
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1–21

July 9-14, 2023 ©2023 Association for Computational Linguistics

One Cannot Stand for Everyone! Leveraging Multiple User Simulators
to train Task-oriented Dialogue Systems

Yajiao LIU1,2, Xin Jiang3, Yichun Yin3, Yasheng Wang3, Fei Mi3

Qun Liu3, Xiang Wan2, Benyou Wang1,2

1The Chinese University of Hong Kong, Shenzhen
2Shenzhen Research Institute of Big Data

3Huawei Noah’s Ark Lab
yajiaoliu@link.cuhk.edu.cn

Abstract

User simulators are agents designed to imi-
tate human users; recent advances have found
that Task-oriented Dialogue (ToD) systems op-
timized toward a user simulator could better
satisfy the need of human users. However, this
might result in a sub-optimal ToD system if it is
tailored to only one ad hoc user simulator, since
human users can behave differently. In this pa-
per, we propose a framework called MUST 1 to
optimize ToD systems via leveraging Multiple
User SimulaTors.

The main challenges of implementing the
MUST are 1) how to adaptively determine
which user simulator to interact with the ToD
system at each optimization step, since the
ToD system might be over-fitted to some spe-
cific user simulators, and simultaneously under-
fitted to some others; 2) how to avoid catas-
trophic forgetting of the adaption for a simu-
lator that is not selected for several consecu-
tive optimization steps. To tackle these chal-
lenges, we formulate MUST as a Multi-armed
bandits (MAB) problem and provide a method
called MUSTadaptive that balances i) the boost-
ing adaption for adaptive interactions between
different user simulators and the ToD system
and ii) the uniform adaption to avoid the catas-
trophic forgetting issue. With both automatic
evaluations and human evaluations, our exper-
imental results on MultiWOZ show that the
dialogue system trained by MUST achieves
a better performance than those trained by a
single user simulator. It also has a better gener-
alization ability when testing with unseen user
simulators.

1 Introduction

Task-oriented dialogue systems aim to help users
accomplish their various tasks (e.g., restaurant
reservations) through natural language conversa-
tions. Training task-oriented dialogue systems in

1The code is available at https://github.com/
kiseliu/must.

supervised learning approaches often requires a
large amount of expert-labeled dialogues, how-
ever collecting these dialogues is usually expensive
and time-consuming. Moreover, even with a large
amount of dialogue data, some dialogue states may
not be explored sufficiently for dialogue systems 2

(Li et al., 2016b). To this end, many researchers try
to build user simulators to mimic human users for
generating reasonable and natural conversations.
By using a user simulator and sampling user goals,
we can train the dialogue system from scratch with
reinforcement learning (RL) algorithms. Previous
works tend to design better user simulator models
(Schatzmann et al., 2007; Asri et al., 2016; Gur
et al., 2018; Kreyssig et al., 2018; Lin et al., 2021).
Especially, Shi et al. (2019) builds various user
simulators and analyzes the behavior of each user
simulator in the popular restaurant search task from
MultiWOZ (Budzianowski et al., 2018).

In real scenarios, dialogue systems need to face
various types of users. A single ad hoc user sim-
ulator can only represent one or a group of users,
while other users might be under-represented. In-
stead of choosing the best-performing one from
many dialogue systems trained by different single
user simulators, we believe that it is worth trying
to train a dialogue system by leveraging all user
simulators simultaneously.

In this paper, we propose a framework called
MUST to utilize Multiple User SimulaTors simul-
taneously to obtain a better system agent. There
exist several simple ways to implement the MUST
framework, including a merging strategy, a contin-
ual reinforcement learning (CRL) strategy, and a
uniform adaption strategy, namely MUSTmerging,
MUSTCRL, and MUSTuniform respectively (See
§3.2). However, none of them could effectively
tackle the challenges: 1) how to efficiently lever-
age multiple user simulators to train the dialogue

2We use the dialogue systems to refer to the task-oriented
dialogue systems for simplicity in this paper.

1

https://github.com/kiseliu/must
https://github.com/kiseliu/must


system since the system might be easily over-fitted
to some specific user simulators and simultane-
ously under-fitted to some others, and 2) it should
avoid a catastrophic forgetting issue. To tackle
them effectively, we first formulate the problem
as a Multi-armed bandits (MAB) problem (Auer
et al., 2002); similar to the exploitation vs explo-
ration trade-off, specifying multiple user simulators
should trade off a boosting adaption (tackling chal-
lenge 1) and a uniform adaption (tackling challenge
2), see §4.1 for more details. Then we implement
a new method called MUSTadaptive to utilize an
adaptively-updated distribution among all user sim-
ulators to sample them when training the dialogue
system in the RL training.

Our contributions are three-fold: (1) To the best
of our knowledge, our proposed MUST is the first
developed work to improve the dialogue system by
using multiple user simulators simultaneously; (2)
We design several ways to implement the MUST.
Especially, we formulate MUST as a Multi-armed
bandits (MAB) problem, based on which we pro-
vide a novel method MUSTadaptive; and (3) The
results show that dialogue systems trained with
MUST consistently outperform those trained with
a single user simulator through automatic and hu-
man evaluations, showing its potential for robust-
ness to the diversity of user simulators. Impor-
tantly, it significantly improves the performance
of the dialogue system tested on out-of-domain
evaluation. Moreover, our results show that our
method MUSTadaptive can efficiently leverage mul-
tiple user simulators to train the dialogue system in
terms of convergence speed.

2 Background

Dialogue system. Task-oriented dialogue sys-
tems aim to help users accomplish various tasks
such as restaurant reservations through natural lan-
guage conversations. Researchers usually divide
the task-oriented dialogue systems into four mod-
ules (Wen et al., 2017; Ham et al., 2020; Peng et al.,
2021): Natural Language Understanding (NLU)
(Liu and Lane, 2016) that first comprehends user’s
intents and extracts the slots-values pairs, Dialog
State Tracker (DST) (Williams et al., 2013) that
tracks the values of slots, Dialog Policy Learning
(POL) (Peng et al., 2017, 2018) that decides the
dialog actions, and Natural Language Generation
(NLG) (Wen et al., 2015; Peng et al., 2020) that
translates the dialog actions into a natural-language

form. The DST module and the POL module usu-
ally are collectively referred to as the dialogue man-
ager (DM) (Chen et al., 2017). These different
modules can be trained independently or jointly in
an end-to-end manner (Wen et al., 2017; Liu and
Lane, 2018; Ham et al., 2020; Peng et al., 2021).

User simulator. The user simulator is also an
agent but plays a user role. Different from dia-
logue systems, the user agent has a goal describ-
ing a target entity (e.g., a restaurant at a specific
location) and should express its goal completely
in an organized way by interacting with the sys-
tem agent (Takanobu et al., 2020). Therefore, be-
sides the modules of NLU, DM, and NLG like dia-
logue systems, the user agent should have another
module called Goal Generator (Kreyssig et al.,
2018), which is responsible for generating the
user’s goal. Building a user simulator could usu-
ally use an agenda-based approach (Schatzmann
et al., 2007; Schatzmann and Young, 2009) design-
ing handcrafted rules to mimic user behaviors or
a model-based approach such as neural networks
(Asri et al., 2016; Kreyssig et al., 2018; Gur et al.,
2018) learned on a corpus of dialogues.

Training dialogue systems with a user simula-
tor. To start a dialogue, a user agent will have
an initial goal from its Goal Generator and then
expresses its goal in natural languages. However,
users’ goals are invisible to the system agent. Then
the system agent tends to gradually understand the
users’ utterances, query the database to find enti-
ties, and provide useful information to accomplish
users’ task. When the database result returned by
the system agent is empty, the user agent should
learn to compromise and change its goal with the
help of Goal Generator. When the dialogue ends,
the user simulator will reward the system agent
according to if it accomplishes the task. Then we
could use the reward to update the system agent
with RL algorithms (Tseng et al., 2021).

3 MUST: a Framework to Leverage
Multiple User SimulaTors

3.1 Motivations to Use Multiple Simulators

User simulators behave differently. Shi et al.
(2019) implement six user simulators (AgenT,
AgenR, AgenG, RNNT, RNNR, RNN 3) with both

3Here we rename the user simulators of SLT, SLR, and
SLE in Shi et al. (2019) as RNNT, RNNR, RNN for empha-
sizing the model structure of their DM modules.

2



(a) Success rates of different systems. (b) Dialog act distributions of different user simulators.

Figure 1: (a) is the heat map on the success rates of system agents tested by different user simulators on 200
dialogues. (b) shows the dialog act distributions of Agenda-based User Simulators (ABUS) and Neural networks-
based User Simulators (NUS) provided by Shi et al. (2019). There exist seven user dialog acts annotated in the
restaurant search task from MultiWOZ, as shown on the Y-axis.

agenda-based methods and neural networks-based
methods on the popular restaurant search task from
MultiWOZ (Budzianowski et al., 2018). From their
experiments, we observed that the dialogue systems
trained by different user simulators vary in their per-
formances (i.e., the success rates tested by the same
user simulators). For example, when interacting
with the user simulator of AgenT, the success rates
of the system agents trained by Agenda-based user
simulators (i.e., AgenT, AgenR, AgenG) are much
higher than those of the system agents trained by
RNN-based user simulators (i.e., RNNT, RNNR,
RNN), see Fig. 1(a). The reason might be that
these user simulators (i.e., with either handcrafted
rules or data-driven learning in their DM modules)
have different user dialog act distributions 4 (see
Fig. 1(b)) which determine the dialogue state space
explored by the dialogue system.

