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CWSeg: An Efficient and General Approach to Chinese Word
Segmentation

Dedong Li* !, Rui Zhao !, Fei Tan*
I SenseTime Research
ddlecnu@gmail.com

{zhaorui, tanfei}@sensetime.com

Abstract

In this work, we report our efforts in advanc-
ing Chinese Word Segmentation for the pur-
pose of rapid deployment in different applica-
tions. The pre-trained language model (PLM)
based segmentation methods have achieved
state-of-the-art (SOTA) performance, whereas
this paradigm also poses challenges in the de-
ployment. It includes the balance between
performance and cost, segmentation ambigu-
ity due to domain diversity and vague words
boundary, and multi-grained segmentation. In
this context, we propose a simple yet effective
approach, namely CWSeg, to augment PLM-
based schemes by developing cohort training
and versatile decoding strategies. Extensive
experiments on benchmark datasets demon-
strate the efficiency and generalization of our
approach. The corresponding segmentation sys-
tem is also implemented for practical usage and
the demo is recorded.

1 Introduction

Chinese word segmentation (CWS) is a prelimi-
nary but essential procedure for Chinese language
processing tasks, and has been applied in various
scenarios (Yang et al., 2018; Zhang et al., 2019; Cui
et al., 2020; Han et al., 2020; Zhang et al., 2020;
Tan et al., 2020; Lu et al., 2023). Especially for fast
complete recall and accurate semantic understand-
ing in search and recommendation scenarios (Bao
et al., 2022), CWS is still indispensable. In addi-
tion, experiments on Chinese LLaMA and Alpaca
show that the token throughput of the model that
expands the vocabulary through word segmentation
has greatly improved the processing of Chinese text
compared with the original model (Cui et al., 2023).
Recent deep learning methods have achieved re-
markable results on publicly available datasets in
this regard (Qiu et al., 2019). Also, the pre-trained
language model (PLM) (Liu et al., 2019) further

*Work was done at SenseTime Research
*Corresponding author
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emerges as the paramount foundation of text rep-
resentation for CWS as seen in other tasks (Tian
et al., 2020b; Huang et al., 2020a; Maimaiti et al.,
2021).

Current PLM-based approaches, however, pose
three hurdles to the production deployment we need
to cross: (1) One dilemma is the trade-off between
the model performance and inference speed. (2)
The lexical diversity and domain gap also jeop-
ardize the fast deployment of a generic model to
customized scenarios. (Maimaiti et al., 2021). (3)
PLM-based schemes with single granularity are
less likely to meet multi-granularity demands of
practical relevance.

To tackle these issues, we propose an efficient
and general approach to augmenting PLM-based
Chinese Word Segmentation methods, namely
CWSeg. It can extrapolate to different sequence la-
beling scenarios. Recent studies showed that small
models also have the potential to be comparable to
large models (Ba and Caruana, 2014; Zhang et al.,
2018). We thus introduce a new cohort training
strategy to co-train a cohort of multi-scale model
artifacts to meet the performance and real-time de-
mands. Specifically, we employ Wasserstein dis-
tance (WD) (Riischendorf, 1985) to orchestrate dis-
tributions of model cohorts to enable more robust
learning. In addition, we propose to construct the
tailored domain-specific lexicon Trie (Liu et al.,
2002) and build up a versatile decoding scheme to
augment the optimal segmentation path searching
on the fly for diverse practical scenarios. It can flex-
ibly adjust the segmentation granularity and benefit
customized domains.

In summary, our primary goal is to build a versa-
tile framework for strengthening different models
simultaneously and then rapidly deploying them
into multiple practical scenarios of CWS, which
is fundamentally different from existing research
works. Essentially, the output models of this frame-
work can be regarded as complements to, not re-
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placements for, existing SOTA methods.

Experimental results on multiple benchmark
datasets demonstrate the effectiveness of our ap-
proach. Ablation studies confirm the necessity of
cohort training strategy and lexicon Trie aided ver-
satile decoding solution. The cross-domain appli-
cation experiments demonstrate the generalization
capacity of our holistic approach.

2 Related Work

Early work in Chinese word segmentation builds
upon the statistical assumption (Li and Sun, 2009;
Sun et al., 2012a) by modeling rules into the learn-
ing process. Recently, PLMs have been introduced
(Tian et al., 2020b,a; Maimaiti et al., 2021) and
made significant advances in this regard. Our work,
however, aims to alleviate their potential challenges
involved in the industrial applications as mentioned
in Section 1.

Recent works (Huang et al., 2020b, 2021) distill
knowledge from the well-trained teacher model
into a student model to balance the model scale and
performance. However, it requires multiple fine-
tuning rounds and models can’t learn from each
other collaboratively. In this work, we introduce a
cohort training based learning strategy to address
these two problems for CWS. Different from the
pioneering mutual learning (Zhang et al., 2018) in
computer vision, we propose Wasserstein distance
to better enable the learning as studied in Sec. 4.3.
It’s a more carbon-footprint-friendly solution as
compared to recent research threads.

To mitigate the effects of Chinese lexical diver-
sity, Qiu et al. (Qiu et al., 2019) proposed a concise
unified model to extract the criterion-aware repre-
sentation for multi-criteria corpus, which requires
training from scratch on the entire corpus for new
criteria or domains. Gong et al. (Gong et al., 2017,
2020) proposed a multi-grained word segmentation
by training with large-scale pseudo labels, which
is relatively lagging for rapid deployment to new
domains. Our work approaches this issue by a
lightweight versatile decoding scheme to sidestep
heavy training loads.

3 Methodology

As shown in Fig. 1 (a), we formulate CWS as a
classical sequence labeling problem as with exist-
ing compelling schemes. Concretely, given a text
sequence of n characters X = {x1,...,z,}, CWS
is to tag involved characters sequentially with the
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Figure 1: Overview of the CWSeg framework. (a) In the
training phase, we set several SOTA models as training
cohorts and initial weights from PLM. (b) In the infer-
ence stage, we select the most suitable artifacts from
the cohort for the actual scenario and apply the versatile
decoding strategy for the multi-granularity demands.

Wasserstein
Distance

CWS Cohort Logits Predictions

. NimE

X Inputs

Figure 2: The cohort training strategy.

BIO encoding by maximizing their joint probability
p(Y1, .-, yn|X) where y; € T = {B, 1, O}, short
for beginning, inside and outside respectively.

3.1 Cohort Training

The cohort training strategy enables multiple stu-
dent models to teach and learn from each other. The
objective function contains supervised loss L. and
mimicry loss L£,,. As exemplified by two models
in Fig. 2, the overall loss function is:

L=Lo+ Loy + A Lo (1)

where A € [0, 1] is a hyper-parameter. £, and L.,
guide the model learning under the supervision of
real segmentation tags while £,,, can encourage
different models to learn from each other collabo-
ratively.

Specifically, £.1 and L. refer to the cross en-
tropy (CE) loss. Without loss of generality, L., =

=35 3oL (i t)log(ph (x:) and pi(x;) =
% where I(-) is an indicator function,
Zt:l ea:p(zl)
pY(x;) is the prediction probability, 2! is the output
logit of the model F;. For £,,, Kullback-Leibler

(KL) divergence is a naive metric to quantify the



distance between two distributions K L(ps||p1) =
Sy ST ph ) B,
gence is asymmetric and possibly infinite when two
distributions are disjoint or there are points such
that p1(x;) = 0 and p2(x;) > 0, which is fragile
in training (Arjovsky et al., 2017). The symmetric
Jensen-Shannon (JS) divergence, suffers from the
same problem (See A.1 for more details). Given
the above concerns, we introduce the Wasserstein- 1
distance (a.k.a. earth mover’s distance):

However, KL diver-

W(p2,p1) = inf IE( x,y) N'y[HX yll] 2

v€ll(p2,p1)

where [[(p2, p1) is the set of all joint distributions
~(x,y) whose marginals are py and p;, respec-
tively. As shown in Appendix A.1, Wasserstein
distance can provide a meaningful and smooth rep-
resentation of the in-between distance for two dis-
tributions in lower dimensional manifolds without
overlaps. Eq. (2), however, is highly intractable.
We thus resort to Kantorovich-Rubinstein duality:

W(p2,p1) = H?”lgl Exops [f(X)] = Eyp, [f(¥)]
- 3)

where the supremum is over all the 1-Lipschitz
* function f : RX — R, which maps each K-
dimensional feature vector in the semantic space
to a real number. In practice, f is implemented
as a two-layer feed-forward neural network with
parameters O clipped to [—c, ¢], where ¢ > 0.
Therefore, the mimicry loss £, can be derived as
the dual form of Wasserstein distance:

Lo =mex Y [f) - f] @)
(xy)

Extension to Larger Cohort The cohort training
strategy can be easily extended to larger cohorts.
For example, given K models (K > 2), the overall
loss function £ can be formulated as:

L= ZL'CL—F Z Z W(pj,Pi)

=1 j=1+1
(&)

Obviously, Eq. (1) is a special case of Eq. (5)
when K = 2.
3.2 Versatile Decoding

However, the PLM-based segmentation capacity of
single-granularity barely meets diverse real-world
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Figure 3: The versatile decoding strategy. (a) The bot-
tom left shows the fine-tuned model prediction, which is
largely affected by the training corpus. (b) The top left
shows phrases matched by the lexicon Trie built from a
user-defined vocabulary set. (c) The right part integrates
matching results by constructing CWSGraph and uses
the Viterbi algorithm for dynamic decoding according
to granularity requirements.

applications. As illustrated in Fig. 3 (a), the model
tends to decode the input text as “7 [E (China) / £}
223K (Science and Technology) / K2 (Univer-
sity)”, whereas only the input as a whole 7 [E|%}
“EF R K2 (University of Science and Technol-
ogy of China, USTC)” refers to a meaningful entity.
Additionally, for large-scale content recommenda-
tions, rapidly acquiring as much relevant content
as possible is an essential step towards quality can-
didates on which more sophisticated methods can
function. Thus, reasonably splitting the whole en-
tity of “H ERI2EF R K2E (USTC)” into smaller
relevant semantic units “7 [E (China) / 2% (Sci-
ence) / FK (Technology) / K% (University)” is
crucial in this regard.

In this context, we focus on adapting generic
models trained on annotated corpora to specific
domains and supporting diverse granularity. It in-
cludes the construction of lexicon Trie (Liu et al.,
2002) and versatile decoding.

Lexicon Trie: The lexicon Trie is designed to
store vocabulary in a compressed Trie structure
and search for each word efficiently. As illustrated
in Fig. 3 (b), the solid node denotes the root node,
and each circle denotes a Trie node, which contains
a value containing a Chinese token and a label
representing whether it is a complete word from the
root node so far. Here the red circle indicates that
the label is equal to True. Thus, given a collected
vocabulary set, we can initialize a lexicon Trie.

In the matching stage, given an input text such
as “HERI2EE AR K2, we apply the matching
algorithm to search for all complete words in the
input text that can be matched on the lexicon Trie.



The matched word list is shown in Fig. 3 (b).

Diverse =~ Modes: The  granularity crite-
rion criteria is roughly determined by the
RouteScore, which is the number of chunks
in the segmented path regularized by semantic
completeness. In total, we have the following four
modes:

Normal Mode: High-probability segmentation
that conforms to the statistics of the data.

Fine Mode: RouteScore larger than normal,
collecting more semantic units.

Coarse Mode: RouteScore smaller than nor-
mal, perceiving more complete semantics.

Index Mode: A segmentation result that com-
bines the above three modes.

The whole process can be formulated as Fig. 3
and Algorithm 1 (refer to A.1 for more function
details). In addition to the prediction from the fine-
tuned model F, we create a lexicon Trie D from
the pre-processed vocabulary set V to capture all
candidate phrases C without training. We merge
predictions P into candidates set C to construct
CWSGraph G, where each node represents a token.
Viterbi algorithm is adopted for decoding according
to the granularity criteria. In this way, we can
flexibly tailor model-based segmentation results to
multiple domain-specific scenarios while meeting
the multi-granularity requirements.

Algorithm 1 Versatile Decoding

Input: Text sequence X, fine-tuned model F, lex-
icon Trie D, granularity mode m.
Output: Text sequence label: ).

1: P=F(X);C=Matching(X,D)|P;

2: G = CWSGraph(C);

3: borders = ExtractBorders(P);

4: if m = "normal" then

5: y="P

6: else if m = "fine" then

7: cands = CutBorders(G, borders);

8: Y = Viterbi(G, cands, criteria,,);

9: else if 7 = "coarse" then
10: cands = LinkBorders(G, borders);
11: Y = Viterbi(G, cands, criteria.m,);
12: else if m = "index" then
13: for m:["normal", "fine", "coarse"] do
14: Y |= VersatileDecoding(X', F, D, m);
15: end for
16: end if
17: return Y

4 Experiments

4.1 Setup

Dataset We experiment with six widely-used
datasets AS, CityU, CTB6, MSR, PKU, Weibo,
from SIGHAN 2005 Bakeoff, Chinese Treebank
and NLPCC2016 (SIGHAN2005Bakeoff; Emer-
son, 2005; Xue et al., 2005; Qiu et al., 2016). The
basic statistics and train/dev/test settings are de-
tailed in Table 1.

Corpus Vo_cab. Word Len. 4 Dataset Size

Size 50%  75% Train Dev. Test
AS 144.5k 3 3 6989k 10.0k 14.4k
CityU 70.7k 2 3 47.7k 5.3k 1.5k
CTB6 47.5k 2 3 23.4k 2.0k 2.7k
MSR 90.1k 3 5 78.2k 8.7k 3.9k
PKU 58.1k 2 3 17.1k 1.9k 1.9k
Weibo 56.1k 2 3 20.1k 2.0k 8.5k

Table 1: The statistics of the datasets.

Baselines We select baselines both from tradi-
tional methods and the well-executed or SOTA
methods, such as Jieba (jieba) (Fast CWS tool
based on HMM), HanLP (pyhanlp) (CRF-based
method), THU (THULAC) (Perceptron-based
method), PKU (PKUSeg) (CRF-based CWS tool
uses a new training method, namely, the adaptive
online gradient descent method based on feature
frequency (Sun et al., 2012b)). Since the major ar-
chitecture of recent competing methods is CRF on
top of Transformers (e.g., BERT and its variants),
and as mentioned earlier, our flexible framework
CWSeg is a complement to, not a replacement for,
existing compelling methods, we experiment with
our method on BERT-CREF (refer to A.1 for more
details), which can be easily applied to other vari-
ants. WMSeg (Tian et al., 2020b), another most
recent SOTA method based on this architecture
utilizing memory networks to incorporate word-
hood information, is also used for comparison. To
be noted here, the PLMs implemented in BERT-
CRF and WMSeg are the BERT base model. Since
CWSeg adopts the cohort training strategy, we set
base versions of BERT and NEZHA as cohorts.

Experiment Settings The PLMs used in this
work are readily available, and are the widely rec-
ognized SOTA backbones in the Chinese commu-
nity. Such as ‘BERT’ for bert-base-chinese (Devlin
et al., 2019; bert-base chinese), ‘RoBERTa’ for
chinese_roberta_wwm (Liu et al., 2019; chinese-
roberta wwm), ‘NEZHA’ for NEZHA-Base-WWM



(Jungiu Wei, 2019; NEZHA-Base-WWM). They
are based on Chinese characters (similar to sub-
words in English). We choose Adam optimizer
(Kingma and Ba, 2014) with an initial learning rate
as 2e-5 and tuned amongst { 1e-4, Se-35, 2e-5, 1e-5}.
We use the early stopping mechanism (Yao et al.,
2007) in the model training. The batch size was
tuned amongst {32, 64, 128}. The hyper-parameter
A was set as 0.5 and tuned from [0.01, 1], and
the clipping threshold c was set as 0.5 and tuned
from [0.1, 0.5]. All experiments were run on In-
tel(R) Core(TM) i17-8700 CPU @ 3.20GHz and
NVIDIA V100-32g GPUs. Note here that all these
time-cost comparison experiments are tested on the
same CPU device, while deep methods run faster
on CUDA devices.

Adap_t vy/o Multi—. Fi Latency

Retraining  granularity (s/k)
Jieba 80.67  0.17
HanLP v v 82.34 033
THU v - 88.09  0.57
PKU - - 9129  0.63
BERT-CRF - - 9659 127
WMSeg - - 97.06 145
CWSeg v v 97.65 129

Table 2: Overall model comparison. ‘s/k’ refers to
seconds spent per thousand requests on the same CPU
device.

4.2 Main Results

Overall Performance Table 2 reports the overall
performance. For the sake of fairness, we utilize a
unified model and average F1 scores of six individ-
ual test sets (Luo et al., 2019). BERT-CREF stands
out as compared to traditional methods due to the
powerful representation capacity of the pre-trained
language model. Following the PLM paradigm,
(Tian et al., 2020b,a) further fuses wordhood in-
formation into the network, and achieves better
performance compared to BERT-CRF. For simplic-
ity, we set the BERT-CRF architecture as the cohort
in our implementation to verify the gain effect of
our framework. As shown in Table 2, our approach
further advances BERT-CRF with cohort training
and versatile decoding without reshaping model
architecture, which also defeats the most recent
SOTA method WMSeg (Tian et al., 2020b).

Multi-grained Segmentation We evaluate
CWSeg on four different segmentation modes. As
shown in Table 3, compared to the model without
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Table 3: The multi-granularity case study.

versatile decoding, CWSeg can better capture the
whole words of the entity. This also illustrates the
granularity gap between annotated corpora and
the application scenarios. With versatile decoding,
CWSeg can generate both fine-grained and coarse-
grained labels. And multi-granularity results
provide more knowledge and indexing, which is
crucial for multiple scenarios such as retrieval,
content recommendation, and advertisement.

4.3 Ablation Study

We investigate the impact of versatile decoding,
cohort training, and different losses on CWSeg.

Effect of Versatile Decoding Table 4 details the
performance gain of our approach in the domain
adaption. It enables models to be readily applied
to new domains without training. Take MSR for
instance, our approach lifts the model performance
by a large margin of 7%. This is reasonable as MSR
has significantly different distributions compared



Train Test Methods F1 BERT-1 BERT-4 BERT-8 NZ-1 NZzZ-4
CWSeg 96.91 F1 93.85 96.31 96.97 94.39  96.83
All w/o AS AS w/o Versatile  96.88 (-0.03)
Singl del traini ttings. ‘NZ’ for NEZHA.
All wio CityU  CityU Cyvs{;;g i g?:{f (a) Single model training settings or
g\;’, S crsatrie 9921 107 BERT Cohort NZ Cohort
Allw/oCTB6  CTB6 ) \fg Je 8917 PLM | BERT-1 BERT-4 |BERT-1 BERIL-8|NZ-1 NZ4
wio Versatile 100 9484 969 | 9488 9731 (9537 97.03
Al CWSeg 92.26 F1
w/o MSR MSR . (+0.99) (+0.59) (+1.03) (+0.34) | (+0.98) (+0.20)
w/o Versatile  85.26 (-7.00)
CWSeg 92.58 L . .
All w/o PKU PKU . (b) Cohort training settings with the same backbone.
w/o Versatile  90.56 (-2.02)
. . CWSeg 87.73 BERT and NEZHA Cohort
Allwfo Weibo  Weibo 0 yercaile 86,01 (1.72) PLM |BERT-1 =~ BERT-4  NZ-1 NZ-4

Table 4: The effect of versatile decoding by cross-
domain experiments. ‘All w/o AS’ means all datasets
after removing AS. ‘w/o Versatile’ refers to the CWSeg
model without the versatile decoding module.

to others as shown in Table 1, and thus requires the
domain-adaptive decoding strategy.

PLM Settings SN MD CH
Netl Net2 Netl | Net2 | Net2 | Netl Net2
BERT-4 | BERT-1 96.31{93.85(94.0496.9 94.84
NEZHA-4 | NEZHA-1 | 96.83 | 94.39 | 94.87 | 97.03 95.37

Table 5: The effect of cohort training experiments on
CTB6 (F1). ‘MD’ for model distillation of Net1 distills
Net2, ‘SN’ for single training, and ‘CH’ for cohort
training. ‘BERT-4’ means the first 4 layers of the BERT
base model.

Effect of Cohort Training Overall, the cohort
training outperforms the classical model distillation
approach in terms of small models as evidenced
by Net2 (94.84 vs 94.04 and 95.37 vs 94.87) in Ta-
ble 5. It’s worthwhile to note that big models also
benefit from the cohort training as compared to the
independent training (e.g., Netl: 96.9 vs 96.31 and
97.03 vs 96.83). In this setting, the CH training
policy, which is trained only once and converges
faster, is about 3 times faster than MD, which re-
quires 3 stages of training (Train Netl, train Net2,
Netl distills Net2).

Effect of Cohort Settings To study the effect of
the cohort settings, we conducted a detailed analy-
sis. As shown in Table 6, we can easily find that:
(1) The cohort setting stands out in all trials, and
the small model improves more significantly. (2)
Larger models improve small models better. (3)
Diversity in cohort settings promotes performance.

Effect of Wasserstein Distance For the cohort
training, we further study the impact of mimicry
loss. Specifically, we compare WD with KL and

F1 94.85 (+1.00) 96.91 (+0.60) 95.51 (+1.12) 97.16 (+0.33)

(c) Cohort training settings with different backbones.

Table 6: The effect of cohort setting experiments.

KL JS WD
BERT-1 9439 9448 94.56
BERT-2 95.81 95.82 96.02

Table 7: The effect of Wasserstein distance loss. ‘WD’
for Wasserstein distance.

JS as detailed in Table 7 and Fig. 4. WD is slightly
better than both KL and JS in large part due to the
performance ceiling, whereas it can significantly
accelerate cohort training by multiple folds. This
is appealing, especially for multiple large-scale
model learning.

4.4 Trade-off between Performance and
Speed

We experiment with cohort training (CH) of BERT-
1, BERT-4, BERT-8, and BERT-12. As a compar-
ison, these 4 single networks (SN) are also fine-
tuned independently. The latency for CH and SN is
the same, and the units of latency are defined in Sec-
tion 4.2. As shown in Fig. 5, overall, CH produces
a batch of different model artifacts simultaneously
as designed, which outperforms counterparts of SN
without inference latency penalty. For example,
CH-4 setting has almost the same segmentation
performance as SN-12. These artifacts can serve
different inference scenarios. Specifically, CH-1
can be used for real-time demanding applications
and CH-12 works well on the offline inference sce-
narios with more tolerance of latency.

5 Discussion

Our latency comparisons are benchmarked on the
same CPU device, while deep methods run faster
on CUDA devices. Besides, we can resort to a fast-
compiling language (e.g., C++) backed platform
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Figure 5: The trade-off of performance and speed.

or tailored toolchain (e.g., ONNX) to optimize the
serving speed. How to apply diversity modes to
different scenarios? Generally speaking, the coarse
mode is to perceive complete semantics, and the
fine mode is to perceive more extensive concepts.
For example, in the scenarios of search and recom-
mendation, the normal or coarse mode is employed
to process web pages to build inverted indexes. In-
dex mode is often used for query expansion, where
we disassemble queries into multiple granularities
to maximize recall of relevant documents.

6 Conclusion

In this work, we develop an efficient and general
framework, CWSeg, which enables the state-of-the-
art schemes of Chinese word segmentation better
prepared for industrial deployment scenarios. We
present Wasserstein distance-based cohort learn-
ing method and versatile decoding to facilitate the
trade-off between segmentation performance and
serving latency as well as the fast cross-domain
adaption. Comprehensive experiments are per-
formed to justify the efficiency and generalization
of CWSeg. We believe that our work can be extrap-
olated to other sequence labeling problems straight-
forwardly.

Limitations

This study has potential limitations. When the
CWSeg model is applied to a new domain, we
assume that words and phrases solely related to the
domain are available.
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A Appendix

A.1 Model Details

Cohort Model We set the SOTA CWS model ar-
chitecture BERT-CREF as cohort model implemen-
tations to exploit the PLM strength and transition
patterns of the labeling system.

For each character x; is mapped to x; € R,
where d, is the embedding size. The PLM encoder

extract the contextual features h; € R% automati-
cally for each character x; by

[h1,hy, ..., hy|] = Encoder(X), 6)

where X € R%*I¥l is the embedding matrix of
X, dj, is the size of hidden features. There are
several prevalent choices for Encoder model, such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019).

There are rules in the labeling systems, such as
the I can only be after the B label. We thus utilize
the conditional random fields (CRF) (Lafferty et al.,
2001) to model the transition patterns, which can
be formulated as:

exp(W.W, h; + b.)
exp(W.W/h; + b,)

p(yilxi) = 5 . (D

Yi—1Yi

where W, € R4, W, € RI7XITI and b, €
RI7T are training parameters to model the transition
from g;_1 to y;.

08
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Figure 6: Suppose two probability distributions P and
Q.V(z,y) € P =0,y ~U(0,1);V(z,y) € Q,x =
0,0<0<1,y~U(0,1).

Wasserstein Distance As shown in Fig. 6, there
is no overlap between P and () when 6 # 0, and:

1
KL(PPIQ)= > 1 log; = +o0,
x=0,y~U(0,1)
1
KL@QIP)= > 1 logg = +0o,
x=0,y~U(0,1)
JS(P,Q) =
1 1 1
5( Z 1-logy + Z 1-log+)
z=0,y~U(0,1) 2 2=0,y~U(0,1) 2
= log2,
W(P,Q) = 0],
3)
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when 6 = 0:

KL(P||Q) = KL(Q[|P) = JS(P,Q) = 0, ©
W(P,Q)=0=16|,

where K L(-) gives infinity when two distributions
are disjoint, and J.S(-) is always a constant. And
they are both equal to O when 6 = 0, so they both
have a sudden jump at § = 0. While the Wasser-
stein distance provides a smooth measure, which
contributes to stable gradient descents.

Versatile Decoding Pseudocode ExtractBorders
aims to obtain the border indices of the prediction,
such as the borders of “F[E / BI2EFIA / K2 is
[0, 2, 6, 8]. CutBorders is designed to filter out the
candidates in C that cross the borders, such as “H
E R ZERR K2 will be filtered out, and “Fl=
“}%Z 7K will be preserved. LinkBorders is designed
to obtain all candidates in C that match one-skip or
multi-skip borders, such as “F [E Rl 2EH R K2
will be preserved for it skip two borders [2, 6].

# extract borders of the segmented token_list
def extract_borders(token_list):
borders = set()
for token in token_list:
borders.add(token.start_offset)
borders.add(token.end_offset+1)
return borders

# find candidates that no-cross borders
def cut_borders(token_list, borders):
cut_borders = []
cross_border = False
for token in token_list:
cross_border = False
for idx in range(token.start_offset+1,
token.end_offset+1):
if idx in borders:
cross_border = True
break
if not cross_border:
cut_borders.append(token)
return cut_borders

# find all candidates in token_list that match
one-skip or multi-skip borders
def link_borders(token_list, borders):
link_borders = []
for token in token_list:
if token.start_offset in borders and
(token.end_offset+1) in borders:
link_borders. append(token)
return link_borders
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Abstract

In conventional radiology practice, the radiolo-
gist dictates the diagnosis to the transcription-
ist, who then prepares a preliminary formatted
report referring to the notes, after which the
radiologist reviews the report, corrects the er-
rors, and signs off. This workflow is prone to
delay and error. In this paper, we report our
work on automatic radiology report generation
from radiologists’ dictation, which is in col-
laboration with a startup about to become Uni-
corn. A major contribution of our work is the
set of knowledge graphs (KGs) of ten abdomi-
nal organs- Liver, Kidney, Gallbladder, Uterus,
Urinary bladder, Ovary, Pancreas, Prostate,
Biliary Tree, and Bowel. Our method for con-
structing these KGs relies on extracting entity1-
relation-entity?2 triplets from a large collection
(about 10,000) of free-text radiology reports.
The quality and coverage of the KGs are veri-
fied by two experienced radiologists (practicing
for the last 30 years and 8 years, respectively).
The dictation of the radiologist is automatically
converted to what is called a pathological de-
scription which is the clinical description of the
findings of the radiologist during ultrasonog-
raphy (USG). Our knowledge-enhanced deep
learning model improves the reported BLEU-3,
ROUGE-L, METEOR, and CIDEr scores of
the pathological description generation by 2%,
4%, 2% and 2% respectively. To the best of
our knowledge, this is the first attempt at rep-
resenting the abdominal organs in the form of
knowledge graphs and utilising these graphs
for the automatic generation of USG reports.
A Minimum Viable Product (MVP) has been
made available to the beta users, i.e., radiolo-
gists of reputed hospitals, for testing and evalua-
tion. Our solution guarantees report generation
within 30 seconds of running a scan.

1 Introduction

Radiology is an integral part of medical care. Radi-
ological imaging-based evidence (X-ray, MRI, CT,
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USG, etc.) is crucial for determining the nature
of the treatment. The usual radiology process is
as follows: A patient gets scanned. Then the ra-
diologist prepares the diagnosis notes (referred to
as radiologist’s dictation) and handing them over
to a transcriptionist. The transcriptionist opens a
scan-specific standardised template (referred to as
normal report template) and edits it refering to
the notes in a more descriptive form (referred to as
pathological description).

Radiologists are in huge demand since the ra-
tio of radiologists to patients is very low. These
ratios in India, the US, and China are 1:100,000,
1:10000, and 1:14772, respectively (Arora, 2014).
These low ratios results in a very high patient in-
flow per radiologist volume, making radiologists
incredibly busy and stressed out. The currently
adopted transcriptionist-based workflow causes (i)
significant delays in report turnaround time, (ii) er-
rors in the reports, and (iii) burnout. To automate
the report generation process, domain knowledge
is necessary. Domain knowledge can be acquired
from already existing radiology free-text reports.
We need a structured format for knowledge to be
able to use it on a computer. Our research aims
to use Natural Language Processing (NLP) (a) to
construct abdominal-organ KG and (b) use these
KGs for automatically generating radiology reports.
Our work is in collaboration with a industry partner.
On this project, two experienced radiologists are
contributing their domain expertise to our work.

Our contributions are:

1. Knowledge graphs of ten abdominal organs-
Liver, Kidney, Gallbladder, Uterus, Urinary
bladder, Ovary, Pancreas, Prostate, Biliary
Tree, and Bowel. We will release these con-
structed KGs and the code for KG construc-
tion from free-text reports, for wide use.

2. A radiology dictionary containing 43,304 en-
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tries that are adapted from the Radlex-lexicon'

and enriched with terminology from all forms
of scans, viz., USG, CT, MRI, and X-ray.

3. A generic methodology? to construct KGs

from reports of all kinds of scans, viz., CT,

MRI, and X-ray.

A fine-tuned KG-BART that is fine-tuned on

a parallel corpus of dictations and correspond-

ing pathological descriptions.

5. A radiology report generation pipeline that
identifies in a "normal” report the candidate
text span for replacement and the patient-
specific text that will replace the span.

4,

2 Fundamental Definitions

Paulheim (2017) defines Knowledge Graph (KG)
as "A knowledge graph (i) mainly describes real-
world entities and their interrelations, organized in
a graph, (ii) defines possible classes and relations of
entities in a schema, (iii) allows for potentially in-
terrelating arbitrary entities with each other and (iv)
covers various topical domains." KGs are designed
with suitable ontology to store domain knowledge.
Ontologies are semantic data models that define the
types of things in a specific domain and the proper-
ties used to describe those types. Ontologies does
not include the details about specific individuals in
domain. Three main components of ontology are
Classes, Relationships, and Attributes. Domain
ontology and individual information together form
a Knowledge Base (KB). We have defined eight
logical relations as follows:

1. PartOf: It represents the relation between
anatomy and sub-anatomy. For example, right
lobe is part of liver.
TypeOf: It represents the relation between sim-
ilar type of entities. For example, cystic lesion
is TypeOf [esion.
ModifierOf: It denotes the descriptors of find-
ings, anatomical locations, property, efc. For
example, small is descriptor of size.
ObservationOf: It denotes the clinical obser-
vations observed for particular finding. For
example, acute pancreatitis denotes the pres-
ence of fluid collection.
DefaultObservationOf: It denotes the observa-
tion that associated by default with particular
"http://radlex.org/
RadLex is licenced freely for commercial and non-commercial
use.

20ur code to construct radiology KGs is located at https:
//github.com/kaverikale/RadiologyKGConstruction.

12

anatomical location or particular finding. For
example, peripancreatic fluid is observation
associated with acute pancreatitis by default.
PropertyOf: It denotes the relation between
entities (anatomical entities, finding entities,
observation entities, efc.) and their properties.
For example, echotexture is property of the
liver, size is the property of lesion, shape is
the property of kidney efc.

DefaultPropertyOf: It denotes the property that
exist by default with particular anatomical
location or particular finding. For example,
shrunken size is the property associated with
chronic pancreatitis.

FoundIn: It denotes the relation between find-
ings and corresponding anatomical location.
For example, lesion found in segment ii.

3 Related Work

Research is done for automatic radiology report
generation based on scanned images. Yuan et
al. (Yuan et al.,, 2019) propose an automated
structured-radiology report generation system us-
ing extracted features from images. Loveymi et
al. (Loveymi et al., 2021) proposed a system that
generates descriptions for natural images by image
captioning.

There is a wealth of research done on build-
ing medical KG from Electronic Medical Records
(EMR). Finlayson et al. (Finlayson et al., 2014)
builds a graph from medical text, clinical notes
etc. Graph nodes represents diseases, drugs, proce-
dures, and devices. Rotmensch et al. (Rotmensch
et al., 2017) uses the EMR to construct the graph
of diseases and symptoms. Researchers worked on
creating medical KG from EMR, but no one has
built a KG for the radiology domain except Zhang
et al. (Zhang et al., 2020). Graph embedding mod-
ule is proposed by Zhang et al. (Zhang et al., 2020)
that helps to generate radiology reports from image
reports. Each node in their KG represents disease.
Taira et al. (Taira et al., 2001) developed an NLP
pipeline to structure critical medical information.
Extracted information includes the existence, lo-
cation, properties, and diagnostic interpretation of
findings from radiology free-text documents. Infor-
mation is not integrated since they store the struc-
tured information for each report separately. Also,
this system does not accept reports with different
reporting styles. However, this is not always the
case. Every radiologist has his or her own dictation


http://radlex.org/
https://github.com/kaverikale/RadiologyKGConstruction
https://github.com/kaverikale/RadiologyKGConstruction

style and reporting style.

IE systems that are based on IE patterns are
surveyed by Muslea et al. (Muslea et al., 1999).
Ghoulam et al. (Ghoulam et al., 2015) extract
signs of lung cancer, their anatomical location, and
the relation between the signs and the locations
expressed in the radiology reports. Embarek &
Ferret (Embarek and Ferret, 2008) used a morpho-
syntactic patterns in their rule-based method to find
medical entities like symptoms, disease, exams,
medicaments, and treatment. Xu et al. (Xu et al.,
2009) explains that a pattern is a sub dependency
tree that indicates a relation instance. Pons et al.
(Pons et al., 2016) give an overview of NLP tech-
niques that can be used in radiology.

4 Methodology

As shown in figure 1, we first construct the KGs
for each abdominal organ from the ultrasound re-
port corpus. Then we use these constructed KGs
to generate ultrasound radiology reports from the
radiologist’s dictation. KGs are constructed from
anonymized radiology reports provided by our com-
pany collaborator. The anonymized report collec-
tion consists of approximately 10,000 reports of
ultrasound scans.

Radiology
Reports

Corpus

Triplets Extractor

‘ Word or Phrase Processor ‘ Normal

Report
Template

Radiologist’s
dictation

J

Report Generation

‘ Dependency Parser ‘

‘ Semantic Analyser ‘

l Generate
Pathological

iscr!iptiL

Replace in
l Normal Report
KG Template

P

Figure 1: The architecture of our system. KG construc-
tion and patient-specific report generation are the two
main modules in our system.

Radiology
Ontology

Triplets to KG

Patient
Specific
Report

4.1 Ontology Creation

We refer to the RadLex lexicon to create our
ontology, which we call "Radiology Ontology"
(Langlotz, 2006). Though called a "lexicon," the
RadLex is actually an ontology since it has a hierar-
chical structure. For example, "Solid Organ <— Lob-
ular Organ + Liver" is a part of the RadLex term
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and concept hierarchy. We will use "RadlLex Lexi-
con" to mean RadLex Ontology. The RadLex lexi-
con includes a total of 46,761 classes and 24,075
individuals. However, there are limitations in the
structure. Classes are defined at a very fine-grain
level. In our work, we do not need such fine granu-
larity. For example, liver is defined as one of the
classes in RadLex. Instead of treating it as a sep-
arate class, we can define it as an instance of the
anatomy class.

We have created our own ontology by integrating
several RadLex Lexicon class entities. We main-
tain a coarse level of granularity to ensure a generic
ontology. We have defined 8 logical relations as fol-
lows: PartOf, TypeOf, ModifierOf, ObservationOf,
DefaultObservationOf, PropertyOf, DefaultProp-
ertyOf, and FoundIn. Definitions and examples of
all these logical relations are given in appendix
2. Figure 2 shows the class hierarchy of radiology
ontology.

Anatomy

SizeModifier

e

‘Radiologyontology H Property |

Figure 2: The class hierarchy of radiology ontology
that we have created.

4.2 Radiology Dictionary Creator:

Radiology reports contain a large number of medi-
cal terms like abbreviations, synonyms, and proper
names. The RadLex lexicon is used to create the ra-
diology dictionary. However, we cannot use radiol-
ogy terms from the RadLex lexicon as it is because
the RadLex lexicon contains long phrases, e.g., fat
homogeneous background echotexture which are
not at the right level of granularity for a knowledge
graph. Also, there are some radiological terms
that frequently appear in radiology reports but are



not present in the RadLex lexicon (e.g., reflectiv-
ity and echopattern). Entities that are missing in
the Radlex lexicon have been added from the cor-
pus. Table 1 shows the examples of entities and
categories in our dictionary.

Entity Category Entity Category
lesion observation small size-modifier
cirrhosis  pathologic-finding  left lobe anatomy
hepatitis inflammation ankle fracture injury
size property chronic liver disease disease

Table 1: Examples of entities and corresponding cate-
gories in our radiology dictionary.

4.3 Triplets Extraction

The Triplets-Extraction module extracts entities
and relations. For example, for the corpus sentence
Right kidney is normal in size, shape, location and
cortical echogenicity, Cortical and echogenicity are
linked by the relation ModifierOf. Also normal is
a modifier of size, shape, location, and echogenic-
ity. However, the state-of-the-art Open Information
Extraction tools like OpenlE? are not capable of
extracting these relations from free-text (Etzioni
et al., 2008). Examples of triplets extracted using
OpenlE are given in the table 9 in appendix A.3.
Our triplet extraction method combines the
dictionary-match, rules and patterns to extract enti-
ties and relations. This methodology necessitates
the use of (i) Word and Phrase Level Processor, (ii)
Dependency Parser, and (iii) Semantic Analyser.

4.3.1 Word and Phrase Level Processor

The input to this stage is a sentence from the cor-
pus, and the output is the sentence-wise syntactic
and semantic features of each word and phrase in
the sentence. Features include POS tags, lemmas,
supersenses, and the root of a noun chunk.

Lexical Semantic Supersense Tagger: To ex-
tract the relation between two entities connected
by a preposition, the machine should understand
the meaning of that preposition. As shown in the
figure 3, the intuition of the in preposition in the
first sentence is characteristic and in the second
sentence is locus. Supersenses (Schneider et al.,
2015) help get disambiguated senses of these prepo-
sitions. We have integrated the pre-written code of
a Lexical Semantic Supersense Tagger (LSR)* (Liu

3https://nlp.stanford.edu/software/openie.html
*https://github.com/nelson-1iu/
lexical-semantic-recognition
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et al., 2020) to assign supersense tags to preposi-
tions. Figure 3 shows the sentences that contain the
prepositions and their corresponding tags.

1. The/O-DET liver/0O-N-n BODY is/O-V-v.stative
normal/0-ADJ in/O-P-p.Characteristic
size/O-N-n. ATTRIBUTE and/Q-CCONJ
echotexture/O-N-n ATTRIBUTE./O-PUNCT

b

Non/B-ADV-/l_enhancing/|1~-ADJ hypodense/0-ADJ
lesion/O-N-n.COGNITION noted/O-V-v.cognition
in/O-P-p.Locus right/O-ADJ lobe/O-N-n.LOCATION
of/0-P-p.Whole liver/O-N-n.BODY./O-PUNCT

Figure 3: Lexical Semantic supersense Tagger tags all
words with the supersense tags. Supersenses of prepo-
sitions are highlighted in red. We see in tagged with
different supersenses.

We have mapped preposition supersenses to their
corresponding logical relations. Table 2 shows
the examples of supersense classes and their corre-
sponding logical relations.

Supersense Relation Supersense Relation
Locus FoundIn ~ Whole PartOf
Gestalt PartOf  Manner PropertyOf
PartPortion PartOf  Purpose PropertyOf

Table 2: Examples of supersenses and their correspond-
ing logical relations.

Noun phrases are chunked to get the candidate
entity phrases. Table 3 shows the combined out-
put of the supersense tagger and the noun phrase
chunker.

4.3.2 Dependency Parser

The dependency parser links the entity phrases di-
rectly or indirectly. We write rules based on de-
pendency and POS-tags to extract the relations
between entities. Spacy’ APIs are used for de-
pendency parsing. Dependencies are established
between phrases instead of words. An example of
a dependency tree is given in figure 4.

4.3.3 Entities and Relations Extractor

Dictionary-matching-based Entity Extractor:
The noun chunker gives us noun phrases that are
candidate entity phrases. However, not all noun
phrases are radiological entities. Hence, to extract
proper entities from noun phrases, we search the
dictionary for matching entities. If a word or phrase
matches multiple dictionary entries through more
than one text span, we consider the longest text

5ht’cps: //spacy.io/api/dependencyparser
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Noun Phrases/Words | Token List Root Token | POS Tags Lemmas Supersences
Non-enhancing hypo- | [Non, -, enhancing, hy- | lesion [ADJ, ADJ, VERB, | [non,, enhance, hypo- | [B-ADV,1_, 1 ADJ, O-
dense lesion podense, lesion] ADJ, NOUN] dense, lesion] ADIJ, COGNITION]
noted [noted] noted [VERB] [note] [cognition]

in [in] in [ADP] [in] [Locus]

right lobe [right, lobe] lobe [ADJ, NOUN] [right, lobe] [OADJ, LOCATION]
of [of] of [ADP] [of] [Whole]

liver. [liver, .] liver [NOUN, PUNCT] [liver] [BODY, OPUNCT ]

Table 3: Output of the word and phrase level processing for the input Non-enhancing hypodense lesion noted in

right lobe of liver.

Non-enhancing hypodense lesion noted in

NOUN VERB ADP

right lobe of liver.

NOUN ADP NOUN

Figure 4: Dependency tree of input sentence Non-enhancing hypodense lesion noted in right lobe of liver.

span as the matched entry for entity extraction. For
example, in the phrase right lobe, although the indi-
vidual terms right and lobe exist in our dictionaries,
only the longest match, right lobe, is used for entity
extraction.

Pattern-based Relation Extractor: A single
noun phrase contains multiple entities. Table 4
shows the patterns to extract these entities. For
example, consider the noun phrase non-enhancing
hypodense lesion. As non-enhancing present in the
dictionary, it applies the pattern Modifier Observa-
tion and extracts the triplet (non-enhancing, Mod-
ifierOf, lesion). Hypodense does not exist in our
dictionary; hence, it applies the ADJ NOUN pat-
tern and extracts a triplet (hypodense, ModifierOf,
lesion).

Relation Extraction Using Preposition Super-
senses: If two entities are connected with the
preposition, then we consider its supersense to find
the relation. For example, lesion in right lobe, here
in represents the locus supersense and as shown
in the table 2, the locus is mapped to the Foundin
relation. We add a new triplet ( lesion, Foundln,
right lobe).

Relation Extraction Between Different Noun
Phrases: We have discussed how to extract en-
tities and relations between the entities present in
the single noun phrase. However, a relation exists
between the entities present in the two different
noun phrases. In the example shown in the figure 4,
there exists a relation between the lesion and right
lobe. We have written rules over the dependency
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tree to get the candidate pair of noun phrases. A
list of patterns used to extract relations between
two entities is listed in the table 5.

4.3.4 Evaluation: Triplets Extraction Module

For each extracted triplet in a sentence, domain
experts manually check whether it is correct or not.
We calculate precision and recall for each sentence,
then calculate the average precision, recall, and F1-
Score. Figure 6 shows the evaluation results of our
IE and OpenlE systems.

4.4 From Extracted Triplets to the KG

Domain experts create preliminary KGs for each
organ containing higher-level entities (i.e., basic
hierarchical anatomy, merely 2-3 levels.), keeping
the organ name as the root node, e.g., liver for the
Liver KG. Figure 8 shows the liver preliminary
KG. We enhance preliminary KGs by adding ex-
tracted triplets to them. The file contains sentence-
wise triplets. KG augmentation algorithm steps are
below: i) Create a hierarchical graph representa-
tion for each sentence’s triplets. ii) Find matched
pathways in our preliminary KG for each sentence
graph path. iii) Add nodes and arcs that are missing
in static KG. Figure 5 shows the augmented KG of
the liver.

We build ontology using the Protégé® (Musen,
2015) the well-known terminology and ontology
building and maintenance tool. Using transforma-
tion rules’” we load augmented KG triplets as indi-

6https://protege.stanford.edu/
"https://github.com/protegeproject/
cellfie-plugin
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Pattern Triplet Format Example Triplets

ADJ* NOUN/root (ADJ, ModifierOf, NOUN/root) simple clear cyst (simple, ModifierOf, cyst) (clear,
ModifierOf, cyst)

Anatomy Anatomy/root (Anatomy/root, PartOf, Anatomy) liver right lobe (right lobe, PartOf, liver)

Anatomy Finding/root (Finding/root, FoundIn, Anatomy) kidney calculus (calculus, Foundln, liver)

Anatomy Observation/root | (Observation/root, FoundIn, Anatomy) urinary bladder cyst (cyst, FoundIn, urinary bladder)

Modifier Observation/root | (Modifier, ModifierOf, Observation/root) non-enhancing lesion (non-enhancing, ModifierOf, le-
sion)

Table 4: The list of some patterns and examples of triplets extracted from noun phrases when patterns are applied to
extract relations. /root represents the root entity of a noun phrase.

Pattern (entityl-category, | Triplet Format Example (entityl, entity2) Triplets

entity2-category)

(Anatomy, Anatomy) (entity 1, PartOf, entity2) (right lobe, liver) (right lobe, PartOf, liver)

(Property, Anatomy) (entity 1, PropertyOf, entity2) (echotexture, pancreas) (echotexture, PropertyOf, pancreas)

(Finding, Anatomy) (entity 1, FoundIn, entity2) (medical renal disease, kid- | (medical renal disease, FoundlIn,
ney) kidney)

(Observation, Anatomy) (entity 1, ObservedIn, entity2) | (pseudo cyst, body) (pseudo cyst, ObservedIn, body)

Table 5: The list of some patterns and examples of triplets extracted when patterns are applied to extract relations
between two entities.

