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Abstract

Dual encoders are now the dominant architec-
ture for dense retrieval. Yet, we have little un-
derstanding of how they represent text, and why
this leads to good performance. In this work,
we shed light on this question via distributions
over the vocabulary. We propose to interpret
the vector representations produced by dual
encoders by projecting them into the model’s
vocabulary space. We show that the resulting
projections contain rich semantic information,
and draw connection between them and sparse
retrieval. We find that this view can offer an
explanation for some of the failure cases of
dense retrievers. For example, we observe that
the inability of models to handle tail entities is
correlated with a tendency of the token distri-
butions to forget some of the tokens of those
entities. We leverage this insight and propose a
simple way to enrich query and passage repre-
sentations with lexical information at inference
time, and show that this significantly improves
performance compared to the original model in
zero-shot settings, and specifically on the BEIR
benchmark.1

1 Introduction

Dense retrieval models based on neural text repre-
sentations have proven very effective (Karpukhin
et al., 2020; Qu et al., 2021; Ram et al., 2022;
Izacard et al., 2022a,b), improving upon strong tra-
ditional sparse models like BM25 (Robertson and
Zaragoza, 2009). However, when applied off-the-
shelf (i.e., in out-of-domain settings) they often
experience a severe drop in performance (Thakur
et al., 2021; Sciavolino et al., 2021; Reddy et al.,
2021). Moreover, the reasons for such failures are
poorly understood, as the information captured in
their representations remains under-investigated.

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

1Our code is publicly available at https://github.
com/oriram/dense-retrieval-projections.

Uninterpretable

Q: Where was Michael Jack born?

Query Encoder

MLM Head

michael      -0.54
jack      -1.39
son      -4.19
father      -4.58
birth      -4.83
boy      -5.15
family      -5.75
locke      -5.78
childhood  -6.10
baby      -6.11
child      -6.15

⋮

Interpretable

CLS where was michael jack born ?

Figure 1: An example of our framework. We run the
question “Where was Michael Jack born?” through the
question encoder of DPR (Karpukhin et al., 2020), and
project the question representation eq to the vocabulary
space using BERT’s masked language modeling head
(Devlin et al., 2019). The result is a distribution over
the vocabulary, Q. We apply the same procedure for
passages as well. These projections enable reasoning
about and improving retrieval representations.

In this work, we present a new approach for
interpreting and reasoning about dense retrievers,
through distributions induced by their query2 and
passage representations when projected to the vo-
cabulary space, namely distributions over their vo-
cabulary space (Figure 1). Such distributions en-
able a better understanding of the representational
nature of dense models and their failures, which
paves the way to simple solutions that improve their
performance.

2Throughout the paper, we use query and question inter-
changeably.
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Q: Where was Michael Jack 
born?

1. michael      -0.54
2. jack             -1.39
3. son             -4.19
4. father         -4.58
5. birth      -4.83
6. boy      -5.15
7. family         -5.75

⋮

Michael Jack, (born 17 
September 1946) is a 

Conservative Party politician 
in the United Kingdom … 

Michael Jack was born in 
Folkestone, Kent, England.

Q: How many judges currently 
serve on the Supreme Court?

Query 
Encoder

MLM
Head

1.court           -1.43
2. judges        -1.71
3. justices      -2.27
4. judge          -2.96
5. judicial       -3.52
6. nine            -3.81
7. courts        -4.33

⋮

Passage 
Encoder

MLM
Head

Demographics of the 
Supreme Court of the United 

States … In 2008, seven of the 
nine sitting justices were 

millionaires

1. he                -2.42
2. jack            -3.48
3. major          -3.83
4. labour         -3.84
5. chairman   -3.92

⋮
146. michael -6.97

⋮

1. justices      -0.71
2. court          -2.82
3. judges        -3.11
4. judge          -3.74
5. judicial       -4.16

⋮
20. nine          -6.13

⋮

SUCCESS!

FAIL!

Query 
Encoder

MLM
Head

Passage 
Encoder

MLM
Head

Figure 2: A success case from Natural Questions (top) and a failure case from EntityQuestions (bottom) of
DPR (Karpukhin et al., 2020), explained via projecting question and (its relevant) passage representations to the
vocabulary space. Tokens in the top-20 of both question and passage vocabulary projections are marked in bold.

We begin by showing that dense retrieval repre-
sentations can be projected to the vocabulary space,
by feeding them through the masked language mod-
eling (MLM) head of the pretrained model they
were initialized from without any further training.
This operation results in distributions over the vo-
cabulary, which we refer to as query vocabulary
projections and passage vocabulary projections.

Surprisingly, we find these projections to be
highly interpretable to humans (Figure 2; Table 1).
We analyze these projections and draw interesting
connections between them and well-known con-
cepts from sparse retrieval (§5). First, we highlight
the high coverage of tokens shared by the query and
the passage in the top-k of their projections. This
obersvation suggests that the lexical overlap be-
tween query and passages plays an important role
in the retrieval mechanism. Second, we show that
vocabulary projections of passages they are likely
to contain words that appear in queries about the
given passage. Thus, they can be viewed as predict-
ing the questions one would ask about the passage.
Last, we show that the model implicitly implements
query expansion (Rocchio, 1971). For example, in
Figure 2 the query is “How many judges currently
serve on the Supreme court?”, and the words in
the query projection Q include “justices” (the com-
mon way to refer to them) and “nine” (the correct
answer).

