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Abstract

In this paper, we propose SIMLM (Similarity
matching with Language Model pre-training),
a simple yet effective pre-training method for
dense passage retrieval. It employs a simple
bottleneck architecture that learns to compress
the passage information into a dense vector
through self-supervised pre-training. We use a
replaced language modeling objective, which
is inspired by ELECTRA (Clark et al., 2020),
to improve the sample efficiency and reduce
the mismatch of the input distribution between
pre-training and fine-tuning. SIMLM only re-
quires access to an unlabeled corpus and is
more broadly applicable when there are no
labeled data or queries. We conduct experi-
ments on several large-scale passage retrieval
datasets and show substantial improvements
over strong baselines under various settings.
Remarkably, SIMLM even outperforms multi-
vector approaches such as ColBERTv2 (San-
thanam et al., 2021) which incurs significantly
more storage cost. Our code and model check-
points are available at https://github.com/
microsoft/unilm/tree/master/simlm.

1 Introduction

Passage retrieval is an important component in ap-
plications like ad-hoc information retrieval, open-
domain question answering (Karpukhin et al.,
2020), retrieval-augmented generation (Lewis
et al., 2020) and fact verification (Thorne et al.,
2018). Sparse retrieval methods such as BM25
were the dominant approach for several decades,
and still play a vital role nowadays. With the emer-
gence of large-scale pre-trained language models
(PLM) (Devlin et al., 2019), increasing attention is
being paid to neural dense retrieval methods (Yates
et al., 2021). Dense retrieval methods map both
queries and passages into a low-dimensional vector
space, where the relevance between the queries and
passages are measured by the dot product or cosine
similarity between their respective vectors.

PLM MS-MARCO GLUE
BERT 33.7 80.5

RoBERTa 33.1 88.1
ELECTRA 31.9 89.4

Table 1: Inconsistent performance trends between dif-
ferent models on retrieval task and NLU tasks. We re-
port MRR@10 on the dev set of MS-MARCO passage
ranking dataset and test set results on GLUE bench-
mark. Details are available in the Appendix A.

Like other NLP tasks, dense retrieval benefits
greatly from a strong general-purpose pre-trained
language model. However, general-purpose pre-
training does not solve all the problems. As shown
in Table 1, improved pre-training techniques that
are verified by benchmarks like GLUE (Wang
et al., 2019) do not result in consistent performance
gain for retrieval tasks. Similar observations are
also made by Lu et al. (2021). We hypothesize
that, to perform robust retrieval, the [CLS] vector
used for computing matching scores should encode
all the essential information in the passage. The
next-sentence prediction (NSP) task in BERT intro-
duces some supervision signals for the [CLS] token,
while RoBERTa (Liu et al., 2019) and ELECTRA
do not have such sequence-level tasks.

In this paper, we propose SimLM to pre-train a
representation bottleneck with replaced language
modeling objective. SimLM consists of a deep en-
coder and a shallow decoder connected with a rep-
resentation bottleneck, which is the [CLS] vector
in our implementation. Given a randomly masked
text segment, we first employ a generator to sample
replaced tokens for masked positions, then use both
the deep encoder and shallow decoder to predict
the original tokens at all positions. Since the de-
coder only has limited modeling capacity, it must
rely on the representation bottleneck to perform
well on this pre-training task. As a result, the en-
coder will learn to compress important semantic
information into the bottleneck, which would help
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train biencoder-based 1 dense retrievers. Our pre-
training objective works with plain texts and does
not require any generated pseudo-queries as for
GPL (Wang et al., 2022).

Compared to existing pre-training approaches
such as Condenser (Gao and Callan, 2021) or co-
Condenser (Gao and Callan, 2022), our method
has several advantages. First, it does not have any
extra skip connection between the encoder and de-
coder, thus reducing the bypassing effects and sim-
plifying the architecture design. Second, similar
to ELECTRA pre-training, our replaced language
modeling objective can back-propagate gradients
at all positions and does not have [MASK] tokens
in the inputs during pre-training. Such a design
increases sample efficiency and decreases the in-
put distribution mismatch between pre-training and
fine-tuning.

To verify the effectiveness of our method,
we conduct experiments on several large-scale
web search and open-domain QA datasets: MS-
MARCO passage ranking (Campos et al., 2016),
TREC Deep Learning Track datasets, and the Nat-
ural Questions (NQ) dataset (Kwiatkowski et al.,
2019). Results show substantial gains over other
competitive methods using BM25 hard negatives
only. When combined with mined hard negatives
and cross-encoder based re-ranker distillation, we
can achieve new state-of-the-art performance.