. liver
panttsy  Parof Pamof oundia .
Foundlry 4 girrhosis
left lobe . Property0f T a4, T
right lobe s Caudate lobe size PropenyQt . 1 oFropertyor
- ark ... !
hepatomegaly Partof t2.3.42.4b PartOf Broperyof ModifierOf surface echotexture
Taas T segment 2,3,4a, ey, +
R - 7 I
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Modifierof i . i . nodular
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normal i N Foundin, P—
Madifierd size i foundia, . Fundjn altered/hetrogeneous
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Figure 5: Knowledge Graph pertaining to the liver. Because to space constraints, we only display partial KG.

Precision Recall F1-Score for generating the pathological description. The
OurSystem | 093 092 092

OpenlE 0.57 0.60 0.58 fine-tuning dataset is the "parallel corpora,” with
impressions on one side and pathological descrip-
tions on the other. This parallel corpus is created
from the same dataset that was used to construct
abdominals KGs. The parallel corpus is verified

viduals/instances in the Protégé tool. The method and corrected by two radiologists. Samples from

is explained in detail in appendix A.2. the parallel corpus are given in the table 10 in ap-
pendix A 4.

Table 6: The precision, recall, and F-Score for triplets
extracted by our system and OpenlE tool.

4.5 Radiology Report Generation in 3 Stages Span Identification: The span identification

Generate Pathological Description: We fine- module identifies the span from the normal re-
tune the KG-BART (Liu et al., 2021) model to  port template that would be replaced with a gener-
generate the pathological description from the dic-  ated pathological description. Normal report tem-
tation. KG-BART uses the constructed KGs of the  plates are fairly standardised and templated and use
abdominal organs to get the domain knowledge  "fixed" kinds of sentences. We give labels to these

16



sentences. For example, we label normal sentence
Liver is normal in size and echotexture as liverl.
Figure 6 shows the normal report template with
a label for each sentence mentioned in brackets.
We create a dataset of pathological description sen-
tences, each of which is annotated with correspond-
ing normal sentence labels (i.e., liverl, liver2, etc.).
The span identification problem can now be for-

Ultrasound Normal Report Template of Abdomen and Pelvis

Findings:
Liver is normal in size and echotexture (liverl).
No focal areas of altered echotexture or mass lesion (liver2).

Ureter are not dilated (ureterl).

Impression: No abnormality found.

Figure 6: Ultrasound normal report template with a
unique label (highlighted in red) for each sentence.

mulated as a multilabel text classification problem.
Given the pathological description, we need to de-
cide which amongst the normal report sentences the
description targets for replacement. A BERT-based
multilabel text classifier takes the pathological de-
scription as input and gives multiple labels for the
pathological description. Further implementation
details are given in appendix A.5. Figure 7 shows
the examples of pathological descriptions and their
corresponding normal sentences to replace.

ﬁngle sentence to replace:

Pathological Description:
Liver is severely enlarged in size
6 cm and echotexture.

Identified Normal Sentence:

Liver is normal in size and echotexture.
(liver1)

Multiple sentences to replace:

Pathological Description:

Right kidney measures 9.4 x 8
mm and left kidney measures
9.4 x 8 mm.

Identified Normal Sentences:
Right Kidney measures _x_. (kidneyl).
Left Kidney measures _ x . (kidney2)

=4

Figure 7: Examples of pathological descriptions and
corresponding normal sentences identified by span iden-
tifier. Labels are highlighted in red

Replacement: The candidate sentences returned
by the BERT classifier are replaced by the patho-
logical description in the normal report. If there
are multiple candidates, replace the first sentence
only and remove the other candidates. As shown
in the second example of the figure 7, for a single
sentence pathological description, there are two
normal candidate sentences to replace. In that case,
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we replace the first normal sentence and remove
the second normal sentence.

S Experiments

(Details about the training setup and implementa-
tion are in appendix A.4).

Baseline and Evaluation: We compare our fine-
tuned KG-BART model with T5-base/large (Raffel
et al., 2020) and BART-base/large (Lewis et al.,
2019) state-of-the-art pre-trained text generation
models. Gold standard pathological descriptions
extracted from reports and verified by radiologists
are used. Table 7 shows the BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005) scores of generated pathologi-
cal descriptions by KG-BART, T5-base/large and
BART-base/large models.

Automatic Evaluation Metrics

Method

Bleu-1 Bleu-3 Rouge-L. Meteor CIDEr
T5-large 0.873  0.780 0.897 0.902 0.892
BART-large 0.887  0.798 0.910 0916  0.908
KG-BART 0901  0.830 0.930 0.927 0.928

Table 7: The BLEU, ROUGE, METEOR and CIDEr
scores of the generated pathological description (best
results: bold, second best: underlined).

6 Summary, Conclusion and Future Work

We have given a systematic method to construct
organ-wise KGs from free-text radiology reports.
The KGs are stored in standard RDF format, en-
abling their application to various medical appli-
cations. One such example is the generation of
radiology reports, which we have described here.
Our KG-enhanced deep learning model improves
the reported BLEU-3, ROUGE-L, METEOR, and
CIDEr scores of the pathological description gener-
ation by 2%, 4%, 2% and 2% respectively. Our ap-
proach is generalized for other organs and scanned
procedures, as evidenced in the EACL paper®.

To the best of our knowledge, this is the first
attempt at automatic ultrasound report generation.
An MVP (minimum viable product) has been made
available to the beta users (practicing radiologists)
for testing and evaluation. We are continuously col-
lecting feedback on our system from radiologists
and continually refining the tool. We have observed
that it can generate a report within 30 seconds of
running a scan.

8ht’cps: //aclanthology.org/2023.eacl-main. 246/
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Ethics Statement

Anonymized radiology reports are used to build
KGs. The data itself is anonymized; hence, our
system does not reveal any patient-specific identity.
ML technologies for this kind of work have the
potential to gradually become the norm but will
always remain as assistive tools for medical prac-
titioners. Hence, while ML technologies of this
kind often veer towards the norm, the envisioned
assistive nature of this technology, where humans
will always have oversight, will address this issue.
We have evaluated the outputs of the KG-BART
model using automated metrics, but to contextual-
ize the results, a human evaluation metric would
have been useful; however, we left this work for
the future. An MVP (minimum viable product) has
been made available to the beta users (practicing
radiologists) for testing and evaluation. Manual
evaluation will be done by considering beta users
feedback.
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A Appendices

A.1 Data Preprocessing

To construct KGs, we use the information from the
free-text radiology reports. The data preprocessor
module takes radiology reports as input. Radiol-
ogy reports contain Header, Findings, History, and
Conclusion/Impression sections. We use simple
heuristics like regular expressions to fetch only
the Findings and Impression section. Furthermore,
we use regular expressions to separate the organ-
wise sentences in different datasets. We use Sym-
spell’ APIs to correct spelling mistakes, and word-
tokenization since the extracted sentences contain
spelling mistakes, unwanted punctuation marks,
etc. Table 8 shows the samples from the corpus,
which we extract from sample reports. In the cor-
pus, there are a lot of extra spaces and unwanted
punctuation marks found. We have removed these
unwanted characters from the corpus using regular
expressions.

For example, Liver is enlarged in size(16.
45cm)& normal in shape and shows raised echo
reflectivity. No focal or diffuse lesion is seen. The
portal and hepatic veins are normal. In the above
example, there is no space between size, (16.45cm)
and &. Also, there is no space between . and No
and therefore sentence tokenization is challenging.
Liver is enlarged in size ( 16.45 cm ) & normal in
shape and shows raised echo reflectivity. No focal
or diffuse lesion is seen. The portal and hepatic

9https ://github.com/wolfgarbe/symspell
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veins are normal. The text is then further divided
into sentences.

A.1.1 Spelling Correction

In corpus, there are a lot of spelling mistakes also.
To correct the spellings we have used the SymSpell
library.

Single Word Spelling Correction We have cre-
ated unigram and bigram dictionaries for corpus
text.

Unigram Dictionary: Dictionary of unique correct
spelling words, and the frequency count for each
word.

Bigram Dictionary: Dictionary of the unique cor-
rect spelling of a pair of words, and the frequency
count for each pair.

Levenshtein algorithm is used to compute edit
distance metric between two strings. Edit distance
algorithm finds the correct suggestion for words in
input text with words in unigram dictionary.

For example, enlaregd, billiary, radicals are the
incorrect words found in the corpus. In dictionary
enlarged, biliary, radicals these correct words are
present. Edit distance algorithm suggests enlarged
word for enlaregd. Similarly biliary for billiary
and radicles for radicals.

Multi-word Spelling Correction

* We remove mistakenly inserted spaces within
a correct word
Input: Liver is normal in size and reveals
diffuse hypo attenuation
Output: Liver is normal in size and reveals
diffuse hypoattenuation

* We add mistakenly omitted spaces between
two correct words
Input: Liver appears normal in size and re-
veals mild generalized increasedparenchymal
reflectivity.
Output: Liver appears normal in size and re-
veals mild generalized increased parenchymal
reflectivity.

Table 8 shows the organwise samples from text
corpus after data preprocessing.

A.2 Knowledge Graph Augmentation

Preliminary KGs enhanced using triplets extracted
by IE module. Steps involved in KG augmentation
are explained below:
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Samples from organ-wise corpus

Liver

the liver is normal in size and moderate
diffuse increase in hepatic echogenicity.
no focal lesion is seen.

intra-hepatic biliary radicals are not
dilated.

portal vein is normal.

grade ii fatty liver.

liver is normal in size and echotexture
show no focal areas of altered echotex-
ture or mass lesion.

no intra-hepic biliary radicals dilatation
seen.

Portal vein appears normal.

Uterus

uterus is anteverted and normal in size
and echotexture.

the endometrial echo is midline and reg-
ular.

Spleen

spleen is normal in size and echotexture.
spleen and Pancreas are normal in size and
echotexture.

no focal mass lesion noted.

Pancreas

pancreas is normal in size and echotexture.
spleen and Pancreas are normal in size
and echotexture.

No focal mass lesion noted.

Kidney

right kidney measures 10.2 cm in long axis.
left kidney measures 10.3 cm in long axis.
both kidneys are normal in size and
echotexture.

no evidence of hydronephrosis or calculi
seen.

both the Kidneys are normal in size and
echotexture.

corticomedullary differentiation well seen.
no hydronephrosis or stones seen.

right kidney measures about 11.2 x 4.0 cm.
parenchymal thickness is 1.4 cms.

left kidney measures about 10.5 x 4.5 cm.

Gallbladder

the gallbladder is adequately distended.
gallbladder calculus noted measuring 7
mm with no pericholecystic fluid.

wall thickness appears normal.

the cbd is normal.

gallstone with no pericholecystic fluid.
gallbladder shows normal distention, no
evidence of stones seen or wall.

Urinary bladder
urinary bladder is normal with no
abnormal internal echoes and wall of
normal thickness.

endometrial thickness is dim mm.
uterus is normal in size of normal echo-

parenchymal thickness is 1.3 cms.

urinary bladder appears normal.

texture.

it measures about 6.7 x 3.1 x 4.5 cms in
size.

no focal mass seen.

endometrial echoes are normal.

Ovary

right ovary measures 1.2 x 2.3 cm.
left ovary measures 2.2 x 1.2 cm.
both the ovaries are normal.

no adnexal mass noted.

no stone, mass or wall thickening noted.

Adnexa
no adnexal abnormality seen.

right ovary measures 2.1 x 1.4 cm.
left ovary measures 2.0 x 1.3 cm.

Table 8: Samples from the corpus following data preprocessing (all text is lower cased, removed unwanted
characters, corrected spellings, efc.). Samples for all organs are not listed here. For example, samples for prostate,

bowel etc. are not listed here.

* Step 1: Triplets are stored in the file against
its input sentence. For example, sentence from
corpus is, A lesion of increased echotexture in
the right lobe of liver. Triplets extracted cor-
responding to above sentence are, (increased,
ModifierOf, echotexture), (echotexture, Prop-
ertyOf, lesion), (right lobe, PartOf, liver), and
(lesion, FoundlIn, right lobe).

* Step 2: Construct dynamic KG for sentence
triplets. Figure 9 shows the dynamic KG con-
structed for sentence triplets.

» Step 3: Find its appropriate matched path
in our already built preliminary (static) KG.
Figure 10 shows the entities from dynamic
KG path matched with static KG path.

* Step 4: If a triple is missing in the static KG,
then we add a new triple in the static KG.
Here in above example triple (increased, Mod-
ifierOf, echotexture) is missing in static KG.
Hence, we will add this triple in static KG.
Figure 11 shows the updated static KG.
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This is how we update the static KG according
to our dynamic KG triplets. We repeat above steps
for all sentences in our corpus.

In a static KG, we have multiple instances of
the same observations, same properties, and same
modifiers. For example, acute hepatitis reveals
decreased echogenicity of the liver and chronic
liver disease reveals increased echogenicity of the
liver. Here for both the findings echogenicity is
the related observation but their related descrip-
tors/modifiers are not same. Decreased is the
echogenicity modifier associated with acute hep-
atitis and increased is the echogenicity modifier
associated with chronic liver disease. Therefore we
have created different instances of observation with
name echogenicity for both the findings. Hence, we
use a path from the dynamic KG to find the appro-
priate entity with identical names from the static
KG. In static KGs, we have arranged findings in
such a way that its parents represent the anatomical
location and its children represent the properties
or states of organs related to that finding. Figure 5
shows the augmented KG of the Liver.
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Figure 8: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it

in limited page size.
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Figure 9: Dynamic KG constructed for the triplets of
sentence A lesion of increased echotexture in the right
lobe of liver.

We rely on Protégé!? (Musen, 2015) the well-
known terminology and ontology building and
maintenance tool. Extracted triplets are submit-
ted in a CSV file along with classes of entities and
relation types. The triplets are then ingested by Pro-
tégé to create the KG. We have created a rule-based
system to find the class of each entity from our con-
structed dictionary. For example, given the triplet
lesion-FoundIn-liver, the class-name for lesion is
Finding and that for liver is Anatomy. The follow-
ing are the stages for all triplets (entityl, relation,
entity2): 1) Protégé creates instances of correspond-
ing classes for entityl and entity?2. ii) Protégé adds
the relation between two entities. Figure 5 shows
the KG of the liver.

10https ://protege.stanford.edu/
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Figure 10: The static KG at that instance. Yellow
highlighted nodes show the entities from the dynamic
KG path matched with the static KG path.

A.3 Datasets and Examples

Table 9 shows the triplets extracted by OpenlE
tool for given input sentences. As shown in the
table 9, for the sentence 1, OpenlE could not find
the relation between calculus and middle calyx,
middle calyx and right kidney and for the sentence
2, OpenlE does not consider the shape, location,
and cortical echogenicity.

A.4 Training Details: KG-BART

Table 10 shows the samples from the parallel (im-
pression and findings) dataset.

We have implemented our own algorithm for
KG-grounding task. We use pre-trained KG-
BART'! model which was trained for common-
sense reasoning on ConceptNet KG and common-
sense dataset. We fine tune this model on radiology

Uhttps://github.com/yeliu918/KG-BART
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Figure 11: Updated static KG after adding new triple.
Newly added node highlighted in green.

Input Sentence Triplets Extracted Using OpenlE

A 5 mm calculus
is noted in an up-
per calyx and a 4
x 3 mm calculus is
noted in a middle
calyx of right kid-
ney.

(mm calculus, is noted in, upper calyx)
(mm calculus, is, noted)

(5 mm calculus, is noted in, calyx)

(5 mm calculus, is noted in, upper calyx)
(5 mm calculus, is, noted)

(mm calculus, is noted in, calyx)

Right kidney is
normal in size 9.6
X 4.0 cm, shape,
location and corti-
cal echogenicity.

(kidney, is, normal)
(right kidney, is, normal)
(right kidney, is normal in, size)

(kidney, is normal in, size)

Table 9: Examples of triplets extracted using OpenlE
tool for given input sentences

text dataset that we have constructed. We use byte-
pair encoding for tokenization with a maximum
length of 32 for the encoder and 64 for the decoder.
We set learning rate to 0.00001 and used AdamW
with 1 = 0.9, 2 = 0.98 for optimization. We set the
batch size to 32. We trained the KG-BART for 15
epochs, and the gradients are accumulated every 6
steps. We apply dropout with a probability 0.1 to
avoid over-fitting. We use beam search with beam
size 5 and length penalty with factor 0.6 while in-
ferencing. The training time took 7 hrs on a single
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
GDDR5X memory.

A.5 Implementation Details of Span Identifier

We use a BERT-based multilabel text classifier to
identify the normal sentences. The last layer uses
a sigmoid activation function to generate the prob-
ability of a sample belonging to the correspond-
ing class. We used pretrained BERT weights to
initialize our model. There are a total of 24 la-
bels, according to the number of nodes in the last
layer change. We train all the models on a DGX
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A100-SXM-80GB GPU server. For all transformer
based models we use hugging face transformer li-
braries.!?

A.6 Examples of Constructed KGs for
Abdominal Organs
A.7 Example of Normal Report and Patient

Specific Report

2https://huggingface.co/docs/transformers/
index
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Impression Pathological Description

Hepatomegaly with a tiny clear cyst seen in right lobe of  liver is enlarged in size with normal echopattern a tiny anechoic thin
liver measuring 3 x 5 mm. walled cyst measuring 3 x 5 mm in right lobe of liver.

Right renal hemorrhagic cyst at upper pole measuring 9.4 A cortical cyst is noted at upper pole of right kidney measuring 9.4 x 8
X 8 mm. mm showing internal mobile echoes.

Chronic pancreatitis with thick walled pseudo pancreatic ~ Pancreas is slightly small, reveals thin inhomogenous paranchyma.

cyst measuring 8.6 x 6.4 cm vol 1.1 mm noted in region  the pancreatic duct is dilated measuring 1.1 mm. multiple intraductal

of the tail of pancreas. calculi seen. a thick walled 1.1 mm cyst measuring 8.6 x 6.4 cm vol
1.1 mm in the region of the tail of pancreas.

Table 10: Samples from dataset constructed using radiology report corpus.
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Figure 12: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.
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Figure 13: The augmented KG of the Liver is completed by information extracted from the radiology report corpus.
Newly added nodes are highlighted in yellow. This figure shows a partial KG since it is large and cannot represent it
in limited page size.
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ULTRASONOGRAPHY OF THE ABDOMEN AND PELVIS

The liver is normal in size and echotexture. No focal lesion is seen.
Intra-hepatic biliary radicals are not dilated. Portal vein is normal.

The gall bladder is adequately distended.
No evidence of any intraluminal calculus or polyp.

Wall thickness appears normal. The CBD is normal.

Pancreas is normal in size and echotexture. No evidence of focal
or diffuse lesion is seen.

Spleen is normal in size and echotexture.

Both kidneys are normal in size and echotexture.
No evidence of hydronephrosis or calculi seen.

Urinary bladder is normal with no abnormal internal echoes and wall
of normal thickness.

The prostate is normal in size and echotexture.

IMPRESSION:

ULTRASONOGRAPHY OF THE ABDOMEN AND PELVIS

The liver is normal in size and echotexture. No focal lesion is seen.
Intra-hepatic biliary radicals are not dilated. Portal vein is normal.

The gall bladder is adequately distended.

No evidence of any intraluminal calculus or polyp.

‘Wall thickness appears normal. The CBD is normal.

Pancreas shows bulky size and inhomogeneous echotexture associated
with peripancreatic fluid collection, suggestive of acute pancreatitis.
There is evidence of pancreatic thick walled pseudo cyst measuring
1.4 x 3 x 2.2 cm vol 4.83 cc noted in the head of pancreas.

Spleen is normal in size and echotexture.

Both kidneys are normal in size and echotexture.
No evidence of hydronephrosis or calculi seen.

Urinary bladder is normal with no abnormal internal echoes and wall
of normal thickness.

The prostate is normal in size and echotexture.

IMPRESSION: Acute pancreatitis

Figure 14: Left hand side shows normal report template of ultrasonography of the Abdomen and Pelvis, and the
right hand side shows a patient-specific report of ultrasonography of the Abdomen and Pelvis.
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Abstract

Patent applicants write patent specifications
that describe embodiments of inventions. Some
embodiments are claimed for a patent, while
others may be unclaimed due to strategic con-
siderations. Unclaimed embodiments may be
extracted by applicants later and claimed in con-
tinuing applications to gain advantages over
competitors. Despite being essential for cor-
porate intellectual property (IP) strategies, un-
claimed embodiment extraction is conducted
manually, and little research has been con-
ducted on its automation. This paper presents
a novel task of unclaimed embodiment extrac-
tion (UEE) and a novel dataset for the task.
Our experiments with Transformer-based mod-
els demonstrated that the task was challenging
as it required conducting natural language infer-
ence on patent specifications, which consisted
of technical, long, syntactically and semanti-
cally involved sentences. We release the dataset
and code to foster this new area of research.!

1 Introduction

Patents provide inventors the right to exclude oth-
ers from using their inventions in exchange for
disclosing how to make and use inventions by writ-
ing patent specifications. Patents have thus incen-
tivized innovation and benefited industries. Given
the increasing number of patent applications even
during the COVID-19 pandemic (WIPO, 2022b),
it is important to streamline patent application pro-
cesses with technologies.

A patent specification describes an invention
(Figure 1) by specifying one or more ways of em-
bodying the invention, so that people skilled in the
art can make and use it. A patent specification also
contains claims that specify which embodiment
applicants want to patent by stating the technical
features necessary for the embodiment. Here, an
invention refers to a mental construct inside the

"https://github.com/rakutentech/UEE_
ACL23
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Patent Specification

Claims Description
1. A method, performed by 0001  This invention relates to a x Labels indicate
at least one computer system for retrieving ... whether a given
system, of retrievin, . inti
i mpoﬁge 0002 Information rerieval technology | y¢ description
S 1 Tespons in general is applied for ... paragraph
to a search query that contains an
includes one or more 0003  However, in the conventional X unclaimed
phrases, the method retrieval system, ... "
comprising: embodiment.
= 0004 The information retrieval system
accessing search of this invention comprises
indices connected in hierarchically structured search X o1t 0003 do
a hierarchy such that indices .. "°‘b°°l;‘_‘a'” T"V
embodiment.
0004 describes an
embodiment, which is 0008 This invention realizes a retrieval
claimed in the claims system using a computer system x
and hence not an constituting CPU, RAM, ...
unclaimed embodiment.
0034 describes
0034 I h e, th 1 an unclaimed
- : 3 n another example, the retrieval e,
0008 is a boilerplate system may repeatedly update the | v/
paragraph. indices based on users’ ...

Figure 1: Illustration of the unclaimed embodiment ex-
traction (UEE) task. A description paragraph is labeled
to indicate if it has an unclaimed embodiment. Our
dataset is in Japanese, though this example is written in
English for illustration purposes.

mind of the inventor, while the embodiment of the
invention is a physical form of the invention and
claims protect the embodiments (WIPO, 2022a).

A patent specification may describe a variety of
embodiments, some of which may be unclaimed
because claiming too diverse embodiments in a
patent application may violate the unity of inven-
tion, a requirement for a patent application to relate
to one invention only or to a group of inventions so
linked as to form a single general inventive concept
(USPTO, 2020b). Continuing application could
be utilized later to claim those unclaimed embod-
iments in the prior patent application (the parent
application). A continuing application can claim
any embodiments if they are written in its parent’s
description. Moreover, the filing date of continuing
application is the same as its parent’s, even if it is
filed years after the parent. Applicants can there-
fore utilize continuing applications strategically by,
for instance, writing as many diverse embodiments
as possible in the parent application and filing a
continuing application to claim unclaimed embodi-
ments in the parent. If the continuing application

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 25-36
July 10-12, 2023 ©2023 Association for Computational Linguistics
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does not exhaust its parent’s embodiments, appli-
cants may have further continuing applications. In
so doing, applicants can adapt the claims of con-
tinuing application to new products and services
of their company, and even new products and ser-
vices of their competitors, enhancing their indus-
trial competitiveness.

Continuing application requires extracting un-
claimed embodiments from a patent specification.
This is tedious as it requires understanding a wide
variety of embodiments that are strategically ar-
ranged in the patent specification, a legal, technical
document that may consist of thousands of tokens
(Tab 1). Unclaimed Embodiment Extraction (UEE)
has nonetheless been conducted manually without
any technological support, and little research has
been conducted on UEE.

This paper introduces the novel task of UEE
(Figure 1) and the first publicly available dataset
for UEE. Besides its practical utility, UEE poses a
new NLP challenge as it involves two decisions to
make (§2), one of which, i.e. decision (ii), requires
matching embodiment text in the description with
claims to see if the embodiment has been claimed.
Decision (ii) can be seen as a real-world natural
language inference (NLI) (Bowman et al., 2015),
where the hypothesis is a description paragraph and
the premise is a set of claims. Although there have
been studies on NLI for real-world applications
(Holzenberger et al., 2020; Koreeda and Manning,
2021), decision (ii) involves a novel real-world NLI
due to the following challenge: The hypothesis and
the premise may consist of multiple long sentences
which are written in patentese and full of technical
terms in the target domain and whose syntactic
and semantic structures are hard to recognize for
non-IP specialists (Ferraro et al., 2014).

Although our UEE dataset has been created
based on Japanese patents, extracting unclaimed
embodiments from patent specifications is con-
ducted in other countries such as the U.S. This
paper gives examples in English for ease of expla-
nation. See Appendices for Japanese examples.

Our contributions are as follows:

. We introduce UEE, a novel, real-world NLP
challenge.

We create and release the first dataset for UEE.

We conducted UEE experiments to demon-
strate its difficulty.
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Figure 2: llustration of the formal definition of UEE.

4. We release code for reproducibility.

2 Task

Given a patent specification that comprises a set of
claims and a set of description paragraphs about
an invention, we want to determine whether each
paragraph in the description describes any embodi-
ment of the invention that has not been claimed in
the claims (Figure 1). This involves two decisions:

(1) Does a given paragraph describe an embodi-
ment of the invention?

(ii) Has the embodiment in a paragraph, if any,
been claimed in the claims already?

We thus need both a paragraph and a set of claims
to determine whether the paragraph contains an
unclaimed embodiment.

Formally, the task is defined as follows (Fig-
ure 2). Suppose we have I patent specifications
and the i-th patent specification has .J; description
paragraphs. Let p; ;, be the j;-th description para-
graph in the ¢-th specification, C; be a set of claims
in the i-th specification, and y; ;, be a binary label
where y; ;, = 1if p; j, describes any embodiment
that is not claimed in C; and y; ;, = 0 otherwise;
here, i = {1,...,I} and j; = {1,...,J;}. Given
N =3, J; training instances, our goal is to learn
a function f(p@ji, Cz) — Yij;-

The task involves the two decisions (i) and (ii)
and a UEE model may make the two decisions sep-
arately. Our UEE baseline models in §4.1, nonethe-
less, make the two decisions in a single step, as it
is more straightforward. We will explore different
architectures for better utilization of the nature of
the task (involving the two decisions) in the future.

In this study, we chose a paragraph as the unit
of embodiment description, because in the patent
applications, paragraphs are encouraged to be num-
bered to serve as the unit of work and indeed form a



Parent Patent Specification

Label Note Continuing Patent Specification

Claims Description

1. A method, performed by at least one 0004

computer system, of retrieving

documents in response to a search

query that includes one or more

phrases, the method comprising: 0008
accessing search indices
connected in a hierarchy ...

2. A method ... ek

The information retrieval system of this invention
comprises hierarchically structured search indices ...

This invention realizes a retrieval system using a
computer system constituting CPU, RAM, ...

In another example, the retrieval system may
repeatedly update the indices based on users’ ...

X Claims
NEGATIVE: CLAIM 1 in Parent

(0004 is claimed in the parent’s il
claim 1.)

A method, performed by at least one
computer system, of retrieving
documents in response to a search
query that includes one or more
phrases, the method comprising:

NEGATIVE: NONE
(0008 has no embodiment.)
accessing search indices which
are repeatedly updated based on

A method ...

POSITIVE: CLAIM 1 in Cont.
(0034 is not claimed in the parent but |5
in the continuing patent’s claim 1.)

Figure 3: Annotation method. Paragraph 0004 of the parent patent is labeled as NEGATIVE because it describes an
embodiment claimed in the parent (as indicated by the left arrow). 0008 is NEGATIVE as it has no embodiment.
0034 describes an embodiment that is not claimed by the parent but claimed in the continuing patent from the parent
(as the right arrow indicates); 0034 is thus POSITIVE. CLAIM1 and NONE next to the labels are notes given by
human annotators to explain their annotation decisions. This example is given in English for illustration purposes.

meaningful unit. Other options would be a phrase,
clause, or sentence. We will identify the best unit
of embodiment description in the future.

3 Dataset

3.1 Data Source

We acquired source patent data from the Japan
Patent Office (JPO) via their web form.? The data
from JPO contained Japanese patent specifications
from 1993 to 2022. We obtained both parent and
continuing patent specifications from this data. We
created the dataset from patent specifications that
had their corresponding continuing patents.

3.2 Annotation Method

As the task involves two decisions, (i) and (ii) in
§2, our annotation method is based on the two as
illustrated in Figure 3. Specifically, we label a para-
graph as negative if it has no embodiment (See
paragraph 0008 in Figure 3), or if the embodiment
is claimed in the parent patent to which the para-
graph belongs (0004 in Figure 3).

For positive annotation, we used the continuing
patent generated from the patent to which the tar-
get paragraph belonged. If a paragraph describes
an embodiment that is claimed in the continuing
patent but not in the parent, the paragraph is labeled
as positive (0034 in Figure 3). Although we can
identify unclaimed embodiments from the parent
patent, without relying on the continuing patent, it
helps us double-check positive paragraphs.

To use continuing patents, we collected patent
specifications with corresponding continuing
patents from the JPO data and made pairs of parent
and continuing patents as in Figure 3.

Mttps://www. jpo.go. jp/system/laws/
sesaku/data/download.html (Japanese)
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We restricted target patents to those with Interna-
tional Patent Classification (IPC) codes® that met
our business needs; specifically, we mainly chose
IPC codes for digital data processing (GO6F), in-
formation and communication technology (G06Q),
and aeroplanes (B64C). IPC is used in over 100
countries to indicate the subject of the invention.*

We conducted manual annotation on pairs of
parent and continuing patents collected in this way.

On top of positive and negative labels, we leave
notes that clarify reasons for annotators’ labeling
decisions (e.g., CLAIM1 and NONE in Figure 3).
This is because labeling decisions would be based
on patent practitioners’ expertise, which may be
incomprehensible to researchers, and we expect the
notes to improve annotated labels’ interpretability.
A negative paragraph is given the claim ID of the
parent patent as the note if the paragraph’s embodi-
ment is claimed in the parent’s claims. A negative
paragraph is given the note NONE if it has no em-
bodiment. A positive paragraph is given the claim
ID of the continuing patent if its embodiment is
claimed in the continuing patent’s claims.

We use the notes for experiments of decision (i)
(§4.2) and decision (ii) (§4.3), too.

3.3 Annotators

Two experienced patent practitioners who were na-
tive speakers of Japanese were employed as annota-
tors. We split the 11,951 instances (each consisting
of a description paragraph and a set of claims) into
two separate sets. Each annotator was assigned to
only one set; no instance was annotated by both of
them due to our budget constraints.

We nonetheless measured inter-annotator agree-

*https://ipcpub.wipo.int/
*https://en.wikipedia.org/wiki/
International_Patent_Classification
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https://en.wikipedia.org/wiki/International_Patent_Classification
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Total numbers Experiment Model F1

Labeled instances 11,951 UEE RoBERTa 0.8670 (0.0034)
Parent patents 971 Baselines [ ongformer 0.7247 (0.0335)
Continuing patents 1,022 Decision (i) RoBERTa 0.9259 (0.0057)

Average numbers RoB e 0.7218 (0.0110)
Tokens per desc. paragraph 88.73 (77.66) Decision (i1)) RoBjs,; A 0.4029 (0.1434)
Sentences per desc. paragraph 3.67 (1.96) RoBjsn; B 0.4384 (0.2472)
Tokens per desc. sentence 23.59 (21.61)
Claims per parent patent 11.37 (6.11) Table 2: F1 of all the models; (Top) the RoBERTa

Tokens per claim 106.44 (95.12)

Label distribution
POSITIVE:CLAIM 4,564 (38.19%)
NEGATIVE:CLAIM 1,619 (13.55%)

NEGATIVE:NONE 5,768 (48.26%)

Table 1: Statistics of the UEE dataset. In "Average num-
bers" the figures in parenthesis are standard deviations.
The "desc." stands for "description." The "CLAIM" and
"NONE" are the notes described in §3.2.

ment by asking another experienced patent prac-
titioner (a native speaker of Japanese) to annotate
309 instances that the above two annotators worked
on after removing their labels and notes. As aresult,
Cohen’s kappa (Cohen, 1960) was 0.465, indicat-
ing moderate agreement (Landis and Koch, 1977).
According to the kappa score, experts may dis-
agree occasionally. The question is then how much
experts’ disagreement affects the performance, as
pointed out by an anonymous reviewer. We will
explore this question in the future.

3.4 The Dataset

The resulting UEE dataset has 11,951 instances.
We use 60% for training, 20% for development,
and 20% for testing. Table 1 shows the statistics of
the dataset. We used the tokenizer of our ROBERTa
in §4.1 to count tokens. In "Label distribution"”
in Table 1, "POSITIVE:CLAIM" refers to a posi-
tive instance. The instance with paragraph 0034
in Figure 3 has this label. "NEGATIVE:CLAIM"
means a negative instance with an embodiment that
has already been claimed in the parent patent and
hence with a note of the corresponding claim ID.
"NEGATIVE:NONE" is a negative instance without
embodiment. The instances with paragraphs 0004
and 0008 in Figure 3 are examples of these two
types of negatives, respectively.

In Appendix A, we show an example data in-
stance of the UEE dataset in Japanese and English

SWe may omit claim IDs of the notes, e.g. "1", hereafter.
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and Longformer baselines for the UEE task reported
in §4.1; (Middle) RoBERTa model for decision (i) in
§4.2; and (Bottom) the ROBERTa,.., ROBERTa;,;
Condition A, and RoBERTa;,,;; Condition B models in
§4.3 ("RoBERTa" is abbreviated as "RoB"). We report
the mean and standard deviation obtained by running
each experiment five times. The standard deviation is
written in parenthesis. See Appendix D for accuracy,
precision and recall for each method.

for illustration purposes.

4 Experiments

We conducted experiments of UEE with baseline
models based on Transformer (Vaswani et al., 2017)
to see the difficulty of the task (§4.1). We also
conducted experiments of making the decisions
(1) and (i1) in §2 as independent tasks for a better
understanding of the task (§4.2 and §4.3).

These experimental results show the following:

(A) Baseline Transformer-based models deliver
mediocre performances (§4.1).

(B) Despite patent specifications’ being long,
UEE models do not necessarily have to deal
with long documents (§4.1).

(C) The bottleneck in UEE is decision (ii) (§4.3).

4.1 UEE Baselines

We evaluated RoBERTa (Liu et al., 2019) and Long-
former (Beltagy et al., 2020) for the UEE task, be-
cause these are ones of standard Transformer-based
models, and Longformer is known to be able to deal
with long documents such as patent specifications.
However, we do not claim these are optimal models
for the task; we will explore better models in the
future. Our RoOBERTa was built from a base-sized
one which we call Rinna RoBERTa® and had been
pre-trained on Japanese CC-100 (Conneau et al.,

®https://huggingface.co/rinna/
japanese—-roberta-base


https://huggingface.co/rinna/japanese-roberta-base
https://huggingface.co/rinna/japanese-roberta-base

2020) and Japanese Wikipedia. The maximum
sequence length was 512. We fine-tuned Rinna
RoBERTa on the UEE training set for ten epochs
with the training batch size, the warm-up steps, and
the learning rate being set to 128, 100, and 5e-5,
respectively. We used AdamW (Loshchilov and
Hutter, 2019) for optimization. We will describe
the hyper-parameter settings of models we experi-
mented with in Appendix B, hereafter.

Our Longformer was converted from Rinna
RoBERTa following Beltagy et al. (2020).” See
Appendix B.2 for its hyper-parameter setting.

The first two rows in Tab 2 labeled with §4.1
show F1 of the two baseline models on the UEE
test set. We fine-tuned and evaluated each model
five times. The reported figures are the mean and
standard deviation obtained from the five runs.

The result indicates that our baselines have non-
negligible room for improvement. Given Trans-
formers’ successes in many tasks (e.g., a base-
sized RoBERTa fine-tuned and evaluated on JSNLI
(Yoshikoshi et al., 2020), a Japanese NLI dataset,
delivers the F1 of 0.93 (Yanaka and Mineshima,
2022)), we think that UEE is challenging.

The result also indicates that ROBERTa outper-
forms Longformer. Actually, we expected the op-
posite result, because the input to UEE models, i.e.
a pair of a description paragraph and a set of claims,
tends to be long; the average number of tokens in a
description paragraph is 88.73 and that of tokens
in a set of claims is 1210.22 (= 106.44 x 11.37),
as Table 1 shows.

We suspect that this unexpected result is due to
the fact that, in the UEE dataset, more than 70% of
embodiments in description paragraphs with NEG-
ATIVE:CLAIM are claimed in the first three claims.
Models then do not always have to read through
all the claims. This is probably because of the pre-
ferred order of claims: Claims should preferably
be arranged in order of scope so that the first claim
presented is the least restrictive (USPTO, 2020a);
i.e. the most general claims should come first.

4.2 Decision (i)

We conducted experiments of making only the de-
cisions (i), i.e. whether a paragraph described any
embodiment, to see how difficult it was.

To train and test a model for decision (i), we
created training, development, and test sets for de-

’See convert_model_to_long.py in the supple-
mentary material for implementation.
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cision (i) from the corresponding set of the UEE
dataset as follows.® We regarded the instances in
the UEE dataset whose note is NONE as negative
and the rest as positive, because note NONE indi-
cates the corresponding paragraph has no embod-
iment as described in §3.2. The positive-negative
ratio was then about 52:48 as Tab 1 indicates.

We built a model from Rinna RoBERTa (§4.1)
again for this experiment. The experimental pro-
tocol was the same as our ROBERTa in §4.1. See
Appendix B.3 for its hyper-parameter setting.

The third row in Tab 2 labeled with §4.2 shows
F1 of the model on the test set. The reported figures
are the mean and standard deviation obtained from
five runs of fine-tuning and evaluation. This result
indicates that decision (i) is a modest task.

4.3 Decision (ii)

We also conducted experiments to make the deci-
sion (ii), i.e. whether the embodiment of a para-
graph has been claimed, as an independent task.

As discussed in §1, decision (ii) can be seen as
an NLI task where the hypothesis is a paragraph
and the premise is a set of claims. For training
and test of models for decision (ii), in order to
focus on its NLI aspect, we ignored UEE dataset
instances with NEGATIVE:NONE. This is because it
is obvious for a paragraph without any embodiment
to be unclaimed, i.e. not entailed by a set of claims.
Besides, we used not only parent patents but also
their continuing patents in the UEE dataset, as it is
straightforward to use them for decision (ii).

Accordingly, we created training, development,
and test sets for decision (ii) from the correspond-
ing set of the UEE dataset as follows. We generated
positive instances for decision (ii) from the UEE
dataset by pairing a paragraph of POSITIVE:CLAIM
and a set of claims in the continuing patent; e.g.
the pair of paragraph 0034 and the continuing
patent’s claims in Figure 3. We also generated
decision (ii) positives by pairing a paragraph of
NEGATIVE:CLAIM and a set of claims in the par-
ent patent; e.g. paragraph 0004 and the parent
patent’s claims in Figure 3.

Likewise, decision (ii) negatives were generated
by pairing a paragraph of POSITIVE:CLAIM and a
set of claims in the parent patent and also by pair-
ing a paragraph of NEGATIVE:CLAIM and a set of
claims in the continuing patent. In Figure 3, pair of

8For dataset creation for (i) and (ii), see: Decisionl/
src/dataset.py and Decision2/src/dataset.
pyingithub.com/rakutentech/UEE_ACL23.
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Claim 1

Description
Paragraph

The restaurant information provision system comprises: storage means for storing
restaurant information including menu information on a menu of food and drink that can be
provided by at least one restaurant, and a menu publication page constituting a restaurant
information provision page group related to the restaurant and carrying at least a part of the
menu information; and communication means for receiving POS data including at least one
of a number, a sales amount, and a profit rate for each predetermined period in the
restaurant from a POS system present in the restaurant., and a control means for updating
the menu information on the menu carrying page based on the received POS data, wherein

the menu carrying page has a menu information display column for each of a plurality of

order time zones within the business hours of the restaurant, and [T ESIEET
Jassigns the received POS data with an order time zonelURRVSREICERT
display column for each order time zone based on the POS data for eacijorder time zone.

of the menu

Only a tiny fraction
of text in a set of
claims tends to
correspond to the
embodiment in a
paragraph.

Claim 2

The information processing apparatus according to claim 1, wherein the control means
updates, based on the POS data, the menu information on the menu publishing page to a
predetermined number of menu information which has either the largest amount of sales,

the largest sales proceeds, or the largest proft rate in the predetermined period.

Claim 3

The information processing apparatus according to claim 1, wherein the control means
updates, based on the POS data, the menu information on the menu publishing page to a
predetermined number of menu information which has either the smallest amount of sales

or the smallest sales proceeds in the predetermined period. More claims follow.

Figure 4: Example of a claimed embodiment, which
is translated to English for illustration purposes. See
Appendix C for the original Japanese example.

paragraph 0034 and the parent patent’s claims and
that of paragraph 0004 and the continuing patent’s
claims are decision (ii) negatives.

The positive-negative ratio was then 50:50.

We fine-tuned Rinna RoBERTa with this training
set. We call the resulting model RoBERTa,,... The
experimental protocol was the same as the previous
experiments (§4.1 and §4.2).

Since decision (ii) is an NLI task, we also fine-
tuned Rinna RoBERTa using the JSNLI dataset’
for comparison. We call it ROBERTa;,,;;. We used
the same test set as RoBERTa,.. for evaluation.
RoBERTa;,;;’s high performance for Japanese
NLI tasks has been shown in the literature (Yanaka
and Mineshima, 2022).

Note that while JSNLI is a ternary classification
task, i.e. entailment, contradiction, and neutral,
decision (ii) is binary, i.e. positive and negative.
We, therefore, need to align JSNLI’s labels with
our binary labels. We experimented with two label
alignment conditions: Condition A was to align
entailment with positive and contradiction and neu-
tral with negative. Condition B was the same as
Condition A, except that we ignored contradiction;
only neutral was aligned with negative. This is
reasonable because, even if an embodiment is not
claimed in a set of claims, it does not necessarily
imply that the two pieces of text are contradictory.

For the hyper-parameter setting and fine-tuning
of RoBERTa4,,;, refer to Appendix B.5.

The last three rows in Tab 2 labeled with §4.3
show F1 of the models on the test set. Although
RoBERTa,.. was the best among them, it has a

"We used train_w_filtering.tsv of JSNLI 1.1.
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large room for improvement. This indicates that
decision (ii) is difficult and is the bottleneck for
UEE. Looking closely at the data revealed that a
tiny fraction of text in a set of claims, which usu-
ally is a long document, tended to correspond to an
embodiment (Figure 4), because each claim may
consist of various technical features from more than
one description paragraph. This would make deci-
sion (ii) challenging, together with the other factors
discussed in §1; i.e. patent specifications consisting
of technical, long, syntactically and semantically
involved sentences written in patentese.

RoBERTa4,;; delivered low performances un-
der both conditions, probably because of the do-
main discrepancy between the NLI task in JSNLI
and UEE. We think this result shows the necessity
of a dedicated dataset for UEE.

4.4 Discussion

The baselines delivered mediocre performances for
UEE. We observed that decision (ii) makes UEE
difficult. Nevertheless, we believe UEE is a wor-
thy challenge, as it would eventually contribute to
the industry by streamlining patent application pro-
cesses. We also believe that, to this end, utilizing
the outcomes of the current study would help.

5 Related Work

Patent Document Processing NLP systems
for real-world applications in, for instance, e-
commerce (Malmasi et al., 2021, 2022), medical
(Rumshisky et al., 2020; Naumann et al., 2022),
and legal areas (Aletras et al., 2021; Preotiuc-Pietro
et al., 2022) has gained attention, probably because
it has become more feasible to serve practical needs
thanks to the success of Transformer-based models
and pre-training methods (Devlin et al., 2019).

Patent document processing has also been stud-
ied extensively (Aras et al., 2019; Krestel et al.,
2021, 2022). Its most studied areas are machine
translation (Tsujii and Yokoyama, 2007; Utsuro
et al., 2019; Nakazawa et al., 2021, 2022) and in-
formation retrieval (Tait et al., 2008, 2009, 2010;
Risch et al., 2020).

There have recently been studies that would di-
rectly facilitate patent applications. Sharma et al.
(2019) created a dataset for summarizing patents
and proposed baselines. Tonguz et al. (2021) pro-
posed a method for claim generation formulated
as text summarization. Aslanyan and Wetherbee
(2022) created a dataset for phrasal matching for



better patent similarity measurement. Gao et al.
(2022) proposed a method for predicting whether a
given patent application would be approved.

However, to the best of our knowledge, no study
has addressed UEE; we are the first to do that.

Natural Language Inference NLI has show-
cased the comprehension ability of NLP systems
(Wang et al., 2019; Nie et al., 2020; Poliak, 2020)
and provided datasets for their training (Conneau
et al., 2017; Reimers and Gurevych, 2019). In-
troducing diverse NLI tasks would then push the
boundary of NLP. Recent studies have introduced
new NLI tasks targeting real-world applications
(Romanov and Shivade, 2018; Holzenberger et al.,
2020; Koreeda and Manning, 2021; Sadat and
Caragea, 2022). Our decision (ii) is a novel real-
world NLI for patents that poses a new challenge.

6 Conclusion

We introduced UEE, a novel NLP challenge, and
created a corresponding dataset. Our experiments
showed that UEE was challenging due to the diffi-
culty of making the decision (ii). We hope that the
research community will address this challenge by
utilizing the UEE dataset and code that we created
and released.

Future Work We have not explored better ar-
chitectures for the task extensively. Although
RoBERTa performed reasonably well, more capa-
ble, human-instruction-aligned architectures have
been developed recently (Bahrini et al., 2023; Ope-
nAl, 2023). We will explore the capability of these
more recent large language models for the task.

7 Ethics Statement

The scope of this work is to introduce NLP tech-
nologies to the continuing patent application pro-
cess to make it more efficient. The outcomes from
our work would therefore have an industrial impact
through enabling organizations to file more contin-
uing patents with less time. There would then be a
risk that, if our technologies were available to only
particular organizations, fair competitions could
not be ensured. We therefore decided to release the
dataset and code to the public.