One cannot stand for everyone. Users might
behave differently, one could design different user
simulators with specific user dialog act distribu-
tions, see Shi et al. (2019). A single user simula-
tor learned on a task-oriented dialogue corpus can
just represent one or a group of users, while the
dialogue system needs to accomplish tasks from
various human users in real scenarios. We argue
that it is beneficial to utilize all different user simu-
lators to train the dialogue system. By leveraging
multiple user simulators that have different user
dialog act distributions, the dialogue systems can
explore a larger dialogue state space, which might

4The dialogue policy learning module is essential in both
dialogue systems and user simulators. A policy module cor-
responds to a dialog act distribution since it decides to take
which dialog act to respond to the current dialogue state. The
user dialog act distribution behind a user simulator determines
the diversity of the dialogue state space explored by dialogue
systems; therefore it might affect the system performances.

improve the ability of the learned dialogue system.

3.2 Some Preliminary Proposals for MUST

We propose a framework called MUST, the core
idea of which is to train a better dialogue system
by leveraging Multiple User SimulaTors simul-
taneously. There are several simple ways to im-
plement our MUST, including a merging strategy
(MUSTmerging), a Continual Reinforcement Learn-
ing strategy (MUSTCRL), and a uniform adaption
strategy (MUSTuniform).

(I) MUSTmerging first samples some dialogues
from each user simulator and the corresponding
dialogue system trained by this simulator. Then
it combines the collected dialogues to train a new
user simulator for ensembling different user dia-
log act distributions. Finally, it uses this new user
simulator to train the dialogue system with RL.

(II) MUSTCRL
5 treats each user simulator as an

independent RL environment. It moves the trained
system agent to another one (i.e., let the system
agent interact with another user simulator) if the
system has converged in the current environment.

(III) MUSTuniform allows the system agent
have chances to interact with all user simula-
tors simultaneously. Different from MUSTCRL,
MUSTuniform puts all user simulators in a single
RL environment and adopts the simplest way to
specify different user simulators to train the dia-
logue system, which is to pick a user simulator
among all user simulators with a uniform distribu-
tion for each iteration in the RL training.

5Continual Reinforcement Learning (CRL) (Khetarpal
et al., 2020) is a sequential learning paradigm for training
an agent with RL algorithms.

3



dynamic avoiding forgetting efficiencyadaption catastrophic

MUSTmerging × × ×
MUSTCRL × × ×
MUSTuniform × ✓ ×
MUSTadaptive ✓ ✓ ✓

Table 1: The comparison of different strategies for lever-
aging multiple user simulators.

Challenges to leverage multiple user simulators.
It is difficult to adaptively adjust weights of user
simulators during training in MUSTmerging. Since
the proportions of dialogues from each user sim-
ulator are fixed in MUSTmerging, user simulators
might be well-adapted and others might not. The
MUSTCRL strategy has a problem of catastrophic
forgetting (Khetarpal et al., 2020) and would be
sensitive to the order of different user agents in-
teracting with the dialogue system, which might
result in obtaining a sub-optimal dialogue system.
As Shi et al. (2019) shows, the system agents
trained by different user simulators have different
convergence speeds and converged performances.
Namely, the system agent might be easily fitted to
some user simulators but might be hardly fitted to
others. A uniform distribution for the simulator se-
lection under MUSTuniform will result in inefficient
training, since it would be unnecessary to assign
the many training costs for easily-adapted user sim-
ulators. Overall, the challenging problems under
MUST are 1) how to efficiently leverage multiple
user simulators to train the system agent, and 2)
avoiding the catastrophic forgetting issue.

4 MUST as a MAB Problem

To tackle the challenges in MUST, we first formu-
late MUST as a Multi-armed bandit (MAB) prob-
lem, see §4.1. In §4.2, we propose a method called
MUSTadaptive to use an adaptively-updated distri-
bution to replace the uniform distribution under the
MUSTuniform for accelerating the MUST training.
We briefly compare these different implementa-
tions of MUST in Tab. 1.

4.1 Formulating MUST as a MAB Problem

Adaptively specifying user simulators to train dia-
logue systems reminds us of a similar concept in
machine learning, called boosting (Zhou, 2012).
From a boosting point of view, one should increase
the weights of weakly-performing data examples
and decrease the weights for well-performing ones.

In MUST, we accordingly assume that it should re-
duce the interactions between the dialogue system
and those user simulators that the system has per-
formed well; and meanwhile increase the interac-
tions between the system and other user simulators
that the system performs poorly. We refer to this
strategy as boosting adaption.

Meanwhile, we should also give some chances
to all user simulators to relieve the catastrophic for-
getting issue. We refer to this as uniform adaption.
Such a trade-off between boosting adaption and
uniform adaption is similar to the the exploitation
vs exploration trade-off existing in the Multi-armed
bandit (MAB) problem (Auer et al., 2002).

Here, we interpret MUST as a MAB problem.
We treat each user simulator as an arm. Suppose
there are K arms (simulators), and each arm i has
a fixed but unknown reward distribution Ri with an
expectation µi. At each time step t = 1, 2, ..., T ,
one must choose one of these K arms. We denote
the arm pulled at time step t as it ∈ {1, ...,K}.
After pulling an arm, it receives a reward xit drawn
from the arm’s underlying reward distribution. The
decision maker’s objective is to maximize the cu-
mulative expected reward over the time horizon

T∑

t=1

E[xit ] =
T∑

t=1

µit . (1)

In MUST, the reward received in each arm-
pulling step refers to the possible performance
gain of the dialogue system after it interacts with
a selected user simulator. A significant difference
between the standard MAB problem and MUST
is that the reward expectation of a user simula-
tor (arm) in MUST is not static; it changes over
time. For example, by consecutively interacting
with the same user simulator, the performance gain
(reward) of the system will decay since the system
might be in saturation or overfitting to this simula-
tor. Moreover, the performance gain of the system
after interacting with a simulator might increase
if the simulator has not been selected for a period.
To deal with this difference, we should tailor the
solution of MAB to the MUST framework.

4.2 Training with MUSTadaptive

To solve this MAB problem in MUST, we im-
plement a method called MUSTadaptive with a
two-phase procedure, as presented in Algorithm
1. MUSTadaptive specifies user simulators in a

4



Algorithm 1: Implement MUSTadaptive with the modified UCB1 algorithm
Input: K fixed User simulators U = {U1, U2, · · ·UK} and the values of hyperparameters Twarmup, T, e, d, τ ;

1 Initialization: randomly initialize System agent S;
2 Initialization: initialize the simulator sampling distribution p as a uniform distribution.
3 (1) Warm-up phase:
4 for t = 0, ..., Twarmup − 1 do
5 sample a simulator Uj in U w.r.t. the distribution p;
6 synthesize a new dialogue using the system agent S and the sampled Uj ;
7 use the reward obtained for the dialogue to update S with a RL algorithm;

8 (2) Adaptive phase:
9 for t = 0, ..., T − 1 do

10 if t%e == 0 then
11 for j = 1, ...,K do
12 evaluate the performance i.e. the success rate x̄j of the agent S by letting it interact d times with the

simulator Uj ;
13 update p based on these success rates {x̄1, ..., x̄K} (see Eq. 2, Eq. 3, and Eq. 4);

14 else
15 sample a simulator Uj in U w.r.t. the distribution p;
16 synthesizing a new dialogue using the system agent S and the sampled Uj ;
17 use the reward obtained for the dialogue to update S with a RL algorithm;

Output: The learned dialogue system S.

uniform distribution, similar to the UCB1 6 algo-
rithm, to train the dialogue system S in the first
Twarmup steps (i.e., in the warm-up phase). After
that, the adaptive phase will balance the boosting
adaption and the uniform adaption by introducing
an adaptively-updated distribution p, which is used
to specify different user simulators to train the sys-
tem S in later RL training. To accelerate the RL
training, intuitively, p is expected to assign lower
weights to user simulators with which S already
performs well and higher weights to those user
simulators with which S performs poorly.

(1) Warm-up phase : in the first Twarmup dia-
logues, we use a uniform distribution to sample all
user simulators to train the system agent S (lines
4-7). This phase is mainly used to warm up the
dialogue system S.

