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Abstract
Large language models are able to perform
a task by conditioning on a few input-output
demonstrations – a paradigm known as in-
context learning. We show that language mod-
els can explicitly infer an underlying task from
a few demonstrations by prompting them to
generate a natural language instruction that fits
the examples. To explore this ability, we intro-
duce the instruction induction challenge, com-
pile a dataset consisting of 24 tasks, and define
a novel evaluation metric based on executing
the generated instruction. We discover that, to
a large extent, the ability to generate instruc-
tions does indeed emerge when using a model
that is both large enough and aligned to fol-
low instructions; InstructGPT achieves 65.7%
of human performance in our execution-based
metric, while the original GPT-3 model reaches
only 9.8% of human performance. This surpris-
ing result suggests that instruction induction
might be a viable learning paradigm in and
of itself, where instead of fitting a set of latent
continuous parameters to the data, one searches
for the best description in the natural language
hypothesis space.1

1 Introduction

Large language models (LMs) can perform unseen
tasks by conditioning on a few labeled examples,
effectively inferring the underlying tasks through a
process known as in-context learning (Brown et al.,
2020). However, task inference is implicit, and
the ability of models to explicitly reason about it
remains unexplored. In this work, we show that
LMs can explicitly describe an underlying task, in
natural language, given a few labeled examples.

We introduce the instruction induction challenge,
in which a model is provided with a few input-
output demonstrations, and is requested to gener-
ate a natural language instruction describing the

1Our code and data are publicly available at
https://github.com/orhonovich/
instruction-induction

connection between the input-output pairs. In our
experiments, inducing instructions is done in a zero-
shot manner by simply prompting the models to
explain a small set of given demonstrations, as
shown in Figure 1; we do not perform fine-tuning
or use any labeled instruction induction data.

We examine instruction induction on 24 tasks,
ranging from morphosyntactic tasks to style trans-
fer and sentiment analysis. Since our goal is to shed
light on the phenomenon of instruction induction,
we focus on tasks that have clear and simple instruc-
tions. As a basic evaluation protocol, we collect
human annotations and use them as gold-standard
references; the generated instructions are then com-
pared to these references using BERTScore (Zhang
et al., 2020). Moreover, we suggest a novel eval-
uation metric for instruction induction: execution
accuracy. The execution accuracy of a generated
instruction is measured by testing whether LMs can
correctly perform the task in a zero-shot manner by
using the generated instruction alone, without any
demonstrations.

Our experiments reveal a surprising ability
at generating correct instructions. The best-
performing model, InstructGPT (Ouyang et al.,
2022), achieves an average BERTScore of 44.4,
compared to human performance of 60.0; when
measuring execution accuracy, the model reaches
43.6, with human-written instructions reaching
66.4. For some tasks, the model’s performance
is on par or even better than human performance.
When qualitatively examining the generated in-
structions, we often observe accurate instructions,
even for some of the more challenging tasks. For
instance, in the task of formality style transfer, gen-
erated instructions include “Translate the inputs
into more formal language” and “Use formal lan-
guage”. For semantic text similarity, the generated
instructions include “For each input, rate the simi-
larity of the two sentences on a scale of 0 to 5, with
5 being a perfect match” and “Determine whether
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In-Context Learning Instruction Induction

I gave a friend an instruction and five inputs. 
The friend read the instruction and wrote an 
output for every one of the inputs.  
Here are the input-output pairs:

Input: Sorry I messed up.
Output: I apologise for my wrongdoings.

Input: As soon as you can.
Output: At your earliest convenience.

Input: I can't stand his temper.
Output: I cannot tolerate his temper.

Input: Sorry I messed up.
Output: I apologise for my wrongdoings.

Input: As soon as you can.
Output: At your earliest convenience.

… …

The instruction was translate the inputs 
into more formal language.

Figure 1: An example of instruction induction for the task of formality style transfer. Left: the standard in-context
learning setting; given five demonstrations, complete the sixth. Right: instruction induction; the language model is
prompted to generate a natural language instruction that describes the demonstrations. Model completions are in
blue, prompt templates are in pink.

the two sentences are about the same thing”.

Despite these impressive results, we find that this
ability is currently unique to InstructGPT (Ouyang
et al., 2022), which is both very large (175B pa-
rameters) and was especially fine-tuned to follow
instructions. Ablations on smaller versions of In-
structGPT as well as the original 175B-parameter
GPT-3 (Brown et al., 2020) yield dramatically
weaker performance. These findings are in line
with recent work showing that increasing model
size unlocks new capabilities (Chowdhery et al.,
2022; Ganguli et al., 2022), and serves as addi-
tional evidence for the strength of instruction tun-
ing (Sanh et al., 2022; Wei et al., 2022a; Ouyang
et al., 2022), perhaps even pointing to the necessity
of complementing standard next-word prediction
with additional objectives.

The fact that models can induce natural language
instructions suggests that instruction induction may
serve as a learning paradigm of its own, where the
optimization goal is to find the best natural lan-
guage description that fits the observations. In this
ambitious view of instruction induction, natural
language can function as the hypothesis space, and
a model is required to learn a natural language
rule describing the relation between inputs and out-
puts in the training examples, rather than a set of
uninterpretable parameters. While we currently
provide a proof-of-concept for that idea, extend-
ing it by grounding models in natural language
has the immediate benefit of human interpretability,

explainability, and verifiability, while potentially
alleviating overfitting and other issues associated
with spurious correlations.