2 Related Work

Dense Retrieval The field of information retrieval
(IR) (Manning et al., 2005) aims to find the relevant
information given an ad-hoc query and has played
a key role in the success of modern search en-
gines. In recent years, IR has witnessed a paradigm
shift from traditional BM25-based inverted index
retrieval to neural dense retrieval (Yates et al.,
2021; Karpukhin et al., 2020). BM25-based re-
trieval, though efficient and interpretable, suffers
from the issue of lexical mismatch between the
query and passages. Methods like document expan-
sion (Nogueira et al., 2019) or query expansion
(Azad and Deepak, 2019; Wang et al., 2023) are
proposed to help mitigate this issue. In contrast,
neural dense retrievers first map the query and pas-
sages to a low-dimensional vector space, and then
perform semantic matching. Popular methods in-
clude DSSM (Huang et al., 2013), C-DSSM (Shen
et al., 2014), and DPR (Karpukhin et al., 2020) etc.
1Also called dual-encoder / two-tower encoder.

Inference can be done efficiently with approximate
nearest neighbor (ANN) search algorithms such as
HNSW (Malkov and Yashunin, 2020).

Some recent works (Chen et al., 2021; Reimers
and Gurevych, 2021; Sciavolino et al., 2021)
show that neural dense retrievers may fail to
capture some exact lexical match information. To
mitigate this issue, Chen et al. (2021) proposes
to use BM25 as a complementary teacher model,
ColBERT (Khattab and Zaharia, 2020) instead
replaces simple dot-product matching with a more
complex token-level MaxSim interaction, while
COIL (Gao et al., 2021) incorporates lexical
match information into the scoring component
of neural retrievers. Our proposed pre-training
method aims to adapt the underlying text encoders
for retrieval tasks, and can be easily integrated
with existing approaches.

Pre-training for Dense Retrieval With the devel-
opment of large-scale language model pre-training
(Dong et al., 2019; Clark et al., 2020), Transformer-
based models such as BERT (Devlin et al., 2019)
have become the de facto backbone architecture
for learning text representations. However, most
pre-training tasks are designed without any prior
knowledge of downstream applications. Chang
et al. (2020) presents three heuristically constructed
pre-training tasks tailored for text retrieval: inverse
cloze task (ICT), body first selection (BFS), and
wiki link prediction (WLP). These tasks exploit the
document structure of Wikipedia pages to automat-
ically generate contrastive pairs. Other related pre-
training tasks include representative words predic-
tion (Ma et al., 2021), contrastive span prediction
(Ma et al., 2022), contrastive learning with inde-
pendent cropping (Izacard et al., 2021), domain-
matched pre-training (Oguz et al., 2022) or neigh-
boring text pairs (Neelakantan et al., 2022) etc.

Another line of research builds upon the intu-
ition that the [CLS] vector should encode all the
important information in the given text for robust
matching, which is also one major motivation for
this paper. Such methods include Condenser (Gao
and Callan, 2021), coCondenser (Gao and Callan,
2022), SEED (Lu et al., 2021), DiffCSE (Chuang
et al., 2022), and RetroMAE (Liu and Shao, 2022)
etc. Compared with Condenser and coCondenser,
our pre-training architecture does not have skip
connections between the encoder and decoder, and
therefore forces the [CLS] vector to encode as
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Figure 1: Pre-training architecture of SimLM. Replaced tokens (underlined) are randomly sampled from the gen-
erator distribution.

much information as possible. RetroMAE (Liu
and Shao, 2022) is a concurrent work at the time
of writing that combines a bottleneck architecture
and the masked auto-encoding objective.

3 SimLM

3.1 Pre-training

For pre-training, we assume there is a collection of
passages C = {xi}|C|i=1, where x denotes a single
passage. Since our motivation is to have a general
pre-training method, we do not assume access to
any query or human-labeled data.

The overall pre-training architecture is shown
in Figure 1. Given a text sequence x, its tokens
are randomly replaced with probability p by two
sequential operations: random masking with prob-
ability p denoted as x′ = Mask(x, p), and then
sampling from an ELECTRA-style generator g de-
noted as Sample(g,x′). Due to the randomness of
sampling, a replaced token can be the same as the
original one. The above operations are performed
twice with potentially different replace probabili-
ties penc and pdec to get the encoder input xenc and
decoder input xdec.

xenc = Sample(g, Mask(x, penc))

xdec = Sample(g, Mask(x, pdec))
(1)

We also make sure that any replaced token in xenc
is also replaced in xdec to increase the difficulty of
the pre-training task.