(2) Adaptive phase : the distribution p used to
sample all user simulators will be adaptively up-
dated. We call it as the adaptive phase. When
this phase begins (i.e., t = 0), we will first evalu-
ate the performance (i.e., the success rate x̄j , j ∈
{1, · · · ,K}) of the dialogue system S trained af-
ter the warm-up phase. The success rate x̄j is
obtained by letting S interact d times with the sim-
ulator Uj (e.g., j ∈ {1, ...,K}) and calculating the

6There exists an algorithm called UCB1 (Upper Confi-
dence Bound 1 ) (Auer et al., 2002) that could solve the MAB
problem. It first pulls each arm once in the first K steps, then
will play the arm that could maximize the sum of two terms:
it = argmaxi

(
x̄i +

√
2 ln t
Ti,t

)
from t = K + 1 to T .

success rates.
Inspired by UCB1 (Auer et al., 2002), we design

a calibrated performance expectation x̂j of the
system agent S interacting with each user simulator
Uj taking exploration into consideration beyond
pure exploitation:

x̂j = x̄j︸︷︷︸
exploitation

+

√
2 ln t

Tj,t

︸ ︷︷ ︸
exploration

, j ∈ {1, ...,K}; (2)

where x̄j is the success rate of the system agent S
tested with user simulator Uj , and Tj,t is the num-
ber of times user simulator Uj has been selected
with so far. Then we normalize x̂j into

zj = 1/ (x̂j − τ min({x̄1, · · · , x̄K})) , (3)

Eq. 3 penalizes the user simulators with which the
dialogue system already performs well in the ex-
pectation term. Where the hyperparameter τ is the
smooth factor for distribution p = {p1, · · · ,pK}
– the larger τ is, the sharper p is. Each probability
pj in p is calculated as

pj =
zj∑K
i=1 zi

. (4)

In the following T − 1 dialogues, we will spec-
ify all user simulators to train the system agent S
with this distribution p (lines 15-18). We will also
evaluate the RL model S for every e episodes (line
10-12) and update the distribution p with the new
K success rates (line 13).

Difference with the original UCB1. The main
differences between our modified UCB1 algorithm

5



and the original UCB1 algorithm are twofold. First,
we tailor the original UCB1 into our scenario by
using Eq. 3 to penalize the user simulators with
which the dialogue system has performed well.
Secondly, we adopt a sampling schema based on
a well-designed distribution (see Eq. 4) instead of
taking the arm with the highest expectation. This
is to increase the diversity and flexibility of arm
selection.

5 Experiments

To verify the effectiveness of MUST, we bench-
mark the system agents trained either with a
single user simulator or multiple user simula-
tors (including MUSTmerging, MUSTuniform, and
MUSTadaptive). See MUSTCRL in the App. C.

5.1 Experimental Setup

Available user simulators. There are six user
simulators provided by Shi et al. (2019), which
are Agenda-Template (AgenT), Agenda-Retrieval
(AgenR), Agenda-Generation (AgenG), RNN-
Template (RNNT), RNN-Retrieval (RNNR), RNN-
End2End (RNN) trained with different dialog plan-
ning and generation methods. The NLU modules
of all six user simulators are using the RNN model.
The DM modules of AgenT, AgenR, and AgenG
are rule-based methods. For the NLG module,
these three simulators are using the template, re-
trieval, and generation methods respectively. The
DM modules of RNNT, and RNNR are using Se-
quicity (Lei et al., 2018) as their backbones which
is an RNN-based seq2seq model with copy mecha-
nism. The NLG modules of these two simulators
are using the template and retrieval methods respec-
tively. The user simulator of RNN uses Sequicity
as its backbone in an end-to-end manner.

Baselines. The baselines are the dialogue sys-
tems trained by each user simulator, including Sys-
AgenT, Sys-AgenR, Sys-AgenG, Sys-RNNT, Sys-
RNNR, and Sys-RNN. For a fair comparison, all
system agents (including the systems trained by
our MUST) have the same architecture described
in Shi et al. (2019). See details in App. B.1.

MultiWOZ Restaurant Domain Dataset. The
original task in MultiWOZ (Budzianowski et al.,
2018) is to model the system response. Shi et al.
(2019) annotate the user intents and the user-side di-
alog acts in the restaurant domain of MultiWOZ to
build user simulators, which has a total of 1,310 dia-

logues. Moreover, we randomly simulate 2,000 dia-
logues from each rule-based simulator (i.e., AgenT,
AgenR, AgenG) and their corresponding system
agents respectively, and processe these dialogues to
have the same annotation format as the MultiWOZ
restaurant domain dataset. We denote this dataset
as Simulated Agenda Dataset, which has a total
of 6,000 dialogues.

Evaluation Measures. A straightforward metric
to evaluate dialogue systems is the success rate
tested by each user simulator. We calculate the
success rate between a user simulator and a sys-
tem agent by sampling 200 dialogues. We exclude
some user simulators in training MUST and test the
systems with them as out-of-domain evaluation.
According to the previous study Gunasekara et al.
(2020), there usually is a gap between automatic
evaluations and human evaluations of dialogue sys-
tems. Therefore, we ask humans to converse with
dialogue systems. Each dialogue system has con-
versed with 5 different users; each user has 10 dia-
logues. In total, we collect 50 dialogues for each
dialogue system to calculate its success rate. See
more details in App. B.5.

5.2 Implementations
5.2.1 Two new User Simulators
We believe Pre-trained Language Models (PLMs)
might improve the capacity of user simulators since
they have recently shown remarkable success in
building task-oriented dialogue systems (Ham et al.,
2020; Peng et al., 2021; Hosseini-Asl et al., 2020).
Here we implement another two user simulators
using GPT (Radford et al., 2018, 2019). Building a
user simulator using GPT is similar to building a
ToD system with GPT. See more details in App. G.

GPT Simulator. It is first fine-tuned on the sim-
ulated agenda dataset and then fine-tuned on the
MultiWOZ restaurant domain dataset by leverag-
ing GPT. This user simulator will be used to help
implementing MUST.

GPTIL Simulator. To implement the
MUSTmerging strategy, similar to Imitation
Learning (IL), we first train a new user simulator
with dialogue sessions collected from different
user simulators and their corresponding dialogue
systems. We also learn this new user simulator
based on GPT model and denote it as GPTIL.
GPTIL is first fine-tuned on the simulated agenda
dataset. Then we sample 1,400 dialogues from the

6



Dialogue Systems In-domain evaluation Out-of-domain evaluation All
AgenT AgenR RNNT GPT AgenG RNNR RNN Avg.↑ Std.↓ Avg.↑ Std.↓

single

Sys-AgenT 97.5 54.0 ↓40.0% 98.5 ↓0.5% 78.0↓4.9% 72.5 92.5 77.0 80.7 8.6 81.4 14.8
Sys-AgenR 96.0 ↓1.5% 90.0 98.5↓0.5% 80.5↓1.8% 97.5 97.5 82.0 92.3 7.3 91.7 7.1
Sys-RNNT 30.5 ↓68.7% 23.0 ↓74.4% 99.0 75.5↓7.9% 35.5 97.5 84.0 72.3 26.6 63.6 30.5
Sys-GPT 60.5 ↓37.9% 51.5 ↓42.8% 97.0 ↓2.0% 82.0 59.5 94.0 92.0 81.8 15.8 76.6 17.6

MUST
Sys-MUSTmerging 97.5 ↑0.0% 83.5 ↓7.2% 94.5 ↓4.6% 80.5↓1.8% 97.5 94.0 82.5 91.3 6.4 90.0 6.9
Sys-MUSTuniform 97.5 ↑0.0% 89.0 ↓1.0% 97.5↓1.5% 82.5↑0.5% 96.5 96.0 87.5 93.4 4.2 92.4 5.6
Sys-MUSTadaptive 97.5 ↑0.0% 89.5 ↓0.5% 97.0↓2.0% 82.5↑0.5% 96.5 97.5 90.0 94.7 3.3 92.9 5.3

[1] The underlined number represents the success rate between a user simulator and its corresponding dialogue system trained
by this user simulator. The increasing and decreasing percentages (in red and green colors) use the underlined numbers as the
base success rates.
[2] ↓ (↑) indicates by what percentages the success rate has decreased (increased) compared with the base success rate by
interacting with the same user simulator.

Table 2: The success rates of system agents testing on various user simulators. Each column represents a user
simulator, each row represents a dialogue system trained with a specific simulator, e.g., Sys-AgenT means the
system trained with AgenT. Each entry shows the success rate of a system agent when dealing with a user simulator.
We use four simulators (AgenT, AgenR, RNNT, and GPT) to implement MUSTuniform and MUSTadaptive.

simulated agenda dataset and merge them with
1,310 MultiWOZ restaurant domain dialogues to
continue fine-tuning GPTIL.

5.2.2 Dialogue Systems
Sys-GPT is trained with the single user simula-
tor GPT. Sys-MUSTmerging is trained with GPTIL.
Sys-MUSTuniform is trained by the user simula-
tors of AgenT, AgenR, RNNT, and GPT with a
uniform sampling distribution. For training Sys-
MUSTadaptive

7, the distribution p will be adap-
tively updated using our modified UCB1 algo-
rithm. We also train the Sys-MUSTuniform and
Sys-MUSTadaptive by using different subsets of
the user simulators for ablation studies in App. D.

5.3 Experimental Results
Automatic Evaluation. As seen in Tab. 2, Sys-
MUSTuniform and Sys-MUSTadaptive outperform
the dialogue systems (Sys-AgenT, Sys-AgenR, Sys-
RNNT, and Sys-GPT) trained by a single user simu-
lator in the overall performance, demonstrating the
superiority of leveraging multiple user simulators.
Especially, Sys-MUSTadaptive has a 1.2 absolute
value improvement (92.9 vs. 91.7) averagely over
the previous SOTA system Sys-AgenR. Observ-
ing that Sys-MUSTmerging is not as competitive
as Sys-MUSTuniform and Sys-MUSTadaptive, this
comparison shows that the merging strategy cannot
effectively leverage multiple user simulators.