This work was intended to be beneficial to patent-
related processes and studies in artificial intelli-
gence, machine learning, and NLP. The outcomes
from this work should therefore be used only for
these purposes.
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The coverage of the UEE dataset in terms of the
IPC subclass, language, and countries and regions
are limited. Care must be taken when using this
dataset, accordingly.

The dataset does not contain any personal infor-
mation, as it has been created from publicly avail-
able patent specifications. We nonetheless took
special care to check if any personal information
was included in the dataset by accident when creat-
ing the dataset.

All the data we used in this work are publicly
available. The pre-trained language model that
we used, i.e. ROBERTa, is also publicly available.
Our Longformer was converted from the RoOBERTa
with a method that was also known to the public.
Besides, since we have released all the necessary
code and dataset along with the paper, all the ex-
perimental results in the paper are reproducible.

Regarding the hiring of the annotators (the ex-
pert patent practitioners), we negotiated with their
company in advance to fairly determine the charge,
which was the equivalent of the cost of hiring ex-
pert patent practitioners for patent search. We ex-
plained to the human annotators about the purpose
of the data annotation and how it would be used in
advance of the annotation.

Regarding the compute in our experiments, we
executed 30 fine-tuning processes, which took 57
hours in a single Nvidia A100 GPU in total.
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"appNum": "2021xxxxxx",
"paraNum": "0052",
"paraTxt": "The first data may be data available for
learning of the first model M1, and is not limited ..."
"claims": [
{
"claimNum": "1",
"claimTxt": [

"A processing execution system including:",
"a second classification information acquisition
unit for acquiring second classification ..."
]
by
{
"claimNum": "2",
"claimTxt": [
"The processing execution system of claim 1,",
"wherein the estimator estimates validity ..."
]
}
1,
"label": "positive",
"note": [ "1" 1,
"contAppNum": "2021yyyyyy",
"contClaims": [
{
"claimNum": "1",
"claimTxt": [
"A processing execution system including...",
]
by

Figure 5: Example data. Paragraph 0052 from the patent
specification for application 2021xxxxxX contains an
unclaimed embodiment (labeled as positive). This is
translated to English for illustration purposes.

A Example of the UEE Dataset

Figure 5 illustrates an entry of the dataset. Each
entry is a JSON object and consists of the appli-
cation number of the patent from which the tar-
get paragraph is extracted (appNum), the identi-
fier of the target paragraph (paraNum), the para-
graph text (paraTxt), a set of claims from the
same application (claims), the label (1abel),
the note (note), the application number of the con-
tinuing patent (contAppNum), and the continu-
ing patent’s claims (contClaims). claims and
contClaims consist of individual claims’ iden-
tifier (c1laimNum) and text (claimTxt).'? Here,
paraTxt,asetof claimTxts, and 1label cor-
respond to p; j,, C;, and y; j, in §2, respectively.
Figure 6 shows the Japanese version of Figure 5.

B Hyper-parameter Setting

B.1 UEE Baseline Rinna RoBERTa

Although we described Rinna RoBERTa’s hyper-
parameter setting for the baseline experiment in
§4.1, we repeat it here for the sake of completeness.

The maximum sequence length was 512. We
fine-tuned Rinna RoBERTa on the UEE training

0c1aimTxt is a list of text. This is because a claim is
usually long and split into segments for readability. We keep
this structure in JSON format.
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"appNum": "2021xxxxxx",
"paraNum": "0052",
"paraTxt": "$15F—%k HB1ETIMI ORBICHATELRT—4

ThHNELL V2 TR=IUDIA MLIZRONRW, BIZIE B17
— IRV I TR—INBERSNEBHTHoTHLL, -~
"claims": [
{
"claimNum": "1",
"claimTxt": [
BTy &, BB T—IOHRICET BE 1 HEERE.
DRFAZEBINALE T EFTIVICESVWT, B27 -9 DHHIC
B9 2H 2 HRIEMEMG Y 558 2 HRERMSHE, »,
RIS EMEOHERERICE DV TAEERTT 3RTHe, 7,

"EBUWBRTVRT L, "
]
i
{
"claimNum": "2",
"claimTxt": [

"BUECHEERR I, BIRE 2 EFNICE IV TEMERET 2. ”,
"EREICRBOREBRITY T b, "
]
}
1,
"label": "positive",
"hote": [ "1m ],
"contAppNum": "2021yyyyyy",
"contClaims": [
{
"claimNum": "1",
"claimT}{t": [ .
"EIT—SE MEEIT -S5O,
]
by

Figure 6: Example data in Japanese

Claim 1 Description

1< £ 1 DORRIE M RENOA = 1 — (T 5= 1 —BREAOREBER | | ooor2Pn
& BIRRATEICPIS B IRASY e § s
BRI A2 — BN BT, BRRABCHEISP 0SSR
D5, MRS SEMMBOA =1 —BOLK, T LEM, HEEDS PR E

2P OST—HICEINT, #i
B

POS

7%%4&1@)*17%?%3’51§§Emi§§ﬁb
Claim 2
SRIA 1 (C5

50 P > —5(CEDNT, #il
—IBEAN—Z FORIREA =1 15z . B1ERTER T

Only a tiny fraction
EDOSEWEL EE 1 DN LAOPRERDOAZ 1 — BB EEH T DIEMMBRE.

of text in a set of
claims tends to
correspond to the
embodiment in a
paragraph.

Claim 3

FASKIA 1 (CEe DT . BIEEPOSTF—HICEDINT, Al
BAZ1—IBHA—T LORIEA =1 —1EfR%E. FIEAESBCSVWTHHERUFE LS50

< &6 1 DN FHOFEBDA =1 — BB L BH T SHHRUDRE, More claims follow.

Figure 7: Claimed embodiment example in Japanese

set for ten epochs with the training batch size, the
warm-up steps, and the learning rate being set to
128, 100, and Se-5, respectively. We used AdamW
(Loshchilov and Hutter, 2019) for optimization.

B.2 UEE Baseline Longformer

The maximum sequence length was 4,096. We
fine-tuned our Longformer on the UEE training
set for ten epochs with the training batch size, the
gradient accumulation steps, the warm-up steps,
and the learning rate being set to 16, 2, 200, and
2e-5, respectively, based on Beltagy et al. (2020).
We used the AdamW optimizer.

B.3 Decision (i) RoBERTa

The hyper-parameter setting for this model is the
same as the UEE Baseline Rinna RoBERTa in B.1.



Sec. Model Accuracy Precision Recall F1
$4.1 RoBERTa 0.8979 (0.0025) 0.8453 (0.0047) 0.8899 (0.0065) 0.8670 (0.0034)
" Longformer 0.8258 (0.0147) 0.8839 (0.0072) 0.6157 (0.0508) 0.7247 (0.0335)
§4.2 RoBERTa 0.9261 (0.0050) 0.9539 (0.0112) 0.8998 (0.0178) 0.9259 (0.0057)
RoBERTa,,¢. 0.7238 (0.0047) 0.7274 (0.0152) 0.7175 (0.0339) 0.7218 (0.0110)
§4.3 RoBERTaj,,;; A 0.5067 (0.0044) 0.5146 (0.0123) 0.3874 (0.2847)  0.4029 (0.1434)
RoBERTa;,,;; B 0.5098 (0.0072) 0.4088 (0.2286) 0.4776 (0.2779) 0.4384 (0.2472)

Table 3: Performances of all the evaluated models. In the last two rows, "A" and "B" stand for Condition A and B,
respectively. The figures are the mean and standard deviation from five runs.

B.4 Decision (ii) RoBERTa,,..

The hyper-parameter setting for this model is the
same as the UEE Baseline Rinna RoBERTa in B. 1.

B.5 Decision (ii) ROBERTa;,,,;;

We fine-tuned RoBERTa,,;; for ten epochs with
the training batch size, the warm-up steps, and
the learning rate being 128, 500, and 3e-5, respec-
tively. We used the AdamW optimizer. Although
the instances in the JSNLI dataset have already
been tokenized, we re-tokenized them with Rinna
RoBERTz2’s tokenizer.

C Japanese Example of a Claimed
Embodiment

Figure 7 shows the Japanese version of Figure 4.

D Full Evaluation Results

Table 3 shows accuracy, precision, recall, and F1
of all the evaluated models.
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Abstract

Large Language Models (LLMs) have limited
performance when solving arithmetic reason-
ing tasks and often provide incorrect answers.
Unlike natural language understanding, math
problems typically have a single correct an-
swer, making the task of generating accurate
solutions more challenging for LLMs. To the
best of our knowledge, we are not aware of
any LLMs that indicate their level of confi-
dence in their responses which fuels a trust
deficit in these models impeding their adop-
tion. To address this deficiency, we propose
‘MathPrompter’, a technique that improves per-
formance of LLMs on arithmetic problems
along with increased reliance in the predic-
tions. MathPrompter uses the Zero-shot chain-
of-thought prompting technique to generate
multiple Algebraic expressions or Python func-
tions to solve the same math problem in dif-
ferent ways and thereby raise the confidence
level in the output results. This is in contrast to
other prompt based CoT methods, where there
is no check on the validity of the intermedi-
ate steps followed. Our technique improves
over state-of-the-art on the MultiArith dataset
(78.7% — 92.5%) evaluated using 175B pa-
rameter GPT-based LLM.

1 Introduction

Recent advancements in natural language process-
ing (NLP) can be attributed to massive scaling of
Large Language Models (LLMs) (Vaswani et al.,
2017; Devlin et al., 2018; Raffel et al., 2020; Brown
et al., 2020; Rae et al., 2021; Chowdhery et al.,
2022; Thoppilan et al., 2022). A very interest-
ing recent discovery that the LLMs are naturally
good (in-context) Zero-shot or few-shot learners
turned out to be very useful (Brown et al., 2020;
Liuetal., 2021, 2023). This led to the development
of ‘prompting’ technique, where the user provides
a small context for solving the task at-hand to the
LLM. This conditioning of the models on a few
examples is termed as few-shot prompting, while
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providing instructions to solve a task is known as
Zero-shot prompting. Extensive research efforts
are being poured into designing these prompts, ei-
ther manually (Schick and Schiitze, 2020; Reynolds
and McDonell, 2021) or automatically (Shin et al.,
2020; Gao et al., 2020). Although quite successful
for single-step system-I tasks (Stanovich and West,
2000; Liu et al., 2023), the prompting techniques
were inadequate in their performance on system-II
tasks where multi-step reasoning is required (Rae
et al., 2021). As humans, we tend to break down
a problem and attempt to solve them step-by-step.
Extending this intuition to LLMs led to the de-
velopment of ‘chain-of-thought’ (CoT) prompting
technique (Wei et al., 2022; Wang et al., 2022). The
use of CoT has led to improved performance on a
range of NLP tasks (Talmor et al., 2018; Gao et al.,
2020; Patel et al., 2021; Cobbe et al., 2021; Geva
et al., 2021; Chowdhery et al., 2022; Srivastava
et al., 2022)

In this work, we investigate Zero-shot-CoT meth-
ods for solving mathematical reasoning tasks. To
the best of our knowledge, we found the recent
work by (Kojima et al., 2022) that proposed a Zero-
shot-CoT technique to be the state-of-the-art where
they demonstrated a remarkable accuracy improve-
ment on the ‘MultiArith’ (Roy and Roth, 2016)
data (17.7% — 78.7%). Now, we identify two
key aspects that lacks in the previous CoT prompt-
ing based SOTA, namely (1) Although, the chain-
of-thought followed by the model improved the
results, but there is no check on the validity of
the steps followed by the chain-of-thought prompt-
ing and (2) The confidence in the predictions of
LLMs are often not provided. In order to address
these gap to some extent, we derive inspiration
from how we humans solve a math question by
breaking it down to a simpler multi-step procedure
and make use of multiple ways to validate our ap-
proach at each step. Specifically, given a question
Q, (I) Generating Algebraic template: We first gen-
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Input Query

Q: At a restaurant, each adult meal costs $5 and kids eat free. If a group of 15
people came in and 8 were kids, how much would it cost for the group to eat?

Qt: at a restaurant, each adult meal costs A and kids eat free. if a group of B

(I) Generating
Algebraic template

people came in and C were kids, how much would it cost for the group to eat?

Mapping: {A:5, B:15, C:8}

(I1y Math-Prompts

—
(111 Compute
Verification

"Eval()"

Y
)

(IV) Statistical

significance
—

Final-answer

Algebraic-answer

Pythonic-answer

Algebraic prompt
Write a mathematical equation and
generate the answer format starting
with "Answer ='

Python prompt
Write a python function that returns
the answer.

Answer

Ax (B-C)

def total_price (A, B,
return A % (B-C)

C):
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Figure 1: MathPrompter flow. We outline the MathPrompter process with an example alongside.

erate its corresponding Algebraic expression Qt
that replaces the numerical entries by variables. (II)
Math-prompts: Then, we provide multiple prompts
P to the LLM that can solve Qt analytically in
different ways. For eg. P can be ‘Derive an Al-
gebraic expression’ or ‘Write a Python function’
etc. Following this procedure, we end up with P ex-
pressions that analytically solves Qt in terms of its
variables. (II) Compute verification: We then eval-
uate the P analytical solutions by allotting multiple
random values to the Qt variables. (IV) Statistical
significance: If the solutions of the P analytical
functions are in ‘consensus’ over N ~ 5 different
variable choices, then we substitute the original val-
ues from Q to obtain the final solution. In the case
where there is no definite consensus, we repeat the
steps (1), (III) & (IV). Our method, MathPrompter,
uses 175B parameter LLM called GPT3 DaVinci
completion engine (Brown et al., 2020). We were
able to improve the accuracy on the MultiArith data
from 78.7% — 92.5%.

2 Method

Since the LLMs are generative models, it becomes
very tricky to ensure that the generated answers
are accurate, especially for mathematical reasoning
tasks. We take clues from the process followed
by students to solve arithmetic problems. We nar-
rowed down a few steps that students take in order
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to verify their solutions, namely

* Compliance with known results: By comparing
the solution to a known result, one can assess its
accuracy and make necessary adjustments. This is
particularly useful when the question is a standard
problem with a well-established solution.

* Multi-verification: By approaching a problem
from multiple perspectives and comparing the re-
sults helps to confirm the validity of the solution
and ensure that it is both sound and accurate.

* Cross-checking: The process of solving a prob-
lem is just as necessary as the final answer. Veri-
fying the correctness of the intermediate steps of
the process provide a clear understanding of the
thought process behind the solution.

* Compute verification: Utilizing a calculator or
computer to perform arithmetic calculations can
assist in verifying the accuracy of the final answer.

2.1 MathPrompter

Our proposed method, MathPrompter, is an attempt
to transfer some of this thought process to the
LLM answer generation process. Fig. 1 provides
a high-level overview of steps followed by Math-
Prompter to solve a mathematical reasoning prob-
lem. We use the state-of-the-art GPT-3 DaVinci



completion engine (Brown et al., 2020) for the
question-answering tasks.

We use the following question ‘Q’ from the Mul-
tiArith dataset to demonstrate the problem solving
process followed by MathPrompter.

Q: At a restaurant, each adult meal costs
$5 and kids eat free. If a group of 15
people came in and 8 were kids, how
much would it cost for the group to eat?

() Generating Algebraic template: We begin by
transforming the question into its Algebraic form
by replacing the numeric entries with variables us-
ing a key-value mapping. In this particular instance,
the modified question ‘Qt” becomes:

Qt: at a restaurant, each adult meal costs
A and kids eat free. if a group of B peo-
ple came in and C were kids, how much
would it cost for the group to eat?

Mapping: {A:5, B:15, C:8}

(I) Math-prompts: We build up on the intu-
ition provided by the multi-verification and cross-
checking thought processes mentioned above. We
generate analytical solutions of Qt using two differ-
ent approaches, Algebraic way and Pythonic way.
We give the following prompts to the LLM to gen-
erate additional context for Qt

Algebraic prompt: Write a mathematical
equation and generate the answer format
starting with ‘Answer =’

Python prompt: Write a Python function
that returns the answer.

The LLM model in response to the above
prompts generated the following output expres-
sions

# Algebraic expression output
Answer = Ax(B-C)

# Python expression output
def total_price(A, B, C):
return A * (B-C)

The above generated analytical solutions gives
the user a hint into the ‘intermediate thought pro-
cess’ of the LLM. Incorporating additional prompts
will improve the accuracy and consistency of the
results. This will, in turn, enhance the Math-
Prompter’s ability to generate more precise and
effective solutions.
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(IIT) Compute verification: We evaluate the ex-
pressions generated in the previous step using mul-
tiple randomized key-value mappings of the input
variables in Qt. To evaluate the expressions, we
used the Python’s eval () method. We compare
the outputs to see if we can find a consensus among
the answers. This also provides us with a higher
level of confidence that the answers are correct
and reliable. Once the expressions agree on their
outputs, we use the values of the variables in the
input Q to compute the final answer, as below

35
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Algebraic-answer
Pythonic-answer

(IV) Statistical significance: In order to ensure
that consensus is reached among various expres-
sions’ output, in our experiments, we repeat the
steps (II) & (III) for N ~ 5 times and report the
most frequent value observed for the answer.

3 Experiment

3.1 Dataset

We evaluate  MathPrompter on  Multi-
Arith dataset (Roy and Roth, 2016), which
is a subset of the Math World Problem Repository
(Koncel-Kedziorski et al., 2016). This dataset is
a collection of mathematical problems that are
specifically designed to test the ability of machine
learning models to perform complex arithmetic
operations and reasoning. These problems demand
the application of multiple arithmetic operations
and logical reasoning to be sucessfully solved.

3.2 Baseline

One of the popular baselines is the standard Zero-
shot model by (Brown et al., 2020). Their train their
models in a way that it is able to recognize and clas-
sify new objects or classes that it has never seen
before during training. This was achieved by utiliz-
ing the semantic relationships between classes.

We also compared against the state-of-the-art
Zero-shot-CoT prompting model by (Kojima et al.,
2022). This is a very recent approach that addresses
the limitations of the standard Zero-shot learning
by incorporating a ‘context of the task’ using CoT
to improve the performance. Briefly, their method
follows this procedure. Given a question Q, the
authors use the prompt ‘Lets think step-by-step’
followed by Q to generate a response Z. Then, they
use the prompt “The answer (Arabic numericals) is’
followed by Z to get their final result.



Model Accuracy
Zero-shot 17.7
Zero-shot (PalLM 540B) 25.5
Zero-shot-CoT 78.7
Zero-shot-CoT (PaLM 540B) 66.1
Zero-shot-CoT + self consistency (PaLM 540B) 89.0
Zero-shot-CoT (MathPrompter) 92.5
Few-Shot (2 samples) 33.7
Few-Shot (8 samples) 33.8
Few-Shot-CoT (2 samples) 84.8
Few-Shot-CoT (4 samples) 90.5
Few-Shot-CoT (8 samples) 93.0
Zero-Plus-Few-Shot-CoT (8 samples) 92.8

Table 1: Accuracy on MultiArith dataset. MathPrompter outperforms all the Zero-shot & Zero-shot-CoT baselines. We
emphasize that our model’s performance is comparable to 540B parameter models as well as the SOTA Few-shot-CoT approaches.
(If not mentioned explicitly, the models in each row consists of 175B parameters. Results are borrowed from (Kojima et al.,
2022). They used Textdavinci-002 (175B) model along with the same 8 examples as described in (Wei et al., 2022) for Few-shot

and Few-shot-CoT settings.)
3.3 Results

3.3.1 Accuracy comparisons

Table 1 compares the performance of the Math-
Prompter against the baseline models. The results
of few-shot & zero-shot learning based approaches
are shown. Furthermore, we add the results for
models with different number of parameters to get
better highlight the significance of our approach.
Since, MathPrompter is a Zero-shot-CoT (175B
parameters) method, we choose the state-of-the-art
Zero-shot-CoT (175B parameters) model by (Ko-
jima et al., 2022) and a Zero-shot(175B parameters)
by (Brown et al., 2020) for fair comparison. We
report an accuracy of 92.5% which is a huge im-
provement to the other SOTA models with 78.7%
and 17.7% accuracy, respectively.

3.3.2 Example comparisons

Table 2 presents a sample set of questions and
their respective outputs, intermediate steps, and
final answers generated by both MathPrompterand
the current state-of-the-art model (Kojima et al.,
2022). For simplicity, only one output of Math-
Prompter for each question is shown for both the
Algebraic and Pythonic outputs.

The table highlights areas where (Kojima et al.,
2022) technique falls short, and where these can
be remedied with MathPrompter , which was de-
signed to address these issues. For example, the
generated answers sometimes have one step of er-
ror, which can be avoided by running the model
multiple times and reporting the consensus results.
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Additionally, the reasoning steps in (Kojima et al.,
2022) can be excessively lengthy, but the Pythonic
or Algebraic methods can address this by typically
requiring fewer tokens. Furthermore, the reasoning
steps may be correct, but the final computation is
incorrect. MathPrompter address problem by using
the Python’s eval () method function.

In many cases, the MathPrompter generates cor-
rect intermediate and final answers. However, there
are a few cases, such as the last question in Table 2,
where both the Algebraic and Pythonic outputs are
in agreement, yet erroneous. We plan to address
these issues by incorporating additional methods to
further enhance the performance of MathPrompter .

4 Conclusions & Discussions

We introduced MathPrompter, a novel approach
that improves LLM performance on mathematical
reasoning problems. It also addresses an important
concern of building the user trust to some extent in
the LLM predictions. We translated our intuition on
how students solve arithmetic problems to a LLM
model by utilizing the Zero-shot chain-of-thought
prompting technique. MathPrompter incorporates
ideas like cross-checking the intermediate steps
and solving the same math problem using multiple
approaches in its design. We empirically show that
our model is comparable to SOTA Few-shot-CoT
models as well as the larger Zero-shot-CoT models
that have 540B parameters. In future, we plan to
further evaluate performance on additional datasets
and explore incorporating additional prompts into



Table 2:

Example-based comparison between current state of art Zero-shot-CoT and MathPrompter .

Question

SOTA Zero-shot-CoT

MathPrompter

Q: At the fair Adam bought 13
tickets. After riding the ferris
wheel he had 4 tickets left. If
each ticket cost 9 dollars, how
much money did Adam spend
riding the ferris wheel?

A (ONE UNNECESSARY STEP ERROR): Let’s
think step by step. Adam bought 13 tickets. That
means he spent 13 * 9 = 117 dollars on tickets.
After riding the ferris wheel, he had 4 tickets left.
That means he used 9 tickets to ride the ferris wheel.
That means he spent 9 * 9 = 81 dollars on riding the
ferris wheel. So the answer is 117 - 81 = 36 dollars.
Therefore, the answer (arabic numerals) is 36. X

Mapping = {A:13, B:4, C:9}

# Algabraic answer

Answer = A*(B-C)

#Python code

def total_price(A, B, C):
return A * (B-C)

Answer =81 /

Q: Each chocolate bar in a box
cost $3. If a box had 9 bars
total and Wendy sold all but 3
bars, how much money would
she have made?

A (OTHERS; MAXIMUM LIMIT OF TEXT
LENGTH): Let’s think step by step. Each chocolate
bar in a box costs $3. If a box had 9 bars total, then
Wendy sold all but 3 bars. How much money would
she have made? We can solve this problem using al-
gebra. Let’s start by creating a variable to represent
the number of chocolate bars Wendy sold. We’ll
call this variable "x". If Wendy sold "x" chocolate
bars, then she would have 9 - x chocolate bars left in
the box. We know that each chocolate bar costs $3,
so the total cost of the chocolate bars Wendy sold
Therefore, the answer (arabic numerals) is: Wendy
would have made $12. X

Mapping = {A:3, B:9, C:3}

# Algabraic answer

Answer = A x (B - C)

#Python code

def money_made(A, B, C):
return (B-C)*A

Answer = 18 /

Q: Jerry was helping the cafete-
ria workers pick up lunch trays,
but he could only carry 8 trays
at a time. If he had to pick up 9
trays from one table and 7 trays
from another, how many trips
will he make?

A (COMMONSENSE MISTAKE): Let’s think step
by step. Jerry can carry 8 trays at a time. There are
9 trays on the first table. That means Jerry will need
to make 2 trips to the first table. There are 7 trays
on the second table. That means Jerry will need
to make 1 trip to the second table. In total, Jerry
will make 3 trips. Therefore, the answer (arabic
numerals) is 3. X

Mapping = {A:8, B:9, C:7}
# Algabraic answer
Answer = (B+C)/A
#Python code
def numTrips(A, B, C):
trips = (B + C) // A
if B+C) %A !=o0:
trips += 1
return trips

Answer=2 v

Q: Kaleb bought 14 boxes of
chocolate candy and gave 5 to
his little brother. If each box
has 6 pieces inside it, how many
pieces did Kaleb still have?

A: Let’s think step by step. Kaleb bought 14 boxes
of chocolate candy. This means that he had 84
pieces of chocolate candy. He gave 5 boxes to his
little brother, which means that he gave his little
brother 30 pieces of chocolate candy. Kaleb still
had 54 pieces of chocolate candy. Therefore, the
answer (arabic numerals) is 54 /.

Mapping = {A:14, B:5, C:6}

# Algabraic answer

Answer = AxC - B

#Python code

def candy_pieces(A, B, C):
return AxC - B

Answer =79 (COMMONSENSE MIS-
TAKE)X

MathPrompter. References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie

5 Limitation

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

One of the limitations of our work is that while
we are running the MathPrompter multiple times
in different ways to increase the accuracy of our
results, this does not always guarantee the correct-
ness of the output. Both Algebraic and Pythonic
expressions have the potential to produce the incor-
rect results, even if the prompt outputs match each
other. This is the fail case as shown in the last row
of Table 2. Increasing the number of prompts will
mitigate this issue. We are currently investigating
techniques that can address this issue in a more
principled manner.
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Abstract

Recently, self-learning methods based on user
satisfaction metrics and contextual bandits
have shown promising results to enable con-
sistent improvements in conversational Al sys-
tems. However, directly targeting such met-
rics by off-policy bandit learning objectives
often increases the risk of making abrupt policy
changes that break the current user experience.
In this study, we introduce a scalable frame-
work for supporting fine-grained exploration
targets for individual domains via user-defined
constraints. For example, we may want to en-
sure fewer policy deviations in business-critical
domains such as shopping, while allocating
more exploration budget to domains such as
music. We present a novel meta-gradient learn-
ing approach that is scalable and practical to
address this problem. The proposed method
adjusts constraint violation penalty terms adap-
tively through a meta objective that encourages
balanced constraint satisfaction across domains.
We conducted extensive experiments on a real-
world conversational Al and using a set of re-
alistic constraint benchmarks. The proposed
approach has been deployed in production for a
large-scale commercial assistant, enabling the
best balance between the policy value and con-
straint satisfaction rate.

1 Introduction

Conversational Al systems such as Apple Siri,
Amazon Alexa, Google Assistant, and Microsoft
Cortana rely on multiple processing components
for speech recognition, natural language under-
standing (NLU), taking proper actions, and generat-
ing a response to the user. In such a system, a skill
routing block is responsible for selecting the right
skill and NLU interpretation to serve the request.
Skill routing is a challenging problem as thousands
of skills are present in real-world conversational
systems and new skills are being introduced every
day. In such scenario, gathering human annotations
is very expensive and suffers from high turn-around
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times. Moreover, often more than one skill is ca-
pable of serving a request which makes human
supervision even more challenging due to the lack
of clear ground-truth assignments (Sarikaya, 2017).

Recently, self-learning methods have been pro-
posed that leverage customer experience signals
to define reward values and create a closed feed-
back loop (Karampatziakis et al., 2019). In con-
trast to more traditional methods that are based
on replication of rule-based systems or defect re-
labeling (Park et al., 2020), self-learning methods
continuously explore different routing alternatives
and leverage user feedback to improve their deci-
sions (Kachuee et al., 2022).

Despite their scalability and efficiency, because
self-learning approaches directly optimize routing
decisions to achieve highest rewards, they suffer
from instability issues impacting the user experi-
ence. Specifically, off-policy contextual bandits
frequently used as the policy learning algorithm
are susceptible to off-policy optimization errors,
resulting in potentially breaking the current user ex-
perience due to overestimation of action values or
excessive explorations (Swaminathan et al., 2016;
Joachims et al., 2018; Lopez et al., 2021). Such
instabilities and drastic changes in the agent’s be-
havior not only regress user retention and trust, but
also manifest as direct revenue loss for business-
critical domains such as shopping.

In a production system, it is crucial to not only
estimate but also control the changes of behavior
a new policy introduces when compared to the
current production policy. In the literature, this
problem has been studied under safe bandit up-
dates (Jagerman et al., 2020; Daulton et al., 2019;
Amani et al., 2019) and budgeted bandit learn-
ing (Hoffman et al., 2014; Guha and Munagala,
2007), usually targeting exploration budgets or en-
couraging a behavior resembling a baseline policy.

In the context of off-policy bandit updates, we
define exploration as any change in the model be-
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havior resulting from replacing a current produc-
tion policy with a new updated policy. This defi-
nition is broad and encloses stochastic exploration
actions as well as any behavior change when com-
paring the two consecutive policies. Furthermore,
we consider the scenario in which samples are nat-
urally classified into a set of domains, each rep-
resenting a unique data segment. Note that in a
task-oriented conversational agent, domains are
typically defined based on NLU interpretation of
the request (e.g. music, shopping, books).

While previous studies considered different as-
pects of constraining a bandit model, to the best
of our knowledge the problem of controlling off-
policy bandit behavior changes across subsequent
model updates with a fine-grained control on bud-
gets for different data segments (domains) remains
unaddressed. This study is the first to tackle the
aforementioned issues by providing a scalable and
practical approach. The main contributions of this
paper are as follows: () Introducing a formula-
tion for controlled exploration in the context of off-
policy contextual bandit learning considering fine-
grained control over domains based on user-defined
constraints. (#7) Presenting a solution based on
the primal-dual minimax constraint optimization
method that is effective but requires adjusting a few
hyperparameters. (22¢) Proposing a novel meta gra-
dient algorithm to balance constraint satisfaction
and reward maximization that works out-of-the-box
and outperforms other methods with no need for
hyperparameter adjustment. (4v) Conducting ex-
tensive online and offline experiments on the skill
routing problem in a real-world conversational Al
agent using a set of realistic constraint benchmarks.

2 Related Work

2.1 SKkill Routing in Conversational Als

In contrast to traditional rule-based systems, model-
based skill routing approaches leverage machine
learning models to understand a user request and
predict the best action to serve the request (Li et al.,
2021; Park et al., 2020).

To improve scalability, self-learning methods
have been proposed that rely on user feedback
rather than human annotations to learn and improve
their skill routing policies in a closed-loop. The
recent work by Kachuee et al. (2022) is an excel-
lent example of such approach in which model-
based customer satisfaction metrics (Kachuee et al.,
2021) are used to define the reward function, then a
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stochastic mixture of replication and bandit models
is used to control the exploration rate and safeguard
the user experience. Nonetheless, such design may
result in sub-optimal decisions as the bandit opti-
mization does not consider the exploration budgets,
the stochastic mixture may not be sufficiently fine-
grained to protect user experience in smaller traffic
segments, and deploying such architecture requires
dealing with additional complexity of maintaining
a separate replication model.

2.2 Constrained Bandit Learning

The majority of studies on controlled bandit
learning consider the case of simple multi-armed
stochastic bandits (i.e., without context) with prac-
tical applications in experiment design (Guha
and Munagala, 2007) and automated machine
learning (Hoffman et al., 2014). Hoffman et al.
(2014) suggested a Bayesian approach to two-phase
exploration-exploitation bandit learning in which
there is a pre-specified budget for exploration arm
evaluations. Another aspect is to ensure safe ex-
ploration actions, which is especially useful for
sensitive applications in industrial machine learn-
ing or healthcare. Amani et al. (2019) introduced
a solution in which an initial set of exploration ac-
tions is defined, then the exploration set is gradually
expanded to ensure minimal unexpected behavior.

For contextual bandits, constraints can be de-
fined in the action space or in terms of model up-
dates. For example, Daulton et al. (2019) solves
a two-metric setting in which the reward is being
maximized while enforcing a limit for regression
on an auxiliary metric compared to a baseline sta-
tus quo model. Balakrishnan et al. (2018) attempts
to learn behavioral constraints by balancing be-
tween replication of the current baseline policy and
making new actions that show promising rewards.
In (Jagerman et al., 2020) authors define safety in
terms of user experience metrics and suggest decid-
ing on deploying a new model based on conserva-
tive confidence bounds on the off-policy estimates
of such metrics.

3 Constrained Bandit Exploration

3.1 Problem Formulation

We consider the general framework of off-policy
contextual bandits in which a policy II is used to
select an action a € A given the observed con-
text vector (x) to maximize the scalar reward (r)
received from the environment. Here, we assume



stochastic policies of the form IIy(a|x) in which a
model parameterized by 6 (e.g., a neural network)
is used to assign action selection probabilities to
each action given the context. Furthermore, we as-
sume that each sample belongs to a domain denoted
by k € 1... M provided as a feature in x.

In the off-policy setting, the policy is refreshed
after collecting a dataset of samples from the cur-
rent policy. We adopt a definition of exploration
which considers any change in the agent behavior
compared to the current policy as an exploration
action. Alternatively, we can consider replication
with respect to the current policy as the rate at
which the new policy makes similar decisions to
the current policy when both evaluated and sam-
pled stochastically. We define replication for Il
with respect to Iy based on the L1-distance of their
action propensities given a context x:

[1g (%) — Ho(x)|1 -

Ro(x) =1— 2

()

In a production system, it is desirable to precisely
control the rate at which the new policy replicates
the current policy for each domain. This ensures
robust and controlled model updates for critical
domains while enabling exploration for others that
may benefit from an extra exploration budget. Ac-
cordingly, we define constraints to encourage the
desired behavior for samples of each domain, while
learning an off-policy bandit:

argmein Ex,a,r,kND LHg )

2

Cz%ax

st A < Ry(x) <
where context, action, reward, and domain
(x,a,r, k) are sampled from a dataset collected
from the current policy. In (2), we use cz,”i”
and ¢]'** to indicate user-defined replication con-
straints for domain k.

L1, can be any differentiable off-policy ban-
dit learning objective, for simplicity of discussion,
we consider the vanilla inverse propensity scoring
(IPS) objective:

Ip(alx)

L = %)
Hg(xvaaT) THO((I|X) ;

3)
where Il is the current policy and r is the observed
reward for taking action a collected in the dataset.

A common approach to optimize constrained
problems such as (2) is to use the penalty method,
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translating constraints into penalty terms that en-
courage constraint satisfaction:

arg I'Ilein Ex,a,’r,kND [LHQ (X7 a, r) +

—Ry(x)) +

ek max(0, Rp(x) — '

e max(0, """

)] @

Here, penalty terms are always non-negative and
increase if the new policy assigns action probabili-
ties that deviate from the current policy outside the
desired boundary. u € RM and v € RM are vari-
ables that adjust the weight of each constraint vio-
lation term. The exponentiation improves the sensi-
tivity to these parameters and ensures having non-
negative penalty terms. For (4) to actually solve the
original constrained problem of (2), proper values
for u and v need to be used that enable the best bal-
ance between constraint satisfaction and the policy
value. In the constrained optimization literature,
various methods have been suggested to solve this
form of problem. In this paper, to solve this prob-
lem, we use the primal-dual minimax method sug-
gested by Nandwani et al. (2019) (Section 3.2) as
well as a novel meta-learning method (Section 3.3).

3.2 Minimax Primal-Dual Method

Nandwani et al. (2019) suggested a formulation of
the augmented Lagrangian method that supports
inequality constraints. They solve the dual problem
which is optimizing the dual maximin problem to
improve the scalability:

min max Ex,,xwp [Lm,(x,a,7) +
] u,v

e max (0, " — Ry (x))+
eV* max(0, Ro(x) — )] . (5)
Algorithm 1 shows an outline of the policy train-
ing using the minimax method. This method has
four hyperparameters controlling the max player
optimization via adjusting the update frequency,
learning rate, and decay factors.

Intuitively, the min player is trying to update the
policy while the max player is increasingly penal-
izing it for any constraint violation. A stable point
of this algorithm would be to gradually reduce the
max player update rate as the min player is getting
better at satisfying the constraints, eventually satis-
fying all constraints resulting in a zero loss for the
max player due to the zero hinge penalty terms.



Algorithm 1: Minimax constrained bandit

input :D (dataset), n (max learning rate), v (max
learning rate decay), 7 (max update
frequency), £ (max update frequency decay)

u, v, t < 0; Initialize(I1p)

for x,a,r,k ~ D do

/* loss function of (5) */
L «+ Loss(x,a,r,k,0,u,V)
if t%7 is 0 then
/* gradient ascent, max player %/
u<+u+nVul
v+ v+nVyL
/* 1lr/update decay */
Ny xXn
T EXT
end
/* optimize Ilp, min player */
0« f(0,VoL)
/* increment counter */
t+—t+1

end

3.3 Meta Gradient Method

Theoretically, the primal-dual minimax method is
capable of achieving Pareto optimal solutions (Jin
et al., 2019; Nandwani et al., 2019). However, in
practice, it is infeasible to train for an infinite num-
ber of iterations, and therefore approximate inner
optimization loops are being used. To find the right
balance between constraint satisfaction and policy
improvement for the minimax algorithm, it is nec-
essary to carefully adjust multiple hyperparameters.
Note that an extensive hyperparameter search is un-
desirable in many real-world scenarios as it entails
not only significant compute costs associated with
the search but also increases the turn-around time
to deploy refreshed models. To mitigate this issue,
we suggest a meta-gradient optimization idea that
adapts u and v based on a meta objective within
the training process.

Specifically, we define the the meta objective as:

Lmeta = Ex,a,r,kNID) (1 - A)LHQ (X7 a, T)+

min
max (0, ¢}

— Ro(x)) + max(0, Rg(x) — ;%)

A (k)

where ) is a hyperparameter to balance between
the bandit objective and the constraint penalty
terms. The second term is the macro average of
violation penalties, in which p(k) is the prior proba-
bility of samples belonging to domain k& that can be
easily pre-computed for a large batch of samples.

Note that (6) is not directly dependent on u and
v, instead we rely on online cross-validation (Sut-
ton, 1992; Xu et al., 2018) to update these variables.
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We define an inner objective the same as the min
optimization problem of (5), do a differentiable
optimization step, evaluate the meta objective on
another batch of data, then update u and v by tak-
ing the derivative of the meta objective through the
inner optimization trace.

Algorithm 2 presents an outline of the meta gra-
dient optimization method. Due to practical is-
sues of dealing with high-order gradients, we only
consider the immediate impact of a single inner
loop update on the meta objective. We found that
discarding the vanilla gradient descent used for
the inner optimization and using a more advanced
optimizer (e.g., Adam) to update IIy works best.
Regarding the A hyperparameter, we found that
simply setting A = 1 works well in practice. It
effectively means that the meta-gradient solution
does not require any hyperparameter adjustments
(experimental evidence presented in Section 4.4).

Algorithm 2: Meta-grad constrained bandit
input :D (dataset), n (learning rate), A (penalty
weight)
u, v < 0; Initialize(Ily)
for x,a,7,k ~Dandx',a’,v', k' ~ Ddo

/* clone parameters */
0" < clone(0)

/* inner loss with &’ */
Linner < L0SSinner (X7 a,T, k: 9l7 u, V)

/* grad. descent on cloned model */
0«0 — nve/Linner

/* compute meta loss */
Lineta <+ Lossmeta(X',a’, 7' K[ 0' ) N)

/* diff. through inner update */
Compute VyLmeta and Vy Lieta

/* use any optimizer for u,v */
u < f(u, vuLmeta)
v < f(V,VvLmeta)

/* inner loss with 6 */
L < Lossinner(x,a,7,k,0,u,V)

/* use any optimizer for llg */
0« f(0,VoL)

end

Intuitively, at each training iteration, the inner
objective naturally minimizes the bandit loss that
)1s penalized by constraint violation terms propor-
tional to the current u/v. Then, the meta objec-
tive computes a validation loss that measures the
impact of the inner policy update and u/v on the
macro-averaged constraint violations. Finally, by
computing the meta-gradient of the meta objective
through the inner optimization loop, u and v are
updated to better encourage the constraint satisfac-
tion for the next policy update iteration. Thanks to
the online cross-validation update for u and v, the
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Figure 1: Model architecture overview: a set of hypoth-
esis are encoded as vectors and fed to a bi-directional
LSTM followed by a shared MLP and a softmax layer
to get the candidate selection probabilities .

meta-gradient method adjusts the penalty weights
such that their value does not unnecessarily keep
increasing when it does not result in further im-
provements to the constraint satisfaction.

4 Experiments

4.1 Setup

In a commercial dialogue agent, making controlled
policy updates is crucial because any change in the
skill routing policy directly impacts the user expe-
rience. Making abrupt policy changes may nega-
tively impact user retention and in certain business-
critical domains may result in loss of revenue.

Figure 1 shows an overview of the model archi-
tecture used in our experiments. Input to the model
is a set of routing candidates i.e., a combination of
embedded ASR, NLU, and context vectors as well
as skill embeddings. The output is the softmax-
normalized propensity of selecting each candidate
to handle the user request. The final model has
about 12M trainable parameters consisting of a lan-
guage model to encode utterance, embeddings for
contextual signals, and fully-connected layers. As
our architecture closely follows the design choices
from Kachuee et al. (2022), we refer interested
readers to that paper for details.

To train and evaluate our models, we use logged
data from a current production policy. The ob-
served reward is based on a curated function of
user satisfaction metrics (Kachuee et al., 2021).
Our dataset consists of about 40M samples divided
into 85% training, 10% validation, and 5% test sets
covering 27 domains with imbalanced number of
samples. Data used in this work was deidentified
to comply with our customer privacy guidelines.
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4.2 Benchmarks

In our experiments, we use three different
benchmarks for the constraint settings: global,
critical, and exploration. The global bench-
mark aims to constrain the new policy to be within
an exploration limit for all domains. In addition
to the global constraint, critical assert stronger
limits for a set of critical domains defined based on
the expert knowledge. The exploration bench-
mark extends the critical benchmark by adding
constraints to encourage exploration for domains
that may benefit from additional exploration. Each
benchmark is a list of constraints consisting of a
short description, applicable domain, and the de-
sired replication range. We provide the exact con-
straint configurations in the appendix.

4.3 Baselines and Metrics

As the first baseline, we consider the vanilla IPS
objective which disregards the constraints. Addi-
tionally, we build on the IPS baseline for constraint
optimization approaches: quadratic (uniform con-
stant penalty weight), minimax (Algorithm 1), and
meta-gradient (Algorithm 2). Unless expressed oth-
erwise, we use Adam optimizer with the default
configuration (Kingma and Ba, 2014) .

Regarding hyperparameters, for the penalty
weight of the quadratic method we use values from
{0.1,1,10, 100, 1000}. For the minimax method
(Algorithm 1), we found that setting 7 and & to one
while adjusting 1 and y presents very similar re-
sults to adjusting all four hyperparameters. Conse-
quently, we use a grid search of € {1,0.1,0.01}
and v € {1,0.999,0.995} to find the best settings
for each benchmark. For the meta-gradient method
(Algorithm 2), we found that simply using A equal
to one in the meta objective (i.e., meta objective
only focusing on the constraints) outperforms other
works. As a result, it does not require adjusting
any hyperparameter and the same setting is used
across all benchmarks. We provide additional ex-
periment details, sensitivity analysis, and the final
hyperparametersin Appendix A.2, A.3, and A.4.

Regarding the evaluation metrics, we use the
expected off-policy reward as well as the rate of
change in constraint violations averaged over all
samples (i.e., micro-averaged) and individual do-
mains (i.e., macro-averaged). To comply with our
privacy and business guidelines, in all instances, we
only report relative and normalized results which
do not represent the actual scales or metric values.



Benchmark
global critical explore

Method reward violation reduction reward violation reduction reward violation reduction

(%) macro (%) micro (%) (%) macro (%) micro (%) (%) macro (%) micro (%)
IPS 89.45+0.01 0 0 89.45+0.01 0 0 89.45+0.01 0 0
Quadratic | 88.95+0.01 63.67+£046 63.67+0.46 | 88.944+0.01 50.13+£0.90 69.29+0.67 | 88.36+0.04 28.37+4.62 65.244+2.30
Minimax | 88.91+0.01 63.284+0.08 63.28+0.08 | 88.93+0.01 37.88+0.49 62.51+0.21 | 88.11+0.01 61.51+0.59 81.50+0.24
MetaGrad | 88.94+0.01 75.91+049 75.91:+049 | 88.94+0.01 60.63+0.95 79.69+0.85 | 88.41+0.01 78.23+0.17 89.95+0.20

Table 1: A comparison of the baseline IPS method with the quadratic, minimax, and meta-gradient constrained
optimization methods on different benchmarks. We report the normalized percentage of reduction in the number of

constraint violations compared to the IPS method.

Method reward Violation Reduction  Replication
(%) (%) (%)

RPDR -0.01 (p>0.05) 0 98.13

MetaGrad | +0.19 (p<0.05) 38.05 99.11

Table 2: Comparison of the proposed method (Meta-
Grad) and the robust self-learning method by Kachuee
et al. (2022) (RPDR) using an online A/B experiment.
We report: percentage of change in the reward compared
to a control model, violation reduction for the MetaGrad
normalized by the RPDR result, and percentage of repli-
cation compared to the control policy actions.

4.4 Results
4.4.1 Offline Experimentation

Table 1 shows a comparison of results for the IPS,
quadratic, minimax, and meta-gradient methods
on all benchmarks. For each case, we report the
expected reward and the percentage of reduction
in the rate of violations compared to the simple
IPS objective. The meta-gradient approach consis-
tently shows the best results across all benchmarks.
The simple quadratic method behaves very compet-
itively to minimax, except for the explore bench-
mark which requires a more fine-grained control on
multiple constraints . The meta-gradient method,
while having the highest reduction in constraints
violations, also has very competitive performance
in terms of the reward metric.

4.4.2 Online Experimentation

We conducted an A/B experiment to compare the
proposed method with the stochastic gating method
of Kachuee et al. (2022) for robust self-learning
(indicated by RPDR in the table). We conducted
our A/B in two phases, deploying and comparing
each approach to a baseline skill routing production
system. Each phase took one week and consisted
of traffic from about 6M customers (3M control

and 3M treatment). For the RPDR method, we
used a target replication rate of 99% for each do-
main. The meta-gradient model was trained with
the global benchmark, constraining to a similar
99% replication. For both RPDR and MetaGrad
models, we used the same training set which was
collected from the control model behavior and fol-
lowed the same model architecture.

Table 2 presents the results of the A/B experi-
ment. For each method we report the percentage
of changes in the achieved reward compared to
the control model. For violation reduction, we
report the percentage of reduction for MetaGrad
compared to the RPDR method. For the replication
metric, we simply report the percentage of time
that each policy makes actions that replicate the
control model decision. As we can see from the
results, MetaGrad approach not only shows more
stable behavior by better constraint satisfaction and
replication rates, but it also achieves statistically
significant improvements in the reward value.