The above findings are especially surprising due
to the fact that these retrieval models are fine-tuned

in a contrastive fashion, and thus do not perform
any prediction over the vocabulary or make any
use of their language modeling head during fine-
tuning. In addition, these representations are the
result of running a deep transformer network that
can implement highly complex functions. Nonethe-
less, model outputs remain “faithful” to the original
lexical space learned during pretraining.

We further show that our approach is able to shed
light on the reasons for which dense retrievers strug-
gle with simple entity-centric questions (Sciavolino
et al., 2021). Through the lens of vocabulary pro-
jections, we identify an interesting phenomenon:
dense retrievers tend to “ignore” some of the tokens
appearing in a given passage. This is reflected in
the ranking assigned to such tokens in the passage
projection. For example, the word “michael” in the
bottom example of Figure 2 is ranked relatively low
(even though it appears in the passage title), thereby
hindering the model from retrieving this passage.
We refer to this syndrome as token amnesia (§6).

We leverage this insight and suggest a simple
inference-time fix that enriches dense represen-
tations with lexical information, addressing to-
ken amnesia. We show that lexical enrichment
significantly improves performance compared to
vanilla models on the challenging BEIR benchmark
(Thakur et al., 2021) and additional datasets. For
example, we boost the performance of the strong
MPNet model on BEIR from 43.1% to 44.1%.

Taken together, our analyses and results demon-
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strate the great potential of vocabulary projections
as a framework for more principled research and
development of dense retrieval models.

2 Background

In this work, we suggest a simple framework for
interpreting dense retrieves, via projecting their
representations to the vocabulary space. This is
done using the (masked) language modeling head
of their corresponding pretrained model. We begin
by providing the relevant background.

2.1 Masked Language Modeling

Most language models based on encoder-only trans-
formers (Vaswani et al., 2017) are pretrained using
some variant of the masked language modeling
(MLM) task (Devlin et al., 2019; Liu et al., 2019;
Song et al., 2020), which involves masking some in-
put tokens, and letting the model reconstruct them.

Specifically, for an input sequence x1, ..., xn,
the transformer encoder is applied to output con-
textualized token representations h1, ...,hn ∈ Rd.
Then, to predict the missing tokens, an MLM head
is applied to their contextualized representations.
The MLM head is a function that takes a vector
h ∈ Rd as input and returns a distribution P over
the model’s vocabulary V , defined as follows:

MLM-Head(h)[i] =
exp(v⊤

i g(h))∑
j∈V exp(v⊤

j g(h))
(1)

g : Rd → Rd is a potentially non-linear function
(e.g., a fully connected layer followed by a Layer-
Norm for BERT; Devlin et al. 2019), and vi ∈ Rd

corresponds to the static embedding of the i-th item
in the vocabulary.

2.2 Dense Retrieval

In dense retrieval, we are given a corpus of passages
C = {p1, ..., pm} and a query q (e.g., a question or
a fact to check), and we wish to compute query and
passage representations (eq and ep, respectively)
such that similarity in this space implies high rele-
vance of a passage to the query. Formally, let EncQ
be a query encoder and EncP a passage encoder.
These encoders are mappings from the input text
to a vector in Rd, and are obtained by fine-tuning
a given LLM. Specifically, they return a pooled
version of the LLM contextualized embeddings
(e.g., the [CLS] embedding or mean pooling). We
denote the embedding of the query and passage

vectors as follows:

eq = EncQ(q)

ep = EncP (p)
(2)

To fine-tune retrievers, a similarity measure s(q, p)
is defined (e.g., the dot-product between eq and eq
or their cosine similarity) and the model is trained
in a contrastive manner to maximize retriever ac-
curacy (Lee et al., 2019; Karpukhin et al., 2020).
Importantly, in this process, the MLM head func-
tion does not change at all.

3 Vocabulary Projections

We now describe our framework for projecting
query and passage representations of dense retriev-
ers to the vocabulary space. Given a dense retrieval
model, we utilize the MLM head of the model it
was initialized from to map from encoder output
representations to distributions over the vocabulary
(Eq. 1). For example, for DPR (Karpukhin et al.,
2020) we take BERT’s MLM head, as DPR was
initialized from BERT. Given a query q, we use the
query encoder EncQ to obtain its representation eq
as in Eq. 2. Similarly, for a passage p we apply the
passage encoder EncP to get ep. We then apply the
MLM head as in Eq. (1) to obtain the vocabulary
projection:

Q = MLM-Head(eq)

P = MLM-Head(ep)
(3)

Note that it is not clear a-priori that Q and P will be
meaningful in any way, as the encoder model has
been changed since pretraining, while the MLM-
head function remains fixed. Moreover, the MLM
function has not been trained to decode “pooled”
sequence-level representations (i.e., the results of
CLS or mean pooling) during pretraining. Despite
this intuition, in this work we argue that P and
Q are actually highly intuitive and can facilitate a
better understanding of dense retrievers.

4 Experiment Setup

To evaluate our framework and method quantita-
tively, we consider several dense retrieval models
and datasets.