In in-domain evaluation, the performances of
systems (Sys-AgenT, Sys-AgenR, Sys-RNNT, and
Sys-GPT) trained by a single user simulator drop
a lot when testing with a different simulator. It re-
quires us to delicately select a suitable user simula-

7See implementations of dialogue systems in App. B.2 and
policy gradient algorithm in App. B.3.

Dialogue Systems human
evaluation

single

Sys-AgenT 76.0
Sys-AgenR 84.0
Sys-RNNT 34.0
Sys-GPT 58.0

MUST
Sys-MUSTmerging 90.0
Sys-MUSTuniform 92.0
Sys-MUSTadaptive 92.0

Table 3: Human evaluation.

tor for obtaining a good dialogue system. However,
users might be multi-facet or even unknown, mak-
ing the selection even more difficult. Therefore,
it is essential to leverage multiple user simulators
when training dialogue systems. At least, the per-
formance gap of dialogue systems trained with our
MUST becomes smaller than without MUST, see
the percentages labeled in green and red colors.

In out-of-domain evaluation where the user
simulators used for testing the systems are un-
seen by our MUST, Sys-MUSTuniform and Sys-
MUSTadaptive achieve at most 2.4 absolute value
improvement over Sys-AgenR. This evidences
that MUST has a better generalization ability for
interacting with unseen user simulators. More-
over, the dialogue systems (Sys-MUSTmerging,
Sys-MUSTuniform, and Sys-MUSTadaptive) trained
with the proposed MUST approaches have lower
standard deviations, which indicates that they are
more robust to the diversity of user simulators.

Human Evaluation. In Tab. 3, the human evalu-
ation results show that our Sys-MUSTuniform and
Sys-MUSTadaptive largely outperform the other di-
alogue systems when interacting with real users.
The consistency between automatic evaluations and
human evaluations evidences the effectiveness of
our proposed MUST.

7



(a) The learning curves (b) AgenR (c) AgenT (d) GPT (e) RNNT

Figure 2: The learning curves of Sys-MUSTuniform and Sys-MUSTadaptive. (a) shows their average success rates
tested with all user simulators (AgenT, AgenR, RNNT, and GPT). The success rates of them tested with each user
simulator are shown in (b)-(e).

(a) The sampling proportion of simulators. (b) Variations of the sampling propor-
tions (in every 2000 steps) of simulators.

Figure 3: The sampling proportions of user simulators in average (a) and in time horizon (b).

5.4 Analysis and Discussions

Convergences of MUSTuniform and
MUSTadaptive. In Fig. 2, we show the
learning curves of Sys-MUSTuniform and
Sys-MUSTadaptive in 100,000 steps; the first
40,000 steps are in the warm-up phase for
Sys-MUSTadaptive. From Fig. 2(a), we can see that
training the dialogue system with AgenT, AgenR,
RNNT, and GPT by MUSTadaptive converges
faster than by MUSTuniform . We do ablation
studies on our modified UCB1 algorithm to help
understanding the designed distribution p, see
details in App. E. We further plot the performances
of the dialogue system tested by each user
simulator in the RL training in Fig. 2(b)-2(e).

Visualization on MUSTadaptive. Let us de-
fine the adaptation difficulty of a user simu-
lator using how many steps it must take to
train the dialogue system with this user simu-
lator until it converges. The adaptation diffi-
culty of all user simulators could be ranked like
AgenR > AgenT > GPT > RNNT according to
Fig. 2(b)-2(e). To check whether MUSTadaptive

tends to sample harder-to-adapt user simulators
more times in the adaptive phase, as assumed in
§4.2, we visualize the sampling proportions of all

user simulators in Fig. 3(a). We could observe that
AgenR was sampled with 45.1% (the biggest pro-
portion) and it is indeed the hardest user simulator
that can be adapted by the system; RNNT has the
smallest sampling proportion and it is the easiest
user simulator that can be adapted by the system.
The consistency between the adaptation difficulty
and sampling proportions for these four user simu-
lators evidences our assumption in §4.2. Fig. 3(b)
visualizes the variations of the sampling distribu-
tions of user simulators. Interestingly, it shows that
AgenR and AgenT are competitive with the GPT
simulator; while RNNT and GPT are cooperative
with each other. This might be because both RNNT
and GPT simulators are learned from the dialogue
corpus and might share some similar behaviors.

6 Conclusion

In this paper, we propose a framework named
MUST to improve dialogue systems by using multi-
ple user simulators simultaneously. We discuss sev-
eral simple methods to implement MUST, which
is either inflexible or inefficient. Therefore, we
formulate MUST as a Multi-armed bandits (MAB)
problem, based on which we propose a novel im-
plementation called MUSTadaptive. The experi-
mental results on the restaurant search task from

8



MultiWOZ demonstrate that MUST can largely im-
prove the system agent upon baselines, especially
when tested with unseen user simulators. More-
over, MUSTadaptive is more efficient than other
implementations.

Limitation

The main limitation of this work is that we only
conduct our experiments on the restaurant domain
of the MultiWOZ since we can only find multiple
user simulators from Shi et al. (2019) and they
build these simulators only on the restaurant search
task. In future work, we plan to apply our proposed
methods to multi-domain scenarios.

Ethics Statement

There are no ethics-related issues in this paper. The
data and other related resources in this work are
open-source and commonly-used by many existing
work.

Acknowledgements

Part of this work was done when the first au-
thor worked at Huawei Noah’s Ark Lab. Be-
sides, this work is supported by the Chinese
Key-Area Research and Development Program
of Guangdong Province (2020B0101350001),
the Shenzhen Science and Technology Pro-
gram (JCYJ20220818103001002), the Guang-
dong Provincial Key Laboratory of Big Data
Computing, The Chinese University of Hong
Kong, Shenzhen, Shenzhen Key Research Project
(C10120230151) and Shenzhen Doctoral Startup
Funding (RCBS20221008093330065). We would
like to thank Zichao Li, Chen Zhang, and Dong
Yang for their helpful discussions. Moreover, we
thank anonymous reviewers for their valuable sug-
gestions.

References
Layla El Asri, Jing He, and Kaheer Suleman. 2016. A

sequence-to-sequence model for user simulation in
spoken dialogue systems.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Machine Learning, 47(2–3):235–256.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the

2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Yun-Nung Chen, Asli Celikyilmaz, and Dilek Hakkani-
Tür. 2017. Deep learning for dialogue systems. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics: Tutorial
Abstracts, pages 8–14, Vancouver, Canada. Associa-
tion for Computational Linguistics.

R. Chulaka Gunasekara, Seokhwan Kim, Luis Fer-
nando D’Haro, Abhinav Rastogi, Yun-Nung Chen,
Mihail Eric, Behnam Hedayatnia, Karthik Gopalakr-
ishnan, Yang Liu, Chao-Wei Huang, Dilek Hakkani-
Tür, Jinchao Li, Qi Zhu, Lingxiao Luo, Lars Li-
den, Kaili Huang, Shahin Shayandeh, Runze Liang,
Baolin Peng, Zheng Zhang, Swadheen Shukla, Min-
lie Huang, Jianfeng Gao, Shikib Mehri, Yulan Feng,
Carla Gordon, Seyed Hossein Alavi, David R. Traum,
Maxine Eskénazi, Ahmad Beirami, Eunjoon Cho,
Paul A. Crook, Ankita De, Alborz Geramifard,
Satwik Kottur, Seungwhan Moon, Shivani Poddar,
and Rajen Subba. 2020. Overview of the ninth di-
alog system technology challenge: DSTC9. CoRR,
abs/2011.06486.

Izzeddin Gur, Dilek Hakkani-Tur, Gokhan Tur, and
Pararth Shah. 2018. User modeling for task oriented
dialogues.

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and
Kee-Eung Kim. 2020. End-to-end neural pipeline
for goal-oriented dialogue systems using GPT-2. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 583–592,
Online. Association for Computational Linguistics.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191. Curran Associates,
Inc.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and
Doina Precup. 2020. Towards continual reinforce-
ment learning: A review and perspectives. CoRR,
abs/2012.13490.

Florian Kreyssig, Iñigo Casanueva, Paweł
Budzianowski, and Milica Gašić. 2018. Neural user
simulation for corpus-based policy optimisation of
spoken dialogue systems. In Proceedings of the 19th
Annual SIGdial Meeting on Discourse and Dialogue,
pages 60–69, Melbourne, Australia. Association for
Computational Linguistics.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-
plifying task-oriented dialogue systems with single
sequence-to-sequence architectures. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1437–1447, Melbourne, Australia. Association
for Computational Linguistics.

9

http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://aclanthology.org/P17-5004
http://arxiv.org/abs/2011.06486
http://arxiv.org/abs/2011.06486
http://arxiv.org/abs/1811.04369
http://arxiv.org/abs/1811.04369
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.acl-main.54
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
http://arxiv.org/abs/2012.13490
http://arxiv.org/abs/2012.13490
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133


Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016a. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192–
1202, Austin, Texas. Association for Computational
Linguistics.