5 Conclusion

This paper studied the problem of controlled explo-
ration to control the policy updates in self-learning
skill routing systems. We presented a constrained
optimization formulation that enables defining the
boundary of the desired exploration rate for individ-
ual domains. We proposed a scalable and practical
solution based on meta-gradient learning which
provides the highest constraint satisfaction rates
without any extensive hyperparameter adjustment.
Finally, we conducted experiments on a real-world
conversation system for the skill routing problem.
The proposed method was deployed in the produc-
tion as it showed not only more control over policy
changes but also gains in the policy value.
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Limitations

While we conducted extensive experiments and
demonstrated the effectiveness of the suggested
approach for controlled bandit learning in the con-
text of the skill routing problem, there are multi-
ple directions of improvement for future studies.
We believe one of the limitations of the suggested
constrained optimization framework is that it re-
lies on expert-defined conditions on an arbitrary
segmentation of samples. It entails the need for
human intervention and manual constraint defini-
tion/optimization which can be challenging. An-
other limitation we faced was during our experi-
ments which showed additional compute overhead
of between 2 to 3 times for different constrained op-
timization methods due to additional optimization
objectives, inner loops, and backward passes.

Ethics Statement

The presented work is focused on improving robust-
ness of off-policy bandit updates in conversational
systems by introducing robustness constraints on
the policy behavior. We do not believe there is
any additional risk associated with this work when
using the suggested platform on constraints that en-
courage controlled deviations from a current base-
line. Regarding human data handling practices, we
ensured anonymity of data samples used in this
study and did not reveal any specifics that would
violate our internal policies or our customer privacy
policies.
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A Appendix

A.1 Constraint Benchmarks

Figure 2 presents the definition of constraint bench-
marks used in this paper: global, critical, and
explore. The global benchmark sets a general
minimum replication rate for all domains. The
critical benchmark defines a tighter minimum
replication rate for three business-critical domains
(home automation, shopping, and notifications)
and a more relaxed default case for all other do-
mains. In the explore benchmark, we extend
the critical benchmark to include exploration
encouragement for the knowledge and music do-
mains.

- description: "constraint for all cases"
domain: "x"
minimum: ©0.99

maximum: 1.00

(a) global benchmark

- description: "domain HomeAutomation is critical, explore less"
domain: "HomeAutomation"
minimum: ©.99
maximum: 1.00

- description: "Shopping is critical, explore less"

domain: "Shopping"

minimum: ©.99

maximum: 1.00

description: "Notifications is critical, explore less"

domain: "Notifications"

minimum: ©.99

maximum: 1.00

- description:
domain: "x"
minimum: ©.98
maximum: 1.00

"constraint for all other cases"

(b) critical benchmark

- description: "HomeAutomation is critical, explore less"
domain: "HomeAutomation"
minimum: 0.99
maximum: 1.00

- description: "Shopping is critical, explore less"

domain: "Shopping"

minimum: 0.99

maximum: 1.00

description: "Notifications is critical, explore less"

domain: "Notifications"

minimum: 0.99

maximum: 1.00

description: "explore Knowledge"

domain: "Knowledge"

minimum: 0.80

maximum: 0.95

- description:
domain:
minimum: 0.90
maximum: 0.97

- description:
domain: "x"
minimum: 0.98
maximum: 1.00

"explore Music"
"Music"

"constraint for all other cases"

(c) explore benchmark

Figure 2: The constraint benchmarks used in this paper:
(a) global, (b) critical, and (c) explore.

A.2 Training Details

We train each model until convergence or reach-
ing 32 epochs and take the best performing model
based on the macro-averaged violation rate mea-
sured on the validation set. Each experiment was
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run four times using different random seeds for
data sampling and weight initialization to report
the mean and standard deviation of each result.
We used a cluster of 32 NVIDIA V100 GPUs to
process a mini-batch size of 32K samples. Each
individual run took between 4 to 24 hours.

A.3 Selected Hyperparameters

Table 3 shows the final selected hyperparameters
for each benchmark and method. The definition of
each hyper-parameter is presented in Algorithm 1
and 2.

Benchmark
Method global critical explore
Quadratic  w 10 1000 1000
o n 0.1 0.1 1
Minimax
0 1 0.999 1
Meta-Grad A 1 1 1

Table 3: The selected hyperparameters for each bench-
mark and method.

A.4 TImpact of Hyperparameters

To study the impact of hyperparameters, we con-
ducted an experiment using the critical bench-
mark by training minimax and meta-gradient
based models using different hyperparameter
values. Specifically, we train minimax mod-
els (Algorithm 1) using n € {1.0,0.1,0.01}
and v € {1.0,0.999,0.995}. For the meta-
gradient method (Algorithm 2), we use A\ €
{0.01,0.05,0.1,0.5,0.75,0.95,1.0}.  Figure 3
shows the results of such experiment. Based on
this experiment, the minimax approach shows a
much higher sensitivity to its two hyperparameters,
showing a significant impact on both the reward
and violation reduction metrics. However, the meta-
gradient method shows much less sensitivity to the
A hyperparameter. We found that simply setting
A = 1 works very well in practice. It can be very
desirable for real-world large-scale settings such
as conversational systems which require frequent
model updates as new features are on-boarded ev-
ery day, and having a dependency on an extensive
hyperparameter search is very costly, if not imprac-
tical.
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Figure 3: Comparing the hyper-parameter sensitivity for the minimax and meta-gradient methods on the critical
benchmark. For the minimax method: (a) reward and (b) macro violation reduction wrt. different 7 and -y settings.
For the meta-gradient method: (c) reward and (d) macro violation reduction wrt. different A settings.

A.5 Analysis of Penalty Weights

To dive deeper into the reason behind the better
performance for the meta-gradient algorithm com-
pared to the minimax approach, we investigated the
constraint penalty weight value for the first 3,000
iterations of training using the global benchmark.
From Figure 4, we can see the minimax method is
monotonically increasing the penalty weight with
each iteration which is a behavior consistent with
the gradient ascent update rule in Algorithm 1. In
other words, as long as there are any constraint vi-
olations, minimax will keep increasing the penalty,
which in our opinion is the reason for high sensi-
tivity to the hyperparameters. On the other hand,
the meta-gradient approach is using a validation

signal to dynamically adjust the penalty weight.

Consequently, it may keep the penalty term near
zero for an initial phase, rapidly increase it, then
decay when violations are reduced and getting a
higher reward is preferred.

—=- Minimax

o] T MetaGrad

107

Violation Penalty Weight

1000 1500 2000 2500 3000

Training Iteration

0 500

Figure 4: The constraint penalty weight values for the
first 3,000 iterations of training using the global bench-
mark.
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Abstract

Large pre-trained language models based
on transformer architecture have drastically
changed the natural language processing (NLP)
landscape. However, deploying those models
for on-device applications in constrained de-
vices such as smart watches is completely im-
practical due to their size and inference cost.
As an alternative to transformer-based architec-
tures, recent work on efficient NLP has shown
that weight-efficient models can attain com-
petitive performance for simple tasks, such
as slot filling and intent classification, with
model sizes in the order of the megabyte. This
work introduces the pNLP-Mixer architec-
ture, an embedding-free MLP-Mixer model
for on-device NLP that achieves high weight-
efficiency thanks to a novel projection layer.
We evaluate a pNLP-Mixer model of only one
megabyte in size on two multi-lingual semantic
parsing datasets, MTOP and multiATIS. Our
quantized model achieves 99.4% and 97.8% the
performance of mBERT on MTOP and multi-
ATIS, while using 170x fewer parameters. Our
model consistently beats the state-of-the-art
of tiny models (pQRNN), which is twice as
large, by a margin up to 7.8% on MTOP.

1 Introduction

Large language models based on transformer ar-
chitecture have been fueling the latest successes
in natural language processing (NLP). Nowadays,
fine-tuning pre-trained models represents the de-
facto framework to tackle diverse NLP tasks, even
those with limited amounts of annotations.

While the merit of large pre-trained language
models is undeniable, using models of several gi-
gabytes and billions of parameters is not always
practical or even possible due to computational and
memory requirements. In addition, there are many
simple and yet important tasks, such as slot filling

*Work done during a research stay at IBM Research.
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in home assistants, which do not require the com-
plex linguistic knowledge encoded by large pre-
trained models and for which smaller models may
reach competitive performance at a much lower
cost. Reducing model sizes to the order of the
megabyte is a necessity for resource constrained
devices, such as smart watches, and in general it is
attractive for edge use cases as i) updating models
at the edge requires pushing updates to potentially
millions of devices, and ii) multiple models solving
different tasks can be deployed even on embedded
devices with limited memory capacity.

Transformer-based architectures are not suit-
able to downscale to such ultra small model sizes,
mostly due to the space required to store embed-
ding tables (Zhao et al., 2021). Projection-based
models (Ravi, 2017) have shown that the dense rep-
resentations learned as part of the training process
and stored in the embedding tables can be replaced
by non-trainable representations computed on-the-
fly over the text, hence the name embedding-free.

In this work, we introduce the pNLP-Mixer,
a novel embedding-free architecture for ultra-
small NLP models targeting on-device applica-
tions. Our architecture relies on a novel projec-
tion layer which creates text representations for
individual tokens by combining the MinHash fin-
gerprints (Broder, 2000) corresponding to each sub-
word unit. The projected features are given as input
to a MLP-Mixer (Tolstikhin et al., 2021), which
grants our model architecture linear scalability in
the sequence length and seamless hardware accel-
eration. To the best of our knowledge, this is the
first work combining subword-unit tokenization
and MinHash fingerprints in projection networks.

Our evaluation on two semantic parsing datasets
representative of on-device applications, MTOP
and multiATIS, showcases that the pNLP-Mixer
beats the current state-of-the-art for ultra-small
models, pQRNN (Kaliamoorthi et al., 2021), by
up to 7.8% on sequence tagging tasks. On MTOP,
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a pNLP-Mixer model with only one million pa-
rameters achieves 99.4% of the performance of
mBERT, which has 770x more parameters.

2 Related Work

Since the introduction of transformer-based lan-
guage models such as BERT (Devlin et al., 2019),
model sizes have been increasing at unprecedented
pace (Brown, 2020; Goyal et al., 2021; Lample
and Conneau, 2019). Using current large language
models for on-device applications is simply not
feasible due to the size and computational require-
ments, especially in resource constrained devices
such as smart watches. Transformer-based mod-
els optimized for smartphone use cases, such as
DistilBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2020), and MobileBERT (Sun et al., 2020)
have shown that by combining knowledge distilla-
tion (Hinton et al., 2015) and quantization (Jacob
et al., 2018), one can achieve model sizes in the
order of tens to hundreds of megabytes in size. Em-
bedded devices, such as wearables, require instead
model sizes in the order of the megabyte, a target
that is very challenging to achieve with transformer-
based architecture, mostly because of the size of
the embedding tables (Zhao et al., 2021).
Embedding-free model architectures have been
introduced to completely eliminate the dependency
on large embedding tables from models. Instead
of learning embeddings at training time, text repre-
sentation are computed on-the-fly using solely the
surface forms of the tokens by means of locality-
sensitive hashing (LSH) (Charikar, 2002) tech-
niques. This way tokens that are similar at the
surface level have similar representations. The
idea of replacing trainable parameters stored in
embedding tables with LSH-based projections
has been introduced in Ravi (2017) and Ravi
(2019). Follow up research work on model ar-
chitectures targeting ultra-small model sizes has
resulted in several model architectures including
SGNN (Ravi and Kozareva, 2018), SGNN++ (Ravi,
2019), Prado (Kaliamoorthi et al., 2019), and
PQRNN (Kaliamoorthi et al., 2021). Our model
architecture belongs to the same line of research,
but introduces a linguistically informed projec-
tion layer which combines subword-unit tokeniza-
tion (Sennrich et al., 2016) with LSH principles.
In our work, we evaluate and compare multiple
LSH techniques, including SimHash (Manku et al.,
2007) and MinHash (Broder, 2000). In our projec-
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Figure 1: Our pNLP-Mixer model has a non-trainable
projection layer which feeds a MLP-Mixer architec-
ture with rich text features representing MinHash finger-
prints in a Counting Bloom Filter.

tion layer, by exploiting the associativity property
of MinHash, fingerprints of individual tokens can
be efficiently computed from the fingerprints of
their subword units.

Our model does not use attention mechanisms,
as it feeds the representations to a MLP-Mixer (Tol-
stikhin et al., 2021) model. While using MLP only
architectures is not new in the NLP landscape (Liu
et al., 2021; Yu et al., 2022), this work is the first
proposing an all-MLP architecture for ultra-small
models. There are numerous studies around effi-
cient transformer-based models (Tay et al., 2022)
and solutions to make them scale linearly with the
sequence length. However, none of those work
targets models of the size of the single megabyte.

3 pNLP-Mixer: a Projection MLP-Mixer

The pNLP-Mixer has been designed from the
ground up as an efficient architecture suitable for
both edge cases, memory and latency constrained,
and as a backbone for complex NLP pipelines.
Figure 1 depicts the model architecture at high
level. The pNLP-Mixer falls into the category of
projection-based models: instead of storing large
embedding tables, like transformer-based models
do, our model uses a projection layer which cap-
tures morphological knowledge from individual
tokens using non-trainable hash functions. This
projection layer can be seen as a feature extrac-
tor that produces a representation from input text.
Once the input features are computed, they are
passed through a trainable linear layer called bot-
tleneck layer. The output of the bottleneck layer is
the input of a series of MLP blocks of a standard
MLP-Mixer architecture (Tolstikhin et al., 2021).
There are several advantages of using an all-
MLP architecture for language processing. In con-
trast to attention-based models, the MLP-Mixer



captures long-range dependencies without intro-
ducing a quadratic cost on the sequence length.
Further, by using only MLPs, the model becomes
simple to implement and has out-of-the-box hard-
ware acceleration in devices ranging from mobile
phones to server-grade inferencing accelerators.

The main contribution of our work is to show
that a simple model like the MLP-Mixer represents
a valid alternative to transformer-based models in
NLP, even in setups where large embedding tables
are replaced with projections computed on the fly.
The key to achieve competitive performance with
such small and computationally efficient models is
to feed them with high-quality input features.

3.1 Projection Layer

Our projection layer builds upon the notion of local-
ity sensitive hashing (LSH) (Indyk and Motwani,
1998) to create representations from text. While
LSH has been introduced in previous works, e.g., in
pQRNN (Kaliamoorthi et al., 2021), our approach
is completely novel. In particular, we combine
subword-unit tokenization (Schuster and Nakajima,
2012; Sennrich et al., 2016) and the associativity
of MinHash (Broder, 2000) to efficiently compute
features of any token as a combination of the fea-
tures corresponding to its subword unit. Subword
tokenization, which is commonly used in trans-
formers, ensures that any text can be represented
as a sequence of subwords units, i.e., there are no
out-of-vocabulary words. In our context, using sub-
word tokenization provides two main advantages:
i) linguistic knowledge can be injected by train-
ing domain-specific subword-unit tokenizers, and
ii) the representation of each subword unit can be
precomputed and cached to reduce inference costs.

Our projection layer calculates the MinHash fin-
gerprint F'* of each input token ¢ by reusing the
fingerprint of individual subword units belonging
to the vocabulary V' (see Figure 2). A finger-
print F' € N" is an array of n positive integers
Fp to F,,_1, computed with n distinct hash func-
tions ho(z) to h,—1(z) mapping strings to posi-
tive integers. This way, the first step of our pro-
jection is tokenization, which transforms each in-
put token into a list of subword units. Then, for
each subword unit u, we calculate its fingerprint
F*. Each element F}, with 0 < i < n, is ob-
tained by first applying a hash function h;(z) to
each of the trigrams vg to v extracted from
the subword u, with k& > 1. Then, F}" is ob-
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N-grams ho hi hy hs
Bri]—>|11|29|81|19|
rin ]_Vl 54 | 31 | 44 | 26 |

ing]—>|38|78|s7|78|

Vocabulary

l

an

Bring ]€—>[

king ]

#H#ing

Y

Figure 2: The MinHash fingerprint of a subword unit
contains the minimum hash values computed over the
trigrams, for each hash function Hy_3. Fingerprints for
a given token are computed by aggregating the finger-
prints of its subword units in a similar way.

tained as the minimum hash value across trigrams:
FY = min(hi(vg), ..., hi(vg—1)). For example, for

(2
the subword unit “Bring”, FiBrmg is computed as

FiBng:min(h,-( “Bri”), hiy(“rin”),hi(“ing”)).
When a subword is a continuation, e.g.,
“H#ing”, we skip the trigram extraction and calcu-
late the hash h;(x) directly on the full subword unit
u. The fingerprint £ is built by calculating F* for
each of the n hash functions hy(x) to hy—1(x).
Finally, the fingerprint F'* of a token ¢ made of
several subword units ug to uj_1, e.g., “Bringing”
— [“Bring”, “#4ing”], is simply obtained by
setting each element F} to the minimum across

the j subword fingerprints F;* to F;”~". In our
example, FiBrmgmg _ mz’n(FiBng, F;##zng).

In practice, if the fingerprint of each subword
unit v in the vocabulary V' is precomputed and
cached, inference does not require any hashing
on strings but only computing the minimum be-
tween integer sets. In our setup, we use the mini-
mum operator as described in the original MinHash
paper (Broder, 2000), which also contains the re-
quired theoretical foundations. What we introduce
in our work is a method that elegantly exploits the
associativity property of MinHash to avoid comput-
ing hash functions over strings at runtime.

For each input token ¢, we do not use the finger-
prints directly as input to the bottleneck layer but,
instead, we use them to populate an array C* € R™
of m float counters initially set to zero. In detail,
given the fingerprint ! corresponding to the to-
ken ¢, for each of the n MinHash values F!, we
increase by one the value in position p of the array
of counters C*, where p = F! mod m. Therefore,
the extracted feature from each token is essentially
a Counting Bloom Filter (Fan et al., 2000) storing
the set of integers part of its MinHash fingerprint.



Caching fingerprints for subword-units is en-
tirely optional. The memory required to enable
caching is given by an integer matrix storing |V/|
fingerprints of size n, where |V'| is the vocabulary
size and n the number of hash functions. In prac-
tice, caching costs just a few megabytes of memory
with vocabularies from pre-trained models and fin-
gerprints with, e.g., 64 hashes. Note, that there is
a fundamental difference between the embedding
matrices stored in transformers and our cached fin-
gerprints. In contrast to embedding tables, which
in transformer-based models are task specific as a
result of the fine-tuning process, the fingerprints
are not trainable and they are not directly involved
in any matrix multiplication. Since fingerprints are
not trainable, they can be reused across different
models, i.e., a single cache can serve n models. In
complex NLP pipelines to be executed on embed-
ded devices at the edge, this architecture provides
substantial opportunities for optimizations. First,
the same token fingerprint can be reused to perform
the inference with distinct models, which means
that the cost of computing the projection can be
easily amortized. Second, as long as tokenizer and
hashing scheme do not change, distinct models can
be independently updated, while keeping the cache
of subword-unit fingerprints unmodified on the de-
vice. Third, having a cache that is shared among
models means that the memory costs required to
enable caching are also amortized. It is worth to
remark that the advantages offered by our architec-
ture are not limited to edge use-cases. Large-scale
natural language processing platforms running in
data-centers can equally benefit from the resource
optimization and granular deployment opportuni-
ties offered by our architecture.

3.2 MLP-Mixer

The MLP-Mixer (Tolstikhin et al., 2021) is a sim-
ple architecture that consists exclusively of mixer
blocks. Each block has two multi-layer perceptrons
(MLPs) interleaved by a transposition operation.
The transposition of the output of the first MLP
lets the second operate on the sequence dimension,
effectively mixing information across tokens. Our
model follows the original work.

In our case, the matrix C' € R**™ produced by
the projection layer, where s the sequence length
and m the size of the counting bloom filter, is
passed through a bottleneck layer: a dense layer fol-
lowed by an activation function and a normalization
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layer, that outputs a matrix B € R**", where h is
the hidden size. B is fed to the MLP-Mixer, which
in turn produces an output O € R**", We apply a
classification head on top of O to generate the pre-
dictions. In the case of semantic parsing this head
is a linear layer applied on each token, while for
classification tasks, we use a max pooling instead.

4 Experimental Setup

Our architecture is designed as an alternative to
transformer-based models for ultra-small models
(i.e., one megabyte) targeting on-device applica-
tions. In the league of extremely small models,
common evaluation datasets used by research and
industry are not the same as the ones used for eval-
uating the generalizability of large pre-trained lan-
guage models (e.g., GLUE (Wang et al., 2018)), but
datasets for simpler tasks, that are more realistic ap-
plications for tiny models. Thus, we align to prior
works on tiny models for on-device applications
(Kaliamoorthi et al., 2019, 2021) that assess models
on two multilingual semantic parsing datasets.

MTOP (Lietal., 2021). It covers six languages,
English, Spanish, French, German, Hindi, and Thai.
It was created by translating from English to the
other languages. The train, dev, and test set for
each language contain 10k, 1.5k, and 3k samples.
We assess the models on slot parsing (named entity
recognition) on 78 different slot labels. We report
the exact match accuracy score, computed as the
number of instances whose all tokens have been
correctly labeled over the number of instances.

multiATIS (Xu et al., 2020). It is a multilin-
gual version of the ATIS dataset (Price, 1990),
that contains queries related to air travel in nine
languages: English, Spanish, French, German,
Hindi, Japanese, Portuguese, Turkish, and Chi-
nese. Each language except Hindi and Turkish
consists of 4, 488/490/893 samples for train, dev,
and test sets; for Hindi and Turkish the splits are
1,440/160/893 and 578,/60/715. We evaluate on
intent classification: determining the intent of a
query from 18 labels, and we report the accuracy.

Training Details. In our experiments, we aim
for model sizes in the order of one million pa-
rameters (one megabyte with 8-bit quantization).
All trained models are approximately of this size.
For the pNLP-Mixer, the projection of each token
is a feature vector of dimension 512 filled with
256 hashes. The bottleneck consists of one MLP



MTOP EN multiATIS EN MTOP EN multiATIS EN
Projection Exact Match Acc. Intent Acc. Model # Param. Exact Match Acc.  Intent Acc.
Binary 80.58 97.97 Projection-only 0.2M 49.15 81.54
TSP 80.33 98.17 CNN 1.0M 73.74 97.77
SimHash 80.99 98.38 LSTM 1.2M 76.92 97.77
MinHash (Ours) 82.51 98.57 Transformer 1.0M 74.05 97.97
MLP-Mixer 1.0M 82.51 98.57

Table 1: Comparison of different projection layers fol-
lowed by the bottleneck and MLP-Mixer on the valida-
tion set of English MTOP and multiAtis.

with a Leaky ReLU as the activation function (Xu
et al., 2015) followed by a normalization layer (Ba
et al., 2016). Finally, we use 5 Mixer layers where
each block contains 256 hidden dimensions for the
token-mixing, channel-mixing, and classification
head. We use the tokenizer of BERT-base multi-
lingual cased. We tune the learning rate, weight
decay, and dropout with a batch size of 128 and
using early-stopping with a patience of 5 epochs.
We select the models reaching the best exact match
and intent accuracy on the validation set. We report
their performance on the test set.

5 Model Investigation

We provide detailed insights on the impact of differ-
ent projection layers and other architectural com-
ponents as well as a comparison to alternative ar-
chitectures. We perform the experiments on the En-
glish variant of the MTOP and multiATIS datasets.

5.1 Projection Comparison

First, given the pNLP-Mixer model of Section 4
with input features fixed to 512, we compare differ-
ent feature extraction strategies. Specifically:

* Binary. We compute 256 hash values for each
token. Given a token and a bitmap of size m = 512
set to zero, for each hash value h,,, we set to 1 the
bit in position p = h, mod m of the bitmap. The
token feature is a float tensor storing the bitmap.

* TSP. For each token a 1024-bits hash is computed
and then represented as ternary feature of size 512
as described in Kaliamoorthi et al. (2019).

* MinHash. Our projection layer (Section 3.1).

» SimHash. We compute the hashes of subword
units as in MinHash, but we combine them using
SimHash (Manku et al., 2007; Shrivastava and Li,
2014). The extracted feature is a binary feature of
size [, where [ is the size (in bits) of the hashes
applied to n-grams or entire subword units. The
value at index 0 < p < [ of the feature is the sign
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Table 2: Comparison of different architectures using
the MinHash projection layer on the validation set of
English MTOP and multiATIS.

of the value ¢, stored at index p of a histogram ¢
of length [. The histogram, initialized to 0, is popu-
lated by summing or subtracting 1 to ¢, whenever
a hash value has a 1 or 0 in position p.

In Table 1, we report the best scores obtained
after tuning each configuration. Overall, our pro-
jection layer MinHash obtains the best exact match
accuracy and intent accuracy, with an absolute im-
provement over SimHash of +1.52 and +0.19. Bi-
nary and TSP obtain the worst performance: —1.93
and —2.18 on the MTOP compared to MinHash,
and —0.60 and —0.4 on multiATIS. Those differ-
ences confirm the limitation of binary and ternary
features and highlight the importance of carefully
designing the projection layer and justifies an ef-
fort for further research on projection algorithms.
Given these results, we only consider our MinHash-
based projection for the rest of the experiments.

5.2 Model Comparison

Now, we investigate whether the MLP-Mixer is
the optimal architecture to process this representa-
tion. First, we remove the MLP-Mixer and connect
the output of the bottleneck layer to the classifica-
tion heads (Projection-Only). Then, we replace the
MLP-Mixer with three alternative architectures: a
convolutional neural network (CNN) (LeCun et al.,
2015), a long short-term memory recurrent neu-
ral network (LSTM) (Hochreiter and Schmidhuber,
1997), and a transformer (Vaswani et al., 2017).
Table 2 shows that using the projection-layer di-
rectly as input to the classification heads without a
model in between, results in very poor performance.
From the alternative models, all perform signifi-
cantly worse than the MLP-Mixer: —8.77, —5.59,
and —8.46 in terms of exact match accuracy for the
CNN, LSTM, and transformer models, respectively.
This last result is remarkable: for the same num-
ber of parameters, the MLP-Mixer outperforms the
transformer while having a linear complexity on
the input length instead of a quadratic one. Overall,



Intent Accuracy

Model #Param. EN ES FR DE HI JA PT TR ZH Avg
LSTM 28M 96.1 93.0 947 940 845 91.2 927 811 925 | 91.1
mBERT 170M 98.3 974 98.6 985 945 986 974 91.2 97.5 | 96.9
Transformer 2M 96.8 92.1 93.1 932 79.6 90.7 92.1 783 88.1 | 89.3
pQRNN 2M sbity 98.0 970 979 96.6 90.7 887 972 86.2 93.5 | 94.0
pNLP-Mixer  1Mgpiy 981 971 981 973 90.7 923 972 873 951 | 948

Table 3: Intent accuracy across languages on the test sets of multiATIS. For each language we underline the best
overall result and we mark in bold the best performance among the tiny models.

Exact Match Accuracy

Model #Param. EN ES FR DE HI TH Avg
XLU 70M  78.2 70.8 68.9 65.1 62.6 68.0 | 68.9
XLM-R 550M 85.3 81.6 79.4 76.9 76.8 73.8 | 79.0
mBERT 170M 84.4 81.8 79.7 76.5 73.8 72.0 | 78.0
Transformer 2M 71.7 68.2 65.1 64.1 59.1 48.4 | 62.8
pQRNN Mo 8 75.1 71.9 68.2 69.3 68.4 | 71.9
- distilled @0 79,4 75.4 73.0 68.6 70.2 69.5 | 72.7
pNLP-Mixer 1My 84.0 78.3 75.2 76.9 76.5 74.1 | 77.5

Table 4: Exact match accuracy across languages on the
test sets of MTOP. We underline the best overall result
for each language and mark in bold the best perfor-
mance among the tiny models.

the evaluation shows that the MLP-Mixer is weight-
efficient for processing the projection output and
reaching high performance.

6 Evaluation

Finally, we run a complete evaluation on the
test sets of MTOP and multiATIS. We compare
our pNLP-Mixer with three very large models:
XLU (Lai et al., 2019), which is a bi-LSTM model
with pretrained XLU embeddings, and two pre-
trained multilingual models: XLM-R (Conneau
et al., 2020) and multilingual BERT (mBERT) (De-
vlin et al., 2019). We also include two small
models: pQRNN (Kaliamoorthi et al., 2021) and
a simple transformer using the same projection
as pQRNN. pQRNN is an embedding-free Quasi-
RNN (Bradbury et al., 2017) model that shares
the same philosophy of our proposed pNLP-Mixer:
a small and task-specific model that learns di-
rectly from the text. For a fair comparison against
pQRNN, we quantize our pNLP-Mixer models and
report the performance on the 8-bit version. Fi-
nally, we include pQRNN distilled with mBERT
on MTOP (the original study did not distill pPQRNN
on multiATIS). The performance values of all the
baselines are taken from Kaliamoorthi et al. (2021).
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MTOP. Table 4 shows that the large pre-trained
models, XLLM-R and mBERT, obtain the highest
scores. Notably, from the smaller alternatives, our
pNLP-Mixer with only 1M parameters, 8-bit quan-
tization and no pretraining, i.e., 680x smaller than
mBERT, reaches an average exact match accuracy
only 0.5 and 1.5 points lower than mBERT and
XLM-R. It even beats mBERT in the non-European
languages. With those results, the pNLP-Mixer
beats a twice larger pPQRNN model across all lan-
guages by 7.8% in average. It even beats a pQRNN
model distilled from mBERT by 6.6% in average.

multiATIS. Table 3 shows a similar trend com-
pared to the MTOP dataset. On average, the pNLP-
Mixer performs better than pQRNN while being
twice as small. Remarkably, the pNLP-Mixer sig-
nificantly outperforms the transformer model and
the larger LSTM. Moreover, it reaches 97.8% of the
performance of mBERT while being 680x smaller.

Discussion. The results show that the pNLP-
Mixer represents a very competitive model for the
settings where the maximum model size is limited
due to either memory or latency requirements. Our
pNLP-Mixer models, with only 1M parameters and
a size of one megabyte when quantized, reaches
competitive scores in both datasets compared to
mBERT, which is a 680x larger model. This rep-
resents an important step towards ultra-small mod-
els for NLP. To put numbers in perspective, for the
non-quantized pNLPN-Mixer model, the inference
latency with batch size 1 on a single CPU core is
as little as 2.4ms,! with the projection layer taking
0.4ms. Finally, we could not compare pNLP-Mixer
with pQRNN in terms of FLOPS or latency because
the authors did not make the code available; we are
unable to produce comparable predictive perfor-
mance with our implementation of pQRNN.

'We report the average latency across 100 samples on a
Xeon E5-2690v4 processor and a PyTorch runtime.



7 Conclusion

We introduce pNLP-Mixer, the first embedding-
free model based on the MLP-Mixer architecture.
Our main contribution is an efficient and yet effec-
tive projection layer which combines MinHash fin-
gerprints and subword-unit tokenization to create
rich token representations. Our evaluation shows
that the pNLP-Mixer beats the state-of-the-art of
tiny NLP models, pQRRN, and offers sequence
tagging performances that are up to 7.8% higher
while using half of the parameters. The results
are remarkable: a pNLP-Mixer model of only
1 million parameters provides a performance of
99.4% and 97.8% on MTOP and multiATIS, re-
spectively, compared to mBERT which is a a pre-
trained model with /70x more parameters. Our
pNLP-Mixer model is simple to implement and
accelerate, and provides competitive performance
even without pre-training or distillation. Our work
demonstrates the importance of projection methods
and embedding-free architectures to advance the
field of ultra-small models.
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Abstract

Extracting dense representations for terms and
phrases is a task of great importance for knowl-
edge discovery platforms targeting highly-
technical fields. Dense representations are used
as features for downstream components and
have multiple applications ranging from rank-
ing results in search to summarization. Com-
mon approaches to create dense representa-
tions include training domain-specific embed-
dings with self-supervised setups or using sen-
tence encoder models trained over similarity
tasks. In contrast to static embeddings, sen-
tence encoders do not suffer from the out-of-
vocabulary (OOV) problem, but impose sig-
nificant computational costs. In this paper,
we propose a fully unsupervised approach to
text encoding that consists of training small
character-based models with the objective of re-
constructing large pre-trained embedding matri-
ces. Models trained with this approach can not
only match the quality of sentence encoders in
technical domains, but are 5 times smaller and
up to 10 times faster, even on high-end GPUs.

1 Introduction

Large pre-trained language models are extensively
used in modern NLP systems. While the most typi-
cal application of language models is fine-tuning
to specific downstream tasks, language models are
often used as text encoders to create dense features
consumed by downstream components. Among
the many use cases of dense text representations
there is search, question answering, and classifica-
tion (Yang et al., 2020).

Static embeddings, trained with algorithms such
as Word2Vec (Mikolov et al., 2013), can exploit
existing information extraction pipelines to cre-
ate representations for entities, phrases, and terms
present in text corpora. Static embedding matrices
are trained with self-supervised approaches at reg-
ular intervals, either when additional data is avail-
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able or to leverage improvements in information
extraction models. Pre-trained embedding matrices
can be considered as static feature stores, provid-
ing dense representations for entries belonging to a
fixed vocabulary. Representations for entries out-
side of the vocabulary are not available, leading to
the out-of-vocabulary (OOV) problem.

In contrast, contextualized word embeddings
leverage sentence encoders (Cer et al., 2018;
Reimers and Gurevych, 2019) to dynamically cre-
ate dense representations for any input text by
performing a forward pass over a large language
model. Specifically, a word embedding is com-
puted at inference time based on its context, unlike
static word embeddings that have a fixed (context-
independent) representation. In practice, sentence
encoders solve the out-of-vocabulary (OOV) prob-
lem which affects static embeddings at the cost
of high computational requirements and stronger
dependencies on supervised datasets for similarity.

Despite the popularity of sentence encoders,
large pre-trained embedding matrices are still
widely adopted in the industry to encode not only
individual tokens but also multi-token entities ex-
tracted with in-house NLP pipelines. Once those
embedding matrices are trained, the text representa-
tion for single- and multi-token entries encountered
at training time can be looked up in constant time.

In this paper, we describe an effective approach
taken to provide high-quality textual representa-
tions for terms and phrases in a commercially avail-
able platform targeting highly-technical domains.
Our contribution is a novel unsupervised approach
to train text encoders that bridges the gap between
large pre-trained embedding matrices and computa-
tionally expensive sentence encoders. In a nutshell,
we exploit the vast knowledge encoded in large
embedding matrices to train small character-based
models with the objective of reconstructing them,
i.e., we use large embedding matrices trained with
self-supervision as large training datasets mapping
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text to the embedding vectors.

Our approach is extremely attractive for indus-
trial setups as it leverages continuous improve-
ments, testing, and inference costs of existing infor-
mation extraction pipelines to create large datasets
to train text encoders. This way, the return on
investment for annotations, development, and in-
frastructure costs are maximized.

In our evaluation, we highlight that by com-
bining unsupervised term extraction annotators
and static embeddings we can train lightweight
character-based models that match the quality of
supervised sentence encoders and provide substan-
tially better representations than sentence encoders
trained without supervision. Our models not only
provide competitive representations, but are up to
5 times smaller and /0 times faster than sentence
encoders based on large language models.

2 Existing Approaches

The mission of our industrial knowledge discovery
platform is to extract knowledge from large cor-
pora containing highly-technical documents, such
as patents and papers, from diverse fields ranging
from chemistry, to physics, to computer science.
Information extraction is extremely challenging
given the large variety of language nuances and the
large cost of human annotations in such specialized
domains. Therefore, it is of extreme importance to
minimize the dependencies on annotated data and
to use unsupervised approaches whenever possible.

A recurring requirement from many internal
components of our platform is the ability to ex-
tract high-quality dense representations for techni-
cal terms, entities, or phrases which can be encoun-
tered in many distinct technical fields. High-quality
representations are extremely valuable to imple-
ment semantic search, to influence the ranking, or
to be used directly as model features.

In modern industrial systems, it is often the case
that static and context-dependent embedding tech-
nologies coexist on the same platform to extract rep-
resentations. While static embeddings are trained
in a self-supervised fashion, sentence encoders are
often built by fine-tuning pre-trained models on
similarity tasks using annotated datasets. Having
two separate approaches for text encoding is subop-
timal as those systems are completely independent
and embed terms into distinct embedding spaces.

To reconcile those two worlds, we propose an
approach where static embeddings and text en-
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coders are mapping text into the same embedding
space. Our intuition is that static embedding matri-
ces storing embeddings for single tokens, but also
multi-token terms, entities, or phrases, represent
an invaluable source of information to train text
encoders. While those matrices are built with self-
supervision, they can leverage existing annotators,
supervised or not, which are commonly available
in large text processing platforms.

Our novel approach consists of using pre-trained
embedding matrices as a training set, and training
character-based models, called CharEmb, to predict
the embedding vector for a text. This means that
the character-based models will enable to project
any sequence of characters in the same embedding
space as the pre-trained embedding matrices.

2.1 Static Embeddings

Algorithms to train static word embeddings, such
as Word2Vec (Mikolov et al., 2013), have been
introduced to efficiently compute the representa-
tions for words or entire phrases extracted from
large text corpora. To create the representation of
entire phrases, the original Word2Vec paper sug-
gested to simply preprocess the text to make sure
that phrases are treated as distinct words in the
vocabulary. In a nutshell, the preprocessing step
involves merging the tokens of which a phrase is
composed into a unit which is not split by the to-
kenizer, e.g., [ “machine”, “learning”] becomes
[ “machine_learning”].

In a typical industrial setup, this approach can
be naturally generalized to leverage the large set
of annotators that are commonly available in large-
scale natural language processing platforms. This
way one can create domain-specific embeddings
not just for single tokens, but for entities, terms,
phrases which are extracted in a natural language
processing platform. Combining self-supervised
word embedding algorithms together with existing
sequence tagging models is extremely attractive.
First, one can fully leverage the constant enhance-
ments of in-house models to improve the quality of
the embeddings for all the entities of interests. Sec-
ond, since the sequence tagging models are built
in-house and independently evaluated, using them
to build embedding matrices means reducing the
time spent in quality assurance (QA). Third, since
the model inference is anyway computed over large
amount of textual data while the natural language
processing platform is operating, one can amortize
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Figure 1: Illustration of the data flow for our approach. We introduce CharEmb, a character-based model that
projects a given text into the same embedding space of a large pre-trained embedding model. CharEmb uses the
pre-trained embedding only at training to learn the projection function between a text and the its embedding vector.

that compute costs to accelerate another task, i.e.,
providing high-quality text representation.

2.2 Sentence Embeddings

Static embedding matrices built with the previous
approach can provide representations for several
hundred millions entries when trained over large
text corpora pre-processed with several name en-
tity recognition (NER) models. Despite the large
size, one can still experience the problem of out-
of-vocabulary (OOV), which means, downstream
components might require text representations for
text entries which are not present in the vocabulary.

Text encoders have been introduced to solve
the OOV problem. They provide ways to create
embeddings that are not static but contextualized,
which means that the embedding vector must be
created on the fly via a model inference. Contextu-
alized embeddings can be created using pre-trained
models trained with self-supervised setups such as
BERT (Devlin et al., 2019) or with text encoders
which are still based on large pre-trained models,
but fine-tuned with task similarity datasets. Sen-
tence encoders trained with supervised setups using
for example the NLI datasets (Bowman et al., 2015;
Williams et al., 2018), such as S-BERT (Reimers
and Gurevych, 2019) are well known to perform
well in practice to create representations for entire
sentences or features for finer grained text snip-
pets. The limitation of supervised approaches for
sentence encoding is that creating large annotated
datasets for similarity is extremely expensive, es-
pecially in technical fields. Therefore, improving
the sentence encoder themself requires substantial
investments in annotations. Unsupervised sentence
encoder approaches (Gao et al., 2021; Wang et al.,
2021), on the other hand are well known to offer
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poorer performance than supervised counterparts.

3 Our Model: CharEmb

Instead of having two completely disjoint systems
to create text representations, we use character-
based models trained over large static embedding
matrices, that project a sequence of text into the
same embedding space as the embedding matrices
used as training data. In practice, we approach
text encoding as a compression problem, where
character-based models are trained to reconstruct
the pre-trained static embedding matrices, as shown
in Figure 1. This training approach can rely on
supervised sequence tagging models or can be im-
plemented using fully unsupervised methods, such
as the term extraction technologies described in the
literature (Fusco et al., 2022). As we highlight in
the evaluation section, a text encoder trained with-
out any supervision can match the performance of
supervised sentence encoders in creating represen-
tations for words or phrases in technical domains.
To train our models, we consider a static pre-
trained embedding matrix as gold dataset. An indi-
vidual training sample associates a single- or multi-
token text to an embedding vector. To leverage the
dataset we train a text encoder model to minimize
the cosine similarity between the produced vector
and the original vector stored in the static embed-
ding matrix. The models rely on character-level
tokenization to generalize better on unseen inputs
in technical domains. Figure 2 highlights a simple
yet effective LSTM-based model architecture. The
pre-trained static embedding matrix (on the right)
contains |V | embedding vectors of size k, where
V is the vocabulary of the static embedding matrix.
The model receives as input the text ¢, tokenize it
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Figure 2: CharEmb is trained to predict an embedding
that has a close cosine similarity with the target one.

in characters, for which an embedding matrix is
trained. Character-level embeddings are used as
input for a Long Short-Term Memory sequence
model. The last state of the LSTM layer is used
to produce, via a Multi-Layer Perceptron, a vec-
tor of dimension k that represents the embedding
for the text ¢. The network is trained to minimize
the cosine distance between the predicted embed-
ding and the original one stored in the embedding
matrix. The number of distinct training samples
is |V/|, which means that embeddings with large
vocabularies correspond to bigger training datasets.

4 Evaluation

In this section, we compare our text representations
using the Patent Phrase Similarity Dataset built by
Google (Aslanyan and Wetherbee, 2022). Given
two multiword technical concepts (called anchor
and target), the task consists of predicting a simi-
larity score between the two terms. Unlike general-
purpose sentence datasets, such as STS-B (Cer
et al., 2017) or SICK (Marelli et al., 2014), we
focus on technical concepts in the patent and scien-
tific domains. The dataset contains 38, 771 unique
concepts and 36,473, 2,843, and 9,232 concept
pairs with humanly-annotated similarity scores for
the train, validation, and test sets, respectively.

In our case, we are only interested in the zero-
shot scenario, and thus, we only consider the test
set and ignore the train and validation sets. We eval-
uate the quality of the text representations using the
same approach described in Aslanyan and Wether-
bee (2022): we compute the Pearson and Spearman
correlation between the cosine similarity of the two
embeddings and the human-annotated scores. '

"For reproducibility purposes, we include all experimental
details and the hyperparameters in Appendix A.

64

4.1 Static Pre-trained Word Embeddings

First, we compare the performance of publicly-
available pre-trained embedding matrices with em-
beddings trained with in-domain data. Following
the approach described in Aslanyan and Wetherbee
(2022), we compute the representation for concepts
consisting of multiple tokens as the average of the
embedding vectors of each unigram.

To highlight the importance of in domain-data,
we train static embedding matrices using a rela-
tively small corpus consisting of 120 million sen-
tences sampled from the the ArXiv (Clement et al.,
2019) and the HUPD (Suzgun et al., 2022) datasets.
To train our embeddings, we pre-process the text af-
ter running term-extraction using the unsupervised
method described in Fusco et al. (2022). This way,
our method can be considered fully unsupervised,
and its evaluation does not depend on proprietary
annotations and model architectures.

The size of the text after pre-processing is 18 Gi-
gabytes accounting for 1.9 billion tokens with term-
extraction enabled and 2.2 billion tokens with-
out. We train the static embeddings using CBOW
(Mikolov et al., 2013). Training for one epoch takes
25 minutes on a 16-core AMD EPYC 7742, which
corresponds to less than /0 dollars of compute
costs with current cloud offerings. We do not con-
sider the term extraction as part of the overall train-
ing costs since in practice, the large amount of an-
notations that a large-scale NLP platform produces
during its execution can be entirely reused.

Finally, we train three variants. The first contains
unigrams and multiword expressions extracted with
our term extractor represented with one token (i.e.,
“machine learning” — “machine_learning”). The
second considers only unigrams (i.e., with the term-
extraction component disabled). For the third we
use FastText (Bojanowski et al., 2017) instead.

We compare our embedding matrices with the
official pre-trained models for GloVe (Pennington
et al., 2014), Word2Vec (Bojanowski et al., 2017),
and FastText (Bojanowski et al., 2017). Those are
trained on corpora that are substantially larger than
our ArXiv-HUPD dataset (up to 300 times).

Table 1 reports the Pearson and Spearman corre-
lations when using the representations of the static
word embedding matrices. Not surprisingly the
embeddings trained over the ArXiv-HUPD corpus,
which contains text of the same domain, provide
substantially better results than embeddings pre-
trained over corpora that are out-of-domain, such



Correlation Correlation
Pre-trained embedding  [Voc.| Size (MB) Dim. Pear. Spear. Models Size (MB) Dim. Pear. Spear.
GloVe (6B) 0.4M 458 300 42.37 43.95 BERT (Unsup.) 1,344 1,024 43.07 41.40
GloVe (42B) 19M 2,194 300 40.30 45.83 Patent-BERT (Unsup.) 1,344 1,024 54.00 54.47
GloVe (840B) 22M 2,513 300 44.83 49.71 SimCSE (Unsup.) 438 768  53.35 51.91
FastText wiki-news (16B) 1.0OM 1,144 300 39.01 46.03 Patent-SimCSE (Unsup.) 438 768 50.51 48.33
FastText crawl (600B)  2.0M 2,289 300 47.36 49.32 Sentence-BERT (Sup.) 438 768  59.82 57.66
Word2Vec news (100B) 3.0M 2,861 250 44.04 44.72 SimCSE (Sup.) 438 768  56.63 56.81
ArXiv-HUPD (Ours) ArXiv-HUPD - unigrams (Word2Vec) (Ours)
- uni (FastText) (2.2B) 53M 6,006 300 51.25 49.92 CharEmb Small (Unsup.) 13 41.68 39.55
-uni (Word2Vec) (2.2B) 1.8M 1,403 200 50.82 52.97 CharEmb Base (Unsup.) 38 200  47.57 46.16
- uni + terms (1.8B) 52M 3984 200 51.62 53.91 CharEmb Large (Unsup.) 86 47.58 45.60
ArXiv-HUPD - unigrams + terms (Ours)
Table 1: Static context-independent word embeddings. ~ CharEmb Small (Unsup.) 13 55.53 56.73
Brackets denote the number of token of the corpus. ~ CharEmb Base (Unsup.) 38 200 58.53 59.66
CharEmb Large (Unsup.) 86 59.84 60.52

Training static embeddings on ArXiv-HUPD improves
significantly the correlation with the human annotations.