2 Instruction Induction

We begin by formulating the task of instruction
induction. Given a sequence of n demonstrations
{xk, yk}k∈{1,...,n}, the goal is to generate a single
natural language instruction, such that for each xk,
following the instruction results in yk. This for-
mat is similar to in-context learning (Brown et al.,
2020), only here the desired output is an instruc-
tion describing the relation between the inputs and
outputs of the demonstrations. We require models
to perform this in a zero-shot setting, without any
fine-tuning on labeled data. Figure 1 illustrates the
difference between standard in-context prompting
and instruction-induction prompting.

To elicit models to generate instructions, we con-
sider prompts that would elicit humans to do so.
We design a meta-prompt presenting instruction in-
duction as a challenge puzzle and verify its clarity
in a human study (§3.3). The prompt is presented
in Figure 1 (right side, in pink).2

While prior work already shows that large LMs
are often able to infer a latent task from a given set
of demonstrations, this has been largely based on
their ability to execute the task on a held-out exam-

2We found this prompt informative for both humans and
models in preliminary experiments. We provide a meta-
prompt analysis in Appendix C.
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ple. Instruction induction requires that the model
describe the underlying task in natural language.

3 Data

We evaluate on 24 tasks. Example tasks are listed in
Table 1. See Table 4 in Appendix A for the full list
of tasks. We select these tasks as they vary in diffi-
culty and represent different aspects of language un-
derstanding, ranging from surface-level spelling to
sentence similarity and causality detection.3 Since
our primary goal is to study the phenomenon of
instruction induction under lab conditions, we fo-
cus on tasks that have simple instructions and defer
tasks with more complicated instructions for future
work. We review the dataset’s format, the anno-
tation and verification processes we conducted to
ensure that the tasks are viable, and finally discuss
a theoretical limitation of this setup.

3.1 Format

In every task, each single demonstration (xk, yk)
is formatted as follows:

Input: xk
Output: yk

For instance, one demonstration in the pluralization
task is “Input: cat” followed by “Output: cats” in a
new line. We split each task’s demonstrations into
two sets: an induce set, which we use for generat-
ing instructions, and an execute set, which is held
out for the execution accuracy evaluation metric
(see §4.2). Each instruction induction example is
composed of 5 demonstrations sampled randomly
without replacement from the induce set, concate-
nated with new-line separators; we create 100 ex-
amples for each task. When generating instructions,
each example is placed inside the instruction induc-
tion prompt, and fed to the model (Figure 1, right).

3.2 Annotating Reference Instructions

We collect 10 gold-reference human-annotated in-
structions via college-graduate English-speaking
annotators. For each task, we provide the annota-
tors with the exact same input we intend to provide
a model: 5 input-output demonstrations wrapped
by the instruction-induction prompt (Figure 1). We
manually verify each annotation and discard ones
that do not correctly describe the task. We refer to
this set of annotations as the gold annotations, and
use them for reference-based evaluation (see §4).

3See Appendix A for the full details of each task.

3.3 Verification

Prior to the instruction induction experiments, we
conduct two tests to ensure that either models or hu-
mans can infer the underlying task given 5 demon-
strations. We first verify that models can indeed
execute our tasks given 5 demonstrations using in-
context learning. Secondly, we conduct a human
study to confirm that 5 demonstrations are enough
for humans to describe the latent tasks.

In-Context Learning We prompt models with
5 input-output demonstrations and concatenate an
additional test input xk+1, and verify that the mod-
els are able to correctly predict yk+1 (Figure 1,
left). For each task, we repeat this experiment
100 times, each with a different set of demonstra-
tions and test inputs. We do not provide the model
with any instruction beyond the “Input: xk Output:
yk” format. We evaluate each task using its pre-
defined evaluation metric.4 The in-context results
for GPT-3 (Brown et al., 2020) and InstructGPT
(Ouyang et al., 2022) (see model details in §5) are
reported in Table 5 in Appendix B, which shows
that in-context learning can reach 80% accuracy
and above on most tasks.

Human Study To assess the human ability to
induce instructions, we collect human-written in-
structions, using annotators that did not participate
in the gold references collection. As in the gold-
reference annotation process, we provide annota-
tors with the same input we intend to provide to
models. We refer to this set of annotations as the
control annotations. We then manually count, for
each task, the number of annotators that provided a
correct instruction, and report the correct instruc-
tions percentage in Table 5 (Appendix B). In all but
one task (Larger Animal), at least 4 out of 5 annota-
tors were able to produce correct task descriptions.

We also use the control group’s annotations to
establish a human baseline for automatic evaluation
metrics. For reference-based evaluation (§4.1), we
treat the control annotations as generated instruc-
tions and compare them against the gold annota-
tions, while for execution accuracy (§4.2), we use
the control annotations to measure human perfor-
mance, and the gold references as a ceiling metric.

4All metrics are variants of simple string matching, with
some task-specific heuristics, for example, to allow for multi-
ple correct answers. See Appendix A for exact details.
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Category Task Instruction Demonstration

Spelling First Letter Extract the first letter of the input word. cat → c

Syntax Negation Negate the input sentence. Time is finite → Time is not finite.

Lexical
Semantics

Antonyms Write a word that means the opposite of the input
word.

won → lost

Phonetics Rhymes Write a word that rhymes with the input word. sing → ring

Semantics Cause Selection Find which of the two given cause and effect
sentences is the cause.

Sentence 1: The soda went flat. Sen-
tence 2: The bottle was left open. →
The bottle was left open.

Common
Concept

Find a common characteristic for the given ob-
jects.

guitars, pendulums, neutrinos → in-
volve oscillations.