The encoder is a deep multi-layer Transformer
that can be initialized with pre-trained models like
BERT (Devlin et al., 2019). It takes xenc as in-
put and outputs the last layer [CLS] vector hcls
as a representation bottleneck. The decoder is a

2-layer shallow Transformer with a language mod-
eling head and takes xdec and hcls as inputs. Unlike
the decoder component in autoregressive sequence-
to-sequence models, the self-attention in our de-
coder is bi-directional. The pre-training task is
replaced language modeling for both the encoder
and decoder, which predicts the tokens before re-
placement at all positions. The loss function is the
token-level cross-entropy. The encoder loss Lenc is
shown as follows:

min Lenc = −
1

|x|

|x|∑

i=1

log p(x[i] | xenc) (2)

Similarly for the decoder loss Ldec. The final pre-
training loss is their simple sum: Lpt = Lenc+Ldec.
We do not fine-tune the parameters of the generator
as our preliminary experiments do not show any
performance gain.

It is often reasonable to assume access to the tar-
get retrieval corpus before seeing any query. There-
fore, we directly pre-train on the target corpus sim-
ilar to coCondenser (Gao and Callan, 2022). After
the pre-training finishes, we throw away the de-
coder and only keep the encoder for supervised
fine-tuning.

Since the decoder has very limited modeling
capacity, it needs to rely on the representation bot-
tleneck to perform well on the pre-training task.
For the encoder, it should learn to compress all the
semantic information and pass it to the decoder
through the bottleneck.

3.2 Fine-tuning
Compared to training text classification or gen-
eration models, training state-of-the-art dense
retrieval models requires a relatively compli-
cated procedure. In Figure 2, we show our
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Figure 2: Illustration of our supervised fine-tuning pipeline. Note that we only use SimLM to initialize the
biencoder-based retrievers. For cross-encoder based re-ranker, we use off-the-shelf pre-trained models such as
ELECTRAbase.

supervised fine-tuning pipeline. In contrast to
previous approaches, our proposed pipeline is
relatively straightforward and does not require
joint training (Ren et al., 2021b) or re-building
index periodically (Xiong et al., 2021). Each
stage takes the outputs from the previous stage
as inputs and can be trained in a standalone fashion.

Retriever1 Given a labeled query-passage pair
(q+, d+), we take the last-layer [CLS] vector of
the pre-trained encoder as their representations
(hq+ ,hd+). Both the in-batch negatives and BM25
hard negatives are used to compute the contrastive
loss Lcont:

− log
φ(q+, d+)

φ(q+, d+) +
∑

ni∈N
(φ(q+, ni) + φ(d+, ni))

(3)
Where N denotes all the negatives, and φ(q, d) is a
function to compute the matching score between
query q and passage d. In this paper, we use
temperature-scaled cosine similarity function:
φ(q, d) = exp( 1τ cos(hq,hd)). τ is a temperature
hyper-parameter and set to a constant 0.02 in our
experiments.

Retriever2 It is trained in the same way as
Retriever1 except that the hard negatives are mined
based on a well-trained Retriever1 checkpoint.

Re-ranker is a cross-encoder that re-ranks the top-
k results of Retriever2. It takes the concatenation
of query q and passage d as input and outputs a real-
valued score θ(q, d). Given a labeled positive pair
(q+, d+) and n−1 hard negative passages randomly

sampled from top-k predictions of Retriever2, we
adopt a listwise loss to train the re-ranker:

− log
exp(θ(q+, d+))

exp(θ(q+, d+)) +
∑n−1

i=1 exp(θ(q+, d−i ))
(4)

The cross-encoder architecture can model the
full interaction between the query and the passage,
making it suitable to be a teacher model for
knowledge distillation.

Retrieverdistill Although cross-encoder based re-
ranker is powerful, it is not scalable enough for
first-stage retrieval. To combine the scalability of
biencoder and the effectiveness of cross-encoder,
we can train a biencoder-based retriever by dis-
tilling the knowledge from the re-ranker. The re-
ranker from the previous stage is employed to com-
pute scores for both positive pairs and mined nega-
tives from Retriever2. These scores are then used
as training data for knowledge distillation. With
n− 1 mined hard negatives, we use KL (Kullback-
Leibler) divergence Lkl as the loss function for
distilling the soft labels:

Lkl =

n∑

i=1

piranker log
piranker

piret
(5)

where pranker and pret are normalized probabili-
ties from the re-ranker teacher and Retrieverdistill
student. For training with the hard labels, we
use the contrastive loss Lcont as defined in Equa-
tion 3. The final loss is their linear interpolation:
L = Lkl + αLcont.