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016b. A
user simulator for task-completion dialogues. arXiv
preprint arXiv:1612.05688.

Hsien-chin Lin, Nurul Lubis, Songbo Hu, Carel van
Niekerk, Christian Geishauser, Michael Heck, Shu-
tong Feng, and Milica Gasic. 2021. Domain-
independent user simulation with transformers for
task-oriented dialogue systems. In Proceedings of the
22nd Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 445–456, Sin-
gapore and Online. Association for Computational
Linguistics.

Bing Liu and Ian Lane. 2018. End-to-end learning of
task-oriented dialogs. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 67–73, New Orleans,
Louisiana, USA. Association for Computational Lin-
guistics.

Bing Liu and Ian R. Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. CoRR, abs/1609.01454.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and
Kam-Fai Wong. 2018. Deep Dyna-Q: Integrating
planning for task-completion dialogue policy learn-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2182–2192, Melbourne,
Australia. Association for Computational Linguistics.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli
Celikyilmaz, Sungjin Lee, and Kam-Fai Wong. 2017.
Composite task-completion dialogue policy learning
via hierarchical deep reinforcement learning. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2231–
2240, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for task-
oriented dialog. CoRR, abs/2002.12328.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a POMDP dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the
Association for Computational Linguistics; Compan-
ion Volume, Short Papers, pages 149–152, Rochester,
New York. Association for Computational Linguis-
tics.

Jost Schatzmann and Steve Young. 2009. The hidden
agenda user simulation model. IEEE Transactions on
Audio, Speech, and Language Processing, 17(4):733–
747.

Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou Yu.
2019. How to build user simulators to train RL-based
dialog systems. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1990–2000, Hong Kong, China. Association
for Computational Linguistics.

Ryuichi Takanobu, Runze Liang, and Minlie Huang.
2020. Multi-agent task-oriented dialog policy learn-
ing with role-aware reward decomposition. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 625–638,
Online. Association for Computational Linguistics.

Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, and
Bill Byrne. 2021. Transferable dialogue systems
and user simulators. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 152–166, Online. Association
for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Mil-
ica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A network-based
end-to-end trainable task-oriented dialogue system.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 438–449,
Valencia, Spain. Association for Computational Lin-
guistics.

10

https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
https://aclanthology.org/2021.sigdial-1.47
https://aclanthology.org/2021.sigdial-1.47
https://aclanthology.org/2021.sigdial-1.47
https://doi.org/10.18653/v1/N18-4010
https://doi.org/10.18653/v1/N18-4010
http://arxiv.org/abs/1609.01454
http://arxiv.org/abs/1609.01454
http://arxiv.org/abs/1609.01454
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/D17-1237
https://doi.org/10.18653/v1/D17-1237
http://arxiv.org/abs/2002.12328
http://arxiv.org/abs/2002.12328
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://doi.org/10.1109/TASL.2008.2012071
https://doi.org/10.1109/TASL.2008.2012071
https://doi.org/10.18653/v1/D19-1206
https://doi.org/10.18653/v1/D19-1206
https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.18653/v1/2021.acl-long.13
https://doi.org/10.18653/v1/2021.acl-long.13
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042


Jason Williams, Antoine Raux, Deepak Ramachandran,
and Alan Black. 2013. The dialog state tracking
challenge. In Proceedings of the SIGDIAL 2013 Con-
ference, pages 404–413, Metz, France. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018.
Generating informative and diverse conversational
responses via adversarial information maximization.
In NeurIPS.

Zhi-Hua Zhou. 2012. Ensemble methods: foundations
and algorithms. CRC press.

A Multi-armed bandit problem

Reinforcement learning policies face the exploita-
tion versus exploration trade-off, which can be de-
scribed as the search for a balance between explor-
ing the environment to find profitable actions while
taking the empirically best action as often as pos-
sible. This exploitation vs exploration dilemma
has been widely studied as a Multi-armed bandit
(MAB) problem.

In the MAB problem, there are K arms, and
each arm j has a fixed but unknown reward distribu-
tion Rj with an expectation µj . At each time step
t = 1, 2, ..., T , the decision maker must choose
one of these K arms. We denote the arm pulled
at time step t as jt ∈ {1, ...,K}. After pulling an
arm, it will receive a reward Xjt which is a real-
ization drawn from the arm’s underlying reward
distribution. The decision masker’s objective is to
maximize the cumulative expected reward over the
time horizon

∑T
t=1 E[Xjt ] =

∑T
t=1 µjt .

B More details about training dialogue
systems

B.1 The architectures of user simulators and
dialogue systems

The basic modules of user simulators and dialogue
systems are detailed in Tab. 4.

B.2 The implementations of the dialogue
systems

The NLU modules of all system agents are a 2-layer
bidirectional-GRU with 200 hidden units. The
NLG modules of them are using the template-based
method. The DM modules of them are a simple
MLP. The input of the DM module is a state repre-
sentation, which consists of the traditional dialog
state and word count vector of the current utterance
same as Shi et al. (2019). We mainly use the pol-
icy gradient method to train the DM modules of
dialogue systems from scratch.

B.3 The details of running policy gradient
algorithm

For training the DM modules of dialogue systems
with the policy gradient method, we also apply the
ϵ-greedy exploration strategy. We let ϵ be 0.5 in
the beginning, and it will decrease to 0 linearly
within the RL training. The dialogue ends either
when the user simulators say "goodbye" or when
the number of turns of the dialogue exceeds 10.
The reward will be given +1 for task success, -1
for task failure, and -0.1 for each additional turn
to encourage the RL-based policy module to finish
the task fast. Also, a discounted factor of 0.9 is
applied to all the experiences.

B.4 The parameters of training
Sys-MUSTadaptive

The hyperparameters used to train the Sys-
MUSTadaptive are listed in the Tab. 5.

Since some user simulators used for implement-
ing our MUST framework are based on the GPT
model, we train Sys-MUSTadaptive on a V100 GPU
and it will cost around 15 hours with the default
hyperparameters above.

B.5 Human Evaluation on dialogue systems

We find 5 volunteers to conduct the human evalua-
tions on dialogue systems. They all have good En-
glish skills and are unpaid. Before the experiments,
we introduced task-oriented dialogue systems and
user simulators to them and tell them how to judge
if the generated dialogue is successful. Then we
prepare 50 user goals from MultiWOZ Restau-
rant Domain Dataset: 20 of them are simple, and
30 of them are a little bit complex. We specify 10
user goals for each volunteer and let the volunteer
converse with all dialogue systems for each same
user goal. In total, we collect 50 dialogues for each

11

https://aclanthology.org/W13-4065
https://aclanthology.org/W13-4065
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Agent Types Agents NLU DM NLG

User Simulators

AgenT (Shi et al., 2019) RNN† Agenda Template
AgenR (Shi et al., 2019) RNN† Agenda Retrieval
AgenG (Shi et al., 2019) RNN† Agenda RNN† (Generation)
RNNT (Shi et al., 2019) RNN† Template
RNNR (Shi et al., 2019) RNN† Retrieval
RNN (Shi et al., 2019) RNN† (NLU + NLG)
GPT (ours) Transformer† (NLU + DM + NLG)
GPTIL (ours) Transformer† (NLU + DM + NLG)

Dialogue Systems All RNN† RNN† Template

Table 4: The architectures of user simulators and dialogue systems. Modules with † are trainable.

Hyperparameter Value
T 100,000
T0 40,000
e 2,000
d 200
τ 0.75

Table 5: The hyperparameters used for training the Sys-
MUSTadaptive.

dialogue system to calculate its success rate.
The criteria to judge whether a task-oriented di-

alogue is successful are based on two aspects: 1)
the system agent correctly understands the user’s
goal (i.e., the predicted dialogue state tracking re-
sult is correct); and 2) the system agent provides
all information (i.e., all slot values or a booking
reference number) that the user requests. For hu-
man evaluations, we follow these standard criteria.
Besides, we also see if the system act generated by
the system agent is matched to the user act for each
turn in the dialogue.

There have seven user acts, which are ‘inform
type”, “inform type change”, “ask info”, “any-
thing else”, “make reservation”, “make reserva-
tion change time”, and “goodbye”. There have
nine system acts, which are “ask type”, “present
result”, “nomatch result”, “no other”, “ask reser-
vation info”, “provide info”, “booking success”,
“booking fail” and “goodbye”. The relationships
between user acts and system acts are shown in
Tab. 6.

C Implement MUST with the MUSTCRL

strategy

Without losing any generality, we consider two rep-
resentative sequential orders: 1) AgenT, AgenR,
RNNT, GPT; and 2) AgenR, GPT, AgenT, RNNT.
For case 1, the first two user simulators are Agenda-

based user simulators; the last two user simulators
are Neural networks-based user simulators. For
case 2, we interleave these two types of user simu-
lators. When the system trained by a user simulator
converges, we let it continue to interact with an-
other user simulator following the order.

