning for visual question answering. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7265–7281, Online.
Association for Computational Linguistics.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

David D Lewis and William A Gale. 1994. A sequential
algorithm for training text classifiers. In Proceedings
of the 17th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 3–12.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In The 19th International Conference on Com-
putational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Katerina Margatina, Loic Barrault, and Nikolaos Ale-
tras. 2022. On the importance of effectively adapting
pretrained language models for active learning. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 825–836, Dublin, Ireland. As-
sociation for Computational Linguistics.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the

2509

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://proceedings.mlr.press/v162/hacohen22a.html
https://proceedings.mlr.press/v162/hacohen22a.html
https://openreview.net/forum?id=HJfSEnRqKQ
https://openreview.net/forum?id=HJfSEnRqKQ
https://aclanthology.org/2022.acl-long.158
https://aclanthology.org/2022.acl-long.158
https://aclanthology.org/2022.acl-long.158
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2021.acl-long.564
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://aclanthology.org/2022.acl-short.93
https://aclanthology.org/2022.acl-short.93
https://aclanthology.org/2021.emnlp-main.51
https://aclanthology.org/2021.emnlp-main.51


2021 Conference on Empirical Methods in Natural
Language Processing, pages 650–663, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han.
2019. Weakly-supervised hierarchical text classifi-
cation. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 6826–6833.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong,
Heng Ji, Chao Zhang, and Jiawei Han. 2020. Text
classification using label names only: A language
model self-training approach. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9006–9017.
Association for Computational Linguistics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Thomas Müller, Guillermo Pérez-Torró, Angelo Basile,
and Marc Franco-Salvador. 2022. Active few-shot
learning with fasl. arXiv preprint arXiv:2204.09347.

Chanho Park, Rehan Ahmad, and Thomas Hain. 2022.
Unsupervised data selection for speech recognition
with contrastive loss ratios. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8587–8591.
IEEE.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Dongyu Ru, Jiangtao Feng, Lin Qiu, Hao Zhou, Mingx-
uan Wang, Weinan Zhang, Yong Yu, and Lei Li. 2020.
Active sentence learning by adversarial uncertainty
sampling in discrete space. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 4908–4917, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Bernhard Scholkopf, Kah-Kay Sung, Christopher JC
Burges, Federico Girosi, Partha Niyogi, Tomaso Pog-
gio, and Vladimir Vapnik. 1997. Comparing support
vector machines with gaussian kernels to radial ba-
sis function classifiers. IEEE transactions on Signal
Processing, 45(11):2758–2765.

Christopher Schröder, Andreas Niekler, and Martin
Potthast. 2022. Revisiting uncertainty-based query
strategies for active learning with transformers. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2194–2203, Dublin, Ire-
land. Association for Computational Linguistics.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations.

Burr Settles. 2011. From theories to queries: Active
learning in practice. In Active Learning and Experi-
mental Design workshop, pages 1–18. JMLR Work-
shop and Conference Proceedings.

Jiaming Shen, Jialu Liu, Tianqi Liu, Cong Yu, and Ji-
awei Han. 2021. Training ELECTRA augmented
with multi-word selection. In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP
2021, pages 2475–2486, Online. Association for
Computational Linguistics.

Eyal Shnarch, Ariel Gera, Alon Halfon, Lena Dankin,
Leshem Choshen, Ranit Aharonov, and Noam
Slonim. 2022. Cluster & tune: Boost cold start per-
formance in text classification. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7639–7653, Dublin, Ireland. Association for Compu-
tational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642. Association for Computational Linguis-
tics.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Derek Tam, Rakesh R. Menon, Mohit Bansal, Shashank
Srivastava, and Colin Raffel. 2021. Improving and
simplifying pattern exploiting training. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4980–4991,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

2510

https://doi.org/10.18653/v1/2020.emnlp-main.724
https://doi.org/10.18653/v1/2020.emnlp-main.724
https://doi.org/10.18653/v1/2020.emnlp-main.724
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2020.findings-emnlp.441
https://doi.org/10.18653/v1/2020.findings-emnlp.441
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2022.findings-acl.172
https://doi.org/10.18653/v1/2022.findings-acl.172
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://doi.org/10.18653/v1/2021.findings-acl.219
https://doi.org/10.18653/v1/2021.findings-acl.219
https://aclanthology.org/2022.acl-long.526
https://aclanthology.org/2022.acl-long.526
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2021.emnlp-main.407
https://doi.org/10.18653/v1/2021.emnlp-main.407


Nguyen Xuan Vinh, Julien Epps, and James Bailey.
2010. Information theoretic measures for cluster-
ings comparison: Variants, properties, normalization
and correction for chance. The Journal of Machine
Learning Research, 11:2837–2854.