Our pre-trained SimLM model is used to ini-
tialize all three biencoder-based retrievers but not
the cross-encoder re-ranker. Since our pre-training
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Model +distill
single

vector?
MS MARCO dev TREC DL 19 TREC DL 20

MRR@10 R@50 R@1k nDCG@10 nDCG@10
Sparse retrieval
BM25 3 18.5 58.5 85.7 51.2∗ 47.7∗

DeepCT (Dai and Callan, 2019) 3 24.3 69.0 91.0 57.2 -
docT5query (Nogueira and Lin) 3 27.7 75.6 94.7 64.2 -
Dense retrieval
ANCE (Xiong et al., 2021) 3 33.0 - 95.9 64.5† 64.6†

SEED (Lu et al., 2021) 3 33.9 - 96.1 - -
TAS-B (Hofstätter et al., 2021) 3 3 34.0 - 97.5 71.2 69.3
RetroMAE (Liu and Shao, 2022) 3 35.0 - 97.6 - -
COIL (Gao et al., 2021) 35.5 - 96.3 70.4 -
ColBERT (Khattab and Zaharia, 2020) 36.0 82.9 96.8 - -
Condenser (Gao and Callan, 2021) 3 36.6 - 97.4 69.8 -
RocketQA (Qu et al., 2021) 3 3 37.0 85.5 97.9 - -
PAIR (Ren et al., 2021a) 3 3 37.9 86.4 98.2 - -
coCondenser (Gao and Callan, 2022) 3 38.2 86.5∗ 98.4 71.7∗ 68.4∗

RocketQAv2 (Ren et al., 2021b) 3 3 38.8 86.2 98.1 - -
AR2 (Zhang et al., 2021) 3 3 39.5 87.8 98.6 - -
ColBERTv2 (Santhanam et al., 2021) 3 39.7 86.8 98.4 - -
SIMLM 3 3 41.1 87.8 98.7 71.4 69.7

Table 2: Main results on MS-MARCO passage ranking and TREC datasets. Results with * are from our reproduc-
tion with public checkpoints. †: from Pyserini (Lin et al., 2021).

method only affects model initialization, it can be
easily integrated into other more effective training
pipelines.

4 Experiments

4.1 Setup

Datasets and Evaluation We use MS-MARCO
passage ranking (Campos et al., 2016), TREC
Deep Learning (DL) Track 2019 (Craswell et al.,
2020a) and 2020 (Craswell et al., 2020b), Natural
Questions (NQ) (Kwiatkowski et al., 2019;
Karpukhin et al., 2020) datasets for training and
evaluation. The MS-MARCO dataset is based on
Bing search results and consists of about 500k
labeled queries and 8.8M passages. Since the test
set labels are not publicly available, we report
results on the development set with 6980 queries.
The NQ dataset is targeted for open QA with about
80k question-answer pairs in the training set and
21M Wikipedia passages. For evaluation metrics,
we use MRR@10, Recall@50, and Recall@1k
for MS-MARCO, nDCG@10 for TREC DL, and
Recall@20, Recall@100 for the NQ dataset.

Implementation Details For pre-training, we ini-
tialize the encoder with BERTbase (uncased ver-
sion). The decoder is a two-layer Transformer
whose parameters are initialized with the last two

layers of BERTbase. The generator is borrowed
from the ELECTRAbase generator, and its param-
eters are frozen during pre-training. We pre-train
for 80k steps for MS-MARCO corpus and 200k
steps for NQ corpus, which roughly correspond to
20 epochs. Pre-training is based on 8 V100 GPUs.
With automatic mixed-precision training, it takes
about 1.5 days and 3 days for the MS-MARCO and
NQ corpus respectively.

For more implementation details, please check
out the Appendix section B.

4.2 Main Results

We list the main results in Table 2 and 4. For
the MS-MARCO passage ranking dataset, the num-
bers are based on the Retrieverdistill in Figure 2.
Our method establishes new state-of-the-art with
MRR@10 41.1, even outperforming multi-vector
methods like ColBERTv2. As shown in Table
3, ColBERTv2 has a 6x storage cost as it stores
one vector per token instead of one vector per pas-
sage. It also requires a customized two-stage in-
dex search algorithm during inference, while our
method can utilize readily available vector search
libraries.

The TREC DL datasets have more fine-grained
human annotations, but also much fewer queries
(less than 100 labeled queries). We find that using

2248



different random seeds could have a 1%-2% differ-
ence in terms of nDCG@10. Though our model
performs slightly worse on the 2019 split compared
to coCondenser, we do not consider such difference
as significant.