4.1 Models
We now list the retrievers used to demonstrate our
framework and method. All dense models share
the same architecture and size (i.e., that of BERT-
base; 110M parameters), and all were trained in
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Question top-20 in Q Passage top-20 in P

where do
the great
lakes meet
the ocean
(A: the saint
lawrence
river)

lakes lake shore ocean
confluence river water
north canada meet east
land rivers canoe sea
border michigan con-
necting both shores

the great lakes , also called the laurent ##ian great lakes
and the great lakes of north america , are a series of inter
##connected freshwater lakes located primarily in the up-
per mid - east region of north america , on the canada –
united states border , which connect to the atlantic ocean
through the saint lawrence river . they consist of lakes
superior , michigan , huron ...

lakes lake the canada
great freshwater water
region ontario these
central river rivers
large basin core area
erie all four

southern soul
was con-
sidered the
sound of what
independent
record label
(A: motown)

southern music label
soul motown blues
nashville vinyl sound
independent labels
country records genre
dixie record released
gospel jazz south

soul music . the key sub ##gen ##res of soul include the
detroit ( motown ) style , a rhythmic music influenced
by gospel ; " deep soul " and " southern soul " , driving ,
energetic soul styles combining r & b with southern gospel
music sound ; ... which came out of the rhythm and blues
style ...

soul music jazz funk
blues rock musical fu-
sion genre black pure
classical genres pop
southern melody art
like rich urban

who sings
does he love
me with re
##ba (A:
linda davis)

duet song love music
solo re he motown me
his " pa album songs
honey reprise bobby i
peggy blues

" does he love you " is a song written by sandy knox and
billy st ##rit ##ch , and recorded as a duet by american
country music artists re ##ba mc ##ent ##ire and linda
davis ...

he you him i it she his
john we love paul who
me does did yes why
they how this

Table 1: Examples of questions and gold passages from the development set of Natural Questions, along with their
20 top-scored tokens in projections of DPR representations. Green tokens represent the lexical overlap signal (i.e.,
tokens that appear in both the question and the passage). Blue tokens represent query expansion (i.e., tokens that do
not appear in the question but do appear in the passage).

a contrastive fashion with in-batch negatives—the
prominent paradigm for training dense models (Lee
et al., 2019; Karpukhin et al., 2020; Chang et al.,
2020; Qu et al., 2021; Ram et al., 2022; Izacard
et al., 2022a; Ni et al., 2022; Chen et al., 2022). For
the analysis, we use DPR (Karpukhin et al., 2020)
and BERT (Devlin et al., 2019) as its pretrained
baseline. For the results of our method, we also
use S-MPNet (Reimers and Gurevych, 2019) and
Spider (Ram et al., 2022). Our sparse retrieval
model is BM25 (Robertson and Zaragoza, 2009).
We refer the reader to App. A for more details.

4.2 Datasets

We follow prior work (Karpukhin et al., 2020; Ram
et al., 2022) and consider six common open-domain
question answering (QA) datasets for the evalua-
tion of our framework: Natural Questions (NQ;
Kwiatkowski et al. 2019), TriviaQA (Joshi et al.,
2017), WebQuestions (WQ; Berant et al. 2013),
CuratedTREC (TREC; Baudiš and Šedivý 2015),
SQuAD (Rajpurkar et al., 2016) and EntityQues-
tions (EntityQs; Sciavolino et al. 2021). We also
consider the BEIR (Thakur et al., 2021) and the
MTEB (Muennighoff et al., 2022) benchmarks.

4.3 Implementation Details

Our code is based on the official repository of DPR
(Karpukhin et al., 2020), built on Hugging Face

Transformers (Wolf et al., 2020).
For the six QA datasets, we use the Wikipedia

corpus standardized by Karpukhin et al. (2020),
which contains roughly 21 million passages of a
hundred words each. For dense retrieval over this
corpus, we apply exact search using FAISS (John-
son et al., 2021). For sparse retrieval we use Py-
serini (Lin et al., 2021).

5 Analyzing Dense Retrievers via
Vocabulary Projections

In Section 3, we introduce a new framework for
interpreting representations produced by dense re-
trievers. Next, we describe empirical findings that
shed new light on what is encoded in these represen-
tations. Via vocabulary projections, we draw con-
nections between dense retrieval and well-known
concepts from sparse retrieval like lexical overlap
(§5.1), query prediction (§5.2) and query expansion
(§5.3).

5.1 The Dominance of Lexical Overlap

Tokens shared by questions and their corresponding
gold passages constitute the lexical overlap signal
in retrieval, used by sparse models like BM25. We
start by asking: how prominent are they in vocabu-
lary projections? Figure 3 illustrates the coverage
of these tokens in Q and P for DPR after train-
ing, compared to its initialization before training
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Figure 3: The percentage of tokens shared by questions
(from the development set of NQ) and their gold pas-
sages (i.e., the lexical overlap signal) that are covered
by the top-k tokens of question vocabulary projection
Q and passage vocabulary projection P as a function
of k. Stop words and punctuation marks are excluded
from this analysis.

(i.e., BERT with mean or CLS pooling). In other
words, for each k we check what is the percentage
of shared tokens ranked in the top-k of Q and P .
Results suggest that after training, the model learns
to rank shared tokens much higher than before.
Concretely, 63% and 53% of the shared tokens
appear in the top-20 tokens of Q and P respec-
tively, compared to only 16% and 8% in BERT
(i.e., before training). These numbers increase to
78% and 69% of the shared tokens that appear in
the top-100 tokens of Q and P . In addition, we
observed that for 71% of the questions, the top-
scored token in Q appears in both the question and
the passage (App. B). These findings suggest that
even for dense retrievers—which do not operate at
the lexical level—lexical overlap remains a highly
dominant signal.