Xudong Wang, Long Lian, and Stella X Yu.
2021. Unsupervised data selection for data-
centric semi-supervised learning. arXiv preprint
arXiv:2110.03006.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Awadallah, and Jianfeng Gao. 2022.
LiST: Lite prompted self-training makes parameter-
efficient few-shot learners. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 2262–2281, Seattle, United States. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, et al. 2020. Transformers: State-
of-the-art natural language processing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 38–45, Online. Association for Compu-
tational Linguistics.

Mengzhou Xia, Mikel Artetxe, Jingfei Du, Danqi Chen,
and Ves Stoyanov. 2022. Prompting electra: Few-
shot learning with discriminative pre-trained models.
arXiv preprint arXiv:2205.15223.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33.

Ran Xu, Yue Yu, Hejie Cui, Xuan Kan, Yanqiao Zhu,
Joyce C. Ho, Chao Zhang, and Carl Yang. 2023.
Neighborhood-regularized self-training for learning
with few labels. In Proceedings of the Thirty-Seventh
AAAI Conference on Artificial Intelligence.

Yuan Yao, Bowen Dong, Ao Zhang, Zhengyan Zhang,
Ruobing Xie, Zhiyuan Liu, Leyu Lin, Maosong Sun,
and Jianyong Wang. 2022. Prompt tuning for discrim-
inative pre-trained language models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 3468–3473, Dublin, Ireland. Association
for Computational Linguistics.

Yue Yu, Lingkai Kong, Jieyu Zhang, Rongzhi Zhang,
and Chao Zhang. 2022. AcTune: Uncertainty-based
active self-training for active fine-tuning of pretrained
language models. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 1422–1436, Seattle,
United States. Association for Computational Lin-
guistics.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo
Zhao, and Chao Zhang. 2021. Fine-tuning pre-
trained language model with weak supervision: A

contrastive-regularized self-training approach. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1063–1077, Online. Association for Computa-
tional Linguistics.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-
Graber. 2020. Cold-start active learning through self-
supervised language modeling. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7935–7948,
Online. Association for Computational Linguistics.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang,
and Alexander Ratner. 2022a. A survey on
programmatic weak supervision. arXiv preprint
arXiv:2202.05433.

Mike Zhang and Barbara Plank. 2021. Cartography ac-
tive learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 395–
406, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun Chen.
2022b. Differentiable prompt makes pre-trained lan-
guage models better few-shot learners. In Interna-
tional Conference on Learning Representations.

Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song, and
Chao Zhang. 2022c. Prompt-based rule discovery
and boosting for interactive weakly-supervised learn-
ing. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 745–758, Dublin, Ireland.
Association for Computational Linguistics.

Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020a. Se-
qMix: Augmenting active sequence labeling via se-
quence mixup. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 8566–8579, Online. As-
sociation for Computational Linguistics.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q
Weinberger, and Yoav Artzi. 2020b. Revisit-
ing few-sample bert fine-tuning. arXiv preprint
arXiv:2006.05987.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28:649–657.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages
12697–12706. PMLR.

2511

https://doi.org/10.18653/v1/2022.findings-naacl.174
https://doi.org/10.18653/v1/2022.findings-naacl.174
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.findings-acl.273
https://doi.org/10.18653/v1/2022.findings-acl.273
https://doi.org/10.18653/v1/2022.naacl-main.102
https://doi.org/10.18653/v1/2022.naacl-main.102
https://doi.org/10.18653/v1/2022.naacl-main.102
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2021.naacl-main.84
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2021.findings-emnlp.36
https://doi.org/10.18653/v1/2021.findings-emnlp.36
https://openreview.net/forum?id=ek9a0qIafW
https://openreview.net/forum?id=ek9a0qIafW
https://doi.org/10.18653/v1/2022.acl-long.55
https://doi.org/10.18653/v1/2022.acl-long.55
https://doi.org/10.18653/v1/2022.acl-long.55
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691


IMDB Yelp-full AG News Yahoo! DBPedia TREC Mean
94.1 66.4 94.0 77.6 99.3 97.2 88.1

Table 4: Fully supervised performance on six datasets.