Style Formality Rephrase the sentence in formal language. Please call once you get there →
Please call upon your arrival.

Numerical Sum Sum the two given numbers. 22 10 → 32

Multi-
lingual

Translation Translate the word into German / Spanish /
French.

game → juego

GLUE Sentiment
Analysis

Determine whether a movie review is positive or
negative.

The film is small in scope, yet perfectly
formed. → positive

Sentence
Similarity

Rate the semantic similarity of two input sen-
tences on a scale of 0 - definitely not to 5 - per-
fectly.

Sentence 1: A man is smoking. Sen-
tence 2: A man is skating. → 0 - defi-
nitely not

Table 1: Example tasks used in our instruction-induction experiments. For each task, we show a corresponding
instruction and demonstration, with → separating the input from the output.

3.4 Ambiguity
A theoretical challenge in inducing instructions is
ambiguity. For example, when given the single
demonstration “Input: The coffee is too hot. Out-
put: The, too, hot”, one could infer that the under-
lying task is either “write all the words containing
the letter T” or “write all the three-lettered words”,
both valid interpretations. Ambiguity might con-
fuse models tasked with instruction induction while
also making evaluation less reliable. In practice,
providing 5 demonstrations typically resolves the
ambiguity in our set of tasks. As evident from the
data verification process, our tasks can typically be
inferred by models and/or humans.

Inducing more complex task descriptions, such
as predicting detailed annotation guidelines, may
pose a greater challenge in terms of ambiguity. We
hypothesize that providing more than 5 demonstra-
tions could mitigate some of that challenge, and
leave further exploration of this avenue to future
work.

4 Evaluating Generated Instructions

As a standard text generation metric, we report
BERTScore (Zhang et al., 2020). However, the in-
struction induction challenge has a unique property,

which does not usually hold for other text genera-
tion tasks: the instructions are executable. Their
correctness can therefore be measured directly by
utilizing them as prompts.

4.1 Reference-Based Evaluation

We use BERTScore (Zhang et al., 2020) to com-
pare the model-generated instructions against the
collected gold annotations. As mentioned in §3.2,
we use only the correct, verified annotations as
references. We take the maximal BERTScore-F1
over all gold-reference annotations to account for
natural variations in instruction formulation.5 We
also establish a human baseline for each task us-
ing the control annotations, which were collected
from a separate control group of annotators (§3.3),
which we compare against the gold annotations
in exactly the same way as model-generated in-
structions. In preliminary studies, we experiment
with other reference-based metrics (ROUGE and
BLEU), and find BERTScore to be a better pre-
dictor of instruction quality, although all metrics
showed similar trends.

5We use BERTScore version 0.3.11 with the DeBERTa-xl-
MNLI model (He et al., 2021; Nangia et al., 2017).
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4.2 Execution Accuracy

We introduce execution accuracy, a new metric
unique to the instruction induction task. We define
a correct instruction as one that can guide humans
to produce the expected output. To approximate hu-
man behavior, we use an instruction-tuned model
and test whether it can follow the generated instruc-
tion. Concretely, to measure the execution accuracy
of a predicted instruction I (e.g., “Write the plural
form of the given word.”) for a task T (plural-
ization), we prompt a model with I and an input
x (“cat”). We then test, given I and x, whether
the model can correctly predict y, the output of
performing T on the input x (cats).

To obtain meaningful results, we measure ex-
ecution accuracy on the 100 held-out execute ex-
amples for each task. The execution accuracy of
an instruction I is therefore computed by taking
the average over ScoreT (I(xn), yn) for all xn in
the execute set, where ScoreT denotes the task’s
corresponding metric (see Appendix A), and I(xn)
is the result of prompting a predefined language
model with the instruction I and the input xn. As
recent models are trained to follow instructions
(Sanh et al., 2022; Wei et al., 2022a; Ouyang et al.,
2022), and due to the relative clarity of our tasks,
we expect correct instructions to yield high execu-
tion accuracy when using a sufficiently powerful
execution model.6

5 Results

Baseline Models We experiment with eight ver-
sions of GPT-3 (Brown et al., 2020), a Transformer
decoder language model. First, we experiment with
the most current version available in the OpenAI
API, for each of the four available model sizes.
Though not stated explicitly in the API, we assume
these models are those reported by Ouyang et al.
(2022), and we therefore refer to them as Instruct
models.7 We also experiment with the four origi-
nally published GPT-3 versions.8 By default, we
refer to the largest Instruct model as InstructGPT,
and the original 175B-parameter model as GPT-
3. All model generations were produced using the
greedy decoding algorithm.

6Execution accuracy has been used to evaluate code gen-
eration (Yu et al., 2018). Here, we use execution accuracy to
evaluate natural language instructions, with a strong language
model playing the role of the interpreter.

7Concretely, we use: text-davinci-002, text-curie-001, text-
babbage-001, text-ada-001.

8davinci, curie, babbage, ada.

Model BERTScore Execution

GPT-3
Ada -7.7 4.0
Babbage 4.1 3.2
Curie 13.9 7.9
DaVinci 14.6 6.5

InstructGPT
Ada 5.9 4.4
Babbage -0.5 3.8
Curie 10.7 8.8
DaVinci 44.4 43.6

Human (Control) 60.0 66.4

Table 2: Average BERTScore and execution accuracy
across tasks. BERTScore is measured against the gold
references. The execution accuracy for all generated
instructions is measured using InstructGPT as the exe-
cution model. Human performance is measured using
the human control group’s instructions.