Index size Index search
ColBERTv2 >150GB Two-stage
SIMLM 27GB One-stage

Table 3: Comparison with ColBERTv2 (Santhanam
et al., 2021) in terms of index storage cost (w/o any
compression) and complexity of index search algo-
rithms.

Model
NQ

R@20 R@100
BM25 59.1 73.7
DPRsingle (Karpukhin et al., 2020) 78.4 85.4
ANCE (Xiong et al., 2021) 81.9 87.5
RocketQA (Qu et al., 2021) 82.7 88.5
Condenser (Gao and Callan, 2021) 83.2 88.4
PAIR (Ren et al., 2021a) 83.5 89.1
RocketQAv2 (Ren et al., 2021b) 83.7 89.0
coCondenser (Gao and Callan, 2022) 84.3 89.0
SIMLM 85.2 89.7

Table 4: Results on the test set of Natural Questions
(NQ) dataset. Listed results of SimLM are based on
Retrieverdistill.

For passage retrieval in the open-domain QA set-
ting, a passage is considered relevant if it contains
the correct answer for a given question. In Table 4,
our model achieves R@20 85.2 and R@100 89.7
on the NQ dataset, which are comparable to or bet-
ter than other methods. For end-to-end evaluation
of question answering accuracy, we will leave it as
future work.

Model MRR@10
BERTbase 42.3
ELECTRAbase 43.7
SIMLM 42.9

Table 5: Re-ranker performance w/ different pre-
trained models on the dev set of MS-MARCO passage
ranking dataset.

Though SimLM achieves substantial gain for
biencoder-based retrieval, its success for re-ranking
is not as remarkable. In Table 5, when used as
initialization for re-ranker training, SimLM out-
performs BERTbase by 0.6% but still lags behind
ELECTRAbase.

MRR@10 R@1k
coCondenser
BM25 negatives 35.7 97.8
+ mined negatives 38.2 98.4
+ distillation 40.2∗ 98.3∗

SIMLM
BM25 negatives (Retriever1) 38.0 98.3
+ mined negatives (Retriever2) 39.1 98.6
+ distillation (Retrieverdistill) 41.1 98.7
Cross-encoder re-ranker 43.7 98.6

Table 6: Comparison with state-of-the-art dense re-
triever coCondenser under various settings on the dev
set of MS-MARCO passage ranking dataset. Results
with * are from our reproduction.

Next, we zoom in on the impact of each stage in
our training pipeline. In Table 6, we mainly com-
pare with coCondenser (Gao and Callan, 2022).
With BM25 hard negatives only, we can achieve
MRR@10 38.0, which already matches the per-
formance of many strong models like RocketQA
(Qu et al., 2021). Model-based hard negative
mining and re-ranker distillation can bring further
gains. This is consistent with many previous works
(Xiong et al., 2021; Ren et al., 2021b). We also
tried an additional round of mining hard negatives
but did not observe any meaningful improvement.

Based on the results of Table 6, there are many
interesting research directions to pursue. For exam-
ple, how to simplify the training pipeline of dense
retrieval systems while still maintaining compet-
itive performance? And how to further close the
gap between biencoder-based retriever and cross-
encoder based re-ranker?

5 Analysis

5.1 Variants of Pre-training Objectives

Besides our proposed replaced language modeling
objective, we also tried several other pre-training
objectives as listed below.

Enc-Dec MLM uses the same encoder-decoder
architecture as in Figure 1 but without the genera-
tor. The inputs are randomly masked texts and the
pre-training objective is masked language model-
ing (MLM) over the masked tokens only. The mask
rate is the same as our method for a fair compari-
son, which is 30% for the encoder and 50% for the
decoder. In contrast, RetroMAE (Liu and Shao,
2022) uses a specialized decoding mechanism to
derive supervision signals from all tokens on the
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SIMLM Enc-Dec MLM Condenser MLM Enc-Dec RTD AutoEncoder BERTbase

MRR@10 38.0 37.7 36.9 36.7 36.2 32.8 33.7

Table 7: Different pre-training objectives. Reported numbers are MRR@10 on the dev set of MS-MARCO passage
ranking. We finetune the pre-trained models with official BM25 hard negatives.

decoder side.
Condenser is a pre-training architecture proposed
by Gao and Callan (2021). Here we pre-train Con-
denser with a 30% mask rate on the target corpus.
MLM is the same as the original BERT pre-
training objective with a 30% mask rate.
Enc-Dec RTD is the same as our method in Figure
1 except that we use replaced token detection (RTD)
(Clark et al., 2020) as a pre-training task for both
the encoder and decoder. This variant shares some
similarities with DiffCSE (Chuang et al., 2022).
The main difference is that the input for DiffCSE
encoder is the original text, making it a much easier
task. Our preliminary experiments with DiffCSE
pre-training do not result in any improvement.
AutoEncoder attempts to reconstruct the inputs
based on the bottleneck representation. The en-
coder input is the original text without any mask,
and the decoder input only consists of [MASK]
tokens and [CLS] vector from the encoder.
BERTbase just uses off-the-shelf checkpoint
published by Devlin et al. (2019). It serves as a
baseline to compare against various pre-training
objectives.