Pearson Correlation

Models Original Reconstr. A Compression
CharEmb Small 13mp 49.70 —-3.7% 306x
CharEmb Base ;s 51.62 54.33 +5.3% 236x
CharEmb Large semB 55.97 +8.4% 46x

Table 2: Reconstructed static word embeddings. We re-
port the correlation of the original ArXiv-HUPD embed-
dings (uni + terms) and the reconstructed ones inferred
by our models. CharEmb Base achieves a compression
by a factor of 236 and an improvement of +5.3%.

as news and crawled websites. Our embeddings
trained on only 2 billion tokens outperform embed-
dings trained over corpora that are up to 2 order of
magnitude larger. Further, we see that our static-
embedding matrices including terms are providing
only a marginal improvement, as the terms do not
necessarily cover concepts present in the dataset.

After focusing on the raw embedding matrices,
we evaluate the quality of our CharEmb models
as compressors. In practice, we repeat the same
experiments when the best ArXiv-HUPD word em-
bedding matrix is fully reconstructed by project-
ing each vocabulary entry using a character-based
model trained with our approach. We report corre-
lations for models based on the Long Short-Term
Memory (Hochreiter and Schmidhuber, 1997), be-
cause in our experiments, it offered significantly
better results than Gated Recurrent Unit (Chung
etal., 2014) and Transformer (Vaswani et al., 2017).
We report the performance for three model sizes:
Small (13MB), Base (38MB), and Large (86 MB).

Table 2 shows that our base (38MB) and large
(86MB) models compress the embedding matrix
they are trained on and improve its quality accord-
ing to the Pearson correlation (similar trend with
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Table 3: Sentence-based word embeddings via predic-
tions. CharEmb is unsupervised, at least 5x smaller, and
outperforms large supervised and unsupervised base-
lines. Training CharEmb on ArXiv-HUPD that contains
unigrams clearly underperforms, showing how impor-
tant multiword expressions are during training.

Spearman). This means that a model of solely 38
MB not only can fully reconstruct the 3.98 GB
matrix it has been trained on, given only its vo-
cabulary (236x space reduction), but also that the
reconstructed matrix provides a correlation gain of
+5.3% compared to the original one.

4.2 Sentence (Contextualized) Embeddings

In Table 2 we use our models to reconstruct an orig-
inal embedding matrix. The reconstructed matrix
is used as a static pre-trained embedding matrix:
given a phrase in the test of the patent dataset, we
compute the representation as the average of the
unigrams. Instead, in this section we use our mod-
els as text encoders, which means performing the
inference with our CharEmb models to extract rep-
resentations of the phrases present in the test set.
Following Aslanyan and Wetherbee (2022), we
compare our CharEmb variants with the follow-
ing pre-trained models used as text encoders:
BERT (Devlin et al., 2019), Patent-BERT, and
the sentence encoder Sentence-BERT (Reimers
and Gurevych, 2019) trained on the natural lan-
guage inference datasets (Bowman et al., 2015;
Williams et al., 2018). We augment the pro-
posed baselines with a popular sentence-encoding
method SimCSE (Gao et al., 2021), which can
be trained with supervision (similarly to S-BERT)
or in an unsupervised manner. For the latter,
we include the publicly-available variant trained
on Wikipedia (Unsupervised SimCSE) and train



our own model over the small ArXiv-HUPD
dataset (Patent-SimCSE).2

In Table 3, we report the Pearson and Spear-
man correlation when using text encoders to pro-
duce text representations via inferencing to a model.
Thanks to our approach, lightweight LSTM-based
models outperform larger BERT-based models in
a zero-shot setup. Our large model is 5x smaller
than Sentence-BERT and SimCSE and yet provides
better representations. Training CharEmb does not
require any manual annotation, since embeddings
are trained with self-supervision and the term ex-
traction is fully unsupervised. Our smallest model
outperforms all unsupervised approaches. Fur-
thermore, we note that term extraction is a funda-
mental component for the creation of high-quality
CharEmb models. When training over unigram-
only embeddings, our models performance drops
significantly to the levels of BERT.

Finally, in Figure 3 we show that our models not
only provide the best representations, but also of-
fers substantially lower inference latencies on both
high-end GPUs and a single-core CPU. Moreover,
training CharEmb Large on an embedding matrix
with a vocabulary of five million entries takes only
three hours on a single NVIDIA Tesla A100, which
is a negligible time compared to the 10 days re-
quired to train SimCSE on the same dataset.

5 Related Work

Static embeddings trained with self-supervised se-
tups became popular with word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014). While
those algorithms have been originally introduced
to embed individual tokens, the approach can be
generalized to entire phrases or multiple token en-
tities by preprocessing training corpora such that
multiple tokens are merged into one. FastText (Bo-
janowski et al., 2017) can be seen as an extension
to Word2Vec which relies on n-grams to extract
representations of unseen text.

Contextualized embeddings (e.g., Elmo (Peters
et al., 2018)) are created by taking into account the
contex of each token. Sentence encoders (Schuster
et al., 2019; Cer et al., 2018) are a generalization
of contextual embeddings. They can be trained on
sentence-level tasks using supervised datasets, such
as NLI, or with unsupervised methods (Gao et al.,
2021; Wang et al., 2021). Our method to train text

2Additional results when training CharEmb on GloVe, Fast-
Text, and Word2Vec embeddings are shown in Appendix B.
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Figure 3: Inference latencies with batch size 1 on a Tesla
A100 GPU and a single-core CPU. Our models provide
high-quality embeddings on a low-compute budget.

encoders is fully unsupervised and provides higher-
quality representations than supervised encoders.
Embedding compression is a topic of great in-
terest not only for natural language processing
(Pansare et al., 2022; Liao et al., 2020), but also
in recommender systems (Zhang et al., 2020; Kim
et al., 2020; Shi et al., 2020). The primary goal
of our work is not to reduce the size of a static
embedding matrix, but rather to generalize the em-
beddings to entries not seen at training time.
Work has been done to align embedding spaces
coming from different models (Joulin et al., 2018;
Schuster et al., 2019; Grave et al., 2019). Instead
of aligning spaces coming from static embeddings
and sentence encoders, we introduce text encoders
trained to project text in the same space of a static
embedding matrix used as a training dataset.

6 Conclusion

Creating embeddings for terms and phrases is
of paramount importance for complex natural
language processing platforms targeting highly-
technical domains. While out-of-the-box pre-
trained sentence encoders are often considered as
baselines, representations of similar quality can
be obtained with substantially lighter and simpler
character-based models which are 5 times smaller
in size and /0 times faster at inference time, even
on high-end GPUs. The key to obtaining such
results is to realize that large static embedding ma-
trices storing representations for tokens and terms
constitute a very rich supervised dataset to train text
encoders working at the character level. Since both
term extraction and embedding training can be per-



formed without any labeled data, we have proposed
a method to train text encoders which does not re-
quire any label. Those models are trained with the
objective of reconstructing the original embedding
matrix and can not only be used as lighter alter-
natives to sentence encoders, but also as lossless
compressors for large embedding matrices.
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A Training Details

To perform the experiments described in Table 3
we use pre-trained models publicly available in
HuggingFace:

* BERT:

bert-large-uncased.

* Patent-BERT:
anferico/bert-for-patents.

* Sentence-BERT:
sentence-transformers/all-mpnet-base-v2.

* Supervised-SimCSE:
princeton-nlp/sup-simcse-bert-base-uncased.

* Unsupervised-SimCSE:
princeton-nlp/unsup-simcse-bert-base-uncased.

Regarding hyperparameter tuning, the baselines
do not need any tuning since all experiments are in
a zero-shot fashion. For EmbChar, we only tune
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Correlation

Original Reconstr. Context.
Pre-trained embedding IVoc.| Size (MB) Dim. Pear. Spear. Pear. Spear. Pear. Spear.
GloVe (6B) 0.4M 458 300 42.37 43.95 36.82 41.15 27.36 31.36
GloVe (42B) 19M 2,194 300 40.30 45.83 29.89 42.93 20.66 21.35
GloVe (840B) 22M 2,513 300 44.83 49.71 39.32 47.39 18.97 22.79
FastText wiki-news (16B) 1.OM 1,144 300 39.01 46.03 30.72 45.66 28.82 27.47
FastText crawl (600B) 20M 2289 300 47.36 49.32 4591 49.79 34.49 35.67
Word2Vec news (100B) 3.0M 2861 250 44.04 44.72 40.77 45.28 45.54 46.09
ArXiv-HUPD uni (2.2B) 1.8M 1,403 200 50.82 52.97 54.28 55.21 47.58 45.6
ArXiv-HUPD uni + terms (1.8B) 5.2M 3,984 200 51.62 53.91 55.97 57.27 59.84 60.52

Table 4: Additional results when training CharEmb Large (86 MB) on standard pre-trained word embedding matrices.
Without multiword expression, the reconstruction and contextualized via prediction performance are limited.

the encoder by using LSTM, GRU, or Transformer
on the validation set. More specifically, we split the
word embedding matrix into train and validation
sets with a ratio of 80-20. No other hyperparam-
eters have been explored. We stop the training of
EmbChar using early-stopping on the validation
set when the average cosine similarity has not been
improved since 10 epochs.

Our hyperparameters are shown in Table 5. We
train our word embedding with Word2Vec with
CBOW and a window size of 8 and 25 epochs. For
FastText, we kept the default parameters.

All experiments have been run on the following
hardware:

* CPU: AMD EPYC 7763 64-core processor.
* RAM: 1.96 TB.

* GPU: NVIDIA Tesla A100.

* OS: Red Hat Enterprise Linux 8.6.

* Software: PyTorch 1.12.1, CUDA 11.6.

We emphasise that we train the word embedding
matrices on a 16-core virtual machine hosted on
AMD EPYC 7742. An epoch takes approximately
25 minutes. Training our embedding matrix ArXiv-
HUPD uni + terms requires less than 10 dollars of
compute budget in the cloud. Training our model
EmbChar Large thereafter takes a few hours on a
single NVIDIA Tesla A100, costing approximately
$5 to $10%. In contrast, training SimCSE on the
same dataset takes around 10 days.

3The hourly pricing for spot instances with one A100 GPU
is in the range $1.25-$1.5 in public cloud offerings.
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EmbChar EmbChar EmbChar
Hyperparameter Small Base Large
Hidden dimension 512 512 768
Number of layers 1 2 2
Bidirectional True True True
Dropout 0.2 0.2 0.2
Learning rate 0.001 0.001 0.0005
Weight decay le-8 le-8 le-8
Batch size 256 256 256

Table 5: The hyperparameter for all EmbChar variants.

B Additional Results

In Table 4 we report the results for the experi-
ments in Section 4 when training our CharEmb
Large (86MB) on different word embedding ma-
trices. For each of the embedding matrix consid-
ered, we measure the Pearson and Spearman cor-
relation for the three setups: i) the original embed-
ding matrix (Original), ii) an embedding matrix
reconstructed using the same vocabulary of the
original one (Reconstr.), and iii) when the embed-
ding of given terms are contextual, i.e., predicted
with a CharEmb model trained over the original
matrix (Context.). The table showcases multiple
important findings. First, among the pre-trained
models, the vocabulary size plays a significant role
to achieve high correlation, with the Word2Vec
model with a vocabulary of 3 million entries outper-
forming embedding matrices that have been trained
over larger datasets (e.g., Glove 840B or FastText
crawl). Second, the domain of the corpus used to
train the embeddings plays a significant role. By
training with a corpus of only 2 billion in-domain
tokens, an embedding matrix with a vocabulary
of 1.8 million entries achieves similar correlation



of much larger embedding matrices. Third, our
CharEmb model achieves the best performance
when trained with an embedding matrix containing
embeddings for terms. Predicting the embeddings
with our CharEmb model allows to achieve signif-
icantly higher correlation than the original matrix
containing terms.
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Abstract

Large-scale pre-trained text-image models with
dual-encoder architectures (such as CLIP (Rad-
ford et al., 2021)) are typically adopted for
various vision-language applications, includ-
ing text-image retrieval. However, these mod-
els are still less practical on edge devices or
for real-time situations, due to the substan-
tial indexing and inference time and the large
consumption of computational resources. Al-
though knowledge distillation techniques have
been widely utilized for uni-modal model com-
pression, how to expand them to the situation
when the numbers of modalities and teach-
ers/students are doubled has been rarely stud-
ied. In this paper, we conduct comprehen-
sive experiments on this topic and propose the
fully-Connected knowledge interaction graph
(Cona) technique for cross-modal pre-training
distillation. Based on our findings, the result-
ing ConaCLIP achieves SOTA performances
on the widely-used Flickr30K and MSCOCO
benchmarks under the lightweight setting. An
industry application of our method on an e-
commercial platform further demonstrates the
significant effectiveness of ConaCLIP.!

1 Introduction

Text-image retrieval (TIR) aims at retrieving a list
of the most relevant images from a large image
collection when a specific text query is given. With
the rapid development of information interaction
and social intercourse, it has been regarded as a
crucial component of cross-modal applications and
required by various real-world scenarios, such as
e-commercial platforms (sites).

Recently, inspired by the great success of pre-
trained language models (Devlin et al., 2019; Liu

*Contribution during internship at Alibaba Group.
f Co-corresponding authors.
'Related resources will be publicly available in the
EasyNLP framework (Wang et al., 2022a). URL: https:
//github.com/alibaba/EasyNLP.
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et al., 2019; Brown et al., 2020), research on large-
scale vision-language pre-training (Tan and Bansal,
2019; Li et al., 2020; Radford et al., 2021; Li et al.,
2022; Wang et al., 2022b, 2023) has achieved re-
markable progress on a variety of vision-language
tasks, including text-image retrieval. These exist-
ing methods can be typically classified into two cat-
egories according to the model architecture: cross-
encoder and dual-encoder. Cross-encoder typi-
cally adds additional Transformer (Vaswani et al.,
2017) layers to model the deep interaction between
image and text representations. It can generally
boost the retrieval performance, while resulting in
an unbearably slow retrieval speed when applied to
the entire image collection since the cross-modal
costs are required for each image sample whenever
a new text query is given. In contrast, dual-encoder
encodes the visual and textual inputs in a wholly
decoupled manner. The image representation is
allowed to be pre-computed and re-used indepen-
dent of the text queries. Such approaches can also
utilize fast approximate nearest neighbor (ANN)
search (Muja and Lowe, 2009; Jegou et al., 2010;
Johnson et al., 2019) at runtime.

Although dual-encoder is usually preferred for
real-world applications, the existing related models
such as CLIP (Radford et al., 2021) are still less
practical on edge devices with limited computing
resources, or for the dynamic indexing scenario,
e.g., private photos/messages collections (sites). To
address this issue, we aim to start from the large-
scale pre-trained dual-encoder models and focus
on the pre-training distillation to present a series
of much smaller, faster, and effective counterparts.
Knowledge distillation (KD) (Hinton et al., 2014)
is proposed to transfer knowledge with soft targets
from a teacher to a student in the same modality.
MOoTIS (Ren and Zhu, 2022) simply repeats intra-
modal InfoNCE-based (Oord et al., 2018) learn-
ing in both text and image domains for distillation.
Nevertheless, when the number of modalities dou-
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bles for dual-encoder structure, which means text
and image teachers as well as text and image stu-
dents, these methods still only involve intra-modal
teacher-student knowledge interaction learning. In-
stead, in this paper, we comprehensively explore
the fully-Connected knowledge interaction graph
(Cona) between every possible teacher-student or
student-student pair. As shown in Fig. 1, each
two-way arrow represents the knowledge interac-
tion learning between the two models it points to.
And the aforementioned KD and MoTIS belong
to a single blue arrow and the two blue arrows,
respectively. Moreover, in order to better explore
the potential of Cona, we implement and inves-
tigate various supervision strategies to guide the
model optimization, which finally makes each type
of learning contribute to the overall improvement.

We release various sizes of lightweight dual-
encoder models named ConaCLIP for different
real-world scenarios. Compared with the pre-
vious SOTA method (Ren and Zhu, 2022), our
ConaCLIP achieves 10.6/12.9/12.8 R@1 gains on
Flickr30K/MSCOCO (1K)/MSCOCO (5K) bench-
marks under the same model setting. We have also
verified its effectiveness on an e-commerce plat-
form. It can achieve 1.44x/1.92~4.86 x inference
speed-up with competitive performances given im-
age/text queries. The main contributions of this
paper can be summarized as follows:

* We propose a new pre-training distillation
method with the fully-connected knowledge
interaction graph (Cona) for lightweight dual-
encoder models.

* We release a series of lightweight Cona-
CLIP models to the open-source commu-
nity, which can significantly surpass previous
SOTA models on the widely-used Flickr30K
and MSCOCO benchmarks.

* We provide a real-world application of this
method in real industrial scenarios to further
demonstrate its practical values.

2 Related Work

Cross-encoder (Tan and Bansal, 2019; Li et al.,
2019; Chen et al., 2020; Li et al., 2020; Chen
et al., 2022) refers to multiple layers of dense cross-
modal interactions, e.g., cross-attention (Vaswani
et al., 2017), are typically employed to image and
text representations for more fine-grained merge
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and alignment. Although it often achieves superior
retrieval accuracy thanks to the patch/token-level
integration, the high memory cost and computation
inefficiency make it impractical under time-critical
real-world settings.

Oppositely, for dual-encoder (Zhang et al., 2020;
Jia et al., 2021; Radford et al., 2021; Dou et al.,
2022), image and text features are encoded into a
joint embedding space separately, and the modality
interaction is only handled by a simple cosine sim-
ilarity of the final image and text feature vectors.
Such approaches can be regarded as scalable and
indexable: the specific choices of encoder archi-
tectures can be independent and dynamic, and the
late-interaction scheme allows for efficient large-
scale searching.

Pre-training distillation for lightweight dual-
encoder architecture has been rarely studied.
Vanilla knowledge distillation (Hinton et al., 2014)
can be referred to as the knowledge transfer from
a teacher to a student in the same modality based
on soft targets. However, it is a general proce-
dure without awareness and pertinence for cross-
modal learning. MoTIS (Ren and Zhu, 2022) sep-
arately compresses text or image encoder with an
intra-modal contrastive objective that aligns the
output embeddings of the student and teacher of
each modality, which can be seen as an alternative
form of knowledge distillation. Nevertheless, these
methods ignore or do not find an appropriate ap-
proach to leverage the cross-modal distillation pro-
cess. Further than them, our method is dedicated
to exploring the fully-connected knowledge inter-
action graph for dual-encoder distillation, which is
a natural and effective extension.

3 Methodology

In this section, we first give the preliminary knowl-
edge, then propose our pre-training distillation
framework with Cona. Finally, we introduce vari-
ous supervision strategies.

3.1 Preliminary

For the sake of explanation, we abbreviate text,
image, teacher and student as T', I, tch and stu re-
spectively. F' represents the L2-normalized feature
vector outputted by the encoder architecture F.
Before student learning, the teachers EL, and
Etlch are commonly first pre-trained using an ob-
jective that pushes the embeddings of matched
text-image pairs closer while pushing those of non-
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Figure 1: Our dual-encoder pre-training distillation
framework with Cona. Each color of two-way arrows
represents a type of knowledge interaction learning. At
this stage, the teacher encoders are frozen.

matched ones apart, with large model capacity and
massive data. Specifically, CLIP (Radford et al.,
2021) takes the InfoNCE (Oord et al., 2018) loss
as the supervision form. Without losing general-
ity, given two outputted feature vectors F'* and
Fb ¢ RN%d we define that:

-
exp(FAFY /7)
pij(F*.F") = e e
> exp(FPEY /T)
|
InfoNCE b
Lipa? o Z—N;log(pi,i(F‘ﬂF ), (2)
1=

where N is the mini-batch size, d is the channel
size and 7 is the temperature hyper-parameter. The
final loss of CLIP can be formulated as:

LCLIP — EInfoNCE

T I
Ftch%Ftch

+ EInfoNCE

I T -
FtchA)Ftch

3)

Next, the pre-training distillation of students

EZX . and EZL begins, with parameters of teach-

ers EtTCh and E{Ch frozen. MoTIS (Ren and Zhu,

2022) also adopts the InfoNCE-based loss at this
stage, and implements it in both text and image

domains separately:

MoTIS InfoNCE
LMo :»CHTO

T
Fstu*)Ftch

InfoNCE
+‘CF,I —FI -

stu tch

4

According to the subscript in Eq. (4), it is easy to
see that MoTIS only involves intra-modal teacher-
student learning.

3.2 Pre-training Distillation with Cona

Unlike existing works, our method introduces
the fully-connected knowledge interaction graph
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(Cona) for pre-training distillation. Apart from
intra-modal teacher-student learning, our method
also includes intra-modal student-student learn-
ing, inter-modal teacher-student learning and inter-
modal student-student learning, as shown in Fig. 1.
This fully-connected learning graph established for
students F, and EZ  serves as an integration of
multi-view and multi-task learning schemes, which
can strengthen the robustness and effectiveness
(Caruana, 1997; Luong et al., 2016; Aghajanyan
et al., 2021) required by pre-trained models.

We suggest that each type of learning process
in Cona should be concretely implemented in de-
tailed supervision strategies. Therefore, we pro-
pose and investigate various supervision strategies
in the next subsection.

3.3 Supervision Strategies

Here we continue to use F% and F? (prediction)
along with Fo and Fb (target) as placeholders for
illustration, and present the following effective su-
pervision strategies:

InfoNCE loss is a type of contrastive loss function.
It has been formulated in Eq. (2), and successfully
applied for distillation by Eq. (4).

Feature-wise distance (FD) loss directly mini-
mizes the distance between feature vectors. We
utilize squared L2-norm as the measure:

®)

Similarity-wise distance (SD) loss minimizes the
distance criterion between similarity matrices:

SD -
Fo—FboFa—Fb

1

N2
%

M=
M=

ambT _ Tamb 2
(FeF' — FaF? )2,

(6)

D=
Il
-

1

Since F®, F’ Fa and F® have been L2-
normalized, the values of cosine-similarities

—~T
FiaFJ’?T and FZ.“FJI? are in the range [—1, 1]. The
distance between prediction FiaFJI?—r and target

F?FJ’?T needs to be shortened. Hence, the squared
L2-norm is also adopted here.

KL-Div loss uses the Kullback—Leibler divergence
to measure the difference between the predicted
and the target probability distributions. Given p; ;
acquired by softmax operation shown in Eq. (1), it
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Table 1: Detailed loss functions of all combinations of knowledge interaction learning and supervision strategies.
"Sym-" is the symmetric version loss function. "\" indicates the combination is meaningless.

minimizes the following optimization objective:

KL-Div  _ _ 1 % % i (FO Fb)logw
Feospb|Fespt N i=1j=1 " ’ pii (F@,F?)
(7

It is worth noting that, when performing the
learning process indicated by an arrow shown in
Fig. 1, the common practice is to use teachers’
outputs Fg;h and Ftlch as target in Eq. (6)(7) that
students learn from. While in our case with two
modalities available, we propose to use the paired
arrow as the target, and we call this the symmet-
ric version (for SD loss and KL-Div loss). For
example, inter-modal teacher-student learning im-
plemented with KL-Div loss can be formulated as

£K%_Div I T I + ﬁK%_DiV T I T
Fstu_>FtCh||Ftch_>Ftch Fs‘nu._)FtchIIF(;ch_)Ftch7
(®)
while its symmetric version is
EKL—DiV + EKL—DiV
sttﬂu_>FtIch ||FsIt:ll_>Ft1;h FsIt11_>Ft,1;h ||F$ll_>FtIch '
©))

This modification deepens the interaction between
the four encoders during optimization.

So far, any one of the learning types can be con-
cretely implemented by any one of the supervision
strategies, except for a few meaningless combina-
tions. Detailed loss functions are listed in Tab. 1.

4 Experiments

4.1 Setup

We use Conceptual Caption (CC3M) (Sharma et al.,
2018) and Conceptual 12M (CC12M) (Changpinyo
et al., 2021) for pre-training distillation, which con-
sist of 3M and 12M noisy text-image pairs respec-
tively. During fine-tuning, we use MSCOCO (Lin
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et al., 2014) and Flickr30K (Plummer et al., 2015)
as benchmarks. MSCOCO has 113,287 images for
training, 5K images for validation, and both 5K
and 1K for testing. Flickr30K has 28,783 images
for training, 1K images for validation, and 1K for
testing. Following previous works, we use recall
R@k (k=1,5,10) as the main metric.

We use the open-source CLIP (Radford et al.,
2021) with ViT-B/32 (Dosovitskiy et al., 2020) as
the teacher model. Its image encoder is a 12-layer
ViT with the hidden size to be 768 and 12 attention
heads. Its text encoder is a 12-layer Transformer
with hidden size to be 512 and 8 attention heads.

For the student model, we use ViT-S/16 with
hidden size to be 384 as the image encoder, and ini-
tialize it from the pre-trained weights on ImageNet-
21K (Ridnik et al., 2021). For the text encoder,
we experiment with 2, 4 and 6-layer Transformer,
of which the weights are initialized from the first
corresponding layers of the teacher’s text encoder.
The details of model settings are shown in Tab. 6.

In pre-training distillation, we train the student
models in 4 epochs using AdamW (Loshchilov and
Hutter, 2018) with a batch size of 1024 for both
images and texts, the learning rate of 3e-4, and the
weight decay of 0.1. We employ a cosine learning
rate scheduler with 10,000 warm-up steps. In fine-
tuning, we use the same optimization setting as
in MoTIS (Ren and Zhu, 2022). Experiments are
conducted on 4 NVIDIA TESLA V100 32G GPUs.

4.2 Ablation Study

Considering our complete pre-training distillation
takes a relatively long time, we follow the setup
of (Ren and Zhu, 2022) and train ConaCLIP on
CC3M for 1 epoch with batch size 84 to conduct
the ablation study. Taking Eq. (4) as the naive
baseline, we aim to find out which of the proposed



Supervision Strategies

Learning Type } InfoNCE FD SD KL-Div Sym-SD Sym-KL-Div
intra-modal stu-stu learning | \ \ 58.8/83.7/90.1 57.1/82.7/88.8 57.1/82.0/89.2 56.8/81.6/88.6
inter-modal stu-stu learning | 34.7/58.7/69.9 56.6/382.1/88.8 58.6/83.6/90.0 56.5/82.4/88.9 \ \
intra-modal tch-stu learning | 57.6/82.4/89.01 57.6/82.0/88.4 58.5/83.2/89.6 55.1/80.0/87.4 58.7/83.4/89.9 56.3/81.5/88.3
inter-modal tch-stu learning | 51.4/76.3/83.8  50.0/80.7/88.4 57.6/82.5/88.6 56.9/81.8/88.7 56.9/81.8/88.7 59.1/83.4/89.8

Table 2: Ablation study of text-image retrieval R@1/5/10 on Flickr30K. 'Baseline. Bold denotes all R@ks have
obvious improvements. All five losses in bold will be added to the baseline loss to finally serve as our framework.

\ Text \ Image \ Flickr30K MSCOCO (1K) MSCOCO (5K)
Model Encod Encod
\ neoder neoder | R@l R@5 R@I0 R@l R@5 R@I0 R@I R@5 R@I0
(a) Fair Comparisons
InfoNCE-based 384 680 780 533 853 935 315 603 733
Cross-modal KD , ) 41.1 706 800 549 860 93.6 334 619 744
MoTIS CLIP'SISI26] | VIT-S/68A/12] | o7 00| 888 627 882 945 426 696 794
ConaCLIP (Ours) 60.6 852 912 686 924 967 473 761 852
(b) Model Zoo and Benchmarks
ConaCLIP-6L (Ours) | CLIP’s[512/6] 67.6 896 944 756 946 974 554 835 899
ConaCLIP-4L (Ours) | CLIP’s[512/4] | ViT-S/16[384/12] | 67.0 89.3 942 754 946 974 553 83.1 899
ConaCLIP-2L (Ours) | CLIP’s[512/2] 656 892 939 747 943 973 541 822 894

Table 3: (a) Fair comparisons of text-image retrieval results on Flickr30K and MSCOCO (1K and 5K). (b) Our
model zoo and the corresponding benchmarks. Bold indicates the best performance. "[m/n]" represents n layers

with the hidden size to be m.

combinations of learning types and supervision
strategies can bring further improvements. The
fine-tuned results on Flickr30K is shown in Tab. 2.

We can make some observations that: 1) With
an appropriate choice of detailed supervision strate-
gies, each type of learning can further bring ob-
vious improvements on the basis of the baseline.
2) The effect of each learning type is greatly af-
fected by the implemented loss function. It also
indicates that the pre-training distillation process
should be carefully explored regarding the supervi-
sion strategy. 3) Our proposed symmetric version
losses (Sym-SD and Sym-KL-Div) can generally
achieve superior performances to the standard ones
for (intra/inter-modal) teacher-student learning.

We can also attain several findings that: 1) For
(intra/inter-modal) student-student learning where
students first make knowledge interaction and then
learn together from teachers, SD loss performs the
best. Because the actual retrieval application uses
this cosine similarity to rank candidates, it can help
students acquire goal-oriented knowledge more di-
rectly. It also relaxes the learning task of students
from teachers’ feature space to the similarity space.
2) For (intra/inter-modal) teacher-student learning,
our proposed symmetric version losses are more
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suitable. Compared with the standard losses, they
make the knowledge interaction between teachers
and students closer during optimization. In this
regard, student encoders can cooperate more inti-
mately in downstream tasks. 3) Although the naive
intra-modal teacher-student learning with InfoNCE
loss can serve as a competent baseline, the addi-
tion of SD and Sym-SD losses of the same learning
type can complement its effectiveness. On the other
hand, the other three different learning types with
proper loss choices can also benefit the effect of
pre-training distillation. More findings on distilling
intermediate layers are shown in A.2.

Our method has been established with the further
integration of the highlight (in bold) combinations
in Tab. 2 based on the baseline. The effect after full
integration is shown in Tab. 3(a).

4.3 Performance

Fair Comparisons. In order to better verify the
effectiveness of ConaCLIP, besides the previous
SOTA, we also experiment with two strong baseline
methods. As shown in Tab. 3(a), InfoNCE-based in-
dicates the naive cross-modal contrastive learning
procedure. Cross-modal KD represents distilling
the cross-modal in-batch probability distribution
of teachers into students. All these experiments



‘ Text-Image Retrieval ‘ Image-Text Retrieval ‘ Disk Space (MB)

Model QPS;  QPS;

| R@1 R@5 R@I10|R@1 R@5 R@IO |
CLIP 165 480 613 | 180 497 622 578 1.00x  1.00x
EC-CLIP 250 635 760 | 259 641 757 578 1.00x  1.00x
EC-ConaCLIP-6L | 243 624 756 | 248 624 739 254 1.92x  1.44x
EC-ConaCLIP-4L | 236 61.1 743 | 220 597 722 230 271x  1.44x
EC-ConaCLIP-2L | 23.0 60.7 73.5 | 21.8 593 72,0 206 4.86x 1.44x

Table 4: Performance of the industry application. "EC-

indicates the acceleration rate of QPS.

are conducted under the pre-training setup of (Ren
and Zhu, 2022) for fair comparisons. As can be
observed, 1) Cross-modal KD which introduces
the knowledge distillation process obviously out-
performs the standard InfoNCE-based approach.
2) MoTIS greatly surpasses InfoNCE-based and
Cross-modal KD. This reveals the superiority of
intra-modal teacher-student learning over inter-
modal student-student learning in the case of dual-
encoder distillation. 3) Our ConaCLIP shows sig-
nificant improvements compared with competitors
on all evaluation metrics: 3.6/3.1/2.4 R@1/5/10
gains on Flickr30K, 5.9/4.2/2.2 R@1/5/10 gains on
MSCOCO (1K) and 4.7/6.5/5.8 R@1/5/10 gains on
MSCOCO (5K). This fully demonstrates the effec-
tiveness of our distillation framework with Cona.

Model Zoo and Benchmarks. In order to bet-
ter promote the development of cross-modal text-
image research, we release a series of lightweight
dual-encoder models. Their benchmark results are
shown in Tab. 3(b). In this case, the power of Cona-
CLIP is further unlocked and brings further im-
provements. Specifically, even ConaCLIP-2L can
achieve 8.6/7.1/5.1 R@1/5/10 gains on Flickr30K,
12.0/6.1/2.8 R@1/5/10 gains on MSCOCO (1K)
and 11.5/12.6/10.0 R@1/5/10 gains on MSCOCO
(5K) compared with the previous SOTA. We have
also found that the capacity of the text encoder may
have limited effects on these performances. For
example, ConaCLIP-4L can achieve competitive
results with ConaCLIP-6L, and ConaCLIP-2L
has only minor drops.

5 Industry Application

We apply the proposed technique to end-to-end
cross-modal retrieval in an e-commerce platform,
where we vectorize the search queries and the prod-
ucts and then perform product retrieval and rank-
ing with nearest-neighbor search (Muja and Lowe,

" is the e-commercial version of our model. QPS;/QPS;

2009; Jegou et al., 2010; Johnson et al., 2019),
as shown in Fig. 2. We first collect massive data
of text-image pairs from e-commerce products in
our platform, where the titles of products can act
as text information. We utilize most of the data
to pre-train an e-commerce version of the CLIP
model (denoted as EC-CLIP) with ViT-B/32 as the
image encoder, which is overly large for online de-
ployment. For the remaining data, we utilize 3M
pairs for distilling the lightweight EC-ConaCLIP.
To evaluate its effectiveness, we hold out a sepa-
rate set of 100K pairs for fine-tuning and SK/5K
pairs used in validating/testing. In this set of experi-
ments, we train EC-ConaCLIP for 20 epochs in pre-
training distillation, and fine-tune both EC-CLIP
and EC-ConaCLIP for 5 epochs. The remaining
settings are the same as in Section 4.1.

In apart to the R@k metric, we also report the
disk space (MB) and the acceleration rate of Query
Per Second (QPS; for image and QPS; for text)
to evaluate model’s memory footprints and infer-
ence speed. In Tab. 4, we report the averaged
results where the inference speed is tested on an
NVIDIA TESLA V100 (16G) GPU. As seen, the
compressed EC-ConaCLIP-6L only takes 44%
disk space (254MB) of EC-CLIP meanwhile be-
ing 1.44x/1.92x faster with image/text queries.
It also performs on par with EC-CLIP. Our EC-
ConaCLIP-2L can further achieve up to 4.86x
inference speed-up with text queries, and 64% size
reduction (from 578MB to 206MB). We provide
some case studies in A.4.

6 Conclusion

In this paper, we propose Cona for pre-training
distillation with dual-encoder architecture. It gath-
ers every type of knowledge interaction learning
with appropriate supervision choice to benefit the
cross-modal distillation. The resulting ConaCLIP

76



achieves superior performances on both general
benchmarks and industry applications.

For future work, we will explore more variants
of visual encoders, and continue to tap the potential
of dual-encoder distillation.
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A Appendix
A.1 Model Settings

We give detailed parameters on the settings of our
ConaCLIP models in Tab. 6, such as the number of
parameters, layers, heads, etc.

Model Setting ‘ ConaCLIP-6L ConaCLIP-4L ConaCLIP-2L

Number of Parameters ‘ 66M 60M 53M
Text Encoder Layers 6 4 2
Text Encoder Heads 8 8 8
Text Encoder Hidden Size 512 512 512
Vocabulary Size 49408 49408 49408

77

12
6
384
16
224

77

12
6
384
16
224

Text Length 77

12
6
384
16
224

Image Encoder Layers
Image Encoder Heads
Image Encoder Hidden Size
Image Patch Size

Image Size

Table 6: Detailed parameters on the settings of our
ConaCLIP models.

A.2 Negative Results on Distilling
Intermediate Layers

We also present an exploratory study on distilling
the knowledge of intermediate layers from teacher
encoders. We first evenly divide the encoder of
each student/teacher into six parts along the num-
ber of layers, and then perform our distillation tech-
nique on the feature representations of each part.
The experiment results are shown in Tab. 5.

We can observe that additional distillation with
features of the intermediate layers does not bring
about positive improvement. This inspires us
that we should mainly focus on the representation
matching ability of the output of the last layer for
the cross-modal retrieval task. Due to the differ-
ence of capabilities between models of different
sizes, they can choose different paths to learn the
goal-oriented features in the same task during dis-
tillation (Li et al., 2021; Zhu and Wang, 2021; Xu

Applied Parts | R@1 R@5 R@10
6th (Baseline) | 60.6 85.2  91.2
5-6 59.5 842 907
4-6 59.5 843  90.9
3-6 579 835 902
2-6 58.6 841 909
1-6 59.2 845  90.8

Table 5: An exploratory study on distilling intermediate
layers. The R@1/5/10 results on Flickr30K are listed.
Each student/teacher encoder is evenly divided into six
parts along the number of layers, and distillation is
performed on the feature representations of each part.
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et al., 2022). In our application, we suggest that it
can be inappropriate to force small models to learn
the same path as the large ones.

A.3 Application in E-Commerce Product
Retrieval

We apply the proposed distillation technique to
end-to-end cross-modal retrieval in an e-commerce
platform, where we vectorize the search queries
and the products and then perform product retrieval
and ranking with nearest-neighbor search. The
whole framework is shown in Fig. 2.
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Figure 2: The application of our ConaCLIP in e-
commerce retrieval.

A4 Case Study

Case Query CLIP EC-ConaCLIP (Ours)

Waterproof large capacity
lightweight fashion unicorn
cartoon kids girl middle
school backpack.

Stainless steel induction
steamers pot, 2 layers
double handle food
cooking pots with lid.

Children’s sand hammer
wooden bell multi-color
children’s development toy.

Hot red large size sports
tights high waist yoga
pants.

Tempered glass waterproof
platform 5kg digital food
electric kitchen scale.

Table 7: Case studies in e-commerce retrieval. Given
the same text query, we show the image retrieval results
of the open-source CLIP and our EC-ConaCLIP.

Tab. 7 shows the case studies in our e-commerce
retrieval scenario. For the same text query, we



show the top-1 image retrieval results of the open-
source CLIP model and our EC-ConaCLIP model
respectively.

From these cases, we can find that our model
can better capture conceptual and fine-grained fash-
ion information during cross-modal text-image re-
trieval, and maintain the cross-modal alignment
effect of text-image samples after the lightweight
distillation. For example, in Case 1, our model
more accurately captures the cartoon subject in the
target commodity as "unicorn". In Case 2, our
model pays more attention to fine-grained informa-
tion "2 layers double handle", while maintaining
the correct perception of other information such as
"Stainless steel”, "steamers pot" and "with lid". In
Case 3, our EC-ConaCLIP better captures the color
clue of "Hot red". Although the retrieval result of
CLIP also conforms to the information of "sports
tights high waist yoga pants", its color is more like
"dark red".

Based on our distillation technique, the resulting
model can sufficiently learn the perception abil-
ity of the teacher model about commodity fashion
concepts and reduce matching errors.
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Abstract

Various Vision-Language Pre-training (VLP)
models (e.g., CLIP, BLIP) have sprung up
and dramatically improved the benchmarks of
public general-domain datasets (e.g., COCO,
Flickr30k). Such models typically learn the
cross-modal alignment from large-scale well-
aligned image-text datasets. Adapting these
models to downstream applications in specific
domains, such as fashion, requires fine-grained
in-domain image-text datasets. However, such
datasets are usually less semantically aligned
and smaller in scale, which requires more effi-
cient pre-training strategies. In this paper, we
propose a knowledge-guided fashion-domain
language-image pre-training (KG-FLIP) frame-
work that focuses on learning fine-grained rep-
resentations in the e-commerce domain and
utilizes external knowledge (i.e., product at-
tribute schema) to improve the pre-training ef-
ficiency. Experimental results demonstrate that
KG-FLIP outperforms previous state-of-the-art
VLP models on Amazon data and the Fashion-
Gen dataset by large margins. KG-FLIP has
been successfully deployed in the Amazon cat-
alog system to backfill missing attributes and
improve the customer shopping experience.

1 Introduction

Modern e-commerce websites exhibit products
with multi-modal information (e.g., product im-
ages, product titles, and product bullet points) to
inform customers’ purchase decisions. The effec-
tive exploitation of such multi-modal product infor-
mation is crucial for product understanding and
downstream vision-language (VL) applications,
such as product categorization, search, and recom-
mendation. Meanwhile, recent large-scale vision-
language pre-training (VLP) models have led to
impressive performance improvements on many
general-domain VL tasks (Radford et al., 2021; Yu
et al., 2022). As a result, there has been a surge of

“Work done during internship at Amazon.
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interest in adapting such VLP models to facilitate
various applications in e-commerce scenarios.

Unlike the well-aligned coarse-grained language-
image datasets in the general domain, the paired
data in the e-commerce domain have two character-
istics. First, both of the product titles/descriptions
and the images contain richly detailed (i.e., fine-
grained) product information compared to datasets
in the general domain. Second, the product textual
information and images usually share only partial
information while containing complementary infor-
mation (i.e., not well-aligned). Thus, an effective
pre-training method needs to align the common
portion and fuse the distinct facts from each modal-
ity in a fine-grained manner. Rather than aligning
the entire image and text pair at a global level us-
ing contrastive loss as CLIP (Radford et al., 2021)
does, we designed our pre-training tasks to focus
on a finer level of text tokens and image patches.

In addition, previous VLP methods relied solely
on the inductive bias of the model to align cross-
modality representations through vast amounts of
paired data. Such an approach is data-hungry, in-
efficient, and disregards the availability of struc-
tured product knowledge. Thus, we propose to
leverage existing knowledge in the e-commerce
catalog to facilitate such alignment. Specifically,
for each type of product (e.g., dress), the catalog
stores its applicable attributes (e.g., neckline style)
and enumerated attribute values (e.g., v-neck, crew-
neck). Such attribute knowledge can serve as an-
chor points to help VLP models efficiently acquire
salient semantic relations between modalities.

To address the above challenges, we propose
KG-FLIP: a knowledge-guided Fashion-domain
Language-Image Pre-training to improve the VLP
models for e-commerce data. The design of KG-
FLIP is inspired by the state-of-the-art general-
purpose VLP model BLIP [6]. We adapt its de-
sign for our use case by 1) replacing the widely-
used image-text contrastive (ITC) objective with
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the masked language-image modeling (MLIM) pre-
training objective, to facilitate multi-model fusion
at the token level instead of cross-model alignment;
2) leveraging the structured knowledge of prod-
uct attribute schema information to guide the pre-
training process, and facilitate the VLP model to
learn more fine-grained product representations.
These enhancements can be generalized to other
real-world applications, where image-text pairs are
not well-aligned in semantics and external knowl-
edge can be leveraged to guide the pre-training.

2 Related Work

2.1 Vision-Language Pre-training

The emergence of large-scale pre-training models
(e.g., BERT (Devlin et al., 2018), ViT (Kim et al.,
2021)) has significantly advanced the state of the art
across various uni-modal domains, such as natural
language processing (NLP), computer vision (CV),
and speech recognition (SR). Recently, researchers
have introduced the pre-training and-then fine-
tuning paradigm into the vision-language (VL) do-
main for solving multi-modal tasks, which requires
models to comprehend both the input image and
text contents (Dou et al., 2022). Existing vision-
language pre-training (VLP) models (e.g., CLIP
(Radford et al., 2021), ALIGN (Jia et al., 2021),
Flamingo (Alayrac et al., 2022)) have proven to be
highly effective on various downstream VL tasks,
such as image retrieval (IR), text retrieval (TR), and
visual question answering (VQA). Consequently,
VLP has become the de facto practice to tackle
multi-modal problems because of its superior per-
formance (Dou et al., 2022; Chen et al., 2023).
Existing VLP models can be divided into two cat-
egories: object-detector (OD)-based VLP models
(e.g., LXMERT (Tan and Bansal, 2019), UNITER
(Chen et al., 2020), OSCAR (Li et al., 2020)) and
end-to-end VLP models (e.g., ALIGN (Jia et al.,
2021), ALBEF (Li et al., 2021), METER (Dou
et al., 2022)). OD-based VLP models rely on pre-
trained object detectors to extract region-based im-
age features, and then utilize a multi-modal en-
coder to fuse the image features with text tokens.
While OD-based VLP models have brought impres-
sive performance, crafting the pre-trained object
detectors for them is both annotation-expensive
and computation-expensive, because it requires
bounding box annotations for pre-training and high-
resolution images during inference (Li et al., 2021).
On the other hand, end-to-end VLP models directly
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feed image patch features into a pre-trained ViT
model, which eliminates the need for costly anno-
tations and significantly improves inference speed,
and have been adopted by the more recent work
(Chen et al., 2021; Kim et al., 2021). Thus, we
focus on end-to-end VLP models in this work.

2.2 Knowledge-enhanced Vision-Language
Pre-training

Recently, there has been a surge of interest in uti-
lizing domain knowledge (e.g., knowledge graph,
keywords) to guide VLP in order to reach better per-
formance and improve the pre-training efficiency.
For example, Chen et al. (2021) proposed to in-
corporate knowledge graph (KG) embeddings into
VLP models to enhance the learning of seman-
tically aligned and knowledge-aware representa-
tions. Although their experimental results demon-
strated that KG could benefit VLP, it requires object
tags in each image to construct domain-specific
KGs. Zhu et al. (2021) presented a knowledge-
perceived multi-modal pre-training model in e-
commerce that uses product attribute information
as the third modality in addition to the visual and
linguist modalities. However, this approach re-
quires complete and low-noise product attribute
information, and its downstream tasks also require
such quality product attribute information to be
available as input. This implies increased annota-
tion costs and reduces the scope of the VLP model
for use on downstream tasks or data. Considering
that product attribute information is usually incom-
plete and noisy in the real world, we think existing
knowledge-enhancement approaches are not opti-
mal, because they either require additional labeling
efforts or introduce additional noise to VLP models.
Thus, we propose to use attribute information to
improve the pre-training efficiency of VLP.

3 Method

This section delineates KG-FLIP. Section 3.1 in-
troduces the architecture of KG-FLIP. Then, Sec-
tion 3.2 presents pre-training objectives of the
model. Finally, Section 3.3 explains how we in-
ject attribute knowledge into KG-FLIP.

3.1 FLIP Architecture

We use the BLIP (Li et al., 2022) architecture as our
backbone model, which is now one of the state-of-
the-art general-purpose VLP models. We choose
BLIP for the following reasons: 1) instead of using



a pre-trained object detector as the image encoder,
BLIP uses ViT (Dosovitskiy et al., 2020), which is
more computing-friendly and eliminates the need
for bounding box annotations; 2) BLIP has a spe-
cially added text decoder — thus can be utilized for
both VL understanding (e.g., multi-modal attribute
classification) and VL generation (e.g., image cap-
tioning) downstream tasks in e-commerce; 3) train-
ing a VLP model from scratch is time-consuming
and expensive. Reusing a pre-trained checkpoint,
which has been empirically demonstrated to be very
effective, can conspicuously reduce the R&D time
and expenses of our proposed KG-FLIP model.