5.1 Comparing to Gold Annotations

Figure 2a presents the average BERTScore per
task (see §4.1). Results show that the InstructGPT
model has, to some extent, the ability to induce
instructions from a few demonstrations; in 13 out
of 24 tasks it achieves at least 75% of human per-
formance. GPT-3, on the other hand, is quite far
from human performance across the board.

Table 2 shows the average scores across all tasks.
We observe the same trend; while InstructGPT’s
BERTScore is 15.6 points lower than human perfor-
mance, the gap between GPT-3 and humans is 45.4
points. Moreover, we observe that smaller mod-
els – even those fine-tuned to follow instructions
– do not exhibit any instruction-induction abilities.
Scores are slightly higher for larger models of the
same family (except for the InstructGPT-Babbage
outlier), but are overall low. Excluding the largest
models, there does not appear to be a significant
advantage for Instruct models over the originals
when controlling for model size.

5.2 Execution Accuracy

We compute the execution accuracy as detailed in
§4.2, and report the average over 100 generated
instructions for each task. As an execution model,
we use the largest InstructGPT model. We also use
this model to induce instructions, and while using
it as an execution model might bias results towards
its own generations, preliminary experiments show
that no other model is as good at following instruc-
tions as InstructGPT. As a point of reference, we
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Figure 2: (a) Average BERTScores of model-generated instructions for each task, compared to the performance of
the control group’s manually-authored instructions. The BERTScore for each instruction is computed using the
human gold annotations as references. (b) Average execution accuracy of model-generated instructions for each task,
compared to the execution accuracy measured for human-written instructions. The Human baseline is measured
by taking the control group’s annotations, while the Gold ceiling metric is based on the separately-annotated and
verified gold annotations.
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apply the execution accuracy evaluation protocol
to human-written instructions. First, to compare
models with human performance, we measure the
execution accuracy of the control annotation set.
Second, to account for limitations in the execution
model, we measure execution accuracy of the cor-
rect (manually verified) gold annotations, which
acts as an approximated ceiling metric.

Figure 2b presents the execution accuracy per
task. In 12 out of 24 tasks, InstructGPT achieves
at least 75% of the execution accuracy measured
for the human-written instructions. GPT-3 shows
much weaker execution accuracy, scoring less than
10% on 20 of the 24 tasks. In fact, only in the
cases of formality, passivization, and cause selec-
tion does it approach human performance, and that
is largely an artifact of a more lenient evaluation
metric in the case of formality and cause selection,
or due to the execution model being right for the
wrong reasons in the case of passivization (see §6).
In some tasks, the control annotations are of high
quality and reach a higher score than the verified
gold annotations, likely due to variance of the exe-
cution model in such cases.

Table 2 shows the same trends. On average, In-
structGPT achieves 65.7% of human performance,
while GPT-3 reaches only 9.8% of human perfor-
mance. When considering different model families
or sizes, we do not see any substantial improve-
ments when increasing model size or adding in-
struction tuning, with the exception of the largest
InstructGPT model. The ability to generate instruc-
tions seems to only emerge when a model is both
large enough and aligned to follow instructions.
Overall, even the best-performing model still does
not reach human performance, leaving room for
future improvement.

6 Analysis

To gain further insight into the successes and fail-
ures of instruction induction prompting, we manu-
ally analyze the model-generated instructions of 5
tasks. Table 3 shows the most common predictions
of GPT-3 and InstructGPT for each of these tasks.

InstructGPT obtains high, or close to human exe-
cution accuracy scores for three of these tasks (First
Letter, Sentence Similarity, Pluralization). Indeed,
the instructions for both First Letter and Sentence
Similarity accurately describe the task. However,
the instruction generated for Pluralization is not
entirely precise, since it dismisses other forms of

pluralization such as -es, -ies, and irregulars. Al-
though the instruction only asks to add an “s”, the
execution model often ignores the specifics and
produces the correct plural form; in one case, the
input word was “life” and the output was “lives”.
While this particular instruction accounts for 24%
of the induced instructions in the pluralization task,
some predictions do explicitly mention pluraliza-
tion, though not always accurately, e.g., “Add -s to
the end of each word to make it plural”.

For some tasks, InstructGPT fails to produce
accurate instructions, even if it is able to solve
via in-context learning (see Table 5). In Passiviza-
tion, 98% of the predicted instructions were to sim-
ply “reverse the order of the subject and object”,
while ignoring additional surface-form manipula-
tions needed to convert the given sentence into pas-
sive form; e.g., for the input “The authors supported
the scientist”, following the instructions produces
the output “The scientist supported the authors”,
while the correct passive form is “The scientist was
supported by the authors”. Surprisingly, the instruc-
tions generated by GPT-3 obtained higher execu-
tion accuracy than the InstructGPT, even though
they were entirely unrelated. In 24% of the cases,
GPT-3 predicted “The friend wrote the following
output:” – an instruction that apparently prompts
the execution model to often rephrase the input in
passive form. Lastly, in Antonyms, 60% of Instruct-
GPT’s predictions were “Reverse the input”, and
another 11% were “Reverse the word”. While one
could imagine an interpretation of these instruc-
tions that reflects the task (reversing the meaning
of the word), the execution model interprets them
literally, and reverses the input words’ letters.

Overall, GPT-3 did not exhibit any instruction
induction abilities, although it did often phrase out-
puts in imperative language. One relatively com-
mon prediction was the generic instruction “Write
an output for every input”. Because these empty in-
structions are in the right format, they tend to have
some overlap with the reference instructions, which
inflates their BERTScore. Execution accuracy, on
the other hand, is robust to this phenomenon, and
typically assigns GPT-3’s outputs very low scores.