As seen in Tab. 7, in case 1, the system agent
achieves the best performance (i.e., 92.4 in terms
of the average success rate) after training with
AgenT and AgenR sequentially. However, its over-
all performance degrades to 83.0 after training with
RNNT; especially, its performance decreases by
36.0% when testing with AgenR (93.0 → 59.5).
Moreover, after continuing to learn from GPT, the
performance of the system agent becomes worse
for AgenT (95.0 → 75.5) and AgenR (59.5 →
47.5). This indicates the catastrophic forgetting
issue heavily happened when the system agent
starts learning from AgenR. We also could ob-
serve a similar phenomenon from case 2. These re-
sults can confirm that implementing our proposed
MUST with MUSTCRL strategy indeed has the
catastrophic forgetting issue.

D Sensitivity on different subsets of user
simulators

We also train the Sys-MUSTuniform and Sys-
MUSTadaptive by using different groups of user
simulators for ablation studies: 1) five user sim-
ulators of AgenT, AgenR, RNNT, RNNR, and
GPT; and 2) three user simulators including AgenT,
RNNT, and GPT.

Superiority of MUST. From Tab. 8 and Tab. 9,
we can observe that Sys-MUSTuniform and Sys-
MUSTadaptive largely outperform the dialogue sys-
tems trained by single user simulators. Especially,
they gain an improvement of 4 absolute points (85.4
vs. 81.4) when trained with three user simulators
of AgenT, RNNT, and GPT. In summary, MUST

12



User act System act

inform type ask type, present result, nomatch result
inform type change ask type, present result, nomatch result
anything else present result, no other
make reservation ask reservation info, booking success, booking fail
make reservation change time ask reservation info, booking success, booking fail
ask info provide info
goodbye goodbye

Table 6: The relationships between user acts and system acts.

Dialogue Systems User simulators
AgenT AgenR RNNT GPT Avg.

Case 1

trained by AgenT 97.5 54.0 98.5 78.0 82.0
trained by AgenT, AgenR sequentially 97.0 ↓ 0.5% 93.0 97.0 82.5 92.4
trained by AgenT, AgenR, RNNT sequentially 95.0↓ 2.6% 59.5↓ 36.0% 97.0 80.5 83.0
trained by AgenT, AgenR, RNNT, GPT sequentially 75.5 ↓22.6% 47.5↓ 48.9% 96.0↓ 1.0% 82.0 75.3

Case 2

trained by AgenR 96.0 90.0 98.5 82.5 91.8
trained by AgenR, GPT sequentially 97.5 88.0↓2.2% 97.0 81.5 91.0
trained by AgenR, GPT, AgenT sequentially 96.5 78.5↓12.8% 97.0 80.0↓1.8% 88.0
trained by AgenR, GPT, AgenT, RNNT sequentially 97.5↑1.0% 65.5↓27.2% 95.0 78.5↓3.7% 84.1

Table 7: The experimental results of implementing MUST with the MUSTCRL strategy.

could consistently improve the performance of the
systems when using different numbers of user sim-
ulators. The ablation studies on different subsets
of user simulators can demonstrate the robustness
of MUST.

Out-of-domain evaluation. When testing
our MUST with unseen user simulators, Sys-
MUSTuniform and Sys-MUSTadaptive can also
largely outperform the dialogue systems trained
by a single user simulator. As seen in Tab. 8,
Sys-MUSTadaptive achieves a 2.7 absolute value
improvement (92.5 vs 89.8) over Sys-AgenR.
Sys-MUSTuniform and Sys-MUSTadaptive even
improve at least 5.7 points (80.0 vs 74.3) over
Sys-GPT (as shown in Tab. 9). These experimental
results on different subsets of user simulators
demonstrate that our MUST has a better gener-
alization ability for interacting with unseen user
simulators and is insensitive to the user simulator
selection.

Comparison between MUSTuniform and
MUSTadaptive. Fig. 4 shows the learning curves
of Sys-MUSTuniform and Sys-MUSTadaptive on
different subsets of user simulators. The first
40,000 steps are in the warm-up phase for Sys-
MUSTadaptive. We could conclude that training
the dialogue system by MUSTadaptive consistently
converges faster than by MUSTuniform, at least in
the scenarios when using three, four, or five user
simulators to implement MUST (see Fig. 4(a),

Fig. 2(a), and Fig. 4(b), respectively).
From Tab. 8 where MUST is trained

with five user simulators, we could observe
that Sys-MUSTadaptive outperforms Sys-
MUSTuniform with 0.5 absolute point. The
performance gain becomes smaller when MUST is
trained with three user simulators (see Tab. 9). This
probably shows that Sys-MUSTadaptive would
be more beneficial when there exist more user
simulators.

E Ablation study for the modified UCB1
algorithm

E.1 Necessity of the exploration term

Our modified UCB1 algorithm provides a distribu-
tion for guiding how to sample different user simu-
lators to accelerate the entire MUST training. The
exploration term in the proposed MUSTadaptive ex-
ists mainly for uniform adaption (see the detailed
explanation in Sec. 4.1). The original UCB1 algo-
rithm (Auer et al., 2002) can tell us how to pull
arms in bandits to maximize the cumulative ex-
pected reward. It is well-known that it cannot ex-
plore effectively without the exploration (UCB)
term; consequently, it might not find the optimal
action and lead to relatively poor performance. It is
difficult to theoretically prove the usefulness of the
exploration term in our scenario (like in the original
UCB1 algorithm), which we leave as future work.
However, we alternatively conduct some ablation

13



Dialogue Systems In-domain evaluation Out-of-domain evaluation All
AgenT AgenR RNNT RNNR GPT AgenG RNN Avg.↑ Std.↓ Avg.↑ Std.↓

single

Sys-AgenT 97.5 54.0 ↓40.0% 98.5 ↓0.5% 92.5↓1.0% 78.0↓4.9% 72.5 77.0 74.8 2.3 81.4 14.8
Sys-AgenR 96.0 ↓1.5% 90.0 98.5↓0.5% 97.5↑4.3% 80.5↓1.8% 97.5 82.0 89.8 7.8 91.7 7.1
Sys-RNNT 30.5 ↓68.7% 23.0 ↓74.4% 99.0 97.5↑4.3% 75.5↓7.9% 35.5 84.0 59.8 24.3 63.6 30.5
Sys-RNNR 30.0 ↓68.7% 23.0 ↓74.4% 96.5↓2.5% 93.5 68.5↓16.5% 30.0 70.5 50.3 20.3 58.9 28.8
Sys-GPT 60.5 ↓37.9% 51.5 ↓42.8% 97.0 ↓2.0% 94.0↑0.5% 82.0 59.5 92.0 75.8 16.3 76.6 17.6
Sys-MUSTuniform 97.5 ↑0.0% 87.0 ↓3.3% 97.0↓2.0% 97.5↑4.3% 82.0↑0.0% 96.5 87.0 91.8 4.8 92.1 6.0
Sys-MUSTadaptive 97.0 ↓0.5% 89.0 ↓1.1% 97.0↓2.0% 97.5↑4.3% 82.5↑0.6% 97.5 87.5 92.5 5.0 92.6 5.7

Table 8: Ablation study on MUST. It uses five user simulators (AgenT, AgenR, RNNT, RNNR and GPT
simulator) to implement MUSTuniform and MUSTadaptive.

Dialogue Systems In-domain evaluation Out-of-domain evaluation All
AgenT RNNT GPT AgenR AgenG RNNR RNN Avg.↑ Std.↓ Avg.↑ Std.↓

single
Sys-AgenT 97.5 98.5↓0.5% 78.0 ↓0.5% 54.0 72.5 92.5 77.0 74.0 13.7 81.4 14.8
Sys-RNNT 30.5 ↓68.7% 99.0 75.5↓7.9% 23.0 35.5 97.5 84.0 60.0 31.4 63.6 30.5
Sys-GPT 60.5 ↓37.9% 97.0 ↓2.0% 82.0 51.5 59.5 94.0 92.0 74.3 19.0 76.6 17.6

MUST Sys-MUSTuniform 97.5↑0.0% 96.0↓3.0% 82.5↑0.6% 55.0 82.0 97.5 87.0 80.3 15.7 85.4 13.9
Sys-MUSTadaptive 97.5↑0.0% 97.5↓1.5% 82.5↑0.6% 55.5 80.5 97.0 87.0 80.0 15.3 85.4 13.9

Table 9: Ablation study on MUST. It uses three user simulators (AgenT, RNNT, and GPT simulator) to
implement MUSTuniform and MUSTadaptive.

studies to evidence the necessity of the exploration
term.

MUSTadaptivew/t exploration. If we omit the
exploration term in our modified UCB1 algorithm,
the simplest way to calculate the distribution p is
to make the sample probability w.r.t a user simula-
tor solely depend on the inversion of the system’s
performance. See the row called ‘w/t exploration’
in Tab. 10 for comparisons.

In this situation, the obtained distribution p
might be sharp due to the lack of the explo-
ration term, which would be harmful for uni-
form adaption to some extent. As Fig. 5(a)
shows, MUSTadaptive performs worse and con-
verges slower when omitting the exploration term,
compared with when our modified UCB1 algorithm
has the exploration term. This could demonstrate
both the importance of uniform adaption and the
usefulness of the exploration term.