KG-MLIM KG-ITM LM

Matched / Not matched
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[ Feed Forward |

[Masked] = V-neck [Next token?] = Dress

P

[ Feed Forward |

| Feed Forward |

D
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Cross Attention Cross Attention Cross Attention

Self Attention

Self Attention Self Attention

Causal Attention

Image
Encoder

L
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[CLS] + Women's Dress Sweet| | [ENC] + Women's Dress Sweet | [DEC] + Women's
& Cute [Masked)] Bell Sleeve | & Cute [scoop neck] Bell Sleeve | [Next token?] ..

[Women's Dress Sweet & Cute V-Neck Bell S\eeve]

Figure 1: The architecture of KG-FLIP. It consists of
an image encoder, an image-grounded text encoder,
a multi-modal text encoder, and an image-grounded
text decoder. Three pre-training tasks at the top are:
knowledge-guided masked language-image modeling
(KG-MLIM); knowledge-guided image-text matching
(KG-ITM); and language modeling (LM). Components
with the same color use the hard-parameter sharing.

As illustrated in Figure 1, KG-FLIP contains an
image encoder, an image-grounded text encoder, a
multi-modal text encoder, and an image-grounded
text decoder. Similar to BLIP, we craft the im-
age encoder using the visual transformer (ViT-
B/16) (Dosovitskiy et al., 2020). The text encoders
are built upon BERT (Devlin et al., 2018), but we in-
sert an additional cross-attention layer, which helps
to fuse visual and linguistic information, between
the self-attention layer and the feed-forward layer
of each block. The text decoder is similar to the text
encoder, except that we replace the self-attention
layers with the causal self-attention layers to auto-
regressively predict next tokens. In the following,
we describe each of the components mentioned.

Image encoder: encodes input images and maps
them into visual information representations. Con-
cretely, each input image is first segmented into
patches, and then ViT takes these patches as input

&3

and encodes them into a sequence of embeddings.
The embeddings carry all visual information per-
ceived from the image, and are finally mapped into
the key matrix (K) and value matrix (V) for com-
puting the cross-attention scores with the text.
Image-grounded text encoder: fuses the vi-
sual and linguistic information through the cross-
attention layer of each transformer block. Specif-
ically, the output of the self-attention layer in
each block, which carries linguistic information
obtained from the text input, is mapped into the
query matrix (Q). Then, in each cross-attention
layer, we use the query matrix (Q) together with
the key matrix (K) and the value matrix (V), both
coming from the ViT, to produce the output.
Multi-modal text encoder: has the same struc-
ture as the image-grounded text encoder. A special
token is prepended to the beginning of the input
text, and its output is used as the global representa-
tion of the fused visual and linguistic information.
Image-grounded text decoder: which is em-
ployed for performing VL generation downstream
tasks (e.g., captioning). The causal self-attention
layers enable the decoder to generate text in an
auto-regressive manner. Specifically, a special to-
ken [DEC] is used as the start signal, and then the
module iteratively generates the next token based
on generated or supervised tokens in previous steps,
until it reaches the end-of-sequence token.
We follow BLIP’s design of parameter sharing
between three branches to reduce model size with
demonstrated performance gain. (Li et al., 2022)

3.2 Pre-training Objectives

KG-FLIP jointly optimizes three pre-training objec-
tives: knowledge-guided masked language-image
modeling (KG-MLIM), knowledge-guided image-
text matching (KG-ITM), and language modeling
(LM). Similar to BLIP, we use two understanding-
based pre-training objectives and one generation-
based pre-training objective. These three objectives
activate different functionalities while contributing
to each other through hard-parameter sharing. We
first describe the three pre-training objectives of
the model without the knowledge guidance (KG):
Masked Language-Image Modeling Loss
(MLIM): is similar to MLM in pre-training lan-
guage models (e.g., BERT), but it utilizes both the
image and the contextual text to predict the masked
tokens (Chen et al., 2022), which helps the model
to learn cross-modal alignment at the token level



instead of instance level as in ITC. Formally, the
MLIM loss can be represented by,

E E
(I,T)eD MCT

£mlim = -

> logp(t|1,T) |

t;eEM

where one uniformly samples an image I and its
corresponding text 7' from the dataset D, masks
a random token subset M from 7", and predicts it
given the image and the masked text T.

Image-Text Matching Loss (ITM): aims to
learn joint VL embeddings that effectively fuse
the information from input image-text pairs. ITM
facilitates the model to produce more effective and
fine-grained VL representations by using these rep-
resentations to judge whether image-text pairs are
matched (positive pairs) or not matched (negative
pairs). The ITM loss can be expressed as:

ﬁitm = - [Ing(yI,TUa T)] ;

E
(I’T)Npsamp (I:T|D)

where pgsamyp is a distribution that samples posi-
tive and negative training examples, y; 7 € {0, 1}
represents whether the image [ and the text 7" are
matched, and log p(y; 7|, T) is the output of the
[ENC] token in multi-modal text encoder followed
by a classification layer.

Language Modeling Loss (LM): aims to auto-
regressively generate desired textual information
given an image (e.g., for captioning) or an image-
text pair (e.g., for Visual Question Answering). It
optimizes the loss,

[’lm

=— E logp(t;|1,T<;) | ,
(I.7)eD tZZG; gp( z’ <z)

where each token ¢; is predicted given the image 1
and all text tokens in 7" before position 1.

3.3 Knowledge Guidance

To facilitate KG-FLIP to fuse two modalities more
effectively, we utilize attribute knowledge to guide
MLIM and I'TM objectives, as described below:
Knowledge-guided MLIM (KG-MLIM): uti-
lizes attribute information to guide MLIM by ame-
liorating the masking policy, as illustrated in Fig-
ure 2. The original policy of BERT (Devlin et al.,
2018) uniformly chooses 15% of input tokens, of
which 80% are replaced with a special masked to-
ken [MASK], 10% are replaced with a random
textual token, and 10% remain unchanged. Rather
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Product Title

Women’s Dress Sweet & Cute
V-neck Bell Sleeve

Women’s Dress [Masked] & Cute
V-neck Bell Sleeve

Women’s Dress Sweet & Cute
[Masked] Bell Sleeve

Product Title

Women’s Dress Sweet & Cute
V-neck Bell Sleeve

Negative Text in ITM

Summer Casual Loose Crewneck
Boho Dress

’ Negative Text in KG-ITM ‘

Women’s Dress Sweet & Cute
V-neck Half Sleeve

Figure 2: KG-MLIM vs. MLM, KG-ITM vs. ITM.
(Left) Comparing to MLM which randomly selects 15%
of words to mask, KG-MLIM prioritizes masking at-
tribute words (e.g., crew neck, sleeveless). (Right) Gen-
eral ITM forms a negative pair by replacing the paired
text with another text sample in the batch. By contrast,
KG-ITM synthesizes a “harder” negative example by
replacing the attribute word in the paired text with an-
other value of the same attribute.

than treating all tokens the same, masking product
attribute words allows the VLP model to focus on
learning salient product information and provide
anchor points to align both modalities, thus pro-
ducing more effective VL representations than the
original 15% random masking policy.

To this end, we propose to use knowledge (i.e.,
product attribute schema) to guide MLIM to mask
significant attribute tokens rather than random-
selected tokens. Concretely, we use the enumerated
attribute values (e.g., “v-neck”, “sleeveless”) from
the catalog system to identify significant words in
the text that match our attribute value names. After
that, we maintain an overall masking ratio of 15%,
and if the number of detected significant attribute
words exceeds 15%, we randomly select a subset
of them to be masked. Otherwise, we randomly
mask other tokens to fill up to 15%. In this way,
we implement KG-MLIM, which enables VLP to
focus on noteworthy attribute words.

Knowledge-guided ITM (KG-ITM): leverages
attribute knowledge to synthesize “harder” nega-
tive image-text pairs, letting KG-FLIP determine
whether the image-text pairs are matched or not
matched. Specifically, in the standard ITM objec-
tive, psamp typically utilizes the input image-text
pairs in each batch as positive samples (Chen et al.,
2022), and creates negative ones by replacing the
image or text in each paired sample with randomly
selected from other samples. The next step is to
predict whether each image-text pair is matched.
However, since images or text of different products
are typically disparate, the negative samples are



usually too facile to train the model effectively.

Hence, we propose to leverage attribute knowl-
edge to synthesize “harder” negative image-text
pairs for the ITM loss. Similar to KG-MLIM, we
use attribute values to search for salient attribute
words in the text. If any attribute word in the text is
detected, we synthesize a negative text string by re-
placing each identified word with another random
attribute word from the same attribute class (e.g.,
“blue” — “red”, “v-neck” — “crew neck”). Other-
wise, if we do not spot any attribute word, we se-
lect a random text to construct the negative sample.
Thus, these “more difficult” synthesized negative
samples force KG-FLIP to produce more effective
VL representations that capture subtle (i.e., fine-
grained) distinctions between samples.

4 Experiments

4.1 Experimental Setup

We initialized all parameters with a BLIP check-
point (Li et al., 2022), and then pre-trained KG-
FLIP using a dataset of 1.9M pairs of Amazon
product images and product texts (title and bullet
points) in the fashion domain (viz., dresses and
shoes). To investigate the potential promise of KG-
FLIP, we tested KG-FLIP on two most common
VL downstream tasks in e-commerce: we perform
product attribute extraction on the Amazon product
attribute dataset and product categorization on the
Fashion-Gen dataset (Rostamzadeh et al., 2018),
which we describe in detail below.

The Amazon product attribute dataset: con-
tains a sample of products in our pre-training
datasets that also have corresponding attribute val-
ues in the catalog. We further annotated another
600 image-title pairs as the validation and test set,
which are used for hyper-parameter tuning and per-
formance evaluation, respectively.

The Fashion-Gen dataset*: incorporates
293,008 fashion data pairs. The dataset contains
48 main categories (e.g., “Dresses”, “Jeans”) and
121 sub-categories (e.g., “Short Dresses”, “Leather
Jackets”). We tested KG-FLIP by performing the
sub-category classification based on visual and lin-
guistic modalities. In our experiments, we use the
same training and testing data as used in Kaleido-
BERT (Zhuge et al., 2021) and CMA-CLIP (Liu
et al., 2021). The numbers of training and testing

“Note that the Fashion-Gen dataset was only used to bench-
mark and illustrate the advance we made. It was not involved
in building or optimizing our deployed model.
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samples are 260,480 and 32,528, respectively.

4.2 Results

Product attribute extraction: The attribute-
extraction task aims to automatically infer product
attribute information (e.g., color, neck style) from
product images and textual information such as title
and description. Following (Liu et al., 2021), we
formulate this problem as a multi-task classification
task. We add a multi-layer perception (MLP) head
for each attribute in Table 1 on top of the [ENC] out-
put embedding from the multi-modal text encoder
and fine-tune them simultaneously. We compare
the results with CMA-CLIP, BLIP, and an unguided
version of KG-FLIP, which was pre-trained with
standard MLIM and I'TM without knowledge guid-
ance. All models are pre-trained and fine-tuned on
the same datasets. Table 1 below shows the recall
at 90% precision (R@90P) on the test set.

Table 1: Recall at 90% precision on the Amazon product
attribute dataset. (attribute names are anonymized for
compliance reasons)

. CMA- unguided  KG-
Altribute cuip BMP kGFLIP  FLIP
dress attribute 1 29.1 53.1 52.1 57.3
dress attribute 2 423 41.0 52.6 48.7
dress attribute 3 57.3 61.1 65.9 67.9
dress attribute 4 33 36.7 44.1 42.1
dress attribute 5 71.5 65.1 71.8 74.1
shoe attribute 1 89.2 94.6 92.7 94.1
shoe attribute 2 90.0 92.0 91.0 92.0
shoe attribute 3 78.5 85.2 82.8 85.6
shoe attribute 4 98.7 99.0 98.7 99.0
Average 65.51 69.75 72.32 73.42

Product categorization: The task of product
categorization is to automatically determine the
sub-category for each product given its image-text
pair. Similarly, we also formulate this problem as a
classification task and stack an MLP head on top.
Each VLP model in Table 2 was fine-tuned on the
Fashion-Gen training set, and we then reported the
accuracy of the categorization on the test set.

Overall, the results in Table 1 and Table 2 show
that KG-FLIP outperforms all other VLP models
on both datasets. For the Amazon product attribute
dataset, KG-FLIP and unguided-FLIP offer per-
formance gains of 3.67% and 2.57% in terms of
R@90P, respectively, over BLIP. For the Fashion-
Gen dataset, KG-FLIP can outperform the current
benchmark (i.e., FashionViL) and BLIP in terms
of accuracy by 2.1% and 0.36%, respectively. In



Table 2: Accuracy (%) on the Fashion-Gen dataset.

Method Accuracy
ImageBERT (Qi et al., 2020) 80.11
FashionBERT (Gao et al., 2020) 85.27
OSCAR (Li et al., 2020) 84.23
KaleidoBERT (Zhuge et al., 2021) 88.07
CMA-CLIP (Liu et al., 2021) 93.60
FashionViL (Han et al., 2022) 92.23
BLIP (Li et al., 2022) 93.96
unguided KG-FLIP 94.15
KG-FLIP 94.32

summary, KG-FLIP has demonstrated its eminent
performance, which makes it a compelling VLP so-
lution for partially semantically aligned real-world
VL data in e-commerce scenarios.

S5 Model Deployment

Currently, we have successfully deployed our KG-
FLIP model in a real-world application to back-
fill missing product attributes in the e-commerce
catalog. E-commerce websites curate their prod-
uct information in their catalog system. In addi-
tion to unstructured information (e.g., product ti-
tles and descriptions), structured product attributes
(e.g., color and size) play an essential role in var-
ious downstream applications, including search
and recommendation. For example, customers
can filter search results by product attribute values
and quickly identify their desired products. How-
ever, missing product attribute values are common,
given the large number of products offered on e-
commerce websites. Improving the coverage of
product attributes with high accuracy is critical to
improving the customer experience and maintain-
ing customer trust. In addition, complete and accu-
rate product attribute information can also improve
the performance of various downstream applica-
tions (e.g., alternative product recommendations).

Compared to previous image-only and text-only
models, KG-FLIP can infer product attributes from
both modalities and increase precision and recall
by large margins. Another advantage is that it can
predict thousands of product attributes in a single
model, which implies that model development and
maintenance efforts are significantly reduced com-
pared to single attribute models. However, train-
ing thousands of attributes in one model makes
single-machine training infeasible because of the
massive size of the training data. To overcome this
challenge, we have developed our own distributed
training infrastructure to support large-scale model
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training. Our infrastructure leverages the power of
AWS Batch” Multi-Node Parallel, and the Deep-
Speed framework, which allows us to automati-
cally launch, configure, and manage a cluster of
GPU instances, and train our model on 100 mil-
lion image-text pairs for 10 epochs within a week
with twenty p3.16xlarge instances. We also auto-
mated the process of launching a distributed job
with just one command, which enables any indi-
vidual to conduct distributed training tasks on their
own and accelerates the experiment speed by reduc-
ing 90% of manual efforts. The model deployment
is through AWS SageMaker*. We leveraged AWS
Batch to perform large-scale batch mode inference
to backfill billions of product-attribute pairs with
high accuracy since mid-2022.

6 Conclusion

In this paper, we introduced a knowledge-guided
fashion-domain language-image pre-training
framework for e-commerece, dubbed KG-FLIP.
By utilizing the product attribute knowledge to
guide MLIM and ITM pre-training objectives, our
KG-FLIP model facilitates the vision-language
pre-training and enhances the product representa-
tion learning for e-commerce data that are partially
aligned while also containing complementary
information. The evaluation results have demon-
strated its prominent performance against other
state-of-the-art benchmarks on both Amazon and
Fashion-Gen datasets. The KG-FLIP model has
been deployed in a real-world application and
improved the customer shopping experience.

7 Limitations

There are two main limitations to this study. First,
because of the lack of downstream datasets, we did
not evaluate KG-FLIP on other downstream VL
tasks in e-commerce (e.g., substitute recommenda-
tion). Therefore, the robustness of the KG-FLIP
model on other downstream tasks requires further
investigation. Second, the experimental results em-
pirically show that the proposed knowledge-guided
pre-training objectives are more effective in produc-
ing VL representations that capture subtle distinc-
tions between samples than the standard objectives.
However, a theoretical analysis of the effectiveness
of our knowledge-guidance strategies is lacking.

"https://aws.amazon.com/batch/
*https://aws.amazon.com/sagemaker/


https://aws.amazon.com/batch/
https://aws.amazon.com/sagemaker/

8 Ethics Statement

We discuss ethical issues from these aspects:
Intended Use. If the technology is function-
ing as intended, both sellers and customers of e-
commence platforms could benefit from the KG-
FLIP model. KG-FLIP could help customers to
quickly identify their desired products (e.g., by fil-
tering search results by product attribute values). It
could also help sellers by reducing their manual ef-
forts when listing new products (e.g, the platforms
can automatically recommend the attribute values).
Failure modes. In case of failure, KG-FLIP
might output inaccurate product attribute informa-
tion. Such non-factual information may harm cus-
tomers’ shopping experience. For example, the
substitute recommendation system, which may use
the incorrect product information provided by KG-
FLIP, may recommend a non-desired product to
our customers and hurt their shopping experience.
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Abstract

Due to the democratization of e-commerce,
many product companies are listing their
goods for online shopping. For periodic
buying within a domain such as Grocery,
consumers are generally inclined to buy
certain brands of products. Due to a large
non-English speaking population in In-
dia, we observe a significant percentage
of code-mix Hinglish search queries e.g.,
sasta atta. An intuitive approach to deal-
ing with code-mix queries is to train an
encoder-decoder model to translate the
query to English to perform the search.
However, the problem becomes non-trivial
when the brand names themselves have
Hinglish names and possibly have a literal
English translation. In such queries, only
the context (non-brand name) Hinglish
words needs to be translated. In this pa-
per, we propose a simple yet effective
modification to the transformer training
to preserve/correct Grocery brand names
in the output while selectively translat-
ing the context words. To achieve this,
we use an additional dataset of popular
Grocery brand names. Brand names are
added as tokens to the model vocabu-
lary, and the token embeddings are ran-
domly initialized. Further, we introduce
a Brand loss in training the translation
model. Brand loss is a cross entropy loss
computed using a denoising auto-encoder
objective with brand name data. We warm-
start the training from a public pre-trained
checkpoint (such as BART/T5) and fur-
ther adapt it for query translation using
the domain data. The proposed model is
generic and can be used with English as
well as code-mix Hinglish queries allevi-
ating the need for language detection. To
reduce the latency of the model for the pro-
duction deployment, we use knowledge
distillation and quantization. Experimen-
tal evaluation indicates that the proposed
approach improves translation results by
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preserving/correcting English/Hinglish
brand names. After positive results with
A/B testing, the model is currently de-
ployed in production.

1 Introduction

Due to the democratization of e-commerce,
online shopping has evolved in recent times,
where most customers choose to shop online.
As an effect, the majority of product compa-
nies are keen on making their products avail-
able for online shopping. When it comes to
domains such as Grocery, where users have to
shop periodically, they typically have a prefer-
ence for buying products of certain brands.
Hence, for Grocery, it was observed that a
significant portion of search queries contain
brand names. Due to a large non-English-
speaking population in India, we observe a
significant percentage of code-mix Hinglish
search queries. A Hinglish query is where
one or more Hindi words are written in En-
glish, e.g., sasta atta. Since there are no stan-
dard spellings, we observe a large variation
in the Hinglish words. We also observe many
queries where brand names are misspelled.
An intuitive approach to deal with code-mix
queries is to train an encoder-decoder model
to translate the query to English and use an
English search API to retrieve the products
(Kulkarni et al., 2022). However, the problem
becomes more challenging when the brand
names themselves are Hinglish words and pos-
sibly have a valid English translation. We
observe that in the Grocery domain, many
brand names have Hinglish names, e.g. aashir-
vaad, gowardhan, veer, navratna etc. In such
queries, only the context (non-brand name)
Hinglish words need to be translated, and
brand names (though Hinglish) must not be
altered in the translation. E.g. for the query,
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‘sasta dabur lal tel’, a literal translation would
be 'cheap dabur red oil’. However, the ex-
pected translation is ‘cheap dabur lal 0il” since
‘dabur lal” is a brand name. Although most of
the words in the query are Hinglish, only the
first and last words need to be translated. If
a brand name gets altered during the transla-
tion, it will lead to non-ideal search results.
In some cases, the query does not need a
translation even though it contains a Hinglish
brand name, e.g., veer brand oil. If an En-
glish/Hinglish brand name is misspelled, it
needs to be corrected in the translation. In
general, the seq2seq model should be able to
handle the following scenarios.

the query has only English words with no
spell errors: the model should output the
query as it is

the query has only English words with
spell errors in either brand names or con-
text words: the model should only correct
the spell errors

the query contains Hinglish words with-
out brand names: the model should trans-
late all Hinglish words to English

the query contains Hinglish words with
brand names: the model should selec-
tively translate the Hinglish words with-
out altering brand names. It should cor-
rect the brand names if it is misspelled.

To ensure such behavior, one would need
large manually labeled data inclusive of many
brand names. In this paper, we propose a
simple yet effective modification to the trans-
former training to preserve/correct brand
names in the output while selectively trans-
lating the context words. To achieve this, we
use an additional dataset of high-demand Gro-
cery brand names provided by the product
team. First, to output brand names as a whole,
we add them as tokens to the model vocabu-
lary and randomly initialize the correspond-
ing token embeddings. Further, we introduce
a brand loss for training the translation model.
Brand loss is a cross entropy loss computed
using a denoising auto-encoder objective with
brand name data. We warm-start the training
from a generic pre-trained checkpoint (such
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as BART/T5) and further adapt it for query
translation using the domain data. Results in-
dicate that introducing brand loss significantly
improves accuracy by preserving/correcting
brand names in the translation. We also ver-
ify that introducing brand information as the
loss is more effective than introducing it as
the training data. The model is generic and
can be used with English as well as code-mix
Hinglish queries, alleviating the need for lan-
guage detection. Further, to reduce the latency
of the model for the production use-case, we
use knowledge distillation and quantization.
Using a large model as the teacher, we ob-
tain pseudo-labels for a large set of unlabeled
queries. We then train a small student open-
nmt (Klein et al., 2017) model on this dataset.
We are able to achieve more than 28x reduction
in the latency with a slight drop in accuracy.
Experimental results demonstrate the efficacy
of the proposed approach.

2 Related works

Transformers (Vaswani et al., 2017) is the
current state-of-the-art model for translation.
Large-scale self-supervised pre-training of
encoder-decoder models followed by domain-
specific fine-tuning can significantly improve
the translation quality with a limited labeled
set (Lewis et al., 2019) (Raffel et al., 2020).
Search query translation is essential for
Cross-Lingual Information Retrieval (CLIR).
Bhattacharya et al. (Bhattacharya et al., 2016)
use word vector emebedding and clustering
to find groups of words representing the same
concept from different languages. These multi-
lingual word clusters are then used to perform
query translation for CLIR between English,
Hindi and Bengali. Kulkarni et al. (Kulkarni
and Garera, 2022) proposes an approach to
perform vernacular query translation without
using any parallel corpus. Authors only utilize
unlabeled query corpus from two languages,
a pre-trained multilingual translation model,
and train it with cross-language training to
translate vernacular search queries to English.
For code mix query translation, multilingual
and English pre-trained encoder-decoder mod-
els have been explored (Jawahar et al., 2021)
(Kulkarni et al., 2022). Kumar et al. (Kumar
et al., 2020) explored statistical and neural ma-



Query Ground truth Without Brand loss With Brand loss
asribad ata aashirvaad atta ashirwad atta aashirvaad atta
dabber lal tel dabur lal oil dabber lal oil dabur lal oil

emni rice brand oil emami rice bran oil emni rice bran oil emami rice bran oil
daadis peanut khakra | daadi’s peanut khakhra | grapes peanut seeds daadi’s peanut khakra
goverdhan desi ghee gowardhan desi ghee goverdhan desi ghee gowardhan desi ghee
detol original dettol original original detol dettol original

farnely all product farmley all product free all product farmley all product
veer brand oil veer brand oil mustard oil veer brand oil

all out mosquito refill all out mosquito refill eri mosquito refill all out mosquito refill
ice cream kwality walls | ice cream kwality walls | ice cream kwality ice cream kwality walls

Table 1: Effect of brand loss on accuracy. With the brand loss, the model preserves/corrects brand
names and provides translation better aligned with the ground truth. Brand names are
highlighted in boldface.

chine translation models for generating natu-
ral language questions from a given keyword-
based query.

Few techniques have been explored to pre-
serve some of the input tokens as it is in out-
put. CopyNet (Gu et al., 2016) enables se-
lective use of generate and copy mode. In
the copy mode, an RNN-based model can
choose sub-sequences from the input sequence
to put them at appropriate places in the out-
put sequence. While in generate mode, the
model can generate new tokens. On similar
lines, See et al. (See et al., 2017) proposed a
hybrid pointer-generator network-based ap-
proach with an ability to copy words from in-
put to the output while retaining the ability to
produce novel words through the generator.

In contrast to these approaches, we enforce
the model to copy brand names using an addi-
tional loss component computed on the brand
name data. The model still has a default gen-
erate ability which helps in correcting mis-
spelled brand names.

3 Proposed Approach

In the following sections, we provide details
of the dataset and training methods.

3.1 Dataset

We use a manually tagged dataset for training
the model. We have a total of ~116k manually
tagged query set, which contains Hinglish as
well as English queries. To make use of pre-
viously tagged queries, the dataset consists
of queries from Grocery and other domains
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such as fashion, mobile, footwear, etc. From
this, we use randomly chosen 5k samples as
the validation set and ~111k for the training.
We use a list of 2226 high-demand Grocery
brand names to compute the brand loss. The
list was provided by the product team. As the
test dataset, we use 10715 manually tagged
queries from the Grocery domain.

3.2 Training details

For training the translation model, we make
two modifications as follows. First, we add
a list of high-demand brand names as tokens
in the model vocabulary and randomly ini-
tialize the corresponding token embeddings.
Brand names are converted to lowercase be-
fore adding to vocab. This ensures that when
a brand name is outputted in the translation, it
would be outputted as a single entity, avoiding
incorrect brand name variations.

We introduce a brand-specific loss in the
model training. The translation model is
trained with a combination of three loss com-
ponents as follows.

@

where A indicates the weighting factor for
the brand loss. Is,pevised indicates the stan-
dard cross entropy loss with parallel corpus.
IDataAug indicates the loss calculated with spell
and auto-encoder data augmentations as de-
scribed in section 3.3.

For calculating I,,,4, We use cross-entropy
loss with denoising autoencoder objective

L= lSupervised + lDataAug + A lprana




with brand name data using simple CharDrop
data augmentation. Since non-English speak-
ers attempt to spell the words based on the
phoneme sound of it, we noticed that typi-
cally the first and last character of the brand is
spelled correctly while the spelling mistakes
are present in the middle of the word. To emu-
late this, we randomly drop a character from
30-50% of the brand name words and use orig-
inal brand names as the target. Following are
some of the brand name training examples.

Noisy Brand name Target
asirwaad ashirwaad
milky freh milky fresh
dabur vaika dabur vatika

Table 2: Brand name augmentations

IBrang is computed with the teacher forcing
technique. We set A to 1 for all experiments.
We also experimented by increasing and de-
creasing the value of A, however, it did not
lead to any significant change in the accuracy.

We use a pre-trained BART-base model to
warm-start the training and fine-tune it fur-
ther on the manually tagged data. The model
is fine-tuned using AdamW optimizer with
a learning rate of le-5 and batch size of 16.
The model is trained till the validation loss
does not improve for three consecutive epochs.
We use label smoothing (Vaswani et al., 2017)
during the training, where we set the label
smoothing parameter to 0.1 for all the experi-
ments. We use beam search decoding during
the inference, where the beam size is set to 3.
The model has ~141M trainable parameters
post adding the brand tokens.

3.3 Data Augmentations

We experimented with Autoencoder and spell
augmentation to compute data augmentation
loss (Ipataaug)- For Autoencoder, we use target
English text as the input and train the model
to reconstruct it. Though simple, it has shown
to be effective in query translation since it
provides an advantage similar to a language
model regularizer (Kulkarni et al., 2022). For
the batch of labeled queries, we add spell aug-
mentations to the source (Ma, 2019) and train
the model with the same target. For each batch
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of queries, data augmentation is chosen ran-
domly.

Setting BLEU
With Brand loss 70.9
Without Brand loss | 68.8

Table 3: BLEU score comparison result

4 Results

Table 3 shows the BLEU score comparison of
different model settings on the test set. In
the first experiment, we verify the effective-
ness of additional brand loss during the train-
ing. We train the model with and without
brand loss. From the BLEU score comparison,
it can be seen that brand loss training provides
good improvements in test accuracy. In table
1, we show the comparison of query transla-
tion results with and without brand loss. With
the brand loss, the model corrects the brand
names whenever it is entered wrongly (first
7 examples). It also preserves brand names
better when it’s entered correctly (last 3 exam-
ples). Overall, the model provides translations
better aligned with the ground truth.

4.1 Using brand names as data

Intuitively, it’s possible to input the brand
name information as the parallel corpus,
where we can add CharDrop augmentation to
the brand names, and the original brand name
can be used as the target. Hence, we wanted to
verify the effectiveness of introducing brand
information through the loss compared to in-
putting it through the training data. We cre-
ated additional training data from the brand
names with CharDrop augmentations and ap-
pended it to the original training set. We use
50 augmentations for each brand name. Table
5 shows the BLEU score comparison result. We
notice that adding brand info as a loss is more
effective than adding it as training data. This
could be because, with the brand as loss, the
model is able to translate context words more
effectively. Table 4 shows the query translation
comparison result. Note that brand as loss is
better at correcting misspelled brand names
while providing better translations of context
words.



Query

Ground truth

Brand as data

Brand as loss

nabrtan tel

navratna oil

olive oil

navratna oil

cubes spice masala

cubes spice masala

cake spice masala

cubes spice masala

fitme ka face pauder

fit me face powder

face powder offitme

fit me face powder

dabur gulab jal 1 litre | dabur gulab jal 1 litre | dabur rose water 1 litre | dabur gulab jal 1 litre
colgeat charcol offer | colgate charcoal offer coffee charcol offer colgate charcoal offer
boork bond taja tea | brooke bond taaza tea boork bond tea brooke bond taaza tea

fiama soap all mox

fiama soap all mix

fiama soap all mox

fiama soap all mix

kesar ka sabudana kesar sabudana

saffron seeds kesar sabudana

Table 4: Comparison result for inputting brand information as loss vs inputting through training
data. Note that with the brand as a loss, context words are better translated.

Setting BLEU
Brand info as data | 69.6
Brand info as loss 70.9

Table 5: BLEU score comparison for brand
as loss vs brand as data

4.2 Comparison with T5

We compared the results of BART-base with
T5-base and T5-small models under similar
training settings, i.e., adding brand tokens to
the vocab and training with brand loss. Table
6 shows the comparison result. We noticed
that BART works significantly better as com-
pared to T5. This could be because denoising
training objectives such as brand loss and data
augmentation are more aligned with the BART
pre-training than T5. Hence, BART can pro-
vide good results with a limited labeled set, es-
pecially when brand token embeddings need
to be learned from scratch.

Setting BLEU
T5-base 59.8
T5-small 57.2
BART-base | 70.9

Table 6: Comparison with T5 model

4.3 Pre-training on large query

Since the search model would be witnessing
large traffic and a variety of queries, we pre-
train BART-base model on a large query par-
allel corpus to make it suitable for production
use case. We collected a large Hindi (Devana-
gari) unlabeled query corpus from the internal
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database. Since our Hindi search model cur-
rently supports different verticals such as fash-
ion, mobile, footwear, etc., we suspect only a
small percentage of Grocery related queries in
the dataset. The Hindi queries are detected
using a simple script-based detection. If any
of the characters in the query are from Devana-
gari unicode range, the query is termed Hindi.
We then use an in-house Hindi to English
query translation model to create a parallel
corpus from the unlabeled set. Further, we use
an in-house transliteration model to convert a
Hindi query to a Hinglish query. This way, we
obtained a ~38M Hinglish to English query
parallel corpus for training. The model is
trained using AdamW optimizer with a learn-
ing rate of 5e-6. We pre-trained the BART-base
model on this large set and then finetuned
on the manually tagged set in the same man-
ner described in section 3.2. Table 7 shows
the result of the experiment. Pre-training on
the large set gives a significant boost to accu-
racy. To verify if brand loss based finetuning
still complements the advantage provided by
the pre-training, we finetuned the query pre-
trained model without the brand loss. It can
be seen that training with brand loss boosts
accuracy in addition to the pre-training.

Query-pretraining | Brand loss | BLEU
Included Included 73.1
Not included Included 70.9
Included Notincluded | 71.5

Table 7: Effect of large scale query
pre-training



5 Knowledge distillation for improved
latency

The search query translation models are user-
facing and need to have low latency to sup-
port high throughput. Though the BART-base
model with query pre-training and fine-tuning
provided good accuracy on the test set, it was
not sufficient for production deployment due
to the latency constraints. We observed that
the p95 latency of the BART-base model with
PyTorch implementation was ~200 ms, which
is not acceptable for the production use-case.

To reduce the latency of the model, we use
knowledge distillation with open-nmt (Klein
etal., 2017) framework. Open-nmt provides a
Ctranslate wrapper for faster inference, mak-
ing it a good choice for low latency use-cases.
Our approach is to train a small open-nmt stu-
dent model using Grocery BART-base model
as the teacher model. Since the student model
resides in another programming framework,
we use a pseudo-labeling approach to transfer
knowledge from the teacher to the student. To
create a parallel corpus for open-nmt model
training, we obtain translation labels on ~38M
query set using the teacher model. We then
train the open-nmt model on this large paral-
lel corpus and the manually tagged set. We
use a single layer open-nmt model with a vo-
cab size of 18k and a hidden dimension of
384. The model has ~23M trainable param-
eters. For open-nmt model as well, we add
the brand name tokens to the vocab. We use
weight quantization during model inference.
Table 8 shows the BLEU score comparison re-
sult with the open-nmt student model. The
student model provides more than 28x speed
up for the inference with just a 0.2 drop in the
BLEU score. The reason a single layer student
model could be providing comparable results
to the teacher model can be two-fold. First,
search queries rarely have grammar and hence
may not a deeper network for translation. Sec-
ond, the teacher through pseudo labeling is
providing cleaner and consistent labels for the
student to learn from.

We performed A/B testing of the open-nmt
student model w.r.t. an earlier model which
does not use brand loss. We observed 10 ba-
sis points (bps) improvement in search Click-
Through-Rate (CTR) and improved search con-
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version. The model is currently deployed
in production and serves a large volume of
queries.

Setting BLEU | p95 latency
BART Teacher 73.1 ~200 ms
open-nmt student | 72.9 ~7 ms

Table 8: Knowledge distillation with
open-nmt

6 Conclusion

In this paper, we proposed a simple yet ef-
fective approach for domain-specific query
translation. For the grocery domain, it was
noticed that a significant percentage of queries
contained brand names due to user pref-
erences and periodic buying. We also ob-
served a significant percentage of code-mix
Hinglish queries and queries with grammat-
ical errors. Since some grocery brand names
are themselves Hinglish words, we wanted a
brand-aware query translation model. To bet-
ter preserve brand names in translation, we
added brand name tokens to the model vo-
cab and introduced an additional brand loss
in transformer training. The modification im-
proved translation accuracy by depicting de-
sired brand name preserving effect. To reduce
the latency of the model for the production
deployment, we used knowledge distillation
with the open-nmt student. Using a large
model as a teacher and with pseudo labeling,
we trained a single layer open-nmt student
model. We could obtain more than a 28x re-
duction in latency with a slight drop in accu-
racy. After positive results with A/B testing,
the model was deployed in production.
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Abstract

To provide a convenient shopping experi-
ence and to answer user queries at scale,
conversational platforms are essential for
e-commerce. The user queries can be pre-
purchase questions, such as product speci-
fications and delivery time related, or post-
purchase queries, such as exchange and
return. A chatbot should be able to under-
stand and answer a variety of such queries
to help users with relevant information.
One of the important modules in the chat-
bot is automated intent identification, i.e.,
understanding the user’s intention from
the query text. Due to non-English speak-
ing users interacting with the chatbot, we
often get a significant percentage of code
mix queries and queries with grammati-
cal errors, which makes the problem more
challenging. This paper proposes a sim-
ple yet competent Semi-Supervised Learn-
ing (SSL) approach for label-efficient intent
classification. We use a small labeled cor-
pus and relatively larger unlabeled query
data to train a transformer model. For
training the model with labeled data, we
explore supervised MixUp data augmenta-
tion. To train with unlabeled data, we ex-
plore label consistency with dropout noise.
We experiment with different pre-trained
transformer architectures, such as BERT
and sentence-BERT. Experimental results
demonstrate that the proposed approach
significantly improves over the supervised
baseline, even with a limited labeled set. A
variant of the model is currently deployed
in production.

1 Introduction

An automated conversational chatbot is essen-
tial to provide a seamless shopping experi-
ence and answer product-related questions
at scale. An effective chatbot can assist and
answer pre-purchase queries such as product
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specifications, offers, discounts, delivery time,
and stock availability, as well as post-purchase
queries such as exchange and return. Due
to users from diverse backgrounds interact-
ing with the chatbot and minimizing a human
agent transfer, a chatbot should be able to un-
derstand and handle a variety of user queries.

One of the important ML components in
the chatbot is automated intent identification,
i.e.,, understanding the user’s intention from
the query text. Post the correct intent iden-
tification, an appropriate dialog-flow can be
initiated. An incorrect intent prediction neg-
atively affects the dialog-flow and, hence the
overall user experience. Further, due to non-
English speakers interacting with the chatbot,
we observe a significant percentage of code-
mix Hinglish queries ( 30%) and queries with
grammatical errors, making intent detection
even more challenging. Training a supervised
intent classification model under such a sce-
nario would require a large amount of manu-
ally tagged data. However, due to internet-
scale operations, we have unlabeled query
data available in a relatively large volume.

This paper proposes a simple yet competent
Semi-Supervised Learning (SSL) approach for
label-efficient intent classification. SSL has
been proven effective in leveraging unlabeled
data when only a small labeled set is avail-
able. Specifically, we train a transformer BERT
model on a small labeled corpus along with a
larger unlabeled query data. Starting with lim-
ited labeled queries, we explore supervised as
well as unsupervised data augmentation tech-
niques. For the supervised data augmentation,
we explore MixUp (Zhang and Vaidya, 2021)
and simple label preserving NLP augmenta-
tions (Ma, 2019). For training with unlabeled
data, typically, SSL algorithms rely on an ex-
tra smoothness constraint which enforces the
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model to make consistent predictions on an
unlabeled sample and its slightly perturbed
version. Moreover, it is observed that the type
of noise/perturbation plays an important role
and a trivial noise may not provide desired im-
provements (Xie et al., 2020). Recently, a sim-
ple noise such as dropout has shown promis-
ing results for contrastive learning (Gao et al.,
2021). We explore label consistency loss with
dropout noise to train the BERT model with
unlabeled data. The model is trained with the
linear combination of supervised and unsuper-
vised loss components. One of the challenges
with a limited labeled set is how to halt the
training when the validation set is not avail-
able; otherwise, it may result in over-fitting.
In our experiments, we perform the model
updates till the training loss is converged. In-
terestingly, training with dropout label con-
sistency loss is less prone to over-fitting even
with no validation set. We also noticed that the
choice of label consistency loss has a promi-
nent effect on the accuracy. For warm starting
the training, we experiment with pre-trained
BERT and sentence-BERT architectures. Ex-
perimental results demonstrate that, over the
supervised baseline, the intent classification
accuracy can be boosted significantly with the
proposed semi-supervised approach.

2 Related works

SSL approaches have been extensively stud-
ied in the literature. Instead of providing an
extensive list of references, we only cite a few
relevant prior works in this section. An ex-
tensive survey can be found in (Yang et al,,
2021).

Unsupervised Data Augmentation (UDA)
(Xie et al., 2020) has shown promising results
for learning with unlabeled data along with a
small labeled corpus. The idea is to enforce la-
bel consistency between two augmentations of
the unlabeled sample. The authors also point
out that the type of augmentation used signifi-
cantly affects the accuracy of the model, and a
trivial augmentation (such as adding Gaussian
noise) may not lead to desired improvements.
Recently, a contrastive learning approach that
uses dropout noise has been shown to work
well for self-supervised learning with textual
data (Gao et al., 2021). Since dropout is inher-

ently present in pre-trained transformer mod-
els, this provides a simple yet efficient method
for data augmentation. Interpolation Consis-
tency Training (ICT) (Verma et al., 2022) is a
computationally efficient approach to train the
model with SSL. ICT encourages the predic-
tion at an interpolation of unlabeled points
to be consistent with the interpolation of the
predictions at those points. For classification
problems, ICT moves the decision boundary
to low density regions of the data distribution.

For the supervised classification, MixUp has
been found to be an effective data augmen-
tation technique (Jindal et al., 2020). MixUp
is performed in the representation space for
the text classification with transformers and is
known to provide better regularization, and
model calibration (Sun et al., 2020).

3 Proposed approach

In this section, we describe details of the
dataset, loss functions experimented with, and
model training.

3.1 Dataset

Our intent classification dataset consists of
queries from the pre-defined set of 28 intents.
The queries consist of pre-purchase as well
as post-purchase user questions. For each in-
tent, we have 250 manually labeled samples;
hence, the train set comprises 7k labeled exam-
ples. As the test set, we use a manually tagged
dataset of 7569 samples. Table 1 shows exam-
ples of the queries from the test set and corre-
sponding ground truth intents. Note that the
test set consists of code-mix Hinglish queries
and queries with grammatical errors. For the
unlabeled data, we use a query corpus of size
~925k obtained from the internal database. For
all the queries (labeled and unlabeled), we con-
vert them to lowercase and remove punctua-
tion (if any). We do not apply any further
pre-processing.

3.2 Loss functions experimented

We experiment with the following loss func-
tions and their linear combination to train the
model.

3.2.1 Supervised cross-entropy loss (1)

For a small set of labeled data, we use the
standard supervised cross entropy loss for the



Samples

intent class

when will it be delivered if i order today
this product satrday give me

sir mujhe ye phone kab tak mile ga

delivery_time

when will we get discount
it was 11000 near about 12000 at a time when it was offer

phone ka price kab kem hoga

offers_and_discounts

is there debit card emi available
emi process not full details show it option

sorry sir card payment kaise karna hai

payment_options

is this boot washable

sir this phone is good or but sir this phone prosser

display kaise h ise mobile ki

product_spec

how much amount i will get into exchange of my mobile
high what if the mobile i am replesing can be switched on

mobile ka screen touch kharab hai exchange ho jaega

product_exchange

how to return my order
my parking sensor not yet delvered

humko black colour mila hai grey ke jagah

post_purchase

Table 1: Example queries and intent labels from the test dataset. Note that the test data contains
code-mix Hinglish queries and queries with grammatical errors.

training. We use label smoothing while train-
ing where the smoothing parameter is set to
0.1. This loss function is included in all the
experiments.

3.2.2 Supervised Grammar loss (Is,)

For the batch of labeled data, we add gram-
mar augmentations to the input queries, such
as spell errors and word swaps, to create ad-
ditional train data (Ma, 2019). We use cross
entropy loss and label smoothing for this.

3.2.3 Supervised MixUp loss (/)

The idea behind supervised MixUp is to create
an additional labeled train set through linear
interpolating of the features and correspond-
ing one-hot labels. For the transformer models,
MixUp is performed on the feature represen-
tations of the queries in the following manner.

T=Axi+(1-A)x

_ )
F=Ayi+(1-A)y;
Here, A ~ U(0,1). x; and x; indicates the
features from last hidden layer. We use cross
entropy loss for this.

3.2.4 Unsupervised Dropout loss (I,,7)

We use dropout noise for enforcing predic-
tion label consistency to train the transformer
model on unlabeled data. We sample a batch
of queries from the unlabeled query corpus
and make two independent forward passes
through the transformer to obtain two label
predictions. The label consistency loss is then
calculated to minimize the distance measure
D between these predictions.

lug = ]Eu~u(x) D<p9(y1‘u)/ PG(]/Z’“)) 2)

Here, y; and y; indicate predicted labels for
an unlabeled batch u. For D, we experimented
with Cross Entropy (CE) and Mean-Square-
Error (MSE) loss. For text classification, UDA
uses round-trip back-translation as the data
augmentation (Xie et al., 2020). They keep one
copy of the network weights fixed while up-
dating another copy. For the dropout, label
predictions are calculated with the current net-
work parameters, and the same is updated
during training.

3.3 Training details

For the pre-trained BERT model, we use bert-
base-uncased while for the pre-trained sentence-
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Figure 1: Fl-score comparison of BERT and Sentence-BERT results under different train settings.

BERT model, we use paraphrase-mpnet-v2. Both
bert-base-uncased and paraphrase-mpnet-v2 are
12 layers models with ~109M trainable param-
eters. For the BERT model, we use a feature
corresponding to the [CLS] token from the last
hidden layer (without tanh activation) as the
query representation. For the sentence-BERT
model, we use a mean-pooled representation
of the token embeddings from the last hid-
den layer. The mean pooling uses an attention
mask to avoid averaging representations from
the padding tokens.

For the supervised losses (Is, Isg, Ism), we
use a batch size of 32, while for unsupervised
loss (I,7), we use a batch size of 96. We use
AdamW optimizer with a constant learning
rate of 1e-5. One major challenge with limited
labeled sets is to halt the training without the
validation set. In our experiments, we stop the
training when the absolute difference in the
train loss from the consecutive epochs remains
below the threshold (¢) for a certain number
of epochs (patience). In all our experiments,
we use € of 0.1 and patience of 5.

The models are trained under three different
settings.

* Only with labeled loss, Ls = s

e With labeled loss (Ls) and supervised
data augmentation loss, Lsp = Isg + Ism

e With labeled loss (Ls), supervised data
augmentation loss (Lsp) and unsuper-
vised dropout label consistency loss
Lup = l,4. We use log probabilities along
with MSE loss for L;p and a weight factor
« of 10 (to match the scales).

Figure 1 shows the comparison results for
BERT and sentence-BERT models for varying
number of labeled samples. We make a few ob-
servations from these results. Sentence-BERT
works better than BERT, especially with a low
number of labeled samples. Our findings align
with the recent work demonstrating the effec-
tiveness of Sentence-BERT for few shot learn-
ing (Tunstall et al., 2022). Supervised data
augmentations (grammer + mixup) provide
only a slight advantage over purely super-
vised baseline (Figure 1 (b)). We suspect it
is happening due to over-fitting because of a
small labeled corpus and lack of validation set
to stop the training. We validate this hypothe-
sis with an additional experiment, using some
validation data to halt the training. Results
are provided in the ablation study section 5.1.
Unsupervised label consistency with dropout
noise and MSE loss provides a significant ad-
vantage over the supervised baseline. Interest-
ingly, even though the models are updated till
the train loss is converged, training with this
loss provides better regularization and is less
prone to over-fitting. We also observe that the
choice of unsupervised loss has a prominent
effect on the accuracy. Section 5.3 in the abla-
tion study shows the comparison results with
different loss functions for [,,;.