A Datasets Details

A.1 Datasets for the Main Experiment

The seven benchmarks in our experiments are all
publicly available. The fully supervised perfor-
mance on six datasets is shown in table 4. Below
are the links to downloadable versions of these
datasets.
⋄ IMDB: We use the datasets from https://
huggingface.co/datasets/imdb.
⋄ Yelp-full: Dataset is available at
https://github.com/yumeng5/WeSHClass/
tree/master/yelp.
⋄ AG News: Dataset is available at https://
huggingface.co/datasets/ag_news.
⋄ Yahoo! Answers: Dataset is available
at https://huggingface.co/datasets/yahoo_
answers_topics.
⋄ DBPedia: Dataset is available at https://
huggingface.co/datasets/dbpedia_14.
⋄ TREC: Dataset is available at https://
huggingface.co/datasets/trec. Note that we
only use the coarse-grained class labels.

A.2 Train/Test Split

For all the datasets, we use the original train/test
split from the web. To keep the size of the develop-
ment set small (Bragg et al., 2021), we randomly
sample 32 data from the original training set as the
development set, and regard the remaining as the
unlabeled set Du. We choose the model checkpoint
with the best performance on the development set
for evaluation on the test set for both our method
and baselines.

A.3 Datasets for OOD Evaluation

We use 3 datasets as OOD tasks for evaluating
PATRON and baselines. The details are listed as
belows.
⋄ SST-2 (Socher et al., 2013)9 is another movie re-
view sentiment analysis dataset. The key difference
between the SST-2 and IMDB datasets is that they
consist of movie reviews with different lengths. We
use the original development set (containing 872
samples) for evaluation.

9https://huggingface.co/datasets/sst2

⋄ IMDB Contrast Set (IMDB-CS) (Gardner et al.,
2020)10 and IMDB Counterfactually Augmented
Dataset (IMDB-CAD) (Kaushik et al., 2020)11

are two challenging sentiment analysis datasets
(both of them contain 488 examples) which can be
used to evaluate a model’s true linguistic capabil-
ities more accurately. Specifically, for IMDB-CS,
NLP researchers creates contrast sets via manu-
ally change the ground-truth label of the test in-
stances in a small but semantically meaningful way.
For IMDB-CAD, annotators are required to make
minor changes to examples in the original IMDB
dataset to flip the sentiment labels, without chang-
ing the majority of contents.

A.4 Prompt Format
For these datasets, we directly use manual prompts
that have been used in previous works (Schick and
Schütze, 2021a; Gao et al., 2021a; Hu et al., 2022).
The details of the prompts used in our experiments
is listed in Table 5.

A.5 The Quality of Prompts and SimCSE
Embeddings

We list the quality of prompts as well as SimCSE
embeddings in this part. From prompts, we use the
zero-shot accuracy for the unlabeled data as the
quality measure. From embeddings, we perform
clustering to evaluate the quality of the SimCSE
embeddings. We use K-Means as the clustering
method, and use two metrics, namely Normalized
Mutual Information (NMI), and Adjusted Rand In-
dex (ARI) (Vinh et al., 2010) for evaluation. For
these metrics, higher value indicates better quality.
The results are shown in Table 6. We observe that
although the quality of these two terms are high
for some tasks such as IMDB and AG News, for
other tasks, the embeddings are less discriminative
and the prompts are less accurate. These pose spe-
cific challenges for PATRON to select most useful
data with noisy prompt-based predictions with the
imperfect embeddings.

B Experiment Setups

B.1 Main Experiment Setups
In experiments, both our method and baselines are
run with 5 different random seed and the result is

10https://github.com/allenai/contrast-sets/
tree/main/IMDb

11https://github.com/acmi-lab/
counterfactually-augmented-data/tree/master/
sentiment
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Dataset Domain Classes c #Unlabeled #Test Type Template Label words

IMDB Movie Review 2 25k 25k sentiment ⟨S⟩. It was [MASK]. terrible, great
Yelp-full Restaurant Review 2 560k 38k sentiment ⟨S⟩. It was [MASK]. terrible, bad, okay, good, great
AG News News 4 120k 7.6k News Topic [MASK] News: ⟨S⟩ World, Sports, Business, Tech
Yahoo! Answers Web QA 10 300k 60k QA Topic [Category: [MASK]] ⟨S⟩ Society, Science, Health, Education, Computer,

Sports, Business, Entertainment, Relationship, Politics
DBPedia Wikipedia Text 14 420k 70k Wikipedia Topic ⟨T ⟩⟨S⟩.⟨T ⟩ is a [MASK]] Company, School, Artist, Athlete, Politics,

Transportation, Building, Mountain, Village,
Animal, Plant, Album, Film, Book

TREC Web Text 6 5k 0.6k Question Topic ⟨S⟩. It was [MASK]. Expression, Entity, Description, Human, Location, Number

Table 5: Statistics, manual templates, and label words used in our experiments. For DBPedia and Yahoo! Answers,
we randomly sample 30k sample from each class due to the limited computational resource. c: number of classes.