5.2 Passage Encoders as Query Prediction

Our next analysis concerns the role of passage en-
coders. In §5.1, we show that tokens shared by the
question and its gold passage are ranked high in
both Q and P . However, passages contain many to-
kens, and the shared tokens constitute only a small
fraction of all tokens. We hypothesize that out of
passage tokens, those that are likely to appear in
relevant questions receive higher scores in P than
others. If this indeed the case, it implies that pas-
sage encoders implicitly learn to predict which of
the passage tokens will appear in relevant ques-
tions. To test our hypothesis, we analyze the ranks

Token-Level MRR in P

DPR BERT (mean)

Passage tokens Tp 3.0 0.5
Question tokens Tq 17.3 1.0
Shared tokens Tq ∩ Tp 26.1 1.4

Table 2: An analysis of token-level MRR (in %) in pas-
sage vocabulary projections P on the development set
of NQ. For a question q and its gold positive passage p,
Tq and Tp are the corresponding sets of tokens, exclud-
ing stop words and punctuations. For a set T , we report
1

|T |
∑

t∈T
1

rankP (t) .

of question and passage tokens in passage vocabu-
lary projections, P . Formally, let Tq and Tp be the
sets of tokens in a question q and its gold passage
p, respectively. Table 2 shows the token-level mean
reciprocal rank (MRR) of these sets in P . We ob-
serve that tokens shared by q and p (i.e., Tq ∩ Tp)
are ranked significantly higher than other passage
tokens (i.e., Tp). For example, in DPR the MRR of
shared tokens is 26.1, while that of other passage
tokens is only 3.0. In addition, the MRR of shared
tokens in BERT is only 1.4. These findings support
our claim that tokens that appear in relevant ques-
tions are ranked higher than others, and that this
behavior is acquired during fine-tuning.

5.3 Query Encoders Implement Query
Expansion

To overcome the “vocabulary mismatch” problem
(i.e., when question-document pairs are semanti-
cally relevant, but lack significant lexical overlap),
query expansion methods have been studied exten-
sively (Rocchio, 1971; Voorhees, 1994; Zhao and
Callan, 2012; Mao et al., 2021). The main idea
is to expand the query with additional terms that
will better guide the retrieval process. We define a
token as a query expansion if it does not appear in
the query itself but does appear in the query projec-
tion Q, and also in the gold passage of that query
p (excluding stop words and punctuation marks).
Figure 4 shows the percentage of queries with at
least one query expansion token in the top-k as a
function of k for DPR and the BERT baseline (i.e.,
before DPR training). We observe that after train-
ing, the model promotes query expansion tokens
to higher ranks than before. In addition, we found
that almost 14% of the tokens in the top-5 of Q are
query expansion tokens (cf. App B).

We note that there are two interesting classes
of query expansion tokens: (1) synonyms of ques-
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Figure 4: The percentage of questions from the (entire)
development set of NQ with at least one query expansion
token (i.e., a token that appears in the question’s gold
passage but not in the question itself) in the top-k of
the question vocabulary projection Q, as a function of
k. Stop words and punctuation marks do not count as
query expansion tokens.

tion tokens, as well as tokens that share similar
semantics with tokens in q (e.g., “michigan” in
the first example of Table 1). (2) “answer tokens”
which contain the answer to the query (e.g., “mo-
town” in the second example of Table 1). The
presence of such tokens may suggest the model
already “knows” the answer to the given question,
either from pretraining or from similar questions
seen during training (Lewis et al., 2021).

Given these findings, we conjecture that the
model “uses” these query expansion tokens to in-
troduce a semantic signal to the retrieval process.

6 Token Amnesia

The analysis in Section 5 shows that vocabulary
projections of passages (i.e., P ) predict which of
the input tokens are likely to appear in relevant
questions. However, in some cases these predic-
tions utterly fail. For example, in Figure 2 the
token “michael” is missing from the top-k of the
passage projection P . We refer to such cases as
token amnesia. Here we ask, do these failure in
query prediction hurt retrieval?

Next, we demonstrate that token amnesia indeed
correlates with well-known failures of dense re-
trievers (§6.1). To overcome this issue, we suggest
a lexical enrichment procedure for dense represen-
tations (§6.2) and demonstrate its effectiveness on
downstream retrieval performance (§6.3).

6.1 Token Amnesia is Correlated with
Retriever Failures

Dense retrievers have shown difficulties in out-of-
domain settings (Sciavolino et al., 2021; Thakur
et al., 2021), where even sparse models like BM25
significantly outperform them. We now offer an in-
tuitive explanation to these failures via token amne-
sia. We focus on setups where BM25 outperforms
dense models and ask: why do dense retrievers fail
to model lexical overlap signals? To answer this
question, we consider subsets of NQ and EntityQs
where BM25 is able to retrieve the correct passage
in its top-5 results. We focus on these subsets as
they contain significant lexical overlap between
questions and passages (by definition, as BM25
successfully retrieved the correct passage). Let q
be a question and p the passage retrieved by BM25
for q, and Q and P be their corresponding vocabu-
lary projections for some dense retriever. Also, let
T ⊆ V be the set of tokens that appear in both q
and p (excluding stop words). Figure 5 shows the
maximum (i.e., lowest) rank of tokens from T in
the distributions P (left) and Q (right) as a func-
tion of whether DPR is able to retrieve this passage
(i.e., the rank of p in the retrieval results of DPR).
Indeed, the median max-rank over questions for
which DPR succeeds to fetch p in its top-5 results
(blue box) is much lower than that of questions
for which DPR fails to retrieve the passage (red
box). As expected (due to the fact that questions
contain less tokens than passages), the ranks of
shared tokens in question projections Q are much
higher. However, the trend is present in Q as well.
Additional figures (for EntityQs; as well as median
ranks instead of max ranks) are given in App. C.