7 Related Work

In-Context Learning Brown et al. (2020) sug-
gest that models can learn a task by conditioning on
few input-output demonstration pairs, without any
fine-tuning or gradient updates. This paradigm,
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Task GPT-3 InstructGPT

First letter The friend’s output was: Write the first letter of each word.

Sentence Similarity The friend wrote the following output: For each input, rate the similarity of the two sentences on a
scale of 0 to 5, with 5 being a perfect match.

Pluralization The friend’s output was: Add ‘s’ to the end of each word.

Passivization The friend wrote the following output: Reverse the order of the subject and the object in the sentence.

Antonyms The friend’s output was: Reverse the input.

Table 3: Examples of the instructions generated by GPT-3 and InstructGPT for five of our tasks.

known as in-context learning or prompt-based
learning (Liu et al., 2021), has been the focus of
many research efforts lately: Du et al. (2021) sug-
gest methods for more efficient in-context learning,
Zhao et al. (2021) study methods for improving
the stability and accuracy of prompt-based models,
Chen et al. (2021) and Min et al. (2022a) conduct
meta-training with an in-context learning objective,
while other work studies the effect of the provided
prompts (Reynolds and McDonell, 2021; Webson
and Pavlick, 2021; Min et al., 2022b), or suggests
prompt reframing techniques (Mishra et al., 2021)
and prompt retrieval methods (Rubin et al., 2021).
To the best of our knowledge, all previous work
study in-context learning through the lens of exe-
cuting a latent task, while we focus on the ability
to explicitly describe it.

The Instruction Paradigm Efrat and Levy
(2020) propose to learn new tasks from natural lan-
guage instructions. Mishra et al. (2022) and Wang
et al. (2022b) collect crowdsourcing instructions
used to create NLP datasets into a benchmark for
measuring the ability to solve tasks by reading in-
structions. Recent work shows that fine-tuning on
task instructions (instruction tuning) improves the
zero-shot learning abilities of LMs (Sanh et al.,
2022; Wei et al., 2022a; Ouyang et al., 2022).
Prasad et al. (2022) introduce an edit-based search
approach for improving existing instructions used
for prompting. In this work, we focus on models’
ability to generate instructions, rather than their
ability to execute instructions written by humans.

Intermediate Reasoning Steps Nye et al. (2022)
show that LMs can perform complex computa-
tions by writing intermediate steps on a “scratch-
pad”. In chain of thought prompting (Wei et al.,
2022b), input-output demonstrations are enriched
with sentences elaborating intermediate task rea-
soning steps, improving the performance of LMs

on tasks requiring reasoning skills. Subsequent
work further improves the performance on such
tasks using a self-consistency ensemble (Wang
et al., 2022a), which samples a set of diverse chain-
of-thought reasoning paths, taking the majority
vote over all generated answers. Zelikman et al.
(2022) utilize a small set of examples labeled with
chain-of-thought rationales and a large set of un-
labeled data to iteratively bootstrap automatic ra-
tionale generation, thus creating a large dataset
labeled with such rationales to enable fine-tuning.
In contrast, we study the ability of LMs to generate
a description of the task, rather than generating in-
termediate reasoning steps as a means of executing
complex tasks.

Learning a Natural Language Hypothesis
Zhong et al. (2022) propose to automatically de-
scribe the differences between two data distribu-
tions D0 and D1 by finding a description that is
more true for D1, e.g., “is military related” or “is
longer in sentence length”. They frame this task
as learning a natural language hypothesis. In this
work, we suggest describing a task based on demon-
strations of this task alone, rather than describing
the differences between two data distributions.

8 Discussion

This work demonstrates that large LMs can not only
infer new tasks based on a handful of demonstra-
tions, but also describe them in natural language.
We provide evidence of this ability on a diverse set
of language tasks, and show that while instruction
induction abilities are limited to a single state-of-
the-art model, this model does indeed approach
human performance on about half the tasks.

It is not unreasonable to assume that models in
the near future will be even better at processing
human-generated instructions, and it is therefore
interesting to discuss the potential applications of
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instruction induction. In particular, we envision a
use case in which instruction induction serves as
a machine learning approach; instead of convert-
ing a dataset into a set of continuous parameters,
we could produce a natural language instruction
that best describes the data. Grounding the model
in concise natural language has the advantage of
interpretability, and has the potential to solve fun-
damental issues pertaining to spurious correlations.
While it is still too early to determine whether this
approach is viable, we view it as an intriguing di-
rection for future research.

9 Limitations

Since our primary goal is to study the phenomenon
of instruction induction under lab conditions, we
focus on tasks that have simple instructions. Future
work may extend instruction induction research
by including tasks with more complex instruc-
tions. These tasks are expected to pose a greater
evaluation challenge, especially when consider-
ing reference-based methods. Evaluating through
execution accuracy, however, may mitigate some
of that challenge. Additionally, only one model
showed instruction induction abilities, i.e., text-
davinci-002. The exact implementation details of
the model and its training data are not publicly
available, thus we are unable to investigate the rea-
son behind the emergence of this ability. However,
we note that our goal is to present the phenomenon
of instruction induction and to raise the ambitious
possibility of instruction induction as a learning
paradigm. Thus, our goal is not to focus on specific
models but rather to shed light on this unexplored
phenomenon. Finally, we point to a limitation of
the execution accuracy metric, namely assuming
the existence of a good-enough instruction-tuned
model. Due to recent interest and progress in in-
struction tuning, we believe this to be a reasonable
assumption.