Datasets Zero-shot Acc. Zero-shot Acc. NMI ARI
(in %) after UC. (in %)

IMDB 73.29 83.13 0.249 0.319
Yelp-full 32.76 38.62 0.079 0.056
AG News 81.43 80.66 0.443 0.432
Yahoo! Answers 44.13 47.55 0.274 0.193
DBPedia 73.78 81.13 0.717 0.595
TREC 35.69 38.51 0.111 0.088

Table 6: Quality of Prompts and SimCSE embeddings
for six datasets used in our experiments.

based on the average performance on them. We
have show both the mean and the standard deviation
of the performance in our experiment sections.

B.2 Experiment Setups for Prompt-based
Few-shot Learning

We mainly use the pipeline in LM-BFF (Gao et al.,
2021a) for prompt-based learning. For both PA-
TRON and baselines, we use the prompt defined in
Table 5 to fine-tune PLMs. We use OpenPrompt
toolkit (Ding et al., 2022) for implementation and
use RoBERTa-base as the backbone for prompt-
based learning.

B.3 Experiment Setups for Semi-supervised
Learning

For semi-supervised learning, we mainly adopt Un-
supervised Data Augmentation (UDA) (Xie et al.,
2020) and self-training (Du et al., 2021) as two
examples. The main idea of UDA is leveraging
data augmentation techniques (TF-IDF word re-
placement or back translation) with the consistency-
based loss for unlabeled data to improve the model
performance. Since we do not have access to TPU
service and need to use a smaller amount of unla-
beled data, we implement UDA on our own. For
self-training, it generates pseudo labels on unla-
beled data, and encourages models to output confi-
dent predictions on these data. Please refer to the
original papers for the details of these methods.

B.4 Experiment Setups for Standard
Multi-round Active Learning

For standard multi-round active learning, we follow
the standard multi-round active learning pipelines
introduced in (Margatina et al., 2021; Yuan et al.,
2020), but in the beginning round, no initial labeled
data is given. In each round, we initialize the PLM
from the pretrained checkpoint to avoid overfitting
to the data collected in earlier rounds as observed
by Hu et al. (2019).

C Details on Implementations

C.1 Computational Setups
Overall we report the results of 3240 BERT
fine-tuning runs for main experiments (2 settings ×
6 datasets × 3 labeling budgets × 9 methods × 10
repetitions). The computing infrastructure used for
experiments are listed as follows.
System: Ubuntu 18.04.3 LTS; Python 3.8; Pytorch
1.10.
CPU: Intel(R) Core(TM) i7-5930K CPU @
3.50GHz.
GPU: NVIDIA A5000.

C.2 Number of Parameters
In our main experiments, PATRON and all base-
lines use RoBERTa-base (Liu et al., 2019) with a
task-specific classification head on the top as the
backbone, which contains 125M trainable parame-
ters. We do not introduce any other parameters in
our experiments.

C.3 Implementations of Baselines
For Random, Uncertainty, BERT-KM, Margin-
KM, we implement them by ourselves. For other
baselines, we run the experiments based on the
implementations on the web. We list the link for
the implementations as belows:
⋄ Coreset: https://github.com/google/
active-learning/tree/master/sampling_
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Hyper-parameter IMDB Yelp-full AG News Yahoo! DBPedia TREC

Maximum Tokens 256 256 128 128 128 64
Learning Rate 2e-5 2e-5 5e-5 5e-5 1e-5 2e-5

k 1000 50
ρ 0.05 0.05 0.1 0.05 0.05 0.1
γ 0.3 0.3 0.5 0.3 0.1 0.3
β 0.5 1 0.5 5 1 1
m 0.5

Table 7: Hyper-parameter configurations. Note that we only keep certain number of tokens.

methods.
⋄ ALPS: https://github.com/forest-snow/
alps.
⋄ CAL: https://github.com/mourga/
contrastive-active-learning.
⋄ TPC: https://github.com/avihu111/
TypiClust.