Overall, these findings indicate a correlation be-
tween token amnesia and failures of DPR. Next,
we introduce a method to address token amnesia
in dense retrievers, via lexical enrichment of dense
representations.

6.2 Method: Lexical Enrichment

As suggested by the analysis in §6.1, dense retriev-
ers have the tendency to ignore some of their input
tokens. We now leverage this insight to improve
these models. We refer to our method as lexical
enrichment (LE) because it enriches text encodings
with specific lexical items.

Intuitively, a natural remedy to the “token am-
nesia” problem is to change the retriever encoding
such that it does include these tokens. For example,
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Figure 5: An analysis of token amnesia. We consider questions for which BM25 retrieves a correct passage (i.e.,
a passage that contains the answer) in its top-5, and analyze what ranks were assigned to tokens shared by the
question and the passage in the passage vocabulary projection P (left) and question vocabulary projection Q (right).
We plot the maximal token rank as a function of the rank assigned to the correct passage by DPR.

assume the query q is “Where was Michael Jack
born?” and the corresponding passage p contains
the text “Michael Jack was born in Folkestone, Eng-
land”. According to Figure 2, the token “michael”
is ranked relatively low in P , and DPR fails to
retrieve the correct passage p. We would like to
modify the passage representation ep and get an
enriched version e′p that does have this token in its
top-k projected tokens, while keeping most of the
other projected tokens intact. This is our goal in
LE, and we next describe the approach. We focus
on enrichment of passage representations, as query
enrichment works similarly. We first explain how
to enrich representations with a single token, and
then extend the process to multiple tokens.

Single-Token Enrichment Assume we want to
enrich a passage representation ep with a token t
(e.g., t = “michael” in the above example). If there
were no other words in the passage, we’d simply
want to find an embedding such that feeding it into
the MLM would produce t as the top token.3 We
refer to this embedding as the single-token enrich-
ment of t, denote it by st and define it as:4

st = argmax
ŝ

logMLM-Head(ŝ)[t] (4)

3Note that feeding the token input embedding vt does not
necessarily produce t as the top token, as the MLM head
applies a non-linear function g (Eq. 1).

4This is equivalent to the cross-entropy loss between a
one-hot vector on t and the output distribution MLM(ŝ).

In order to approximately solve the optimization
problem in Eq. 4 for each t in the vocabulary,
we use Adam with a learning rate of 0.01.5 We
stop when a (cross-entropy) loss threshold of 0.1
is reached for all tokens. We then apply whitening
(Jung et al., 2022), which was proven effective for
dense retrieval.

Multi-Token Enrichment Now suppose we have
an input x (either a question or a passage) and
we’d like to enrich its representation with its tokens
x = [x1, .., xn], such that rare tokens are given
higher weights than frequent ones (as in BM25).
Then, we simply take its original representation ex
and add to it a weighted sum of the single-token
enrichments (Eq. 4). Namely, we define:

elex
x =

1

n

n∑

i=1

wxisxi

e′x = ex + λ · elex
x

||elex
x ||

(5)

Here λ is a hyper-parameter chosen via cross val-
idation. We use the inverse document frequency
(Sparck Jones, 1972) of tokens as their weights:
wxi = IDF(xi). The relevance score is then de-
fined on the enriched representations.

5For S-MPNet, we used a learning rate of 10−3.
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Model λ
BEIR MTEB EntityQs TriviaQA WQ TREC SQuAD

nDCG@10 Top-20 retrieval accuracy

BM25 - 42.9 42.3 71.4 76.4 62.4 81.1 71.2
BM25 (BERT/MPNet Tokens) - 41.6 41.7 66.2 75.8 62.1 79.3 70.0

DPR - 21.4 22.4 49.7 69.0 68.8 85.9 48.9
DPR + LE 5.0 26.4 27.6 65.4 75.3 73.2 87.9 59.7

S-MPNet - 43.1 44.6 57.6 77.6 73.9 90.2 65.5
S-MPNet + LE 0.5 44.1 45.7 68.5 78.9 74.5 90.4 69.0

Spider - 27.4 26.4 66.3 75.8 65.9 82.6 61.0
Spider + LE 3.0 29.5 28.8 68.9 76.3 70.2 83.4 62.8

Table 3: Retrieval results on BEIR, the retrieval cluster of MTEB and five open-domain QA datasets. LE stands for
lexical enrichment (our method; §6.2), that enriches query and passage representation with lexical information. λ is
defined in Eq. 5. BM25 (BERT Vocabulary) refers to a model that operates over tokens from BERT’s vocabulary,
rather than words. For each model and dataset, we compare the enriched (LE) model with the original, and mark in
bold the better one from the two. We underline the best overall model for each dataset. Results for each of the BEIR
datasets are given in Table 9. Top-{1, 5, 100} accuracy results are given in Tables 6, 7 & 8.