Ethics Statement

We believe that inducing instructions, as well as
grounding in natural language in general, can po-
tentially improve interpretability and explainability.
We therefore view this line of research as having
a positive effect on the ability to avoid unwanted
artifacts.
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A Dataset Details

This appendix presents the full list of tasks (§A.1)
and details each task’s dataset (§A.2). Some
datasets rely on a set of common English nouns
(CEN), described at §A.3.

A.1 Full Dataset

Table 4 presents the full list of tasks used in our
experiments.

A.2 Tasks

We elaborate on each task’s data source, prepro-
cessing protocol, and evaluation metric used in the
in-context learning and execution accuracy experi-
ments. As mentioned in §3, each task has induce
and execute sets; unless stated otherwise, we sam-
ple 100 examples as the execute set for each task.
When evaluating outputs, the generated text is first
normalized; we take only the first generated sen-
tence and lowercase it. We apply exact string match
as the evaluation metric where applicable, elaborat-
ing only where alternative metrics are used.

First Letter In each demonstration, xk is a noun,
and yk is the first letter of that noun. We construct
the demonstrations by extracting the first letter of
each word in CEN.

Second Letter Identical to the First Letter task,
only here yk is the second letter of xk.

List Letters xk is a noun from CEN, and yk is a
list of xk’s letters, separated by spaces.

Starting With xk contains a sentence and a letter
in brackets, and yk lists the words in xk that start
with the given letter. We avoid cases in which yk is
empty, i.e., there is always at least one word in the
input sentence starting with the given letter. Sen-
tences are taken from the CoLA dataset (Warstadt
et al., 2018). For the induce set, we create all (sen-
tence, letter) pairs using CoLA’s train set, and then
sample 3,000 pairs. For the execute set, we create
all (sentence, letter) pairs from CoLA’s in-domain
and out-of-domain dev sets, and then sample 50
in-domain and 50 out-of-domain examples. We
evaluate using exact set match, by treating the out-
put (and yk) as a set of strings.

Pluralization Given a singular noun xk, produce
the plural form yk. We take noun inputs from the
CEN set, filtering out mass nouns using a prede-

fined list.9 To create the plural forms, we apply
an automatic pluralization engine10 and exclude
nouns for which the engine’s output did not appear
at least 50 times in the Wikitext-103 corpus. This
results in 2,043 singular-plural noun pairs.

Passivization Given a simple active sentence xk,
rephrase the sentence in passive voice yk. We use
the 1,000 HANS (McCoy et al., 2019) evaluation
set active-passive entailed sentence pairs.

Negation yk is the negation of the input sentence
xk. We use the negated LAMA dataset (Petroni
et al., 2019; Kassner and Schütze, 2020), taking the
304 negated SQuAD (Rajpurkar et al., 2016) sen-
tences, 300 ConceptNet (Speer and Havasi, 2012)
sentences, 200 T-REx (Elsahar et al., 2018) sen-
tences and 200 Google-RE11 sentences. For Con-
ceptNet and T-REx, we manually select these sen-
tences to ensure their quality. For Google-RE, we
automatically sample 100 sentences from the place
of birth relation, and 100 from the place of death
relation.

Antonyms yk is the antonym of the input word
xk. We use the antonym pairs from oLMpics (Tal-
mor et al., 2020), which were extracted from Con-
ceptNet (Speer and Havasi, 2012) and WordNet
(Fellbaum, 1998). For uniformity, we verify that
all pairs are indeed antonyms according to Word-
Net.

Synonyms xk is a word and yk is its synonym.
As in the antonyms task, we use the synonym pairs
of Talmor et al. (2020). Since there can be mul-
tiple synonyms for each input word, the task’s in-
context and execution accuracy are evaluated by
testing whether the gold answer (a single word) is
contained in the predicted answer (which may be a
list of words).

Membership xk is a list of words, where some
of the words represent animals, and yk lists the
animals from xk. To construct the task’s data, we
first select 6 word categories: animals, clothing,
colors, food, vehicles, and professions. We then
take 10-50 words from each category, using only
words that are categorized at the A1 or A2 levels
according to the Common European Framework of

9https://gist.github.com/sudodoki/
b5408fa4ba752cc22597250fc58a5970

10https://pypi.org/project/inflect/
11https://code.google.com/archive/p/

relation-extraction-corpus/
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Category Task Instruction Demonstration

Spelling First Letter Extract the first letter of the input word. cat → c

Second Letter Extract the second letter of the input word. cat → a

List Letters Break the input word into letters, separated by
spaces.

cat → c a t

Starting With Extract the words starting with a given letter
from the input sentence.

The man whose car I hit last week sued
me. [m] → man, me

Morpho-
syntax

Pluralization Convert the input word to its plural form. cat → cats

Passivization Write the input sentence in passive form. The artist introduced the scientist. →
The scientist was introduced by the
artist.

Syntax Negation Negate the input sentence. Time is finite → Time is not finite.

Lexical
Semantics

Antonyms Write a word that means the opposite of the input
word.

won → lost

Synonyms Write a word with a similar meaning to the input
word.

alleged → supposed

Membership Write all the animals that appear in the given
list.

cat, helicopter, cook, whale, frog, lion
→ frog, cat, lion, whale

Phonetics Rhymes Write a word that rhymes with the input word. sing → ring

Knowledge Larger Animal Write the larger of the two given animals. koala, snail → koala

Semantics Cause Selection Find which of the two given cause and effect
sentences is the cause.

Sentence 1: The soda went flat. Sen-
tence 2: The bottle was left open. →
The bottle was left open.