C.4 Hyper-parameters for Model Training
We use AdamW (Loshchilov and Hutter, 2019) as
the optimizer, and choose the learning rate from
{1×10−5, 2×10−5, 5×10−5}, the batch size from
{4, 8, 16}, and set the number of training epochs
to 15 for both fine-tuning, prompt-based few-shot
learning, and multi-round active learning.

For semi-supervised learning, we initialize the
model with the RoBERTa-base fine-tuned on the
acquired labeled data (based on different data se-
lection strategies). Then, we set the batch size for
unlabeled data to 32, and choose the learning rate
from {1×10−6, 5×10−6, 1×10−5} since we em-
pirically find that smaller learning rates lead to the
better training stability. We use the model with best
performance on the development set to determine
the best set of parameter for testing.

C.5 Hyper-parameters for AL
Implementation

PATRON introduces several hyper-parameters in-
cluding k in Eq. 2, K for calculating XKNN(x) ,K ′

for calculating Xc-KNN(x), β, γ,m in Eq. 8, ρ in
Eq. 6, but most of them are keep fixed during our
experiments, thus it does not require heavy hyper-
parameter tuning.

In our experiments, we keep K ′ = 10, K =
50, m = 0.5 for all datasets. For other pa-
rameters, we iteratively find the optimal hyper-
parameters for each datasets. We search ρ from
{0.01, 0.05, 0.1, 1}, β from {0.5, 1, 5, 10}, γ from
{0.1, 0.3, 0.5}, and select the best hyperparame-
ter with the best performance on the development

set. All results are reported as the average over ten
runs. The number for hyperparameters we use are
shown in Table 7.

For other baselines, we follow the exact parame-
ter tuning method mentioned in the original paper
for hyperparameter tuning. For CAL (Margatina
et al., 2021) and TPC (Hacohen et al., 2022), we
tune the number for KNN k from [5, 10, 20, 50]
and report the best performance.

D Adapting PATRON to Multi-round AL

When applying PATRON to Multi-round AL, since
there exists a warm-start model with a set of labeled
data, we directly use the embedding from the warm-
start model to generate features and leverage it
for uncertainty estimation. After that, uncertainty
propagation can be directly adopted for estimating
the utility of training data. For the PTR step, since
we already have a smaller number of the labeled
samples Dl, the Eq. 9 can be refined as

Xc-KNN,i = KNN(qi,Q∪Dl), (11)

as we don’t want the selected samples to be too
close to samples in Dl. The other steps of PTR are
remain unchanged.

E Time Complexity of PATRON

The additional time introduced by PATRON mainly
comes from the KNN step in the uncertainty propa-
gation as well as the K-Means partitioning. How-
ever, these operations have been efficiently sup-
ported via approximate nearest neighbor search
(ANN) (Johnson et al., 2019). As a result, PATRON

will not incur excessive computational overhead.
Table 8 exhibits the running time of PATRON

and baselines on the Yahoo! Answers dataset for
selecting 64 samples. Overall, compared with the
recent baselines such as TPC (Hacohen et al., 2022)
and Margin-KM (Müller et al., 2022), the addi-
tional time introduced is small. In particular, the
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Method Time

Random 0.1s
Uncertainty 461s
CAL 649s
BERT-KM 724s
Coreset 872s
Margin-KM 1389s
ALPS 682s
TPC 1448s
PATRON 1480s

Table 8: The running time of PATRON and different
baselines on Yahoo! Answers dataset.

uncertainty propagation takes 114 seconds, and the
predict-then-propagate step only takes 5 seconds.
This verifies that our key designs do not takes much
time and are scalable for large datasets.

F Additional Analysis

In this section, we provide detailed comparison on
different data selection strategies, aiming to bet-
ter understand their relative advantages and disad-
vantages. Specifically, we follow the method in
Ein-Dor et al. (2020) and focus on three types of
metrics: class distribution, feature diversity, and
representativeness. All of these metrics are calcu-
lated based on the results with 128 labels as the
budget.

F.1 Class Distribution of the Selected Data

We calculate the class distribution of the selected
samples. Denote the number of samples selected
from each class as n1, . . . , nc where

∑c
i=1 ni =

|B| (|B| = 128 in this case), we use two metrics,
namely imbalance value and label distribution di-
vergence value to measure the class distribution.
Specifically, imbalance value (IMB) is calculated
as

IMB =
maxi=1,...,c(ni)

mini=1,...,c(ni)
. (12)

The higher IMB value indicates the more imbal-
anced distribution. Note that when data from one
or more classes are totally not sampled, the IMB
value will become infinity (+inf).