The results are summarized in Table 7. Naive
auto-encoding only requires memorizing the in-
puts and does not need to learn any contextualized
features. As a result, it becomes the only pre-
training objective that underperforms BERTbase.
Condenser is only slightly better than simple MLM
pre-training, which is possibly due to the bypass-
ing effects of the skip connections in Condenser.
Enc-Dec MLM substantially outperforms Enc-Dec
RTD, showing that MLM is a better pre-training
task than RTD for retrieval tasks. This is consis-
tent with the results in Table 1. Considering the
superior performance of RTD pre-trained models
on benchmarks like GLUE, we believe further re-
search efforts are needed to investigate the reason
behind this phenomenon.

5.2 Effects of Replace Rate
In the experiments, we use fairly large replace rates
(30% for the encoder and 50% for the decoder).
This is in stark contrast to the mainstream choice

encoder decoder MRR@10
15% 15% 37.6
15% 30% 37.5
30% 30% 37.9
30% 50% 38.0
40% 60% 38.0
30% 100% 36.6

Table 8: MS-MARCO passage ranking performance
w.r.t different token replace rates. Here the replace rate
is the percentage of masked tokens fed to the generator.

of 15%. In Table 8, we show the results of pre-
training with different replace rates. Our model is
quite robust to a wide range of values with 30%-
40% encoder replace rate performing slightly better.
Similar findings are also made by Wettig et al.
(2022).

One interesting extreme scenario is a 100% re-
place rate on the decoder side. In such a case, the
decoder has no access to any meaningful context.
It needs to predict the original texts solely based on
the representation bottleneck. This task may be too
difficult and has negative impacts on the encoder.

5.3 Effects of Pre-training Steps

0 10 20 40 60 80
Pre-training steps (k)

33

34

35

36

37

38

M
RR

@
10

35.6 35.7

36.2
36.5 36.7

37.3 37.2
37.6

38.0 38.0

MLM
SimLM

Figure 3: Our pre-training objective converges faster
and consistently outperforms vanilla masked language
model pre-training. The y-axis shows the MRR@10 on
the dev set of MS-MARCO dataset.

Since pre-training can be costly in terms of both
time and carbon emission, it is preferred to have an
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query was winnie the pooh a boy

BERTbase

Rank: 1, Relevant: 7
Passage: The little boy who talks to the animals in the Winnie-the-Pooh stories is called Christopher Robin,
which is the name of A. A. Milne’s real-life son, who was born in 1920. On August 21, 1921,
the real-life Christopher Robin Milne received a stuffed bear from Harrods for his first birthday . . .

SIMLM

Rank: 1, Relevant: 3
Passage: So, it looks like we were lied to our entire childhood! Winnie the Pooh is not a boy. SHE is a girl
and she’s from Canada, not England. Really! In a new picture book called Finding Winnie:
The True Story of the World’s Most Famous Bear, we learn that Winnie is actually named after . . .

query colorado routing number loveland colorado

BERTbase

Rank: 1, Relevant: 7
Passage: Loveland, CO is currently served by one area code which is area code 970. In addition to Loveland,
CO area code information read more about area code 970 details and Colorado area codes. . . .

SIMLM

Rank: 2, Relevant: 3
Passage: 107006787 Routing Transit Number (RTN) for Advantage Bank Main Office located at
Loveland, Colorado, CO, 80538, United States, Street Address 1475 NORTH DENVER AVENUE,
Telephone Number 970-613-1982 . . .

Table 9: Some (cherry-picked) examples from the dev set of MS-MARCO passage ranking dataset. We show the
query, top retrieved passages from different models, and their binary relevance labels. Relevant text snippets are
shown in italic. More examples are available in the Appendix.

objective that converges fast. Our proposed method
shares two advantages of ELECTRA (Clark et al.,
2020). First, the loss is computed over all input to-
kens instead of a small percentage of masked ones.
Second, the issue of input distribution mismatch is
less severe than MLM, where the [MASK] token
is seen during pre-training but not for supervised
fine-tuning. In Figure 3, our method achieves
competitive results with only 10k training steps
and converges at 60k, while MLM still slowly im-
proves with more steps.