Common
Concept

Find a common characteristic for the given ob-
jects.

guitars, pendulums, neutrinos → in-
volve oscillations.

Style Formality Rephrase the sentence in formal language. Please call once you get there →
Please call upon your arrival.

Numerical Sum Sum the two given numbers. 22 10 → 32

Difference Subtract the second number from the first. 32 22 → 10

Number to Word Write the number in English words. 26 → twenty-six

Multi-
lingual

Translation Translate the word into German / Spanish /
French.

game → juego

GLUE Sentiment
Analysis

Determine whether a movie review is positive or
negative.

The film is small in scope, yet perfectly
formed. → positive

Sentence
Similarity

Rate the semantic similarity of two input sen-
tences on a scale of 0 - definitely not to 5 - per-
fectly.

Sentence 1: A man is smoking. Sen-
tence 2: A man is skating. → 0 - defi-
nitely not

Word in Context Determine whether an input word has the same
meaning in the two input sentences.

Sentence 1: Approach a task. Sentence
2: To approach the city. Word: ap-
proach → not the same

Table 4: The tasks in our instruction-induction experiments. For each task, we show a corresponding instruction and
demonstration, with → separating the input from the output.
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Reference for Languages (CEFR).12 Using these
words, we create random lists containing between
5 to 7 words, where 3 or 4 are animals and the
rest belong to one of the other 5 categories. The
induce split is constructed by sampling 3,000 such
combinations, using 80% of each category’s words.
The execute split is constructed by sampling 100
such combinations, using the remaining 20% of
each category’s words. The task’s in-context and
execution accuracy are evaluated using an exact set
match, by treating the output (and yk) as a set of
strings.

Rhymes yk is a rhyme of the input word xk. The
data was constructed by taking words categorized
at the A1, A2, or B1 levels according to CEFR.
We then use CMU’s pronouncing dictionary13 to
find rhyming groups for these words. The execute
split is constructed by sampling 30 rhyming groups,
each containing two or more words, and sampling
100 unique words. The induce split is constructed
using the rest of the rhyming groups. We evaluate
this task by checking whether the predicted word
is contained in the rhyming group of xk.

Larger Animal xk is two animals, and yk is the
(physically) larger one. We use the object com-
parison data from oLMpics (Talmor et al., 2020),
taking the train split, which only contains animals.
We construct the induce set using a sample of 80%
of the animals and the execute set by sampling 100
pairs out of the remaining 20% animals.

Cause Selection xk contains two sentences de-
scribing related events, where one event caused the
other; yk contains the cause sentence. As data
source, we use the 50 examples from the BIG-
bench (Srivastava et al., 2022) Cause and Effect
task, randomly splitting them to equally-sized in-
duce and execute sets. In each of the induce demon-
strations, we randomly sample the position of the
cause sentence (either the first or the second sen-
tence in xk). For examples in the execute set, we
take both options for each cause and effect pair,
doubling the data.

Common Concept xk contains a few entities
that share a non-trivial common underlying con-
cept, while yk describes that common concept. We
use the 32 examples from Novel Concepts in BIG-

12https://languageresearch.cambridge.org/american-
english

13https://github.com/cmusphinx/cmudict

bench (Srivastava et al., 2022), using half for in-
duce and half for execute. As the BIG-bench an-
swers usually contain clear “task markers” (e.g.,
answers that start with “They all have...”, indicat-
ing that the task was to find a common concept), we
remove them from our demonstrations. The task’s
in-context and execution accuracy are evaluated
using unigram overlap (F1).

Formality xk is a sentence in informal English,
and yk is its paraphrase in more formal language.
We write 30 sentence pairs ourselves, following ex-
isting guidelines for converting informal sentences
into formal ones.14 The task’s in-context and execu-
tion accuracy are evaluated using unigram overlap
(F1).

Sum xk contains two numbers separated by a
space, and yk is their sum. For each number in the
range [0, 99], we enumerate over all pairs.

Difference xk contains two numbers separated
by a space, and yk is the difference between them.
We use all number pairs such that both input num-
bers are in the range [0, 198], and always subtract
the smaller number from the bigger number.

Number to Word xk is a number written in dig-
its (e.g., 28), and yk is the same number written in
words (e.g, twenty-eight). We use all numbers in
range [0,9999].

Translation xk is an English word and yk is its
translation to some target language – either Ger-
man, Spanish, or French. We use CEN as in-
put words, and obtain their translations via Wik-
tionary.15 For evaluation, we check whether the
predicted answer is contained in the set of the pos-
sible gold answers.

Sentiment Analysis xk is a movie review and
yk is a binary label, either “positive” or “nega-
tive”, marking the review’s sentiment. We use the
Stanford Sentiment Treebank dataset (Socher et al.,
2013) from GLUE (Wang et al., 2018), taking the
train split as our induce set and the dev split as
the execute set. We consider only full sentences,
discarding sentence constituents and sentences con-
taining more than 10 words. This leaves us with

14https://www.niu.edu/writingtutorial/
style/formal-and-informal-style.shtml,
https://www.uts.edu.au/current-students/
support/helps/self-help-resources/
grammar/formal-and-informal-language

15https://github.com/open-dsl-dict/
wiktionary-dict
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an induce set of 1,167 examples. To create label-
balanced instruction induction examples, we sam-
ple each sequence of 5 demonstrations such that
there are at least 2 demonstrations for each label.