As the label distribution of some datasets are
imbalanced, we introduce another metrics named
label distribution divergence, to calculate the dis-
tance between the distribution of ground-truth la-
bels and labels sampled by baselines or our method.
Specifically, denote pi as the frequency of label i.

Then the label distribution divergence (LDD) is
calculated as

LDD = DKL (q||p) = −
∑

i

qi log (pi/qi). (13)

where qi = ni/|B| is equal to the frequency of
class i in the selected samples. The higher LDD
value indicates the more biased sampled distribu-
tion from the original distribution.

Table 9 and 10 show the IMB and LDD value
for all methods on six datasets. From the results,
we find that for uncertainty-based approaches, the
corresponding values for these two metrics are very
high. This indicates that the selected samples are
highly imbalanced. As there does not exist any
startup labels for cold-start data selection, fine-
tuning PLMs on such imbalanced data leads to the
biased predictions. These results explain why the
performance of such uncertainty-based methods
are extremely poor under cold-start scenarios.

F.2 Feature Diversity of the Selected Data

Apart from the categorical-level statistics, we aim
to measure the diversity from the feature space.
For each sample x, we use the SimCSE embed-
dings (used in Section 4.1) to obtain its embed-
dings. Then, we follow the method in (Ein-Dor
et al., 2020) to calculate the diversity over the sam-
ples within the batch Q as

D(Q) =


 1

|U |
∑

xi∈U
min
xj∈Q

d (xi, xj)




−1

, (14)

where d(xi, xj) is the Euclidean distance between
xi and xj .

Table 11 shows the diversity of different data
selection methods. Overall, BERT-KM achieves
the best sample diversity, as its objective mainly
focuses on promoting the sample diversity. In con-
trast, Coreset method cannot improve the sample
diversity for all datasets, as it aims to sample data
that are farthest from the already selected instances,
which can often be outliers. Compared with the
other hybrid methods such as ALPS and TPC, PA-
TRON overall has a better sample diversity. More-
over, PTR strategy further improve the sample di-
versity on 5 of 6 datasets. This indicates that PTR

fulfills the purpose of improving the diversity of
the selected examples.
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Task c Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON

IMDB 2 1.207 6.111 7.000 1.286 1.000 1.133 1.783 2.765 1.286
Yelp-F 5 1.778 3.800 13.500 2.000 6.000 1.600 2.833 5.200 2.250

AG News 4 1.462 28.000 2.000 1.500 2.000 2.625 1.667 1.818 1.500
Yahoo! Ans. 10 3.000 12.000 +inf 2.250 7.000 10.000 5.500 3.333 5.500

DBPedia 14 3.500 +inf +inf 3.500 9.000 12.000 9.000 9.000 2.333
TREC 6 8.000 16.000 +inf 10.500 +inf 18.000 9.500 21.000 15.000

Table 9: The label imbalance value (IMB) of different data selection approaches. The lower value indicates more
balanced sampling over classes.

Task c Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON

IMDB 2 0.004 0.287 0.410 0.008 0.000 0.002 0.040 0.114 0.008
Yelp-F 5 0.021 0.094 0.323 0.030 0.147 0.014 0.046 0.137 0.051

AG News 4 0.010 0.253 0.027 0.011 0.030 0.054 0.016 0.027 0.012
Yahoo! Ans. 10 0.039 0.172 1.223 0.046 0.170 0.150 0.101 0.098 0.090

DBPedia 14 0.067 1.074 2.639 0.049 0.120 0.468 0.117 0.117 0.041
TREC 6 0.015 0.081 1.598 0.070 0.078 0.085 0.030 0.212 0.063

Table 10: The label divergence value (LDD) of different data selection approaches. The lower value indicates more
balanced sampling over classes.

Task c Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON w/o PTR PATRON

IMDB 2 0.646 0.647 0.603 0.687 0.643 0.642 0.647 0.648 0.670 0.684
Yelp-F 5 0.645 0.626 0.587 0.685 0.456 0.626 0.680 0.677 0.681 0.685

AG News 4 0.354 0.295 0.339 0.436 0.340 0.328 0.385 0.376 0.420 0.423
Yahoo! Ans. 10 0.430 0.375 0.338 0.470 0.400 0.388 0.441 0.438 0.481 0.486

DBPedia 14 0.402 0.316 0.244 0.461 0.381 0.361 0.420 0.399 0.456 0.459
TREC 6 0.301 0.298 0.267 0.337 0.298 0.307 0.339 0.326 0.337 0.338

Table 11: The diversity value of different data selection approaches. The higher value indicates higher diversity.