Since Hinglish constitutes a significant per-
centage (30%) of queries, we specifically com-
pared the performance of BERT and sentence-
BERT models for Hinglish query classification.
First, we detect Hinglish queries from the test
set using an approach proposed in (Kulkarni
et al., 2022) and calculate Fl1-score on these
queries with the semi-supervised approach.
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Figure 2: Fl-score comparison of BERT and

Sentence-BERT for Hinglish query classification.

Figure 2 demonstrates the result. We observe
that sentence-BERT inherently provides better
accuracies for Hinglish queries.

We also compare the Expected Calibration
Error (ECE) on the test set for the BERT and
sentence-BERT models. For this, we use the
prediction result for the model trained on all
the labeled samples. Table 2 shows the result.
sentence-BERT achieves better calibration as
compared to the BERT model.

setting ECE
bert-base-uncased | 0.0411
paraphrase-mpnet-v2 | 0.0134

Table 2: Comparison of Expected
Calibration Error (ECE)

4 Comparison with Unsupervised
MixUp approach

We compare the dropout label consistency ap-
proach with another SSL method: Unsuper-
vised MixUp. Verma et al. (Verma et al.,
2022) proposed a MixUp approach for train-
ing with unlabeled data. Feature MixUp is
performed on the transformer representations
for the two batches of unlabeled samples. For
labels, MixUp on model predictions for the
same unlabeled batches is used. We randomly
sample two batches (11, uz) from unlabeled
queries and calculate their feature representa-
tion (x1, x2). The Unsupervised MixUp loss
(Lum) is then calculated as follows.

lum = By uyti(x) D(fo(Mixy(x1,x2)),

Mixy(for(x1), for(x2)))  (3)

As suggested in (Xie et al., 2020), for cal-
culating the second term in the equation, we
use a fixed copy (¢') of the network, and the
update is applied to the current copy of the
weights (6). At the end of each epoch, a fixed
copy is replaced with the current weights. The
model is trained with supervised losses and
the Unsupervised MixUp loss. We use MSE
loss and « of 10. Figure 3 indicates the com-
parison result. Despite being simple, dropout
label consistency performs better than Unsu-
pervised MixUp. This could be because, at the
start of the training, the predictions from the
models may not be accurate. Hence, the up-
dates to the model with Unsupervised MixUp
loss are computed against noisy labels. On
the contrary, the dropout consistency loss only
enforces the smoothing constraint on the label
predictions.

comparision with unsupervised MixUp

0.60
—e— |abel-consistency
—e— unsupervised-MixUp

200

50 100 150 250
Number of labeled examples per intent

Figure 3: Comparison with Unsupervised MixUp.

5 Ablation study

In this section, we report ablation study results
with different experimental settings.

5.1 Comparison of with and without
validation loss monitoring

Since supervised MixUp provided only a
slight improvement over the purely super-
vised baseline with sentence-BERT, we suspect
that it is happening because of over-fitting
since we do not have validation loss based
stopping criteria during training. To confirm
this, we conducted an additional experiment
using a validation set (of size 8318) and halted
the training when validation loss did not im-
prove for five consecutive epochs. Figure 4
shows the F1-score comparison with and with-
out validation monitoring. The plot indicates

100
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that the supervised MixUp, when trained with
a low number of labeled samples and without
validation monitoring, is prone to over-fitting.
Hence, it alone might not lead to good im-
provements for the limited labeled scenario.

paraphrase-mpnet-base-v2: supervised MixUp

fl-score

—e— with validation
—e— w/o validation

100 120

40 60 80
Number of labeled examples per intent

Figure 4: Fl-score comparison for with and with-
out validation loss monitoring. The result confirms
that supervised MixUp is prone to over-fitting un-
der low labeled data regime.

5.2 Choice of label consistency loss

We observed that the choice of loss used for
dropout label consistency has a prominent ef-
fect on the model accuracy. Figure 5 shows the
comparison of CE and MSE loss. For CE loss,
we use « of 1, while for the MSE loss, « is set
to 10 (to match the scales). It can be seen that
the MSE loss consistently outperforms the CE
loss.

comparision of unsupervised loss

—e— mean-square-error
—e— cross-entropy

25 75 100 125 150 175 200

50
Number of labeled examples per intent

Figure 5: Effect of the choice of label consistency
loss.

5.3 Effect of varying dropout probability

To understand whether model dropout prob-
ability affects the accuracy, we performed
an experiment where we trained a sentence-
BERT model with varied dropout probability.

Sentence-BERT has a default dropout proba-
bility of 0.1. In this experiment, we set the
dropout value to a lower (0.05) and a higher
(0.2) value and trained the model with super-
vised and dropout label consistency losses.
Figure 6 shows the resulting plot. We observe
that increasing or decreasing the dropout prob-
ability does not significantly affect the model
accuracy.

effect of model dropout

—e— dropout = 0.1
—e— dropout = 0.05
—e— dropout = 0.2

200

50 100 150 250
Number of labeled examples per intent

Figure 6: Effect of varying dropout probability.

6 Conclusion

This paper proposes a simple yet compe-
tent semi-supervised learning approach for
label-efficient conversational intent classifica-
tion. We trained different transformer models
with labeled as well as unlabeled data. We
explored supervised MixUp data augmenta-
tion for training with labeled samples, while
for training with unlabeled samples, we ex-
perimented with label consistency loss with
dropout. The results demonstrated that clas-
sification accuracy could be improved signif-
icantly over the supervised baseline with the
proposed semi-supervised approach. Specifi-
cally, sentence-BERT was observed to perform
better with a small number of labeled sam-
ples and even with code-mix Hinglish queries.
Even without validation loss monitoring, it
was noticed that training with dropout la-
bel consistency is less prone to over-fitting.
Through the ablation study, we studied the
effect of the choice of label consistency loss
and dropout probability on the accuracy. Ex-
perimental results demonstrated the efficacy
of the proposed approach. A variant of the
model is currently deployed in production.
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Abstract

Product Question Answering (PQA) systems
are key in e-commerce applications to provide
responses to customers’ questions as they shop
for products. While existing work on PQA fo-
cuses mainly on English, in practice there is
need to support multiple customer languages
while leveraging product information available
in English. To study this practical industrial
task, we present xPQA, a large-scale anno-
tated cross-lingual PQA dataset in 12 languages
across 9 branches, and report results in (1) can-
didate ranking, to select the best English can-
didate containing the information to answer
a non-English question; and (2) answer gen-
eration, to generate a natural-sounding non-
English answer based on the selected English
candidate. We evaluate various approaches in-
volving machine translation at runtime or of-
fline, leveraging multilingual pre-trained LMs,
and including or excluding XPQA training data.
We find that (1) In-domain data is essential as
cross-lingual rankers trained on other domains
perform poorly on the PQA task; (2) Candidate
ranking often prefers runtime-translation ap-
proaches while answer generation prefers mul-
tilingual approaches; (3) Translating offline to
augment multilingual models helps candidate
ranking mainly on languages with non-Latin
scripts; and helps answer generation mainly on
languages with Latin scripts. Still, there re-
mains a significant performance gap between
the English and the cross-lingual test sets.!

1 Introduction

Product question answering (PQA) is a key technol-
ogy in e-commerce applications. Given a question
about a product, a PQA system searches the prod-
uct webpage and provides an instant answer, SO
that customers do not need to traverse the page by
themselves or seek help from humans (Li et al.,

'The xPQA dataset is released under https://github.
com/amazon-science/contextual-product-qa/ for re-
search purposes.

Q st e & TR (Will the cloth be available stitched)

oomph! women's unstitched georgette
salwar suit dupatta material - navy blue

Answer:

TS| TG HUST THAT 3T AT [HAMI

(No. This cloth will not be available stitched.)

Figure 1: Cross-lingual PQA: The user asks questions about
a product in their language (such as Hindi), then the system
searches for product information in English and generates an
answer in the same language as the question.

2017; Carmel et al., 2018). In our globalized world,
it is essential to enable this technology for cus-
tomers from different backgrounds. However, ex-
isting research focuses predominantly on English
and leaves aside other language users. One of the
biggest obstacles is the lack of datasets, which pre-
vents us from training, evaluating and developing
non-English PQA systems. Despite the growing
number of multilingual QA datasets, their main
focus is on general domains such as Wikipedia,
which generalize poorly when applied to the PQA
task, as we show in our experiments.

To address this, we present xPQA, the first large-
scale dataset for cross-lingual PQA enabling non-
English questions to be answered from English
content. Most comprehensive product information
is usually available in a majority language such
as English. Therefore, searching for relevant in-
formation in English often has a better chance of
finding an answer.> This paper explores how to
effectively train systems that retrieve information
from English and generate answers in the question
language to allow users to ask questions in any
language. Fig 1 shows an example.

Most existing multilingual QA datasets are cre-
ated by translating English questions, introduc-

ZPrior work (Asai et al., 2021b) also shows the effective-
ness of using English data as a knowledge source for cross-
lingual QA. It is nevertheless helpful to also support searching
in all languages, which we leave for future work.
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ing translation artifacts and discrepencies from
native speakers’ real information-seeking behav-
iors (Clark et al., 2020a). Instead, we collect ques-
tions from the original market places as written by
native speakers, hire bilingual annotators to check
the relevant product information and write the fi-
nal answers in their target languages. This elimi-
nates the need for translations and ensures that the
information-seeking behaviors of native speakers
are accurately represented.

Based on the collected dataset, we report base-
line results on two subtasks: (a) candidate ranking,
which selects the best English candidate that con-
tains the information to answer the non-English
question; (b) answer generation, which generates
a natural-sounding non-English answer to present
to the user based on the selected English candi-
date. We find that applying a cross-lingual ranker
trained on a Wikipedia-based QA dataset gener-
alizes poorly to the product domain. The perfor-
mance is even worse than training a multilingual
ranker on the English in-domain data, suggesting
that domain transferability is even more crucial
than language transferability. The translation-based
approach is the most effective for candidate ranking
while the multilingual-finetuning works the best
for answer generation. Nonetheless, on both tasks,
there is a substantial gap between the English-based
and cross-lingual performances. In the following,
we first elaborate on the problem formulation for
the cross-lingual PQA task (§2), then explain the
xPQA data collection process (§3), and present
experiment results (§5.2) and conclusions (§6).

2 Problem Formulation

Task There are two important tasks for a cross-
lingual PQA system: candidate ranking and an-
swer generation. In candidate ranking, given a
question in a target language and a list of candidates
in English, the ranker predicts a relevance score for
every candidate and selects the top one. Candidate
ranking is necessary because a given product web-
page may contain hundreds of information pieces
about the product, so as a practical matter we select
the top candidate to use in generation. After getting
the top candidate, an answer generator takes it as
input together with the question and produces an
answer in the question language. This step is cru-
cial in order to deploy a user-friendly PQA system
since the candidate is neither in the user language
nor written specifically to answer the question.

Language Branch Script Market
German (DE) Germanic Latin Germany
Italian (IT) Romance Latin Italy
French (FR) Romance Latin France
Spanish (ES) Romance Latin Spain
Portuguese (PT) Romance Latin Brazil
Polish (PL) Balto-Slavic  Latin Poland
Arabic (AR) Semitic Arabic SA
Hindi (HI) Indo-Aryan  Devanagari India
Tamil (TA) Dravidian Tamil India
Chinese (ZH) Sinitic Chinese China
Japanese (JA) Japonic Kanji;Kana  Japan
Korean (KO) Han Hangul US

Table 1: Languages in the xPQA dataset.

Scenario We consider two scenarios for both
tasks: zero-shot and fine-tuned. Zero-shot assumes
that we do not have any labeled data and must
rely on transfer learning from the English-based
PQA dataset 3. Fine-tuned assumes that we can fur-
ther finetune models on a limited number of cross-
lingual PQA annotations. Both are realistic sce-
narios as annotations are usually more abundant in
English than in other languages (Shen et al., 2023).
In our experiments, we use ePQA as the English-
based PQA dataset, which is an extension of the
dataset in Shen et al. (2022a) with coverage and
quality improvements. Details are in Appendix A.

3 xPQA Dataset Collection

To train and evaluate our two tasks, the XxPQA
dataset contains annotations for (1) question-
candidate relevance to label whether every can-
didate is relevant to the question or not, and (2) an-
swers where a natural-sounding answer is manually
written if the candidate contains enough informa-
tion to address the question. The collection process
follows the steps below:

1. Question Collection For our question set,
we crawl publicly-available community questions
from Amazon.com product pages in 11 markets,
obtaining questions in 12 different languages. For
each language, we choose the corresponding mar-
ket, then sample 2,500 unique questions. From
these sampled questions, we select 1500 questions
for each language that are manually verified by our
annotators as being in the target language, informa-
tion seeking, and containing no offensive content.

2. Candidate Collection For every valid ques-
tion, we link its corresponding product page in the

3 Another option is transfer learning from cross-lingual
datasets in other domains, as we evaluate later.
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US market (except for Hindi and Tamil which di-
rectly use the India market) and extract all English
candidates from product information sources (de-
tails in Appendix B.2). Then, we translate every
question into English with AWS translate,* feed the
translated question into an English-based ranker 3
and obtain top-5 candidates from its candidate set.

3. Relevance Annotation The top-5 English can-
didates and the non-English original questions are
passed to annotators to judge their relevance. Each
candidate is marked with one of three labels: “fully
answering” (contains enough information to ad-
dress the question), “partially answering” (contains
useful information to partially address the ques-
tion), and “irrelevant” (does not provide any help-
ful information). Guidelines are available in Ap-
pendix B.3.

4. Answer Search To increase the answer cover-
age, questions for which none of the top-5 candi-
dates are marked as “fully answering” are given to
annotators who are asked to actively search for the
answer on the Amazon product page. If they find
candidates fully answering the question, these are
included with the label “fully answering”.

5. Answer Generation For candidates marked
as “fully answering”, annotators are then asked to
write natural, direct answers based on them.

All annotators are bilingual, hired through
the centific platform ©. The constructed xPQA
dataset is split into 1000/400/100 questions as the
test/train/dev sets for each language. Table 1 shows
all languages included in the XPQA dataset. The
detailed annotation process, payment, and statistics
are explained in Appendix B.

4 Approaches

For each task, we experiment with three types
of baseline approaches: translate-test, translate-
train, and multilingual (Hu et al., 2020). Fig 2
provides a summary of these approaches.

Translate-test The essential idea here is to rely
exclusively on English-centric models and datasets.
In the zero-shot scenario, models are trained on
the ePQA dataset. In the fine-tuned scenario, we
must translate questions and answers in the xPQA

*https://aws.amazon.com/translate/

>An ELECTRA (Clark et al., 2020c)-based binary classi-
fier model pretrained on large amounts of pseudo labels plus
human annotations optimized for the English ranking task.

6https ://www.centific.com/

dataset into English as this is an English-centric
model. This translated dataset, termed XPQA_MT
is used to further fine-tune the zero-shot models.
At runtime, we use an external machine translation
model to translate the question into English and
apply the ranker to select the best candidate. Af-
terwards, an English-based generator produces an
answer in English, which is then post-translated
to the target language. Translate-test is a com-
mon approach in industry as it uses well-trained
English-based models and off-the-shelf translation
tools without further modifications. However, such
a pipelined process introduces runtime latency and
can lead to error propagation if translation quality
is not perfect.

Translate-train In contrast to the above, here we
apply all translation processes in training, or offline,
so that no additional latency is added at runtime.
In the zero-shot scenario, we machine-translate all
questions and answers in the ePQA dataset into
each of the 12 languages we consider. The result-
ing dataset, termed ePQA_MT, is used to train a
multilingual model. In the fine-tuned scenario, we
further finetune the model on the xPQA dataset.
As the model is defined to be multilingual, it can
directly take input questions in their original lan-
guages and output answers in the target languages
without any translation process.

Multilingual Finally, this approach is similar to
the translate-train one in that both use multilin-
gual models rather than an English-only model, but
the difference is that the multilingual approach re-
quires no translations at training time. In the zero-
shot scenario, it trains a multilingual pretrained
model directly on the English-only ePQA dataset
and relies only on its own pretrained multilingual
knowledge to adapt to other languages. In the fine-
tuned scenario, we further fine-tune the model on
the xPQA dataset. Note that this approach still
requires runtime post-translation of the generated
English answer into the target language. This is
because we find that multilingual models can only
generate English answers when trained only on
English datasets. Although special decoding con-
straints could be use to restrict output vocabulary
to that of the target language, zero-shot multilin-
gual adaptation in generation tasks is still an open
challenge (Chen et al., 2022; Zhang et al., 2022).
It is worth mentioning that the three types of
approaches can be combined. For example, we
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ePQA
Question: does the latch come in white?
Candidate: it only comes in black ..

Label: fully answering
Answer: no, it comes only in black.

Translate question/answer into 12 languages
ePQA_MT

Question:a trava vem em branco?
Candidate: it only comes in black ..

Label: fully answering
Answer: ndo, s6 vem na cor preta

xPQA

Question: é a prova dgua?
Candidate: i thought they were waterproof but ..
Label: fully answering
Answer: N&o.

Translate question/answer into English

Eu realmente achei ..

XPQA_MT

Question: is it waterproof?

Candidate: i thought they were waterproof but ..
Label: fully answering

Answer: do not. I really ..

Inference Process

Approach Zero-shot Fine-tune
Translate-test ePQA

Translate-train ePQA_MT xPQA
Multilingual ePQA xPQA

xPQA_MT Question - pre-translate = model = English answer > post-translate
Question = model - answer

Question = model = answer (= post-translate)**

Figure 2: Summary of experimented approaches. The ePQA_MT (and xPQA_MT) set is the translated version of ePQA (and
xPQA) into all non-English languages (and English). **indicates that post-translate is only required for the zero-shot model.

could follow the translate-train approach to train
the candidate ranker and follow the multilingual
approach to train the answer generator. Details of
the model implementation are in Appendix C.

5 Experiment

5.1 Evaluation

Although many QA works report end-to-end per-
formances, we chose not to report them because (1)
Most product questions, as well as the information
sources such as reviews and customer answers, are
subjective. The correctness of answers depends on
the specific candidates for which there is no uni-
versal ground truth (McAuley and Yang, 2016); (2)
Only providing answers grounded on references is
a critical requirement for an online PQA deploy-
ment. When candidate ranking fails to provide
suitable candidates in the first stage, even if the an-
swer generator manages to make a good guess,’ it
is still considered a failure. Therefore, end-to-end
evaluations are not suitable and the evaluation of
answer generation has to be candidate-dependent.
We evaluate the ranker with Precision of the top-
1 candidate, P@1, as the generated answer is based
on the top-1 candidate. To remove the effects of
language-specific answering ratios, we report P@ 1
scores only on the answerable questions where at
least one candidate is marked as “fully answering”.
The generator is evaluated with the sacreBLEU
score 8. The generations are produced and evalu-
ated only from candidates marked as “fully answer-

’As the answer depends on the information of the specific
product, the chance of guessing the correct answer without
proper candidates is close to random and fully unreliable.

8https ://github.com/mjpost/sacrebleu

ing” since otherwise, the ground truth is undefined.

5.2 Main Results

Task 1: Candidate Ranking Table 2 shows P@1
of different candidate ranking approaches and their
average scores. Translate-test performs the best,
and its advantage is particularly prominent in the
zero-shot scenario. In the fine-tuned scenario, how-
ever, the other two approaches can also perform
similarly. The translate-train approach outper-
forms the multilingual approach mainly for lan-
guages that do not use Latin scripts. Even for low-
resource languages, such as Tamil whose transla-
tion quality is far from satisfactory, translating the
training corpus still helps the multilingual model
adapt to the target language. This implies existing
pre-trained multilingual models are already good
at adapting to new languages with Latin scripts.
Translating the training corpus is mainly help-
ful to adapt the model into new scripts (Lauscher
et al., 2020). Fine-tuning an English BERT on the
ePQA training set leads to a P@1 of 70.7% on the
monolingual English test set, which is significantly
higher than all other languages except Polish, sug-
gesting scope for substantial improvement.’

Task 2: Answer Generation Table 3 shows the
BLEU score of different answer generation ap-
proaches and their average scores. In the zero-shot
scenario, the translate-test approach often per-
forms the best on languages with non-Latin scripts
and the translate-train approach performs the best

Note that this does not mean the system works better for
Polish than English. As the question set for each language
is distinct and not comparable, it could be simply that the
sampled Polish questions are easier than English ones.
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Model \ DE IT FR ES PT PL AR HI TA ZH JA KO \ AVG
Zero-shot Scenario

Translate-test 48.7 48.6 59.7 638 569 63.6 492 602 446 56.1 50.7 489 | 54.2

Multilingual 484 462 59.1 598 555 60.0 451 427 404 53.0 450 454 | 50.1

Translate-train | 47.7 47.8 574 608 57.0 587 487 509 441 558 478 49.8 | 522
Fine-tuned Scenario

Translate-test 517 551 648 668 64.0 068.0 573 684 50.0 619 579 60.2 | 60.5

Multilingual 52.7 535 648 657 635 706 547 676 490 603 51.6 578 | 593

Translate-train | 52.1 54.0 634 67.1 621 71.6 551 674 513 642 547 60.6 | 60.3

Table 2: P@1 of candidate ranking for each language and the averaged score (AVG) on answerable questions in XPQA testset.

Model \ DE IT FR ES PT PL AR HI TA ZH JA KO \ AVG
Zero-shot Scenario

Translate-test 7.0 17.1 143 11.5 194 117 185 8.9 51 198 129 85 12.9

Multilingual 6.0 142 116 101 183 99 163 7.0 48 17.8 117 59 11.1

Translate-train | 16.9 17.1 205 141 195 188 159 158 44 166 128 74 15.0
Fine-tuned Scenario

Translate-test 89 253 154 142 210 166 173 163 7.1 21.7 123 88 15.4

Multilingual 272 27.1 225 313 200 323 134 260 167 262 31.6 440 | 265

Translate-train | 329 31.6 266 366 244 401 160 285 185 303 33.7 51.6 | 309

Table 3: BLEU score of answer generation for each language and the averaged score (AVG) on the xPQA test set.

Transfer Learning with XOR-TyDi v.s. ePQA

70 —8— ePQA-Zeroshot
XQR-TyDi-Zeroshot

—¥— ePQA-Finetuned
65 —A— XOR-TyDi-Finetuned

60

55

P@1

50

45

N

40

de it fr es pt pl ar hi ta zh ja ko

Figure 3: Comparison of transfer learning datasets. The
English-only in-domain ePQA data is more useful than the
cross-lingual out-of-domain XOR-Tydi dataset.

on languages with Latin scripts. The translate-
train approach outperforms the multilingual ap-
proach with a few exceptions. Interestingly, all the
exceptions happen in languages using non-Latin
scripts, which contradicts the findings in candidate
ranking. We hypothesize that the used pre-trained
multilingual model is better at understanding non-
Latin scripts than actually generating them because
generating the text requires more advanced knowl-
edge of grammar, which cannot be easily distilled
from imperfect machine translators (Adelani et al.,
2022). Fine-tuning models on the xPQA training
data leads to big improvements across approaches,

especially for multilingual and translate-train
which do not rely on machine translators at run-
time. The translate-test approach, due to the error
propagation from two machine translation steps,
significantly underperforms the other two. Fine-
tuning an English T5 model on the ePQA train-
ing set leads to a BLEU score of 49.7%; although
BLEU scores are related to language-specific tok-
enizers and questions, we believe this consistent
gap implies large opportunities for improvement.

5.3 Analysis

Domain vs Language Transferability There are
cross-lingual QA datasets in other domains. When
building a system for xPQA, is it better to use
an English-only in-domain QA dataset or a cross-
lingual out-of-domain QA dataset? To answer this
question, we train a new multilingual ranker on the
XOR-TyDi dataset (Asai et al., 2021a), which is a
representative cross-lingual QA dataset with real
questions from the Wikipedia domain. We treat the
gold passage containing the correct answer span as
positive and randomly sample 5 other passages as
negative. The comparison with our existing mul-
tilingual approach trained on the ePQA dataset is
shown in Figure 3. We can see that fine-tuning mod-
els on the ePQA dataset leads to significantly better
performance on all languages with few exceptions,
suggesting domain differences are even more cru-
cial than language differences for the candidate

107



Precision of Fine-tuned Models
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Figure 4: Precision and recall with varying thresholds. The
red line is for the English model and the other lines are for the
average score of the cross-lingual model. Vertical bars are the
standard deviations across all languages.

Language P@1 AUPC MAP MRR
DE (MT) 48.7 61.8 64.4 66.4
DE (HT) 48.8 (10.1) 61.9 64.5 66.5
TA (MT) 44.6 59.7 60.0 62.3
TA (HT)  54.2 (19.6) 69.8 66.3 69.1

Table 4: Comparison of translate-test approach (candidate
ranking) using Machine (MT)/human translation (HT) .

ranking task in xPQA. It is necessary to collect
in-domain annotations for good performance.

Answerability Prediction As the amount of in-
formation differs among products, it is very likely
that many questions are not answerable with exist-
ing candidates and the model should not attempt to
answer given the available information. A common
practice is to use the model score as a predictor for
the answerability confidence. To see how effective
this is, we visualize the change of precision and
recall with varying model score thresholds in Fig-
ure 4. We can see that in the zero-shot scenario,
there is a larger performance variance across lan-
guages, especially for the multilingual approach
which solely relies on the knowledge from the pre-
trained model. The multilingual approach is also
more sensitive to the threshold and its recall drops
much faster than the other two approaches. Fine-
tuning the xQA training data reduces the gaps be-
tween the three approaches. The English model, as
expected, consistently performs better, especially
in the low-confidence region.

Effects of Translation Quality To investigate
the effects of the translation quality in the translate-
test approach, we select German and Tamil as two

Rank
21.3ms

Post-Translate
91.3ms

Generate
532.4ms

Pre-Translate

74.1ms

Table 5: Latency of each component. Generating and trans-
lating cost much more time than ranking.

languages with very different translation qualities
and obtain manual translations of their questions.
Comparisons to machine-translated questions are
shown in Table 4. Apart from P@1, we also show
AUPC (Area Under Perturbation Curve), MAP
(Mean Average Precision) and MRR (Mean Recip-
rocal Rank) scores. We can see that the improve-
ment from using human translations is negligible
in German but substantial in Tamil. Even with hu-
man translations, we can still see a big gap between
performances on English monolingual (70.7%) and
xPQA test sets (48.8% and 54.2%), suggesting that
question-shape shifts can be even a bigger chal-
lenge than language shifts for the candidate rank-
ing task. The problem of language shifts might be
crucial only for low-resource languages without
decent MT systems such as Tamil.

Runtime Latency Table 5 shows the runtime la-
tency of every component tested in one AWS P3.16
instance. We feed questions in all languages one by
one to simulate an online environment. As seen, the
candidate ranker is fast and the computation over
multiple candidates can be easily parallelized. The
pre/post-translate costs more time, but the main
bottleneck is the answer generation step, which is
25 x slower than the ranking. This is clearly more
than the latency budget of most online applications
and can be the focus of future research. Poten-
tial improvements could be in non-autoregressive
decoding, efficient attention, or distillation into a
smaller model (Tang et al., 2021, 2022; Li et al.,
2022).

6 Conclusion

This paper presents xPQA, a dataset for cross-
lingual PQA supporting non-English questions to
be answered from English product content. We
report baseline results and findings for three ap-
proaches: translate-test, multilingual, and translate-
train. Experiments show that the translate-test ap-
proach performs the best for the candidate ranking
task while the translate-train approach performs the
best for the answer generation task. However, there
remains significant room for improvement relative
to an English-based monolingual PQA system. We
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hope that future research can benefit from our work
to improve cross-lingual PQA systems.

Limitations

While the XPQA dataset is created to be as close
to the real-world scenario as possible, it has two
major drawbacks. Firstly, the candidate set in the
dataset does not include the full candidates for a
given product because annotating all candidates is
prohibitively expensive. The subjectivity of prod-
uct questions and candidates also makes it hard
to get ground-truth short-span answers, which pre-
vents a straightforward end-to-end evaluation over
the full candidate set. A potential fix is to run hu-
man evaluations on the top-1 candidate over the full
candidate set from each model, but it’d be costly
to do so. A more realistic solution is to have an
online evaluation for the best model only, which we
leave for future work. Secondly, the answer anno-
tation is based only on a single candidate because
handling information from multiple candidates re-
quires careful instructions on conflicting informa-
tion and summarization skills. This might limit
the model in answering complex questions that re-
quire inference over multiple candidates. However,
we find this case to be very rare in real customer
questions. Furthermore, as we do not summarize
multiple candidates, the returned answer can be bi-
ased toward the opinion of a single customer. Our
evaluation also has potential limitations in that (1)
We did not extensively evaluate the quality of gener-
ated answers with manual annotation. It is known
that BLEU scores might not correlate well with
human evaluations on generation tasks, and they
can be misleading in certain cases; (2) We only
compared major types of baseline algorithms and
did not explore the effects of leveraging existing
larger, more powerful pre-trained language models
such as mTO (Muennighoff et al., 2022) and Flan-
T5 (Chung et al., 2022). Conclusions might change
if we hire annotators to perform more human eval-
uations or change the model architecture.

Ethics Statement

E-commerce has been increasingly popular these
years. Nonetheless, a big amount of people cannot
benefit much from it because most E-commerce
websites only support a few major languages. De-
ploying an xPQA system can have a broad impact
across a wide range of non-English speakers to as-
sist them in their shopping experience. With a well-

developed xPQA system, we only need to maintain
comprehensive product information in one major-
ity language, but allow non-English speakers easily
get access to the product information. This can
significantly reduce the maintenance cost and ben-
efit the democratization of Al. Nevertheless, there
are two major caveats before deploying a safe, re-
liable xPQA system: (1) The answer generator
needs to be fairly evaluated by humans in terms of
faithfulness. While answer generation can greatly
improve user-friendliness, it also brings potential
risks of providing false information; (2) The users
should be well noticed that the provided answer
is drawn from the opinion of a single customer
or other sources. It cannot reflect the opinion of
the vendor, or seller nor imply any trend from the
public.
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A Difference with Previous Datasets

Product Question Answering Product question
answering (PQA) differs from general-knowledge
QAs in that questions often seek subjective opin-
ions on specific products, so earlier research usually
treated it as an opinion mining problem (Moghad-
dam and Ester, 2011; Yu et al., 2012). Recent
advances in neural networks propagated the use of
dense retrieval and generation models to provide
direct answers. Many relevant datasets are curated
to facilitate this study (Chen et al., 2019; Xu et al.,
2020; Gao et al., 2021; Deng et al., 2022; Shen
et al., 2022b,c). However, they are either based
on simulated questions, or community question-
answers where the answers are noisy and have no
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direct connection with product information candi-
dates (Lai et al., 2018; Xu et al., 2019; Barlacchi
et al., 2022). The only exception is Shen et al.
(2022a) where exact annotations are provided for
both candidate relevance and answer generation,
but it focuses only on one product category and
the annotation quality is not good enough. Specif-
ically, we sample about 2000 question-candidate
pairs then perform an in-house annotation and find
around 20% of the annotations are incorrect. As a
result, we construct the ePQA dataset with the fol-
lowing main differences from the dataset in Shen
et al. (2022a): (1) It has higher annotation quality
with rounds of verifications. In our in-house anno-
tation, the error rate is less than 5%; (2) It does not
restrict the product categories, while the original
dataset focuses only on the toys and games prod-
ucts; (3) It defines finer-grained 3-class labels for
each candidate, while the original dataset contains
only binary labels; (4) Every candidate is checked
with its context (surrounding sentences) to make
sure the label is correct.

To the best of our knowledge, all existing PQA
datasets are monolingual and questions are usually
in high-resource languages such as English or Chi-
nese, which leads to our motivation of building a
cross-lingual PQA dataset.

Cross-Lingual Question Answering Recently,
many non-English question answering (QA)
datasets in the general Wikipedia domain have been
proposed (Lewis et al., 2020; Artetxe et al., 2020;
Clark et al., 2020b; Hardalov et al., 2020). Several
datasets focus on the open-retrieval (open-domain)
setting, where a gold document or paragraph is not
pre-given and a system needs to search documents
to answer questions (Liu et al., 2019; Asai et al.,
2021a; Longpre et al., 2021). Importantly, all of
those prior datasets are created based on Wikipedia
or school exams, and there is no prior work on
cross-lingual product QA.

Notably, ePQA contains 131,52/1,000/2,000
questions in the train/dev/test sets respectively,
which is significantly larger than xPQA (as in re-
alistic scenarios). It can be used to analyze the
performance gap between mono-lingual PQA and
cross-lingual PQA.

B Dataset Collection

B.1 Question Collection

In the question collection phase, questions are kept
if they fulfill the following criteria: (1) It is identi-
fied as the target language through Amazon Com-
prehend '°; (2) It contains no URL links; (3) It
contains at most one question mark so as to avoid
multiple questions; (4) It contains at least 3 words
and less than 20 words; (5) Its corresponding prod-
uct is also available in the US market. !!

B.2 Candidate Processing

Our candidates come from 6 information sources:
(1) product title, (2) semi-structured attributes, (3)
product bullet points, (4) product description, (5)
community answers (excluding the answer that di-
rectly replies to the question); (6) user reviews.
Every product title and attribute is treated as a sin-
gle candidate. For the other product information,
we split them into sentences and treat each sentence
as the candidate. For candidates from community
answers, We further concatenate them with the cor-
responding community questions to provide more
context. All candidates are lower cases and emojis
are removed. Numbers from the semi-structured
attributes are further normalized to keep at most 2
decimals.

B.3 Relevance Annotation

Each candidate is marked with one of three labels:
“fully answering” (it contains enough information
to address the question), “partially answering” (it
contains useful information to partially address the
question), and “‘irrelevant” (it’s not useful in an-
swering the question at all). To make sure the
candidate is properly understood, we also provide
its context (surrounding sentences) to the annota-
tors. The exact definitions for the three labels and
guidelines used are:

* Fully answering. Meaning that the response
contains clear information to tell about the
answer. It can take some inference step to
get the answer, but it must contain enough
information to help come to the answer.

* Partially answering (relevant but not fully an-
swering). Meaning that the response contains

Yhttps://aws.amazon.com/comprehend/

"This is to ensure we can get English candidates for these
products. It does not apply to Hindi and Tamil because the
official language in the India market is already English.
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| CONTEXTUALGQA_ES-ES (QA MODE)

Ki

ge base see more |

qid-4015 |Question:
hay que pedir el nimero habitual?

Candidate|Source:review|Candidate 1D:84134

after reading the reviews, i took a chance and ordered my usual size, and they
fit perfectly!

Context:

after reading the reviews, i took a chance and ordered my usual size, and
they fit perfectly! i thought that because my feet are narrow and most
sandals are always too wide or too long, that they might be too big. to my joy,
i finally found a goed fitting and very very comfortable sandal. i had tried the
sketchers similar to these, but they were way too leng and wide, so i returned
them and gave these a try. i'm so very glad i did. the arch is also very good
with my fallen arches. i love these sandals and highly recommend them.
they're well made too!!

Label:
© fully answi

nt but not fully answering

ing

rrelevant

Reviewer Answer

Si. Un cliente ha dicho que los ordeno en su talla normal y le quedaron
perfectamente.

Comment

Insert here any additional comment

QA Comment

Insert here any additional comment...

Title

viakix h

CLOSE

king sandals women- athletic sport sandal for outdoors walking water

SUBMIT

Task 331

09820 / Hit 367148695

Figure 5: UI of the annotation task. Annotators will be shown a question in one of the 13 languages we considered and a
candidate extracted from product information. Annotators can also see the title, and picture of the product, as well as context
(surrounding sentences of the candidate with the actual candidate being highlighted), to provide a more accurate annotation.

useful information that help one understand
more, and narrow down the range of the an-
swer, yet not enough to get the exact answer
from it.

Irrelevant. Meaning that the response does not
provide useful relevant information at all, and
a customer will not get anything new about
their question after reading it.

Note that in this step, annotators do NOT need
to consider factual correctness. For the question
“what color is it?”, it does not matter if the response
is saying it is blue or red. Annotators should focus
on the content only but not the factual correctness.
Besides, even if it contains other extra information
or the response is not natural, as long as the proper
information is included, then it is considered as
fully answering.

Specifically, Fully answering means the response
contains enough information to let one draw the
answer. The criteria of fully answering should NOT

be overly strict. Annotators can be lenient with the
word choice, as long as the response conveys the
proper meaning. For example:

Question: is it an awesome gift for my girl
friend? Response: it is a nice valentine gift for
your partner.

In this case, the difference between “awesome”
and “nice” is not relevant, as the response is either
way saying that it is a good gift for your girl friend
or partner, and thereby should be judged as “fully
answering”.

Another example:

Question: is it comfortable to sleep on for a 6”
tall man? Response: It is comfortable to lie down
for tall people.

Annotators should not be overly strict about
whether 6 can be considered as “tall” and whether
“lie down” is equivalent to “sleep on”, etc. Based
on common sense, if the immediate impression
after reading the response provides the needed in-
formation, one should NOT overthink other ways
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All in One on OneForma:
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: Resource Resource 4 Data
"

7

* Native resources test and filter
Dedicated resources onboard directly
Resources and status tracking during production

* Full QA implementation

Result comparing between production and QA

* When the volume of project is huge and involves many resources, we will use Bl to monitor the progress of the project and the quality of individual

resources.

Figure 6: Annotation process and quality control of the task.

of interpreting this response.

Helpful but not fully answering means the re-
sponse contains helpful information, but is not
enough to answer the question, or it can fully an-
swers the question but the information is uncertain.
“Helpful” means it provides useful information to
help you know more about the question or narrow
down the scope of the answer.

For example: -question: Is it good for my 3-
year-old kid? -response: my 5-year-old son likes
it.

It cannot fully tell whether a 3-year-old will like
it, but knowing that a 5-year-old likes it is helpful
information. It helps you narrow down the range of
the answer — You know it is for kids but not adults,
just not sure if it works exactly for 3-year-old.

“irrelevant” means the response provides zero
useful information about the question, and is totally
useless. Imagine you are a customer that raises this
question, you should only select this option when
you cannot find any useful information from the
response.

B.4 Answer Generation

During the answer annotation, annotators are in-
structed to provide a natural, informative, and com-
plete sentence to directly answer the user questions
given the provided information in the response.
The provided answer is required to be:

* natural. It should be a fluent, natural-sounding
sentence.

¢ informative. It should provide key informa-
tion or explanations for users to better under-

stand the question. It cannot be a single word
like “Yes” or “No” without further content.

» complete. It should be a complete sentence
that provides more context instead of a short
span.

There is also a caveat to avoid copying the can-
didate exactly. Annotators should always extract
useful information from it and show the reasoning
step in the answer to make it a natural reply. If
the candidate is from a customer-provided content,
they are further instructed to write from a third-
party viewpoint. For user-provided contents, the
answer will be in the form of “A customer says he
feels ...” instead of “I feel ...”.

B.5 Quality control and annotation cost

Annotations are done through the centific plat-
form 2. The whole annotation process is summa-
rized in Figure 6. From the Home of the webapp,
we can see the status of the task (how many hits
have been done and how many hits remain to be
annotated). In the Quality Assessment mode, the
assessor could search and select annotators and
then check the completed hits at any time. When
the assessor checks the hits, they can correct them
directly and give feedback to the annotators, to
improve annotation quality. The annotation cost
differs among languages and tasks. Table 6 pro-
vides a summary.

12ht’cps: //www.centific.com/
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Task \ DE 1T FR ES PT PL AR HI TA ZH JA KO \ EN
Zero-shot Scenario

Relevance Annotate | 0.30 022 030 022 022 024 022 0.13 019 0.09 032 038 | 0.18

Answer Generation | 0.27 020 0.27 0.19 020 024 020 0.12 0.19 0.10 029 038 | 0.24

Answer Search 200 150 1.8 135 135 135 135 085 1.15 065 215 2.15 -

Translation 1.05 - - - - - - - 0.55 - - - -

Table 6: Annotation cost per unit for each task (in US dollars). The answer search task for English questions is annotated
in-house so there is no external cost. The translation annotation is only conducted for German and Tamil.

. Train + Dev Test
Language Branch Seript Market #Inst #Ans #Inst #Ans %Full %Rel
English (EN) Germanic Latin UsS \ 131,520 24,928 \ 20,142 4,392 84.1 95.2
German (DE) Germanic Latin Germany 5,110 806 10,201 1,504 73.4 86.8
Italian (IT) Romance Latin Italy 5,081 571 10,168 1,316 60.6 79.9
French (FR) Romance Latin France 5,047 838 10,135 1,684 71.1 96.7
Spanish (ES) Romance Latin Spain 5,055 1,003 10,112 1,961 78.5 91.5
Portuguese (PT) Romance Latin Brazil 5,064 896 10,120 1,775 78.9 98.4
Polish (PL) Balto-Slavic  Latin Poland 5,053 925 10,101 1,873 76.7 90.1
Arabic (AR) Semitic Arabic SA 5,097 752 10,178 1,544 71.3 84.6
Hindi (HI) Indo-Aryan Devanagari  India 5,175 922 10,319 1,670 91.7 95.3
Tamil (TA) Dravidian Tamil India 5,076 892 10,166 1,584 734 81.7
Chinese (ZH) Sinitic Chinese China 5,095 1,028 10,148 1,865 81.2 91.5
Japanese (JA) Japonic Kanji;Kana Japan 5,111 939 10,201 1,748 81.2 88.5
Korean (KO) Han Hangul US 5,060 642 10,116 1,277 59.6 70.5

Table 7: Statistics of the ePQA and xPQA Datasets. #Inst/#Ans is the number of question-candidate pairs with relevance
labels/manually written answers. %Full/%Rel is the percentage of questions that can be fully/partially answered.

B.6 Dataset Statistics

To increase the number of negative samples, for
every question we further randomly sample 5 can-
didates from the candidate set of corresponding
products. These negative candidates, together with
the annotated candidates, will form a closed-pool
candidate set to evaluate the candidate ranker. Ta-
ble 7 shows the statistics of the ePQA and xPQA
datasets.

C Experiments

For the candidate ranking task, we initialize our
model with Bert-base (Devlin et al., 2019) in
translate-test and mBert-base in the other two ap-
proaches. Following the common practice, we con-
catenate the question and candidate (split by the
<SEP> token) and then feed it into the encoder. An
MLP layer is added on top of the first <CLS> token
to output three logits. These logits go through the
softmax layer to represent the probability of three
labels. At runtime, we use the probability of “fully
answering” as the score for each candidate.

For the answer generation task, we initialize our
model with T5-base (Raffel et al., 2020) for the
translate-test approach and mT5-base (Xue et al.,
2021) for the other two approaches. The input is the

question concatenated with the candidate and the
output is the ground-truth answer. At runtime, we
generate the output with beam search (beam size as
5). Both the ranker and generator are trained with
standard cross entropy loss.

We implement all models based on the Hug-
gingface Transformers library ' with PyTorch 4.
Models are optimized with the Adam opti-
mizer (Kingma and Ba, 2014). We truncate the
total input length to 128 subword tokens and select
the learning rate from [5e-6, 1e-5, 3e-5, Se-5, le-4].
The warm-up step is selected from [5%, 10%, 20%,
50%] of the whole training steps. For the ranker,
we choose the best configuration based on the ac-
curacy of the validation set. For the generative
model, we choose the best configuration based on
the perplexity of the validation set. In the end, we
set the learning rate of the ranker as 3e-5 and that
of the generator as 1e-5. The warm-up steps are set
to 20% for both. The batch size is set as 64. We
evaluate the model performance every 1% of the
whole training step to select the best checkpoint.
All models are trained on one AWS P3.16 instance
which includes 8 Nvidia V100 GPUs. The random
seed is set as 42.

Bhttps://huggingface.co/
14https: //pytorch.org/
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Abstract

Fake news detection has been a critical task
for maintaining the health of the online news
ecosystem. However, very few existing works
consider the temporal shift issue caused by the
rapidly-evolving nature of news data in prac-
tice, resulting in significant performance degra-
dation when training on past data and testing on
future data. In this paper, we observe that the
appearances of news events on the same topic
may display discernible patterns over time, and
posit that such patterns can assist in selecting
training instances that could make the model
adapt better to future data. Specifically, we de-
sign an effective framework FTT (Forecasting
Temporal Trends), which could forecast the
temporal distribution patterns of news data and
then guide the detector to fast adapt to future
distribution. Experiments on the real-world
temporally split dataset demonstrate the superi-
ority of our proposed framework. The code is
available at https://github.com/ICTMCG/FTT-
ACL23.

1 Introduction

Automatic fake news detection, which aims at dis-
tinguishing inaccurate and intentionally misleading
news items from others automatically, has been a
critical task for maintaining the health of the online
news ecosystem (Shu et al., 2017). As a comple-
ment to manual verification, automatic fake news
detection enables efficient filtering of fake news
items from a vast news pool. Such a technique
has been employed by social media platforms like
Twitter to remove COVID-19-related misleading
information during the pandemic (Roth, 2022).
Over the past decade, most fake news detection
researchers have followed a conventional paradigm
of collecting a fixed dataset and randomly dividing
it into training and testing sets. However, the as-
sumption that news data subsets are independent

*Corresponding author.

p— A 2016Q1 Text: Over 100 people have arrived
Topic 1: Child Trafficking around Funing County to steal children. More than 20
children have been lost in Funing County.
o7
N 2018 Text: Over 100 foreigners have come
=§z:z from Sanya and have arrived in Baoding City, Hebei
Province. They specialize in children trafficking.

PLFE{oF B Text: Over 10,000 foreigners from
Sanya and have arrived in Shulan, Jilin, Changchun,
more than 2,000 children was lost.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 @t

Topic 2: College Entrance Exam

PIFEISEN Text: Yang Guilan, whose admission
e letter was forgotten on the No. 818 bus, and now it is
2018 placed atthe dispatching booth of Xinxi Station,

M 2019 please forward (from Suiyang County).
W 2020

Text: Anyone in Lanzhou know Yang
Guilan? Her admission ticket was lost on the No.104
bus, and is currently at the dispatching booth of Xinxi
Station. (please forward if you see it)

Q102 03 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 G2 Q3 Q4 Q1 Q2 Q3 Q4

Topic 3: Falling Accident

2016Q2 Text: Netizens reported that this
morning a girl fell from the apartment building of ...

2017Q4 Text: Agirl fell from the 11th floor of
a hotel because of a broken relationship.

Text: A tragedy occurred in Longgang!
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Yesterday, a man accidentally fell from ...