5.4 On the Choice of Pre-training Corpus

Corpus
MS-MARCO NQ

MRR@10 R@1k R@20 R@100
none 33.7 95.9 82.9 88.0
MS-MARCO 38.0 98.3 83.3 88.6
Wikipedia 36.3 97.4 84.3 89.3

Table 10: Fine-tuning performance w.r.t different pre-
training corpora. We use BM25 negatives for MS-
MARCO and mined negatives for NQ. “Wikipedia” is
the target retrieval corpus for NQ dataset. “none” use
BERTbase as the foundation model.

For a typical retrieval task, the number of can-
didate passages is much larger than the number
of labeled queries, and many passages are never
seen during training. Take the NQ dataset as an
example, it has 21M candidate passages but only
less than 80k question-answer pairs for training.
In the experiments, we directly pre-train on the
target corpus. Such pre-training can be regarded
as implicit memorization of the target corpus in
a query-agnostic way. One evidence to support

this argument is that, as shown in Table 7, simple
MLM pre-training on target corpus can have large
performance gains.

An important research question to ask is: will
there be any benefits of our method when pre-
training on non-target corpus? In Table 10, the
largest performance gains are obtained when the
corpus matches between pre-training and fine-
tuning. If we pre-train on the MS-MARCO corpus
and fine-tune on the labeled NQ dataset or the other
way around, there are still considerable improve-
ments over the baseline. We hypothesize that this
is due to the model’s ability to compress informa-
tion into a representation bottleneck. Such ability
is beneficial for training robust biencoder-based
retrievers.

5.5 Case Analysis

To qualitatively understand the gains brought by
pre-training, we show several examples in Table
9. The BERTbase retriever can return passages with
high lexical overlap while missing some subtle but
key semantic information. In the first example, the
retrieved passage by BERTbase contains keywords
like “boy”, “Winnie the Pooh”, but does not answer
the question. In the second example, there is no
routing number in the BERTbase retrieved passage,
which is the key intent of the query. Our proposed
pre-training can help to learn better semantics to
answer such queries. For more examples, please
check out Table 14 in the Appendix.
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6 Conclusion

This paper proposes a novel pre-training method
SIMLM for dense passage retrieval. It follows
an encoder-decoder architecture with a representa-
tion bottleneck in between. The encoder learns to
compress all the semantic information into a dense
vector and passes it to the decoder to perform well
on the replaced language modeling task. When
used as initialization in a dense retriever training
pipeline, our model achieves competitive results on
several large-scale passage retrieval datasets.

For future work, we would like to increase the
model size and the corpus size to examine the scal-
ing effects. It is also interesting to explore other
pre-training mechanisms to support unsupervised
dense retrieval and multilingual retrieval.

Limitations

One limitation of SimLM is that it can not be used
as a zero-shot dense retriever, since the pre-training
framework does not have any contrastive objective.
Fine-tuning on labeled data is necessary to get a
high-quality model. On the other hand, although
SimLM pre-training is quite efficient thanks to the
replaced language modeling objective, it still re-
quires extra computational resources to train the
model.

Ethical Considerations

If the retrieval corpus contains some offensive or
biased texts, they could be exposed to users under
certain queries through our dense retriever. To deal
with such risks, we need to introduce toxic text
classifiers or manual inspection to exclude such
texts from the corpus.
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A Details on Table 1

The numbers for the GLUE benchmark are from
the official leaderboard 2. Note that the leader-
board submission from BERT does not use ensem-
ble, so the comparison is not entirely fair. However,
this does not change our conclusion that BERT gen-
erally performs worse than RoBERTa and ELEC-
TRA on NLP tasks. For the MS-MARCO dataset,
we fine-tune all the pre-trained models with BM25
hard negatives only. For BERT and RoBERTa, we
use the same hyperparameters as discussed in Sec-
tion 4.1. For ELECTRA, we train for 6 epochs
with a peak learning rate 4 × 10−5 since it con-
verges much slower.

B Implementation Details

MS-MARCO Wikipedia
# of passages 8.8M 21M
PLM BERTbase BERTbase
batch size 2048 2048
text length 144 144
learning rate 3× 10−4 3× 10−4

warmup steps 4000 4000
train steps 80k 200k
encoder replace rate 30% 30%
decoder replace rate 50% 50%

Table 11: Hyper-parameters for pre-training. The
Wikipedia corpus comes from DPR (Karpukhin et al.,
2020) instead of the original one used for BERT pre-
training.