Task c Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON w/o PTR PATRON

IMDB 2 0.742 0.749 0.685 0.759 0.735 0.717 0.731 0.764 0.802 0.806
Yelp-F 5 0.731 0.711 0.702 0.825 0.504 0.701 0.823 0.827 0.825 0.824

AG News 4 0.656 0.601 0.683 0.733 0.646 0.624 0.716 0.816 0.742 0.749
Yahoo! Ans. 10 0.667 0.614 0.670 0.680 0.621 0.605 0.678 0.784 0.782 0.787

DBPedia 14 0.678 0.610 0.568 0.698 0.666 0.597 0.696 0.802 0.736 0.735
TREC 6 0.435 0.435 0.424 0.518 0.442 0.442 0.520 0.553 0.509 0.512

Table 12: The representativeness value of different data selection approaches. The higher value indicates better
representativeness.

Datasets SST-2 IMDB IMDB SST-2 IMDB IMDB SST-2 IMDB IMDB
Test Contrast Counterfactual Test Contrast Counterfactual Test Contrast Counterfactual

Budget |B| 32 64 128

Random 76.2 ± 2.4 76.1 ± 4.0 80.5 ± 4.7 80.0 ± 1.2 77.0 ± 1.1 80.8 ± 2.0 83.0 ± 2.1 83.8 ± 1.2 87.9 ± 1.6
Uncertainty 78.0 ± 2.3 66.0 ± 4.0 69.9 ± 3.1 80.0 ± 1.5 75.5 ± 0.4 82.6 ± 2.9 83.6 ± 2.3 81.6 ± 1.0 85.6 ± 0.8
CAL 76.2 ± 3.1 76.5 ± 2.9 77.6 ± 3.2 77.5 ± 3.5 76.7 ± 3.9 78.7 ± 3.8 78.3 ± 3.4 85.4 ± 0.9 90.8 ± 0.8

BERT-KM 76.9 ± 1.3 75.6 ± 2.0 81.2 ± 2.0 81.5 ± 1.4 82.3 ± 4.2 85.8 ± 4.4 84.6 ± 3.0 86.2 ± 1.4 90.3 ± 0.5
Coreset 71.6 ± 2.0 60.7 ± 3.4 63.7 ± 4.3 79.6 ± 3.4 66.3 ± 5.5 66.6 ± 4.4 82.2 ± 2.5 80.5 ± 2.6 83.7 ± 3.6

Margin-KM 71.5 ± 3.4 61.2 ± 3.0 57.5 ± 2.4 80.0 ± 3.0 74.9 ± 1.6 79.3 ± 2.5 80.9 ± 3.5 86.8 ± 2.0 90.1 ± 2.3
ALPS 78.5 ± 1.9 78.5 ± 2.7 81.8 ± 2.4 77.8 ± 2.8 83.1 ± 1.8 87.5 ± 1.5 83.0 ± 3.2 84.4 ± 1.5 89.1 ± 1.4
TPC 77.8 ± 3.8 72.1 ± 5.0 76.9 ± 6.1 81.0 ± 0.9 74.2 ± 1.2 77.1 ± 2.2 79.3 ± 3.1 83.0 ± 2.2 87.5 ± 2.6

PATRON 81.3 ± 2.6 81.9 ± 2.3 85.3 ± 2.1 80.8 ± 2.7 84.7 ± 1.8 88.9 ± 1.0 85.9 ± 2.0 87.0 ± 1.5 92.2 ± 1.3

Table 13: Full results of the evaluation on OOD tasks for IMDB datasets.