6.3 Results

Our experiments demonstrate the effectiveness of
our method for multiple models, especially in zero-
shot settings. Table 3 shows the results of several
models with and without our enrichment method,
LE. Additional results are given in App. D. The
results demonstrate the effectiveness of LE when
added to all baseline models. Importantly, our
method improves the performance of S-MPNet—
the best base-sized model on the MTEB benchmark
to date (Muennighoff et al., 2022)—on MTEB and
BEIR by 1.1% and 1.0%, respectively. When con-
sidering EntityQs (on which dense retrievers are
known to struggle), we observe significant gains
across all models, and S-MPNet and Spider obtain
higher accuracy than BM25 that operates on the
same textual units (i.e., BM25 with BERT vocab-
ulary). This finding indicates that they are able to
integrate semantic information (from the original
representation) with lexical signals. Yet, vanilla
BM25 is still better than LE models on EntityQs
and SQuAD, which prompts further work on how
to incorporate lexical signals in dense retrieval.
Overall, it is evident that LE improves retrieval
accuracy compared to baseline models for all mod-
els and datasets (i.e., zero-shot setting).

6.4 Ablation Study

We carry an ablation study to test our design
choices from §6.2. We evaluate four elements of
our method: (1) The use of IDF to highlight rare
tokens, (2) Our approach for deriving single-token
representations, (3) The use of whitening, and (4)
The use of unit normalization.

IDF In our method, we create lexical represen-
tations of questions and passages, elex

x . These lex-
ical representations are the average of token em-
beddings, each multiplied by its token’s IDF. We
validate that IDF is indeed necessary – Table 4
demonstrates that setting wxi = 1 in Eq. 5 leads to
a significant degradation in performance on Enti-
tyQs. For example, top-20 retrieval accuracy drops
from 65.2% to 57.7%.

Single-Token Enrichment Eq. 4 defines our
single-token enrichment: for each item in the vo-
cabulary v ∈ V , we find an embedding which gives
a one-hot vector peaked at v when fed to the MLM
head. We confirm that this is necessary by replac-
ing Eq. 4 with the static embeddings of the pre-
trained model (e.g., BERT in the case of DPR). We
find that our approach significantly improves over
BERT’s embeddings on EntityQs (e.g., the margin
in top-20 accuracy is 3.4%).

Whitening & Normalization Last, we experi-
ment with removing the whitening and ℓ2 normal-
ization. It is evident that they are both necessary,
as removing either of them causes a dramatic drop
in performance (3.8% and 2.2% in top-20 accuracy
on EntityQs, respectively).

7 Related Work

Projecting representations and model parameters
to the vocabulary space has been studied previ-
ously mainly in the context of language models.
The approach was initially explored by nostalge-
braist (2020). Geva et al. (2021) showed that feed-
forward layers in transformers can be regarded as
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Method
NQ (Dev Set) EntityQs (Dev Set)

Top-1 Top-5 Top-20 Top-100 Top-1 Top-5 Top-20 Top-100

DPR 44.9 66.8 78.1 85.0 24.0 38.4 50.4 63.5

DPR + LE 44.4 67.5 79.4 86.0 38.3 54.0 65.2 76.1
No IDF 45.1 67.3 78.5 85.4 32.0 46.4 57.7 69.6
BERT embedding matrix 44.8 67.6 79.1 85.6 34.6 50.3 61.8 72.8
No whitening 44.1 66.3 78.7 85.2 34.6 49.7 61.4 72.9
No ℓ2 normalization 43.9 66.8 79.2 86.0 35.5 51.3 63.0 74.6

Table 4: Ablation study on the development set of Natrual Questions and Entity Questions. DPR + LE is our
lexical enrichment method applied on DPR. No IDF removes the IDF weights in Eq. 5 (i.e., mean pooling). BERT
embedding matrix replaces single-token enrichment st as defined in Eq. 4 with the static token embeddings of
BERT, vt (Eq. 1). No whitening removes whitening transformation. No ℓ2 normalization removes the normalization
of elex

x .

key-value memories, where the value vectors in-
duce distributions over the vocabulary. Geva et al.
(2022) view the token representations themselves
as inducing such distributions, with feed-forward
layers “updating” them. Dar et al. (2022) suggest
to project all transformer parameters to the vocab-
ulary space. Dense retrieval models, however, do
not have any language modeling objective during
fine-tuning, yet we show that their representations
can still be projected to the vocabulary.

Despite the wide success of dense retrievers re-
cently, interpreting their representations remains
under-explored. MacAvaney et al. (2022) analyze
neural retrieval models (not only dense retriev-
ers) via diagnostic probes, testing characteristics
like sensitivity to paraphrases, styles and factuality.
Adolphs et al. (2022) decode the query representa-
tions of neural retrievers using a T5 decoder, and
show how to “move” in representation space to
decode better queries for retrieval.