E.2 Ablation study on the designed
distribution

Rationale of exploitation vs exploration trade-
off. Similar to the exploitation vs explo-
ration trade-off, the distribution p under the
MUSTadaptive should trade off the boosting adap-
tion and the uniform adaption when specifying
multiple user simulators. Considering the boost-
ing adaption, we make a exploitation assumption
stated as follows: p is expected to assign lower
weights to user simulators with which the system
agent S already performs well and higher weights

to those user simulators with which S performs
poorly. Therefore, the sampling ratios for different
user simulators should be inversely proportional to
the system’s performance on each user simulator.

Rationale of the modified UCB1 algorithm.
The modified UCB1 algorithm for implementing
MUSTadaptive is defined as

x̂j = x̄j︸︷︷︸
exploitation

+

√
2 ln t

Tj,t︸ ︷︷ ︸
exploration

, j ∈ {1, ...,K};

zj = 1/ (x̂j − τ min({x̄1, · · · , x̄K})) ,
pi =

zj∑K
j=1 zj

.

(5)

MUSTadaptive in Eq. 5 (which is the same as
Eq. 2, Eq. 3, and Eq. 4) consists of three steps:
exploitation-exploration term construction, post-
processing (re-scaling operation and the inversion
operation), and the probability normalization, cor-
responding to each line in Eq. 5. Besides this
way, we could have the following three variants
that shuffle the order of these three key operations
(i.e., the exploitation-exploration term construc-
tion, re-scaling operation, and the inversion opera-
tion). We name these variants as as MUSTadaptive-
I, MUSTadaptive-II, and MUSTadaptive-III.

MUSTadaptive-I. For the exploitation assump-
tion, we make the exploitation term inversely
proportional to the system’s performance x̄j on
each user simulator Uj , which is denoted as

14



(a) MUST with five use simulators

(b) MUST with three use simulators

Figure 4: The learning curves of Sys-MUSTuniform and
Sys-MUSTadaptive.

MUSTadaptive-I. From Tab. 10, we can obverse
that the difference between MUSTadaptive-I and
MUSTadaptive is that MUSTadaptive-I take the in-
version of x̄ before the exploitation-exploration
term construction while MUSTadaptive take the in-
version operation after the exploitation-exploration
term construction. Since each x̄j , j ∈ {1, · · · ,K}
is smaller than 1, 1

x̄j
will be larger than 1. There-

fore, the term of 1
x̄j

and the exploration term of√
2 ln t
Tj,t

(smaller than 1) are not with the same mag-
nitude, which will lead to a consequence that the
exploitation term becomes dominant while the ex-
ploration term is negligible. We have discussed a
similar issue of ignoring the exploration term in
Sec. E.1. Therefore, we adopt MUSTadaptive in
default if not specified rather than MUSTadaptive-I
since the latter might suffer from the different mag-
nitudes of the exploitation term and the exploration
term.

(a) Ablation study on the exploration term

(b) Ablation study on the distribution p

Figure 5: The learning curves of Sys-MUSTuniform and
Sys-MUSTadaptive.

MUSTadaptive-II and MUSTadaptive-III. Com-
pared to MUSTadaptive, MUSTadaptive-II moves
the inversion operation to the front of the con-
structed exploitation-exploration term. Likewise,
MUSTadaptive-III moves the re-scaling and the in-
version operations to the front of the constructed
exploitation-exploration term. MUSTadaptive-II
and MUSTadaptive-III are used to check the order
sensitivity about the exploitation-exploration term
construction, re-scaling operation, and the inver-
sion of x̄j , j ∈ {1, · · · ,K}.

Results for ablation study on the variants. Ex-
perimental results of these different variants are
shown in Fig. 5(b). The convergence speed of
MUSTadaptive-I is much slower compared to oth-
ers, which demonstrates that the exploration term
is useful once more. The convergence speeds of
MUSTadaptive-II and MUSTadaptive-III is compar-
ative to MUSTadaptive. This probably shows that

15



variants exploitation-exploration term post-processing distribution

MUSTadaptive x̂j = x̄j +
√

2 ln t
Tj,t

zj = 1

(x̂j−τ min({x̄1,··· ,x̄K}))

pj =
zj∑K

i=1 zi

w/t exploration zj = 1
x̄j

MUSTadaptive-I x̂j = 1
x̄j

+
√

2 ln t
Tj,t

zj = x̂j − τ min({1/x̄1, · · · , 1/x̄K})

MUSTadaptive-II x̂j =
1/x̄j∑K

i=1 1/x̄i zj = ẑj − τ min({x̂1, · · · , x̂K})
ẑj = x̂j +

√
2 ln t
Tj,t

MUSTadaptive-III x̂j = 1
(x̄j−τ min({x̄1,··· ,x̄K}))

zj =
x̂j∑K

i=1 x̂i
+

√
2 ln t
Tj,t

Table 10: The variants of MUSTadaptive. The MUSTadaptive implementation is an exploitation-exploration term
followed by a post-processing for the re-scaling purpose and a sum-one normalization. Since we omit the exploration
term for the second row, therefore, it does not need the post-processing. MUSTadaptive-III moves the re-scaling and
the inversion operations to the front of the constructed exploitation-exploration term.

our design with three operations (i.e., exploitation-
exploration term construction, re-scaling strategy,
and the inversion of x̄j) is not only reasonable but
also robust to the order permutation of these three
operations.

F Implementing MUST with more user
simulators

To implement our MUST with more user simula-
tors, we use Simulated Agenda Dataset to train four
extra user simulators 8. Fig. 6(a) shows the learn-
ing curve of the system agent trained by MUST
with eight simulators (AgenT, AgenR, RNNT, GPT,
GPTAT, GPTAR, GPTAG, and GPTrand). We could
observe that the training of our proposed MUST
can still succeed when we increase the number
of user simulators to eight. Sys-MUSTadaptive

still converges faster than Sys-MUSTuniform even
though the difference between their convergence
speeds is not too large in this case. It might be
because some user simulators are similar (e.g.,
GPTAT is similar to AgenT, GPTAR is similar to
AgenR), which might lead that the distribution p
approaches a uniform distribution.

Fig. 6(b) compares the learning curves of Sys-
MUSTadaptive and Sys-MUSTuniform trained with
different numbers of user simulators (i.e., four, five,
and eight user simulators). It is a fair compari-
son because these combinations include the hardest

8Simulated Agenda Dataset (See Sec. 5.1) is simulated
from each rule-based user simulator (i.e., AgenT, AgenR,
AgenG) and its corresponding system agent respectively. We
use them to build three new user simulators denoted as GPTAT,
GPTAR, and GPTAG based on the GPT model respectively.
For example, we use the simulated dialogues from AgenT
and Sys-AgenT to build the GPTAT. we also collect 3000
dialogues randomly from Simulated Agenda Dataset to train
another new GPT user simulator denoted as GPTrand.

user simulator AgenR that can be adapted by the
system and the easiest user simulator RNNT that
can be adapted by the system (See Sec. 5.4). We
can observe that, with more user simulators, Sys-
MUSTadaptive not only performs better but also
converges faster than with fewer user simulators.
This probably shows that Sys-MUSTadaptive has
the potential to be generalized to a larger set of user
simulators. Plus, we also could observe that Sys-
MUSTadaptive consistently converges faster than
Sys-MUSTuniform in different numbers of user sim-
ulators.

G Modeling User Simulator with GPT

We name the model of building a user simulator
based on GPT as U-GPT. In this section, we will
illustrate its details and conduct experiments to
prove that it is a better model for building a user
simulator.

G.1 The architecture of U-GPT

As Fig. 7(a) shown, our U-GPT consists of four
modules, which are Natural Language Under-
standing (NLU), Goal Generator, Dialog Policy
Learning (POL), and Natural Language Genera-
tion (NLG). Dialogues consist of multiple turns.
In the first turn t = 0, U-GPT (1) first outputs
its NLU results N0 by understanding the system
input S0, and (3) decide its actions A0 which is
a list of pairs: (action_type, slot_name) based on
(2) its initial goal G0 and {S0, N0}. U-GPT then
(4) conditions on {S0, N0, G0, A0} to generate the
delexicalized utterance U0. The generated place-
holders in U0 will be filled using the corresponding
slot values in the goal G0. When the conversa-
tion proceeds to turn t, U-GPT (1) generates the

16



(a) The learning curves of the system trained with
eight user simulators.

(b) Comparison between different numbers of user
simulators.

Figure 6: The learning curves of Sys-MUSTuniform and
Sys-MUSTadaptive.

NLU results Nt based on all of previous dialogue
history and generated outputs {C0, . . . , Ct−1, St},
here Ci = [Si, Ni, Gi, Ai, Ui]. If there has "no-
offer" intent in Nt representing that no entities
could satisfy current constraints, then (2) Goal Gen-
erator should generate a new goal Gt. Then U-
GPT will continue to (3) generate the user acts At

and (4) generate delexicalized utterance Ut condi-
tioned on {C0, . . . , Ct−1, St, Nt, Gt} sequentially.
We should notice that the user utterances occurred
in the history context should be lexicalized because
they contain important information.