F.3 Representativeness of the Selected Data

The representativeness of samples are defined as
their density, which is quantified by the average

distance between the example in question and its
10 most similar examples based on the [CLS] rep-
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Task c |B| Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON

TREC 6
32 42.7 ± 1.6 34.7 ± 1.7 13.0 ± 4.0 45.4 ± 1.8 42.4 ± 1.6 30.5 ± 2.6 46.7 ± 0.9 29.1 ± 2.2 48.4 ± 1.0
64 53.5 ± 1.2 52.1 ± 2.0 15.5 ± 3.2 64.5 ± 1.4 55.5 ± 2.0 40.3 ± 2.3 57.1 ± 2.4 55.6 ± 2.0 66.0 ± 1.1

128 77.4 ± 2.0 62.3 ± 1.8 44.5 ± 2.9 85.6 ± 1.1 74.4 ± 1.7 70.3 ± 1.0 84.0 ± 1.6 67.9 ± 2.3 89.8 ± 0.8

Table 14: The F1 score of the main experiments (few-shot PLM fine-tuning) on the TREC dataset.

Task c |B| Random Uncertainty CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON

TREC 6
32 62.3 ± 1.7 57.0 ± 1.2 29.8 ± 1.3 51.5 ± 2.0 56.6 ± 1.4 58.9 ± 1.3 62.6 ± 1.4 50.1 ± 1.2 67.6 ± 0.8
64 69.6 ± 1.1 62.7 ± 1.4 33.8 ± 1.7 73.0 ± 1.2 69.2 ± 1.5 63.5 ± 2.0 75.1 ± 1.1 66.8 ± 1.3 74.2 ± 1.4

128 77.3 ± 2.4 67.7 ± 1.5 55.6 ± 4.0 80.8 ± 1.6 74.7 ± 3.0 66.4 ± 2.0 83.6 ± 2.3 70.6 ± 1.6 86.7 ± 1.4

Table 15: The F1 score of the prompt-based experiments on the TREC dataset.

resentations (Ein-Dor et al., 2020) as

R(x) =

∑
xi∈kNN(x) cos (x, xi)

K
. (15)

Table 12 shows the score for different methods.
PATRON also achieves comparable performance to
the baselines.

To sum up, the results in above sections indi-
cate that PATRON strikes a balance between these
metrics — it achieves competitive performance on
both diversity and representativeness, which lead
to overall better performance under cold-start sce-
narios.

G Additional Experimental Results

G.1 Out-of-Distribution (OOD) Evaluation

We conduct Out-of-Distribution (OOD) evaluation
to verify whether the methods can robustly se-
lect representative samples for the task instead of
overfitting one specific dataset. We use IMDB
dataset as a source domain for data selection and
fine-tuning, and then directly evaluate the fine-
tuned model on 3 out-of-domain datasets (see Ap-
pendix A.3 for details): SST-2 (Socher et al., 2013),
IMDB Contrast Set (IMDB-CS) (Gardner et al.,
2020), and IMDB Counterfactually Augmented
Dataset (IMDB-CAD) (Kaushik et al., 2020).

As shown in Table 13, diversity-based ap-
proaches also perform better than uncertainty-
based methods on OOD tasks, due to the better cov-
erage of the selected samples. However, PATRON

still outperforms these baselines by 3.2% on aver-
age. The performance gains illustrate that PATRON

can discover informative samples to truly enable
the PLM to capture task-specific linguistic knowl-
edge instead of spurious features and improve the
PLM’s generalization ability under limited budget.

G.2 The Result with F1 Score for the TREC
Dataset

The result of the TREC dataset with F1 score as the
metric is shown in Table 14 and 15. In most of the
cases, PATRON still outperforms all the baselines.

G.3 Additional Results on Low-budget
Multi-round Active Learning

The performance of PATRON and baselines on the
additional 3 datasets are shown in Figure 7. PA-
TRON achieves competitive performance across all
the datasets.

G.4 Additional Hyperparameter Study
We exhibit the additional hyperparameter study on
the other four datasets in Figure 8. Overall, the
performance of PATRON is stable across a broad
range of hyperparameters on all datasets.

G.5 Additional Label Efficiency Study
We provide the label efficiency studies for each
dataset in detail, shown in Figure 9. From the fig-
ure, we estimate the approximate number of labels
required (via random sampling) to achieve the same
performance as PATRON with 512 labels (Figure 3)
as follows: Yahoo: 1280 (2.5X), TREC: 1024 (2X),
AG News: 1536 (3X), IMDB: 1024 (2X), DBPedia:
2304 (4.5X), Yelp: 1792 (3.5X). The results indi-
cate that PATRON can improve the label efficiency
for all datasets significantly.
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Figure 7: The comparision of PATRON with other baselines under standard multi-round AL setting on other three
datasets.
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Figure 8: The additional hyperparameter study on the other datasets.
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Figure 9: Illustration of label efficiency on six datasets.
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