Language models (and specifically MLMs) have
been used for sparse retrieval in the context of term-
weighting and lexical expansion. For example, Bai
et al. (2020) and Formal et al. (2021) learn such
functions over BERT’s vocabulary space. We differ
by showing that dense retrievers implicitly operate
in that space as well. Thus, these approaches may
prove effective for dense models as well. While
we focus in this work on dense retrievers based
on encoder-only models, our framework is easily
extendable for retrievers based on autoregressive
decoder-only (i.e., left-to-right) models like GPT
(Radford et al., 2019; Brown et al., 2020), e.g.,
Neelakantan et al. (2022) and Muennighoff (2022).

8 Conclusion

In this work, we explore projecting query and pas-
sage representations obtained by dense retrieval to
the vocabulary space. We show that these projec-
tions facilitate a better understanding of the mech-
anisms underlying dense retrieval, as well as their
failures. We also demonstrate how projections can
help improve these models. This understanding is
likely to help in improving retrievers, as our lexical
enrichment approach demonstrates.

Limitations

We point to several limitations of our work. First,
our work considers a popular family of models re-
ferred to as “dense retrievers”, but other approaches
for retrieval include sparse retrievers (Robertson
and Zaragoza, 2009; Bai et al., 2020; Formal
et al., 2021), generative retrievers (Tay et al., 2022;
Bevilacqua et al., 2022), late-interaction models
(Khattab and Zaharia, 2020), inter alia. While
our work draws interesting connections between
dense and sparse retrieval, our main focus is on
understanding and improving dense models. Sec-
ond, all three dense models we analyze are bidi-
rectional and were trained in a contrastive fashion.
While most dense retrievers indeed satisfy these
properties, there are works that suggested other
approaches, both in terms of other architectures
(Muennighoff, 2022; Neelakantan et al., 2022; Ni
et al., 2022) and other training frameworks (Lewis
et al., 2020; Izacard et al., 2022b). Last, while our
work introduces new ways to interpret and analyze
dense retrieval models, we believe our work is the
tip of the iceberg, and there is still much work to be
done in order to gain a full understanding of these
models.
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BERT (Devlin et al., 2019) We use BERT for
dense retrieval, mainly as a baseline for DPR, as
DPR was initialized from BERT. This allows us
to track where behaviors we observe stem from:
pretraining or retrieval fine-tuning. We use both
CLS and mean pooling for BERT.

S-MPNet is a supervised model trained for Sen-
tence Transformers (Reimers and Gurevych, 2019)
using many available datasets for retrieval, sen-
tence similarity, inter alia. It uses cosine similarity,
rather than dot product, for relevance scores. It was
initialized from MPNet-base (Song et al., 2020),
and thus we use this model’s MLM head.

Spider (Ram et al., 2022) is an unsupervised
dense retriever trained using the recurring span
retrieval pretraining task. It was also initialized
from BERT-base, and we therefore use the same
MLM head for projection as the one used for DPR.

BM25 (Robertson and Zaragoza, 2009) is a lex-
ical model based on tf-idf. We use two variants
of BM25: (1) vanilla BM25, and (2) BM25 over
BERT/MPNet tokens (e.g., “Reba” → “re ##ba”).6

We consider this option to understand whether the
advantages of BM25 stem from its use of different
word units from the transformer models.

B Analysis: Further Results

Figure 6 gives an analysis of the top-k tokens in
the question projection Q and passage projection
P .

C Token Amnesia: Further results

Figure 7 gives further analyses of token amnesia: It
contains the results for EntityQuestions, as well as
analysis of median ranks in addition to max ranks
(complements Figure 5).

D Lexical Enrichment: Further Results

Table 9 gives the results of our method on the BEIR
and MTEB benchmarks for all 19 datasets (com-
plements Table 3). Table 6, Table 7 and Table 8
give the zero-shot results for k ∈ {1, 5, 100}, re-
spectively (complement Table 3).

E Dataset Statistics & Licenses

Table 5 details the license and number of test exam-
ple for each of the six open-domain datasets used

6BERT and MPNet use essentially the same vocabulary,
up to special tokens.
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Figure 6: An analysis of the top-k tokens in the vocabu-
lary projection Q (a) for questions from the development
set of NQ and P (b) for their corresponding gold pas-
sage of DPR. Specifically, we analyze what percentage
of these top-k tokens are present in the question and/or
the passage for k ∈ {1, 5, 20}.

Dataset License Test Ex.

Natural Questions Apache-2.0 3,610
TriviaQA Apache-2.0 11,313
WebQuestions CC BY 4.0 2,032
CuratedTREC - 694
SQuAD CC BY-SA 4.0 10,570
EntityQs MIT 22,075

Table 5: The license and number of test example in each
of the datasets used in the paper.

in our work. For the BEIR benchmark, we refer
the reader to Thakur et al. (2021) for number of
examples and license of each of their datasets.

F Computational Resources

Our method (LE) does not involve training mod-
els at all. Our computational resources have been
used to evaluate LE on the BEIR benchmark, i.e.,
computing passage embeddings for each corpus
and each model. We used eight Quadro RTX 8000
GPUs. Each experiment took several hours.
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Model EntityQs TriviaQA WQ TREC SQuAD

BM25 43.5 46.3 18.9 34.6 36.7
BM25 (BERT/MPNet Vocabulary) 37.6 45.4 19.2 33.0 35.6

DPR 24.3 37.3 30.5 51.3 16.0
DPR + LE 38.3 45.8 35.0 54.6 22.8

S-MPNet 22.7 42.9 30.9 51.0 25.8
S-MPNet + LE 37.3 47.3 37.1 54.0 30.0

Spider 35.0 41.7 22.3 38.2 22.2
Spider + LE 40.7 43.7 27.8 43.2 23.5

Table 6: Top-1 retrieval accuracy in a “zero-shot” setting (i.e., datasets were not used for model training), com-
plementary to Table 3. LE stands for lexical enrichment (our method; §6.2), that enriches query and passage
representation with lexical information. BM25 (BERT Vocabulary) refers to a model that operates over tokens from
BERT’s vocabulary, rather than words. For each model and dataset, we compare the enriched (LE) model with the
original, and mark in bold the better one from the two. We underline the best overall model for each dataset.