The hyper-parameters for our proposed pre-
training and fine-tuning are listed in Table 11 and
13, respectively. For supervised fine-tuning, One
shared encoder is used to encode both the query
and passages. We start with the official BM25 hard
negatives in the first training round and then change
to mined hard negatives. During inference, given
a query, we use brute force search to rank all the
passages for a fair comparison with previous works.
The generator is initialized with the released one
by ELECTRA authors 3, and its parameters are
2 https://gluebenchmark.com/leaderboard
3https://huggingface.co/google/
electra-base-generator

frozen during pre-training. All the reported results
are based on a single run, we find that the numbers
are quite stable with different random seeds.

For fine-tuning on the NQ dataset, we reuse most
hyper-parameters values from MS-MARCO train-
ing. A few exceptions are listed below. We fine-
tune for 20k steps with learning rate 5×10−6. The
maximum length for passage is 192. The mined
hard negatives come from top-100 predictions that
do not contain any correct answer.

C Variants of Generators

In the ELECTRA pre-training, the generator plays
a critical role. Using either a too strong or too weak
generator hurts the learnability and generalization
of the discriminator.

generator MRR@10 R@1k
frozen generator 38.0 98.3
joint train 38.0 98.4
joint train w/ random init 37.8 98.4

Table 12: Variants of generators for SimLM pre-
training. Performances are reported on the dev set of
MS-MARCO with BM25 negatives only.

We also tried several variants of generators. In
Table 12, “frozen generator” keeps the genera-
tor parameters unchanged during our pre-training,
“joint train” also fine-tunes the generator parame-
ters, and “joint train w/ random init” uses randomly
initialized generator parameters. We do not ob-
serve any significant performance difference be-
tween these variants. In our experiments, we sim-
ply use the “frozen generator” as it has a faster
training speed.
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Retriever 1-2 Re-ranker Retrieverdistill

learning rate 2× 10−5 3× 10−5 3× 10−5

PLM SIMLM ELECTRAbase SIMLM
# of GPUs 4 8 4
warmup steps 1000 1000 1000
batch size 64 64 64
epoch 3 3 6
τ 0.02 n.a. 0.02
α n.a. n.a. 0.2
negatives depth 200 200 200
rerank depth n.a. 200 n.a.
query length 32 n.a. 32
passage length 144 192† 144
# of negatives 15 63 23

Table 13: Hyper-parameters for supervised fine-tuning on MS-MARCO passage ranking dataset. †: Max length
for the concatenation of the query and passage.

query is the keto diet good for kidney disease

BERTbase

Rank: 1, Relevant: 7
Passage: The keto diet (also known as ketogenic diet, low carb diet and LCHF diet) is a low carbohydrate,
high fat diet. Maintaining this diet is a great tool for weight loss. More importantly though,
according to an increasing number of studies, it helps reduce risk factors for diabetes, heart diseases, stroke . . .

SIMLM

Rank: 1, Relevant: 3
Passage: 4-Many kidney issues have either a hyperinsulinemic characteristic, an autoimmune characteristic,
and or a combination of autoimmunity or hyperinsulinism. A standard, low-ish carb paleo diet can fix most of
these issues. 5-For serious kidney damage a low-protein, ketogenic diet can be remarkably therapeutic.

query who announced the european recovery program?

BERTbase

Rank: 1, Relevant: 7
Passage: 1 The CEEC submits its report estimating needs and the cost of the European Recovery Program
(ERP) over four years. 2 It provides for the establishment of the Organization for European
Economic Cooperation (OEEC) to coordinate the program from the European side. 3 February 1948.

SIMLM

Rank: 2, Relevant: 3
Passage: Marshall Plan. Introduction. The Marshall Plan, also known as the European Recovery Program,
channeled over $13 billion to finance the economic recovery . . . The plan is named for Secretary of State
George C. Marshall, who announced it in a commencement speech at Harvard University on June 5, 1947.

query what is process control equipment

BERTbase

Rank: 1, Relevant: 7
Passage: What is process control? Process control is an algorithm that is used in the during the manufacturing
process in the industries for the active changing process based on the output of process monitoring.

SIMLM

Rank: 1, Relevant: 7
Passage: Process equipment is equipment used in chemical and materials processing, in facilities
like refineries, chemical plants, and wastewater treatment plants. This equipment is usually designed with a
specific process or family of processes in mind and can be customized for a particular facility in some cases.

Table 14: Additional examples from dev set of MS-MARCO passage ranking dataset.
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