Fig. 7(b) shows an example of training sequence
which consists of the concatenation x = [C0, C1].
In order to leverage GPT, we need to convert the
generated outputs {Ni, Gi, Ai, Ui} to sequences of
tokens resembling a text. And we introduce de-
limiter tokens [eos_resp], [eos_nlu], [eos_goal],

[eos_pol], [eos_utt] to signal the ending of se-
quence representations of different modules. For
the NLU results Nt, we use five categories: “in-
form”, “request”, “book inform”, “select”, “rec-
ommend” same as Shi et al. (2019) to repre-
sent them. And we also introduce five tokens
[eos_constraint], [eos_book], [eos_recommend],
[eos_select], [eos_request] to record different in-
formation. All of these tokens and the intents of
user actions will be added to the vocabulary of GPT
as additional special tokens. For training U-GPT,
we use the same training objective as GPT which
is to maximize the following likelihood:

L(U) =
∑

i

logP (ui|ui−k, ..., ui−1; Θ),

∀ ui ∈ {S0, N0, G0, A0, U0, ..., At, Ut},

where k is the size of the context window, and the
conditional probability P is parameterized with Θ.

G.2 Evaluations on U-GPT

To evaluate our proposed U-GPT, we adopt both
indirect evaluations and direct evaluations as in
Shi et al. (2019). We evaluate a user simulator indi-
rectly using the average success rate of the system
agent trained by this simulator. It is called cross-
model evaluation (Schatzmann and Young, 2009)
which assumes a strategy learned with a good user
model still performs well when tested on poor user
models. It can indirectly evaluate the goodness of
a user simulator. For direct evaluations, we adopt
six evaluation measures to evaluate the diversity of
user simulators automatically: average utterance
length, vocabulary size, Dist-1, Dist-2 (Li et al.,
2016a) and Entropy (Zhang et al., 2018). We also
ask human users to rate the simulated dialogues 9

to assess the user simulators directly. We use five
same metrics as Shi et al. (2019) which are Flu-
ency, Coherence, Goal Adherence, Diversity, and
Overall quality to assess user simulators from mul-
tiple aspects.

G.3 Training details of user simulators

We implement our GPT-based user simulators with
DistilGPT2 (Sanh et al., 2020), a distilled version
of GPT-2 by HuggingFace’s Transformers (Wolf
et al., 2020). We select the best performing mod-
els on the validation set through hyperparameters

9The system agent for simulating dialogues is a third-party
system provided by Shi et al. (2019) which was built based
on hand-crafted rules.

17



hello! what can i help you? <eos_resp> [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food venetian pricerange 

expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type] food area <eos_pol> i am looking at a place to eat that 

serves venetian food in the centre. <eos_utt> unfortunately, i do not see any restaurants that serve venetian in the centre of town. would you like to try a 

different area or type of cuisine? <eos_resp> nooffer [eos_constraint] [eos_book] [eos_recommend] [eos_select] [eos_request] <eos_nlu> [info] food 

chinese pricerange expensive area centre [request] [book] time 12:00 day wednesday people 4 <eos_goal> [inform_type_change] food <eos_pol> Do you 

have any [value_food] restaurants ? <eos_utt>

Hello! What can I help you?
constraint: [], book: [], 

recommend: [], select: [], request: []

inform_type: [food, area]

I am looking at a place to eat that serves 

[value_food] food in the [value_area] .

I am looking at a place to eat that serves 

Venetian food in the centre.

Unfortunately, I don't see any 

restaurants that serve Venetian in the 

centre of town. Would you like to try 

a different area or type of cuisine?

Yes there are 10 in the centre of town. 

Any price preference?

constraint: [nooffer], book: [], 

recommend: [], select: [], request: []

inform_type_change: [food]

Do you have any [value_food] restaurants ?

Do you have any Chinese restaurants?

{"info":{"food": "Venetian",

"pricerange": "expensive", 

"area": "centre"},

"book": {"time": "12:00", 

"day": “Wednesday", 

"people": "4"}}

{"info":{"food": “Chinese",

"pricerange": "expensive", 

"area": "centre"},

"book": {"time": "12:00", 

"day": “Wednesday", 

"people": "4"}}

System Agent User Simulator

(2) Goal Generator(1) NLU

(2) Goal Generator

(3) POL

(4) NLG

(4) NLG

(3) POL

Lexicalization

Lexicalization

(a) The details of the first two-turn interactions between a system agent and our U-GPT.

(b) An example of the model input for training U-GPT.

(1) NLU

𝑆0:

𝑆1:

𝑆2:

𝑁1:

𝐴1:

𝑈0:

𝐴0:

𝑁0:

𝑈1:

𝐺0:

𝐺1:

Figure 7: The overview of our U-GPT which consists of Natural Language Understanding (NLU), Goal Generator,
Dialog Policy Learning (POL), and Natural Language Generation (NLG). It uses the auto-regressive language
model GPT to understand the system inputs, generate the user actions and the user utterances given the dialogue
context and the user goals sequentially in an end-to-end manner. (a) gives a detailed description of the first two-turn
interactions between a system agent and our U-GPT. For training U-GPT, we need to convert the dialogue context
and all annotations to sequences of tokens. (b) presents the training example of the first two-turn dialogues in (a).

search of learning rate and batch size. The best
models were fine-tuned with a batch size of 64
and a learning rate of 1e-3 over the corresponding
dataset. We use the greedy decoding strategy for
generating word-tokens in the inference phrase.

G.4 Experiments

GPT-RNN. Because the implementation of user
simulator RNN mainly consists of NLU and NLG,
we remove the POL module from U-GPT and use
the same annotated data as RNN to fine-tune it to
compare our U-GPT with the RNN-based methods
fairly and name it as GPT-RNN.

As Tab. 11, Tab. 12, Tab. 13 show, GPT-RNN
outperforms the user simulator RNN. It proves the
power of leveraging GPT.

Our GPT-RNN performs better than the user sim-
ulator RNNT, which can be seen from the cross-
model evaluation results in Tab. 11, the automatic
evaluation results in Tab. 12, and the Hu.Div score
in the human evaluation results in Tab. 13. How-
ever, as Tab. 13 shows, RNNT performs better than
our GPT-RNN in the overall performance from the
human evaluation. We think this might be because
(1) the third-party system also has an impact on the
generated dialogues and (2) the NLG module of
RNNT is the template-based method which leads to

the generated dialogues from RNNT being easy for
the third-party system to understand and interact
with.

The automatic evaluation results in Tab. 12 and
the Hu.Div score in the human evaluation results
in Tab. 13 show that RNNR can generate more di-
verse language than our GPT-RNN. We think it is
because the user utterances generated by RNNR are
retrieved from a corpus that is written by real hu-
mans and the sentences written by humans are usu-
ally more diverse than the sentences generated by
generative models. Even though the dialogues gen-
erated by RNNR are more diverse, the dialogues
generated by our GPT-RNN are more fluent and
coherent. Also, the cross-model evaluation results
in Tab. 11 show that GPT-RNN can help to learn
a more robust system agent than RNNR, but the
Hu.All score in the human evaluation in Tab. 13
gives the opposite result.

18



System \User AgenT AgenR AgenG RNNT RNNR RNN GPT GPTIL Avg.↑ Std.↓
Sys-RNNT 30.5 23.0 35.5 99.0 97.5 84.0 75.5 66.0 63.9 28.5
Sys-RNNR 30.0 23.0 30.0 96.5 93.5 70.5 68.5 56.0 58.5 26.7
Sys-RNN 20.0 23.5 20.0 73.0 63.0 77.0 56.5 45.0 47.3 22.2
Sys-GPT-RNN 36.5 38.0 42.0 95.5 94.0 89.0 80.5 61.0 67.1 24.1

Table 11: Cross study results. Each entry shows the success rate obtained by having the user simulator interacting
with the RL system for 200 times.

User Simulators Utt ↑ Vocab ↑DIST-1 ↑DIST-2 ↑ENT-4 ↑
RNNT 9.83 192 0.77% 1.51% 4.24
RNNR 11.06 346 2.45% 9.59% 6.59
RNN 10.95 205 1.17% 3.14% 4.98
GPT-RNN 14.00 262 1.13% 3.53% 5.62

Table 12: Automatic evaluation results of RNNT, RNNR
and GPT-RNN. The metrics include average utterance
length (Utt), vocabulary size (Vocab), distinct-n (DIST-
n) and entropy (ENT-n).

User Simulators Hu.Fl ↑Hu.Co ↑Hu.Go ↑Hu.Div ↑Hu.All ↑
RNNT 4.60 4.68 4.96 3.34 4.70
RNNR 3.92 3.88 4.72 3.94 4.16
RNN 2.80 2.30 2.86 2.74 2.30
GPT-RNN 4.10 4.04 4.30 3.70 4.00

Table 13: Human evaluation results of RNNT, RNNR
and GPT-RNN. The metrics include sentence fluency
(Hu.Fl), coherence (Hu.Co), goal adherence (Hu.Go),
language diversity (Hu.Div) and an overall score
(Hu.All).

19



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

right after the conclusion section

�3 A2. Did you discuss any potential risks of your work?
right after the conclusion section

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
last paragraph in the introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Yes. Sec. 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
See appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

20

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Sec. c.4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Table 2

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
SEc. 5.3

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
APP c.5

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
SEc. 5.3

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
APP c.5

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
APP c.5

21