Model EntityQs TriviaQA WQ TREC SQuAD

BM25 61.0 66.3 41.8 64.6 57.5
BM25 (BERT/MPNet Vocabulary) 55.1 65.6 42.3 62.5 56.1

DPR 38.1 57.0 52.7 74.1 33.4
DPR + LE 53.8 64.8 57.7 79.5 42.3

S-MPNet 42.7 66.1 58.8 79.7 49.5
S-MPNet + LE 56.8 68.5 61.6 81.4 53.2

Spider 54.5 63.6 46.8 65.9 43.6
Spider + LE 58.0 64.4 52.2 70.0 44.9

Table 7: Top-5 retrieval accuracy in a “zero-shot” setting (i.e., datasets were not used for model training), com-
plementary to Table 3. LE stands for lexical enrichment (our method; §6.2), that enriches query and passage
representation with lexical information. BM25 (BERT Vocabulary) refers to a model that operates over tokens from
BERT’s vocabulary, rather than words. For each model and dataset, we compare the enriched (LE) model with the
original, and mark in bold the better one from the two. We underline the best overall model for each dataset.

Model EntityQs TriviaQA WQ TREC SQuAD

BM25 80.0 83.2 75.5 90.3 82.0
BM25 (BERT/MPNet Vocabulary) 76.6 83.0 76.0 90.5 81.1

DPR 63.2 78.7 78.3 92.1 65.1
DPR + LE 76.1 82.9 82.1 93.5 74.0

S-MPNet 71.7 84.8 83.0 95.1 78.4
S-MPNet + LE 78.6 85.1 83.8 95.0 80.7

Spider 77.4 83.5 79.7 92.8 76.0
Spider + LE 78.9 83.8 81.5 92.2 77.8

Table 8: Top-100 retrieval accuracy in a “zero-shot” setting (i.e., datasets were not used for model training),
complementary to Table 3. LE stands for lexical enrichment (our method; §6.2), that enriches query and passage
representation with lexical information. BM25 (BERT Vocabulary) refers to a model that operates over tokens from
BERT’s vocabulary, rather than words. For each model and dataset, we compare the enriched (LE) model with the
original, and mark in bold the better one from the two. We underline the best overall model for each dataset.
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(c) Median rank among shared tokens, EntityQuestions

Figure 7: Further analysis of token amnesia (complementary to Figure 5). We consider questions for which BM25
retrieves a correct passage (i.e., a passage that contains the answer) in its top-5, and analyze what ranks were
assigned to tokens shared by the question and the passage in the passage vocabulary projection P (left) and question
vocabulary projection Q (right). We plot the max and median token rank as a function of the rank assigned to the
correct passage by DPR, for Natural Questions (NQ) and EntityQuestions (EQ).
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Dataset
DPR Spider S-MPNet

Original + LE Original + LE Original + LE

MS MARCO 18.4 20.9 14.6 16.2 40.0 40.3
TREC-COVID 22.2 30.8 30.5 32.0 51.0 51.3
NFCorpus 15.7 19.0 27.4 26.2 33.4 33.6
NQ 51.3 49.8 12.6 17.0 52.2 52.8
HotpotQA 32.6 37.7 40.4 43.1 45.2 48.3
FiQA-2018 10.5 13.0 1.0 11.2 49.3 49.8
ArguAna 10.8 14.1 31.2 31.0 39.6 49.2
Touché-2020 13.1 15.8 4.2 6.4 21.0 21.5
CQADupStack 12.7 18.0 21.3 21.7 44.6 44.7
Quora 16.8 42.4 73.0 75.6 87.0 87.3
DBPedia 26.9 28.5 20.0 22.3 34.1 34.8
SCIDOCS 7.4 10.1 13.1 12.8 23.6 23.5
FEVER 52.7 54.7 30.2 34.3 59.0 60.0
Climate-FEVER 18.2 22.9 12.4 22.4 23.1 23.6
SciFact 26.9 36.1 63.6 59.8 65.2 65.3
BioASQ 11.6 17.6 21.0 22.3 21.5 22.3
Signal-1M (RT) 13.6 21.1 25.3 26.1 24.9 25.3
TREC-NEWS 19.1 21.3 29.3 31.3 50.7 50.7
Robust04 22.4 22.7 36.4 35.9 50.0 50.0

Avg. (MTEB: Retrieval) 22.4 27.6 26.4 28.8 44.6 45.7
Avg. (BEIR) 21.4 26.4 27.4 29.5 43.1 44.1

Table 9: Retrieval results measured by nDCG@10 on BEIR (all datasets except MS MARCO) and the retrieval
cluster of MTEB (first 15 datasets). LE stands for lexical enrichment (our method; §6.2), that enriches query and
passage representation with lexical information.
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