Sentence Similarity xk contains two sentences,
and yk reflects the semantic similarity of the two
input sentences. The similarity is measured on a
scale of 0 to 5, and the labels contain an additional
short textual description of the numerical label,
e.g., “5 - perfectly”. We use the Semantic Textual
Similarity Benchmark dataset (Cer et al., 2017)
from GLUE, rounding the similarity scores and
taking the train split as the induce set and the dev
split as the execute set. We discard examples in
which at least one of the sentences contains more
than 10 words, which leaves us with an induce set
of 3,716 examples. In each instruction induction
example, we sample at least one pair with a score of
0 and one with a score of 5, so that models will be
exposed to the minimal and maximal scores when
generating an instruction. We evaluate whether
the predicted answer matches one of three valid
outputs for each label: the numerical label (“5”),
the verbal label (“perfectly”), or the combined label
(“5 - perfectly”).

Word in Context xk contains a target word and
two contexts (sentences) for that word, and yk is
a binary label reflecting whether the word has the
same meaning in both contexts. We use the Word in
Context dataset (Pilehvar and Camacho-Collados,
2019) from SuperGLUE (Wang et al., 2019), tak-
ing the train split as the induce set and the dev split
as the execute set. We discard examples in which
at least one of the sentences contains more than
10 words, which leaves us with an induce set of
4,084 examples. To create label-balanced instruc-
tion induction examples, we sample each sequence
of 5 demonstrations such that there are at least 2
demonstrations for each label. We evaluate whether
the predicted label matches one of several possible
outputs: “same”, “yes”, or “true” for an identical
meaning, and “not the same”, “no”, or “false” for a
different meaning.

A.3 Common English Nouns
We create a dataset of common English nouns
(CEN) by filtering high-frequency nouns from the
Wikitext-103 corpus (Merity et al., 2017). We first
create a vocabulary of the 10,000 most frequent
words in the corpus, from which we will later se-
lect the nouns. We then process the corpus with

Task In-Context Learning Human
GPT-3 InstructGPT Study

First Letter 97 98 100
Second Letter 25 34 100
List Letters 98 100 100
Starting With 33 46 80

Pluralization 95 99 100
Passivization 100 100 80

Negation 94 93 100

Antonyms 84 83 100
Synonyms 9 12 80
Membership 13 36 100

Rhymes 46 39 100

Larger Animal 58 82 40

Cause Selection 47 82 100
Common Concept 23 15 100

Formality 54 56 80

Sum 87 100 100
Diff 69 95 100
Number To Word 85 100 100

Translation en-de 80 85 100
Translation en-es 91 88 100
Translation en-fr 80 84 80

Sentiment 95 99 100
Sentence Similarity 3 15 80
Word in Context 56 61 80

Table 5: Data verification results. The in-context learn-
ing scores show how well models can infer our tasks,
and the human study scores show how often humans
write the correct instruction given the instruction induc-
tion prompt. All scores above or equal to 80% are in
bold.

SpaCy’s part-of-speech tagger and lemmatizer,16

and retain only nouns that appear in their singular
form by verifying that their part-of-speech tag is
“NN” and testing whether the word’s lemma is iden-
tical to the word itself. We additionally filter nouns
that have less than 3 letters. Overall, this leaves us
with a set of 3,406 nouns.

B Data Verification

Table 5 shows the results for the data verification
experiments (§3.3). As evident by these results,
most of our tasks can be inferred in-context by mod-
els. Moreover, all tasks but one can be accurately
described by at least 4 out 5 human annotators.
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Meta-Prompt First Passivization Antonyms Translation Sentence
Letter en-de Similarity

Challenge Puzzle (Original) 5/5 0/5 1/5 5/5 4/5
Challenge Puzzle + Name 5/5 0/5 2/5 5/5 4/5
Instruction After Demonstrations 5/5 0/5 3/5 5/5 5/5
Instruction Before Demonstrations 5/5 0/5 0/5 2/5 3/5

Table 6: The number of correct instructions generated by text-davinci-002, out of the five examples tested for each
task, as inspected for each meta-prompt.

C Meta-Prompt Analysis

As language models are known to be sensitive to
the meta-prompt wrapping the demonstrations, we
test the instruction induction abilities of the best-
performing model, text-davinci-002, when vary-
ing the meta-prompt. The instruction induction
meta-prompt presented in Figure 1 was selected by
showing humans several pre-designed prompts and
inspecting which was the clearest for the partici-
pants. We test the sensitivity to the meta-prompt
by taking three additional meta-prompts (Table 7),
sampling five examples from five tasks and man-
ually verifying the correctness of the generated
instructions.

Table 6 shows that while the model performance
is affected by the content of the meta-prompt, the
overall trend is similar when using other meta-
prompts, and high performance can be obtained
with other prompts as well. In fact, for two of
the three additional tested prompts, the generated
instructions seem to be even better than those gen-
erated using the original prompt, though the differ-
ences are too small to determine this conclusively.

16https://spacy.io/

Challenge Puzzle (Original)
I gave a friend an instruction and five inputs. The friend read
the instruction and wrote an output for every one of the inputs.
Here are the input-output pairs:

Input:
Output:
...

The instruction was

Challenge Puzzle + Name
I gave Bob an instruction and five inputs. Bob read the instruc-
tion and wrote an output for every one of the inputs.
Here are the input-output pairs:

Input:
Output:
...

The instruction was

Instruction After Demonstrations
Below are five input-output pairs that correspond to some
underlying task:

Input:
Output:
...

Please write the instruction that best describes the underlying
task:

Instruction Before Demonstrations
You are given five examples of input-output pairs. Please
write an instruction that describes creating an output from
each input.

Input:
Output:
...

Table 7: The meta-prompts used in our analysis.
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