Figure 1: Topic-level statistics of news items across five
years in our data. We see that different topics present
diverse temporal patterns such as decrease (Topic 1),
periodicity (Topic 2), and approximate stationery (Topic
3), which we rely on to forecast temporal trends for
better fake news detection in the future. The case texts
are translated from Chinese into English.

and identically distributed often does not hold true
in real-world scenarios. In practice, a fake news
detection model is trained on offline data collected
up until the current time period but is required
to detect fake news in newly arrived online data
at the upcoming time period. Due to the rapidly-
evolving nature of news, news distribution can vary
with time, namely temporal shift (Du et al., 2021;
Gaspers et al., 2022), leading to the distributional
difference between offline and online data. Recent
empirical studies (Zhang et al., 2021; Mu et al.,
2023) evidence that fake news detection models
suffer significant performance degradation when
the dataset is temporally split. Therefore, the tem-
poral shift issue has been a crucial obstacle to real-
world fake news detection systems.

The temporal shift scenario presents a more sig-
nificant challenge than common domain shift sce-
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narios. Most existing works on the domain shift in
fake news detection focus on transfer among pre-
defined news channels (e.g., politics) (Silva et al.,
2021b; Mosallanezhad et al., 2022; Lin et al., 2022;
Nan et al., 2022). However, consecutive data slices
over time have various types of temporal depen-
dencies and non-explicit distributional boundaries,
making the temporal shift challenging. Moreover,
these works assume the availability of target do-
main data, which is impossible for the temporal
shift scenarios. Under such constraints, our aim is
to train a model using presently available data to
generalize to future online data (corresponding to
temporal generalization task; Wang et al., 2022).
Others that improve the generalizability to unseen
domains learn domain-invariant features by adver-
sarial learning (Wang et al., 2018) and domain-
specific causal effect removal (Zhu et al., 2022a),
but do not consider the characteristics of temporal
patterns of news events.

In this paper, we posit that the appearance of
news events on the same topic presents diverse tem-
poral patterns, which can assist in evaluating the
importance of previous news items and boost the
detection of fake news in the upcoming time period.
In Figure 1, we exemplify this assumption using the
statistics of news items on three topics in the Chi-
nese Weibo dataset: Topic 1 presents the temporal
pattern of decrease, where news about child traf-
ficking becomes less frequent. Topic 2 presents the
periodicity of news related to the college entrance
exam which takes place annually in the second
quarter (Q2).! In Topic 3, news items about falling
accidents appear repeatedly and exhibit an approx-
imate stationary pattern. Such temporal patterns
indicate the different importance of news samples
in the training set for detection in future quarters.
For instance, instances of Topic 2 in the training set
are particularly important for effectively training
the detector to identify fake news in Q3.

To this end, we propose to model the temporal
distribution patterns and forecast the topic-wise
distribution in the upcoming time period for bet-
ter temporal generalization in fake news detection,
where the forecasted result guides the detector to
fast adapt to future distribution. Figure 2 illus-
trates our framework FTT (Forecasting Temporal
Trends). We first map training data to vector space
and perform clustering to discover topics. Then

'We denote the four quarters of a calendar year as Q1-Q4,

respectively. For instance, Q1 stands for January through
March.

we model the temporal distribution and forecast
the frequency of news items for each topic using
a decomposable time series model. Based on the
forecasts, we evaluate the importance of each item
in the training data for the next time period by
manipulating its weight in training loss. Our con-
tributions are summarized as follows:

* Problem: To the best of our knowledge, we
are the first to incorporate the characteristics
of topic-level temporal patterns for fake news
detection.

* Method: We propose a framework for
Forecasting Temporal Trends (FTT) to tackle
temporal generalization issue in fake news de-
tection.

* Industrial Value: We experimentally show
that our FTT overall outperforms five com-
pared methods while maintaining good com-
patibility with any neural network-based fake
news detector.

2 Related Work

Fake News Detection. Fake news detection is
generally formulated as a binary classification task
between real and fake news items. Research on
this task could be roughly grouped into content-
only and social context-based methods. Content-
only methods take the news content as the input
including texts (Sheng et al., 2021), images (Qi
et al., 2019), and videos (Bu et al., 2023), and aim
at finding common patterns in news appearances.
In this paper, we focus on textual contents but
our method could be generalized to other modali-
ties. Previous text-based studies focus on sentiment
and emotion (Ajao et al., 2019; Ghanem et al.,
2021), writing style (Przybyla, 2020), discourse
structure (Karimi and Tang, 2019), etc. Recent
studies address the domain shift issues across news
channels and propose multi-domain (Nan et al.,
2021; Zhu et al., 2022b) and cross-domain (Nan
et al., 2022; Lin et al., 2022) detection methods.
Zhu et al. (2022a) design a causal learning frame-
work to remove the non-generalizable entity sig-
nals. Social context-based methods leverage crowd
feedbacks (Kochkina et al., 2018; Shu et al., 2019;
Zhang et al., 2021), propagation patterns (Zhou
and Zafarani, 2019; Silva et al., 2021a), and social
networks (Nguyen et al., 2020; Min et al., 2022),
which have to wait for the accumulation of such
social contexts.

Considering the in-time detection requirement,
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Figure 2: Architecture of the proposed FTT (Forecasting Temporal Trends) framework.

our proposed framework falls into the category of
content-only methods, where we provide a new per-
spective for addressing the temporal generalization
issue by forecasting temporal trends.

Temporal Generalization. The temporal gener-
alization issue presents a situation in that models
are trained on past data but required to perform
well on unavailable and distribution-shifted future
data. It has been addressed in a variety of appli-
cations such as review classification (Huang and
Paul, 2019), named entity recognition (Rijhwani
and Preotiuc-Pietro, 2020), and air quality predic-
tion (Du et al., 2021). Recently, Gaspers et al.
(2022) explore several time-aware heuristic-based
instance reweighting methods based on recency
and seasonality for an industrial speech language
understanding scenario. Our work follows this line
of instance reweighting, but we attempt to model
the temporal patterns and forecast topic-wise distri-
bution to better adapt to future data.

3 Proposed Framework

Our framework FTT is presented in Figure 2, where
the instances from past consecutive time periods in
the original training set are reweighted according
to the forecasted topic-wise distribution for gener-
alizing better in the upcoming time period. In the
following, we first provide the problem formulation
and subsequently, detail the procedures.

3.1 Problem Formulation

Given a dataset D = {Dq}?:1 consisting of @
subsets that contain news items from () consecutive
time periods, respectively, our goal is to train a
model on {Dq}EQ;ll that generalizes well on Dg,.

In D, an instance is denoted as (x;, y;) where the
ground-truth label y; = 1 if the content z; is fake.

In practice, we retrain and redeploy the fake
news detector at a fixed time interval to reflect the
effects of the latest labeled data. We set the interval
as three months (i.e., a quarter) since a shorter
interval does not allow sufficient accumulation of
newly labeled fake news items. In the following,
we set D, as the subset corresponding to news in a
quarter of a calendar year.

3.2 Step 1: News Representation

We first transform the news content into a vec-
tor space to obtain its representation, which will
be used for similarity calculation in the sub-
sequent clustering step. We employ Sentence-
BERT (Reimers and Gurevych, 2019), which is
widely used for sentence representation (e.g.,Shaar
et al., 2020). For instance x;, the representation
vector is x; € R768,

3.3 Step 2: Topic Discovery

We perform clustering on news items based on the
representation obtained in Step 1 to group news
items into distinct clusters which correspond to
topics. Due to the lack of prior knowledge about the
topic number, we adopt the single-pass incremental
clustering algorithm which does not require a preset
cluster number. We first empirically set a similarity
threshold 6,;,, to determine when to add a new
cluster. When an item arrives, it is assigned to
the existing cluster whose center is the nearest to
it if the distance measured by cosine similarity is
larger than 6;,,. Otherwise, it will be considered
as an item on a new topic and thus be in a new
independent cluster.
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3.4 Step 3: Temporal Distribution Modeling
and Forecasting

Based on the clustering results, we model the tem-
poral distribution of different news topics and fore-
cast the topic-wise distribution in the upcoming
time period in this step. Note that we do not con-
sider the clusters with news items less than the
threshold ..., since they are too small to present
significant temporal patterns.

Modeling. Assuming that 7" topics are preserved,
we first count the number of news items per quarter
within each topic. The counts of the same quarter
are then normalized across topics to obtain the quar-
terly frequency sequence of each topic (denoted as
f). To model the temporal distribution, we adopt a
decomposable time series model (Harvey and Pe-
ters, 1990) on the quarterly sequences and consider
the following two trends (exemplified using Topic
1)

1) General Trend. A topic may increase, de-
crease, or have a small fluctuation in terms of a
general non-periodic trend (e.g., Topics 1 and 3
in Figure 1). To fit the data points, we use a piece-
wise linear function:

9i(fiq) = kifiq + my, (1)

where k; = k-+a(q)§ is the growth rate, f; , is the
frequency of Topic 7 in Quarter ¢, and m; = m +
a(q)" is the offset. k and m are initial parameters.
a(q) records the changepoints of growth rates and
offsets while 9 is the rate adjustment term and =y is
a smoothing term.

2) Quarterly Trend. For topics having quarterly
periodic trends like Topic 2 in Figure 1, we add four
extra binary regressors corresponding to Q1~Q4
to inform the regression model the quarter that a
data point in input sequence belongs to. For Topic
¢ and Quarter ¢, we obtain the quarterly seasonality
function s;( f; ;) by summing the four regression
models.

Forecasting. We fit the model using the time se-
ries forecasting tool Prophet (Taylor and Letham,
2018) with the temporal distribution of topics from
Quarter 1 to Quarter (Q-1. To forecast the trend of
Topic ¢ in the upcoming Quarter (), we sum up the
two trend modeling functions:

pi(fi.Q) = 9i(fi,Q) + si(fiQ) 2

3.5 Step 4: Forecast-Based Adaptation

Based on the topic-wise forecasts of frequency dis-
tribution in Quarter (), we apply instance reweight-
ing to the training set and expect the model trained
using the reweighted set would better adapt to the
future data in Quarter Q).

We first filter out topics that do not exhibit ob-
vious regularity. Specifically, we remove the top-
ics which have a mean absolute percentage error
(MAPE) larger than a threshold 0,y during the
regression fitting process. For a Topic ¢ in the pre-
served set ', we calculate and then normalize the
ratio between the forecasted frequency of Topic ¢
pi( fi,0) and the sum of all forecasted frequencies
of the preserved topics:

pi(fi0)
.o =Bound [ 2N ) g
w;,Q oun (ZieQ’ pi(fi,Q)) (3)

where Bound is a function to constrain the range
of calculated weights. We set the weight smaller
than 0}, and larger than 0,pper as Ojoper and
Oupper respectively, to avoid the instability during
the training process. For those that are not included
in Q’, we set their weights as 1.

The new weight of the training set instances of
Topic 4, w; g, corresponds to our forecasts of how
frequent news items of this topic will emerge in the
upcoming period ). If the forecasted frequency of
Topic ¢ indicates a decreasing trend, the value will
be smaller than 1 and thus instances of this topic
will be down-weighted; conversely, if the fore-
casted distribution indicates an increasing trend,
the value will be greater than 1 and the instances
will be up-weighted. In the next step, we will show
the reweighting process during training.

3.6 Step 5: Fake News Detector Training

Our framework FTT could be compatible with any
neural network-based fake news detector. Here, we
exemplify how FTT helps detectors’ training us-
ing a pretrained BERT model (Devlin et al., 2019).
Specifically, given an instance x;, we concatenate
the special token [CLS| and «;, and feed them into
BERT. The average output representation of non-
padded tokens, denoted as o;, is then fed into a
multi-layer perception (MLP) with a sigmoid acti-
vation function for final prediction:

7; = sigmoid(MLP(0;)). 4)

Our difference lies in using the new weights based
on the forecasted temporal distribution to increase
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or decrease the impact of instances during back-
propagation. Unlike most cases that use an aver-
age cross-entropy loss, we minimize the weighted
cross-entropy loss function during training:

N
1
L= N Z w; @CrossEntropy (v, :),  (5)
i=1
where w; ¢ is the new weight for instance z; and
y; is its ground-truth label. N is the size of a mini-
batch of the training set.

4 Evaluation

We conduct experiments to answer the following
evaluation questions:

* EQ1: Can FTT bring improvement to the fake
news detection model in temporal generaliza-
tion scenarios?

* EQ2: How does FTT help with fake news
detection models?

4.1 Dataset

Our data comes from a large-scale Chinese fake
news detection system, covering the time period
from January 2016 to December 2020. To meet
the practical requirements, the data was divided by
quarters based on the timestamp. Unlike the exist-
ing academic datasets (Shu et al., 2020; Sheng et al.,
2022), the dataset is severely imbalanced. To avoid
instability during training, we randomly undersam-
pled the subset of each quarter to achieve a ratio
of 1:1 between fake and real news. Identical to the
real-world setting, we adopt a rolling training ex-
perimental setup. If we train a model to generalize
well in the time period @), the training, validation,
and testing sets would be {DZ}ZQ:_I2 Dg-1, and
Dy, respectively. If the target is ) + 1, then the
three subsets would be {D;}% ", Do, and D 1.
Here we use the four quarterly datasets from 2020
as the testing sets and conduct experiments on the
four sets separately.

4.2 Experimental Settings

Compared Methods. We compared our pro-
posed FTT with five existing methods (including
the vanilla baseline model), in which the second
one is to remove non-generalizable bias and the last
three are to introduce heuristic rules for adapting
to future data.

* Baseline follows a normal training strat-
egy where all training instances are equally
weighted.

* EANN7 (Wang et al., 2018) is a model that en-
hances model generalization across events by
introducing an auxiliary adversarial training
task to prevent the model from learning event-
related features. For fair comparison, we
replaced the original TextCNN (Kim, 2014)
with a trainable BERT as the textual feature ex-
tractor, and utilized publication year labels as
the labels for the auxiliary task following Zhu
et al., 2022a. We removed the image branch
in EANN as here we focus on text-based fake
news detection.

* Same Period Reweighting increases the
weights of all training instances from the same
quarter as the target data. It models the sea-
sonality in the time series data.

* Previous Period Reweighting increases the
weights of all training instances from the last
quarter. It could capture the recency in the
data distribution.

* Combined Reweighting combines the two
reweighting methods mentioned above. The
last three methods are derived from (Gaspers
et al., 2022).

Implementation Details. We used a BERT
model, hfl/chinese-bert-wwm-ext (Cui et al.,
2021) implemented in HuggingFace’s Transformer
Package (Wolf et al., 2020) as the baseline fake
news detection classifier. In the training process,
we used the Adam optimizer (P. Kingma and Ba,
2015) with a learning rate of 2e-5 and adopted the
early stop training strategy, and reported the testing
performance of the best-performing model on the
validation set. We employed grid search to find
the optimal hyperparameters in each quarter for
all methods. In Q1 and Q2, the optimal hyperpa-
rameters of FTT are 0, = 0.65, Ocount = 30,
Omape = 0.8, Oiower = 0.3, and O,pper = 2.0; and
in Q3 and Q4, they are O, = 0.5, Ocount = 30,
Omape = 2.0, O1ower = 0.3, and Oy pper = 2.0.

We report the accuracy, macro F1 (macF1), and
the F1 score for real and fake classes (F1,¢,1 and

Flfake)-

4.3 Performance Comparison (EQ1)

Table 1 shows the overall and quarterly perfor-
mance of the proposed framework and other meth-
ods. We observe that:
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. . Same Period Prev. Period = Combined
2020 Metric Baseline EANNp Reweighting Reweighting Reweighting FTT (Ours)
macF1 0.8344 0.8334 0.8297 0.8355 0.8312 0.8402
01 Accuracy 0.8348 0.8348 0.8301 0.8359 0.8315 0.8409
Fleke 0.8262 0.8181 0.8218 0.8274 0.8237 0.8295
Flieal 0.8425 0.8487 0.8377 0.8435 0.8387 0.8509
macF1 0.8940 0.8932 0.8900 0.9004 0.8964 0.9013
Q2 Accuracy 0.8942 0.8934 0.8902 0.9006 0.8966 0.9014
Flege 0.8894 0.8887 0.8852 0.8953 0.8915 0.8981
Flical 0.8986 0.8978 0.8949 0.9055 0.9013 0.9046
macF1 0.8771 0.8699 0.8753 0.8734 0.8697 0.8821
Q3 Accuracy 0.8776 0.8707 0.8759 0.8741 0.8707 0.8827
Fliake 0.8696 0.8593 0.8670 0.8640 0.8582 0.8743
Fl eal 0.8846 0.8805 0.8836 0.8829 0.8812 0.8900
macF1 0.8464 0.8646 0.8464 0.8429 0.8412 0.8780
04 Accuracy 0.8476 0.8647 0.8476 0.8442 0.8425 0.8784
Fltake 0.8330 0.8602 0.8330 0.8286 0.8271 0.8707
Flieal 0.8598 0.8690 0.8598 0.8571 0.8553 0.8853
macF1 0.8630 0.8653 0.8604 0.8631 0.8596 0.8754
Average Accuracy 0.8636 0.8659 0.8610 0.8637 0.8603 0.8759
8 Fltake 0.8546 0.8566 0.8518 0.8538 0.8501 0.8682
Fl,cal 0.8714 0.8740 0.8690 0.8723 0.8691 0.8827

Table 1: Performance of the baseline method, four existing methods, and our method in fake news detection. The

best result in each line is bolded.

1) FTT outperforms the baseline and four other
methods across all quarters in terms of most of the
metrics (the only exception is Fl,q,; in Q2). These
results demonstrate its effectiveness.

2) The average improvement of Flg, is larger
than that of Fl,e,1, suggesting that our method
helps more in capturing the uniqueness of fake
news. We attribute this to the differences in tempo-
ral distribution fluctuation: fake news often focuses
on specific topics, while real news generally covers
more diverse ones. This makes the topic distribu-
tion of fake news more stable, which allows for
better modeling of topic-wise distributions.

3) The three compared reweighting methods
show inconsistent performances. In some situa-
tions, the performance is even lower than the base-
line (e.g., Same Period Reweighting in Q1). We
speculate that the failure is caused by the com-
plexity of the news data. Considering the rapidly-
evolving nature of news, single heuristic methods
like recency and seasonality could not fast adapt to
future news distribution. In contrast, our FTT per-
forms topic-wise temporal distribution modeling
and next-period forecasting and thus has a better
adaption ability.

Subset of the test set | Metric | Baseline FTT (Ours)
macF1 0.8425 0.8658
. . . Accuracy | 0.8589 0.8805
Existing Topies | ) 7 07997 0.8293
Flieal 0.8854 0.9023
macF1 0.8728 0.8846
New Tobics Accuracy | 0.8729 0.8846
wlop Fliwe | 0.8730  0.8849
Flieal 0.8727 0.8843

Table 2: Breakdown of the performance on the testing
set according to the existence of their topics.

4.4 Result Analysis (EQ2)

Statistical Analysis. To analyze how FTT im-
proves fake news detection performance, we ana-
lyze the testing instances by recognizing their top-
ics. Specifically, we run the single-pass incremen-
tal clustering algorithm used in Step 2 again on
the testing instances based on the clusters on the
training set. If a news item in the testing set could
be clustered into an existing cluster, it will be rec-
ognized as an item of the existing topics; otherwise,
it will be in a new topic. Based on the results, we
show the breakdown of the performance on the test-
ing set in Table 2. Compared with the baseline, our
framework achieves performance improvements on
both the Existing Topics and the New Topics sub-
sets. This could be attributed to our reweighting
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Text: Barcelona officially confirmed that
Umtiti's COVID-19 test result was positive.
As an asymptomatic patient he has begun
home isolation. Umtiti did not follow the
team to the UCL due to injury.
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refusing the admission of traditional
Chinese medicine because of the frequent
occurrence of quality problems.
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Ours  Fake (0.55)
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Figure 3: Three cases from the testing set. The forecasts
by FTT about the frequency of the topics in the upcom-
ing quarter are highlighted with red dashed bars. The
case texts are translated from Chinese into English.

strategy where we not only increase the weights
of news items belonging to a topic of an increas-
ing trend but also decrease the weights of those
belonging to the fading topics. With such a design,
the model will be more familiar with news items
in existing topics and more generalizable to news
items in new topics.

Case Study. Figure 3 shows three cases from the
testing set. According to the forecasted results of
the frequencies of these topics in the testing time
period, our framework assigns positive weights
(greater than 1) to items in these topics. After
training on the reweighted set, the detector flips its
previously incorrect predictions. In Topic 1, the
frequency of Big Tech-related news items demon-
strated an increasing trend over time. FTT captures
this pattern and provides a forecast close to the true

value for the target quarter. In Topic 2, there is
an explosive growth of Infectious Diseases-related
news items in early 2020, followed by sustained
high frequency in the subsequent quarters. FTT
successfully captures this change. In contrast to
the other two topics, the frequency of Medication
Safety-related news items in Topic 3 exhibits both
an overall increasing trend and a certain periodic
pattern since 2019, which roughly follows a “smil-
ing curve” from Q1 to Q4 in a single year. FTT
effectively models both of these patterns and helps
identify the importance of news items in this topic
for the testing time period.

5 Conclusion and Future Work

We studied temporal generalization in fake news
detection where a model is trained with previous
news data but required to generalize well on the
upcoming news data. Based on the assumption that
the appearance of news events on the same topic
presents diverse temporal patterns, we designed a
framework named FTT to capture such patterns
and forecast the temporal trends at the topic level.
The forecasts guided instance reweighting to im-
prove the model’s generalizability. Experiments
demonstrate the superiority of our framework. In
the future, we plan to mine more diverse temporal
patterns to further improve fake news detection in
real-world temporal scenarios.

Limitations

We identify the following limitations in our work:

First, our FTT framework captures and models
topic-level temporal patterns for forecasting tempo-
ral trends. Though the forecasts bring better tem-
poral generalizability, FTT could hardly forecast
the emergence of events in new topics.

Second, FTT considers temporal patterns based
on the topic-wise frequency sequences to identify
patterns such as decrease, periodicity, and approx-
imate stationery. There might be diverse patterns
that could not be reflected by frequency sequences.

Third, limited by the scarcity of the dataset that
satisfies our evaluation requirements (consecutive
time periods with a consistent data collection cri-
terion), we only performed the experiments on a
Chinese text-only dataset. Our method should be
further examined on datasets of other languages
and multi-modal ones.
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Abstract

Getting a good understanding of the user intent
is vital for e-commerce applications to surface
the right product to a given customer query.
Query Understanding (QU) systems are essen-
tial for this purpose, and many e-commerce
providers are working on complex solutions
that need to be data efficient and able to capture
early emerging market trends. Query Attribute
Understanding (QAU) is a sub-component of
QU that involves extracting named attributes
from user queries and linking them to exist-
ing e-commerce entities such as brand, mate-
rial, color, etc. While extracting named entities
from text has been extensively explored in the
literature, QAU requires specific attention due
to the nature of the queries, which are often
short, noisy, ambiguous, and constantly evolv-
ing. This paper makes three contributions to
QAU. First, we propose a novel end-to-end ap-
proach that jointly solves Named Entity Recog-
nition (NER) and Entity Linking (NEL) and
enables open-world reasoning for QAU. Sec-
ond, we introduce a novel method for utilizing
product graphs to enhance the representation
of query entities. Finally, we present a new
dataset constructed from public sources that
can be used to evaluate the performance of fu-
ture QAU systems.

1 Introduction

Search queries are the main point of interaction
between the customer and the search system. As
such, extracting information from the queries is
pivotal in surfacing the relevant products, making
the task directly responsible for the quality of the
overall customer experience. Query Understand-
ing (QU) not only inherits all the challenges of
standard natural language understanding but poses
additional difficulties: queries are short and lack
context, which makes them challenging to under-
stand. They often contain implicit knowledge that
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Thomas Ricatte *)
Amazon
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is difficult to capture without external reference.
For example, the query "M2 laptop" refers to Ap-
ple laptops since M2 processors are only sold by
Apple. Furthermore, customers do not have techni-
cal writing skills, which can result in queries that
are noisy or use inappropriate search terms.

In this work, we focus on the task of Query At-
tribute Understanding (QAU), which aims to ex-
tract the attribute values from the queries and make
them usable for other downstream applications in
the Search Engine (see fig. 1). QAU is related to
another important task, Document Attribute Under-
standing (DAU), which aims to extract attributes
from product descriptions. DAU has received sig-
nificant attention from the community in the past
years ((Zheng et al., 2018; Xu et al., 2019; Dong
et al., 2020; Karamanolakis et al., 2020)) and does
not suffer from the difficulties mentioned above and
that are specific to queries. Both QAU and DAU are
specific instances of Named Entity Recognition and
Linking (NER/NEL), which aims to extract typed
mentions from text. However, in contrast to classic
NER, which usually handles fewer attribute types
(such as Person, Location, and Organization), QAU
and DAU deal with a larger number of attribute
types (which can reach thousands in e-commerce
as noted in (Xu et al., 2019)).

We claim that three critical elements need to
be addressed to get a practical solution to QAU.
Firstly, named entity recognition should be per-
formed jointly with entity linking, in order to map
the detected entities to our knowledge base. Solv-
ing these tasks separately is not practical in an
industrial context, as it leads to error propagation
(linking module cannot make up for a wrong at-
tribute prediction by the NER module) and more
generally hidden technical debt (see (Sculley et al.,
2015)). Furthermore, separating the tasks precludes
the possibility of inductive transfer, which has been
shown to be crucial in related tasks (Zhang and
Yang, 2021; Caruana, 1997; Ruder, 2017).
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brown chocolate boot suede
AVE | colour | material
AN

Figure 1: Overview of the task. We ultimately want to
detect that this query contains three mentions: (brown
chocolate), (boot) and (suede). The first annotation row
shows the ground truth for the attribute value extraction
task, while the second one shows that of the normaliza-
tion step, which may be understood as entity linking
over the detected mentions.

Secondly, product graphs (PG) are becoming a
new standard to represent e-commerce concepts
and the relations between searchable products.
Therefore, QAU systems should be able to lever-
age this new source of knowledge to improve their
performance. Finally, QAU systems should always
be designed with an "open-world" setup in mind
to deal dynamically with new concepts. For in-
stance, if we consider the query ‘Sony A95K TV’,
we should be able to detect that ‘A95K” is a men-
tion representing a product line even if this product
does not exist in our knowledge base.

Note that extreme classification (Jain et al., 2016)
is a possible alternative to classic NER/NER stack-
ing, but it does not consider the coarse-grained
nature of attributes (entities belong to different at-
tribute types) and does not easily take into account
the open-world nature of the task. Users can search
for attribute values that are not yet in the knowledge
base or not associated with any known product,
making it difficult to predict normalized attribute
values directly.

Overview of our approach

To overcome the aforementioned limitations of ex-
isting approaches, we propose an end-to-end multi-
task approach that jointly predicts mentions, at-
tribute types and entities. We build a shared repre-
sentation of the text spans via a pre-trained trans-
former architecture (Liu et al., 2019). The shared
span representation is used to determine the prob-
ability of the span being a mention, containing a
particular attribute type, and representing a spe-
cific entity instance of that attribute. Our method
can handle an open-world scenario where an at-
tribute value does not have a matching entity in
the knowledge base. In such cases, the model can
still predict the attribute type of the value. Note

that this approach is also data-efficient and can
effectively utilize weakly labeled data points with-
out entity annotations. Importantly, the end-to-end
approach avoids error propagation since the entity-
level prediction is conditioned but not solely reliant
on the attribute-level information. Additionally,
our approach can handle overlapping spans with-
out requiring additional adjustments. Finally, if the
entities are structured in a knowledge graph, our
approach can leverage its topology to enrich the
entity embeddings.

In order for our approach to be tested in scenar-
ios with varying difficulties we need a dataset of
queries of controllable complexity, along with a
knowledge graph involving the entities there men-
tioned. To this end, we propose leveraging the
products in the Amazon Berkeley Objects dataset
(Collins et al., 2022) to construct a knowledge
graph consisting of products related to their at-
tribute values by relations encoding the attribute
type. The product graph is used both as knowl-
edge base for the approach and as starting artifact
to generate a dataset of public synthetic queries.
As public, non-confidential resources, we aim to
release both artifacts for reproducibility and to en-
courage research in the field. Summarizing, our
contributions are three-fold:

1. we propose AVEN, a novel end-to-end method
that can effectively solve QAU in an open world
setting;

2. we propose a way to use Product Graph to enrich
the representation of the entities

3. we present a novel evaluation that combines
a public product graph with a set of synthetic
queries involving associated entities, aimed at
promoting research on knowledge-based meth-
ods for QAU.

2 Related work

Document Attribute Understanding As previ-
ously noted, Query Attribute Understanding (QAU)
shares similarities with Document Attribute Under-
standing (DAU), which has been previously ad-
dressed in the literature. (Zheng et al., 2018) pro-
posed an early solution based on a classic NER
pipeline that assigns each attribute type with a set
of BIO (Beginning, Inside, Outside) tags. However,
this approach suffers from scalability issues when
dealing with a large number of attributes, and also
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hinders data sharing between head attributes (such
as color) and tail attributes (such as glass color).

To solve this issue, several approaches (Xu
et al., 2019; Dong et al., 2020) based on Question
Answering were pushed in the subsequent years.
These approaches consider each attribute as a sepa-
rate question to be answered leveraging the product
description. The main advantage of Question An-
swering approaches is that they do not require a
specific set of BIO tags for each attribute and are
therefore more scalable. However, they are also
harder to train and highly depend on the semantic
representations of the attribute types. In practical
cases in which the detected entity mentions must
also be linked to normalized entities, Entity Link-
ing is performed independently over the output of
the NER step. While all these works consider an
attribute value to be just a span of unstructured text,
we aim to directly obtain normalized entities as
attribute values, hence requiring performing Entity
Linking over the detected spans.

Entity Linking Entity Linking has been mostly
studied in scenarios involving long documents with
lot of context, while only few works exist for short
sentences like queries. Most relevant to our work is
ELQ (Li et al., 2020), in which a bi-encoder is em-
ployed to jointly perform mention detection and EL
in a multi-task setup. Analogously, in Oliya et al.
(2021) mention detection and entity linking are
coupled with question answering in an end-to-end
pipeline. We take inspiration from both works to
tackle AVEN by injecting a new stage in the end-to-
end mention detection and entity linking pipeline,
responsible for classifying the span attribute.

Query Attribute Understanding While it may
be tempting to view Query Attribute Understand-
ing (QAU) as a simplified version of Document
Attribute Understanding (DAU), this assumption
overlooks the unique challenges posed by queries,
such as their inherent noisiness, lack of context,
and ambiguity. To the best of our knowledge, the
only existing work that deals with both attribute
value extraction and subsequent entity linking is
QUEACO (Zhang et al., 2021). Differently from
our approach, QUEACO is a fragmented model that
stacks a user-behavior based normalization module
over a NER pipeline. While we use user behavior
in the data collection, we don’t require it for the
training and inference pipelines.

3 Data

In order to have a controlled ground for experimen-
tation, we need (i) a dataset of user queries, and
(ii) a Knowledge Graph containing most entities
involved in the user queries. Knowledge Graphs
involving products and relative information are usu-
ally called product graphs.

3.1 Product Graphs

A Product Graph is a Knowledge Graph involving
a set of products and their corresponding attributes.
Formally, it is a bipartite graph consisting of a
vertex set V' = (P U A) containing products P
and attribute values A connected by edges F =
RiURyU---U Ry, where Ry, Rs,..., R, are
set of edges for the different m attribute types. In
practice, a triple (p, r, a) relates a product p with
an attribute value a through an attribute relation r.

3.2 Synthetic data

Given the lack of a public Product Graph, we con-
structed one by leveraging the Amazon Berkeley
Objects (ABO)! dataset (Collins et al., 2022). The
constructed graph not only lends itself to the overall
inference pipeline, but can also be used to generate
a set of synthetic queries that involve the entities
of interest by construction. The generation proce-
dure simply constructs queries as bag of attributes
by starting from product nodes and walking the
relations related to the attributes of interest, then
discarding the product node in the final query and
only keeping its attribute values along with the at-
tribute type annotations. The generation pipeline is
formalized in appendix C. To increase the complex-
ity of the dataset, we also replace product types
with synonyms found in the same WordNet synsets
(Fellbaum, 1998).

3.3 Real user queries

Given the huge number of possible attribute values,
manual annotation of user queries with attribute
and entity-level labels is unfeasible. For this rea-
son, we leverage a pre-trained NER model to obtain
the attribute-level labels and employ a determin-
istic heuristic to label the corresponding attribute
values with entity-level annotations. Let P be a set
of purchased items, and () be the queries that led to
the purchase. First, we create a Product Graph PG

"https://amazon-berkeley-
objects.s3.amazonaws.com/index.html
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from P by creating a triple (p, 7, a) for each prod-
uct p connected to an attribute value a through at-
tribute type 7. Then, for each query ¢ € @, we iter-
ate over each NER-annotated span (7, v, s), where
span s holds value v for attribute type . We now
want to annotate the span s with two annotations,
one at the attribute level and one at the entity level.
For the former, we can keep the one detected from
NER r. For the entity-level annotation instead, we
choose to annotate s with the entity a such that
(p,r,a) € PG. In other words, given that NER has
predicted the span to refer to an attribute type r, we
annotate the span with the entity corresponding to
the attribute value for r of the product that the user
bought after searching for the query q. Assume for
instance that an user looked for ‘red Nike shoes’
and eventually bought some product p referring to
a specific pair of shoes that are, in fact, red. In this
case, the span sp 1 with value ‘red’ can be anno-
tated to be a color as predicted by NER, while the
entity label will be that of the value for p for the
attribute color, which is the node corresponding to
the value ‘red’ in the knowledge base. Of course,
the user may also have eventually bought a black
pair of shoes instead: in this case, the heuristic
makes a mistake, and therefore the annotation is
expected to be noisy. Nevertheless, assuming the
query keywords to encode strong preferences when
present, these cases are expected to be rare enough
for the model to eventually learn to discard them
as noise.

4 Approach

The overall architecture of AVEN contains three
different sub-modules, each responsible for a dif-
ferent task: (i) a mention detection module; (ii) an
attribute classification module; (iii) an entity dis-
ambiguation module.

The three modules are learnt jointly as shown
in fig. 2 and each of them contributes to the final
loss. The latter is obtained as a weighted sum of the
three losses. While the coefficients are currently
set to 1 for all the three tasks, we aim to eventually
use GradNorm (Chen et al., 2018) to tune the loss
weights.

More formally, let us define ¢ = q1,...,¢qy, as
an input query with n tokens/words. We denote by
S[i.4] the sub-span ¢;q; 11 . .. qj. We are interested
in three different quantities: M;; refers to span
S[;,7) being a mention, A?j refers to the same span
being an attribute value for attribute a, and finally

EF; refers to s; ;) being an instance of entity e. In
the next sections, we will review the three different
components.

Mention Detection

For a span s|; ;, we denote the span embedding by
sij = fo(s[ij])- A simple version of fy(s}; ;) is
the mean of the RoOBERTa (Liu et al., 2019) em-
beddings of the tokens in sy; ;1. We can define the
probability of span s; ;; being an actual mention to
be

P (M;j) = o (gu(sij))

where o is the sigmoid function and g,,(-) is a para-
metric function taking in input the span representa-
tion and returning an unnormalized score. In our
current implementation, this is realized as a Multi-
Layer Perceptron (MLP). Note that we employ the
sigmoid as we assume that the probability of a span
S[;,7) to be a mention does not depend on the proba-
bility of another span s ;; to be a mention. Note
that, this assumption is questionable, especially as
soon as s[; ;) and sy have a non-null intersection.
Nevertheless, this choice allows the model to detect
overlapping spans when faced with cases such as
those exemplified in section 1. Note that it’s al-
ways possible to add a Non-Maximum Suppression
(NMS) step if we want to avoid producing overlap-
ping annotations. The mention detector is trained
by minimizing a Binary Cross Entropy loss {yp.

Attribute classification

We are now interested in the probability that a span
s[;,5) has attribute type a knowing that it is a men-
tion

exp (hl(,a)(si,j)>
D areA €XP (h(ua,) (Sz‘,j)>

P (Al | My) =

I

where hl() )() is a parametric function taking into
input the span representation. As for the mention
detector, we employ a MLP. Note that we adopt a
multi-task approach where we use the exact same
span representation for the three different tasks,
fostering information transfer among the latter. The
attribute classifier is trained with a simple cross
entropy loss £ac and only considers actual ground-
truth mentions at train time.

Entity disambiguation
In the entity disambiguation module, our goal is to
estimate the probability P ( EZ(;) | Mij) . Given the
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Figure 2: Our multi-task architecture with the three corresponding losses /yp, £ac and fgp

fact that each entity e is associated with an unique
attribute type a = type (e), we can argue that this
is actually equivalent to estimating the joint prob-

ability P ( B, AY | Mij) Since the probability
of a span to be type a is already given by the at-
tribute classifier, we can just estimate for each pos-

sible attribute a
(sij.e) )

&
o (o)

where véa)(-) is a parametric function taking into
input the span representation and the entity e to be
scored. The main advantage of this last expression
is that it allows us to adopt a divide-and-conquer
approach since for each attribute a, we only have
to consider its compatible entities. Similarly to
the attribute classifier, the entity disambiguator is
learnt with a simple cross entropy loss ¢gp on ac-
tual groundtruth mentions. Our first implemen-

exp (

(E(e |A” ’ Z]) _

tation of véa)(-) is a simple similarity scorer be-
tween the span representation and the embedding
of the considered entity. Entity embeddings are
computed by embedding a textual representation
of their neighborhood in the knowledge graph, as
illustrated in Figure 3.

Inference

To compute the probability of each span s|; ;) being
a mention of entity e at inference time, we simply
multiply the mention probability by the entity clas-
sification score. To improve efficiency, we exclude
all spans s(; ;) with a mention probability P (M)
lower than a pre-defined threshold p,,i,, such as
0.5 in our experiments.

Advantages

Our approach shares the span representation across
all three tasks: mention detection, attribute clas-
sification, and entity disambiguation, benefiting
from the effectiveness of multi-task learning (Caru-
ana, 1997; Ruder, 2017) in transferring knowledge
between similar tasks. This is particularly rele-
vant for our method as the tasks require differ-
ent levels of label details: mention detection only
requires weak labeling, while the attribute/entity
tasks rely on associations between mentions and
knowledge graph entities. Sharing the representa-
tion allows the entity disambiguation module to
leverage weakly-labeled mention data, leading to a
more data-efficient approach.

5 Experimental Results

In this section, we present experimental results
on two datasets described in section 3.2 and sec-
tion 3.3. We provide a brief overview of the proto-
col used in both cases.

5.1 Considered metrics

Mention Detection

We report both (micro) Precision and Recall for
the mention detection task to validate the perfor-
mance of the mention detector. The percentage
of recalled mention will be a natural upper bound
for the following metrics on attribute classification.
Indeed, if we are not able to retrieve a mention, we
will consider that we cannot be right at the subse-
quent tasks.

Attribute Classification

We report the multiclass Accuracy for the attribute
classification task; This metric is computed on the
set of ground-truths mentions and thus ignoring
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S1 [“Apple produces iPhone”

52 [ “iPhone is a phone”
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Figure 3: We use predefined templates to format encoded relations in the graph into natural language sentences
for each entity. These sentences are then embedded using RoBERTa (Liu et al., 2019) to obtain an in-sentence
representation, which is further averaged to obtain an overall entity representation.

wrongly detected mentions (for which no attribute
exists). We also present a complementary version
of this metric, which focuses exclusively on ground-
truth mentions that contain previously unseen "un-
known" entities. This metric is only applicable
to the second, more realistic dataset that includes
novel entities in the test set.

Entity Disambiguation

We report the multiclass Accuracy for the entity
disambiguation task; This one is computed only
on the subset of ground-truth mentions containing
entities seen at train time.

5.2 Baselines

We consider the following models (i) NER+Dict:
A RoBERTa-based NER baseline with dic-
tionary lookup over the detected attributes.
(ii)) NER+NN: A RoBERTa-based NER base-
line with nearest neighbor between detected
attribute embeddings and entity embeddings.
(iii) AVEN/AVEN-NC/AVEN-GR: Our end-
to-end approach in three different flavours: with
plain entity embedding, with plain entity embed-
ding and no contextual span embedding and with
product-graph based embeddings.

5.3 Results

We report in fig. 4 (resp. fig. 5) the results from the
synthetic dataset described in section 3.2 (resp. the
actual user queries described in section 3.3). Over-
all, our AVEN- methods outperform the "stacked"
methods (NER + separate entity linker), partic-
ularly on the task of known entity classification.
Among our methods, AVEN-NC has a lower men-
tion recall due to the lack of contextual span em-
bedding. However, our methods are effective in
predicting the attribute type of unseen entities, as

Model Mention Attribute  Entity
Precision  Recall Accuracy Accuracy
NER+Dict 98.5 97.9 97.6 68.3
NER+NN 98.1 97.7 97.5 64.3
AVEN 95.2 93.5 93.3 83.2
AVEN-NC 69.8 96.2 95.3 89.5
AVEN-GR 97.8 97.4 97.2 76.3

Figure 4: Results on synthetic data (see section 3.2)

Model Mention Attribute Entity
Precision Recall Acc. Acc. (unseen) Acc.
NER+Dict 89.9 93.6 93.2 88.1 81.5
NER+NN 91.6 92.5 923 86.6 81.9
AVEN 96.3 94.0 90.2 89.4 93.0
AVEN-NC 88.2 93.8 91.5 82.4 95.3
AVEN-GR 96.0 95.4  93.0 89.7 93.9

Figure 5: Results on real user queries (see section 3.3)

evidenced by their performance on this task. It is
worth noting that the attribute classification per-
formance is lower for unseen attributes, which is
expected.

6 Conclusions and future directions

In this paper, we introduced a novel approach to
tackle QAU in a multi-task fashion. We demon-
strated its effectiveness on two datasets, compared
to some simple baselines. However, further abla-
tion studies on more datasets / baselines (e.g. Ay-
oola et al. 2022) are necessary to assess its general-
ization power. Additionally, future work will focus
on improving the multitasking efficiency of AVEN,
for instance by implementing (Chen et al., 2018).

131



References

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos
Christodoulopoulos, and Andrea Pierleoni. 2022. Re-
FinED: An efficient zero-shot-capable approach to
end-to-end entity linking. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Track, pages 209—
220, Hybrid: Seattle, Washington + Online. Associa-
tion for Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41-75.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. GradNorm: Gradient nor-
malization for adaptive loss balancing in deep mul-
titask networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
794-803. PMLR.

Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,
Tomas F Yago Vicente, Thomas Dideriksen, Himan-
shu Arora, Matthieu Guillaumin, and Jitendra Malik.
2022. Abo: Dataset and benchmarks for real-world
3d object understanding. CVPR.

Xin Luna Dong, Xiang He, Andrey Kan, Xian Li, Yan
Liang, Jun Ma, Yifan Ethan Xu, Chenwei Zhang,
Tong Zhao, Gabriel Blanco Saldana, et al. 2020. Au-
toknow: Self-driving knowledge collection for prod-
ucts of thousands of types. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2724-2734.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma.
2016. Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label ap-
plications. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD 16, page 935-944, New
York, NY, USA. Association for Computing Machin-
ery.

Giannis Karamanolakis, Jun Ma, and Xin Luna Dong.
2020. Txtract: Taxonomy-aware knowledge ex-
traction for thousands of product categories. arXiv
preprint arXiv:2004.13852.

Belinda Z Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-
pass end-to-end entity linking for questions. arXiv
preprint arXiv:2010.02413.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Armin Oliya, Amir Saffari, Priyanka Sen, and Tom Ay-
oola. 2021. End-to-end entity resolution and question
answering using differentiable knowledge graphs.
arXiv preprint arXiv:2109.05817.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

David Sculley, Gary Holt, Daniel Golovin, Eugene
Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, Michael Young, Jean-Francois Crespo,
and Dan Dennison. 2015. Hidden technical debt in
machine learning systems. Advances in neural infor-
mation processing systems, 28.

Huimin Xu, Wenting Wang, Xinnian Mao, Xinyu Jiang,
and Man Lan. 2019. Scaling up open tagging from
tens to thousands: Comprehension empowered at-
tribute value extraction from product title. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5214—
5223.

Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo, Tony
Wu, Hanging Lu, Yiwei Song, Bing Yin, Tuo Zhao,
and Qiang Yang. 2021. Queaco: Borrowing treasures
from weakly-labeled behavior data for query attribute
value extraction. In Proceedings of the 30th ACM In-
ternational Conference on Information & Knowledge

Management, pages 4362-4372.

Yu Zhang and Qiang Yang. 2021. A survey on multi-
task learning. IEEE Transactions on Knowledge and
Data Engineering, pages 1-1.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages
1049-1058.

132


https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://proceedings.mlr.press/v80/chen18a.html
https://proceedings.mlr.press/v80/chen18a.html
https://proceedings.mlr.press/v80/chen18a.html
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203

A Limitations

Despite the promising results achieved by our ap-
proach, some limitations must be acknowledged.
First, the use of product graphs as a knowledge
source is a double-edged sword. Indeed, while it
provides a valuable resource to exploit, the constant
evolution of product graphs may create a strong
coupling between the algorithm and the knowledge
source, thus reducing the method’s robustness over
time. Second, our method’s span-based approach
makes it computationally expensive, requiring set-
ting a maximum span size to circumvent this issue

B Ethics Statement

Our approach aims to boost the effectiveness of e-
commerce search engines. However, by jointly op-
timizing multiple tasks, we run the risk of creating
a less transparent system that could be susceptible
to biases. These biases may lead to certain less fre-
quent entities being overlooked or misclassified as
more common ones, thereby reducing the overall
fairness and accuracy of the system.

C Synthetic queries generation

Algorithm 1 outlines the synthetic query generation
procedure.

Algorithm 1 Synthetic queries generation.

1: procedure GENERATE QUERIES(pg: Product-
Graph)

2: P + pg.products
3: Acons < considered attributes
4: Q<+l > queries
5: for all product p in P do
6: A, «[] b attributes for the product
7: T < all triples (p, *, %) in pg
8: for all triple (p, a, r) in T do
9: if ain A.,,s then
10: Ap+—A,Ua > attribute
values
11: R, < R, Ur > attribute types
12: end if
13: end for
14: shuffle A, and R, accordingly
15: Qteat = str(Ap) > query is a bag of
attribute values
16: Gann = Ry > annotations
17: end for
18: return ()

19: end procedure

D Prediction inspection

We present in fig. 6, an example of our qualitative
evaluation within the QAU framework we have
presented.

brown chocolate boot suede
Groundtruth Attribute &5 RN «{material——

brown chocolate boot suede
Groundtruth Entitic Brown boot Suede

Chocolate

brown chocolate boot suede
Predicted Attributc D R — - ——

brown chocolate boot suede

Predicted Entitic

Brown boot Suede
Chocolate

Figure 6: Predictions over one sample, with each row
consisting of query text and corresponding annotations.
The first two rows represent ground truth attributes and
entities, while the last two represent predicted attributes
and entities.
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Abstract

Currently, the reduction in the parameter scale
of large-scale pre-trained language models
(PLMs) through knowledge distillation has
greatly facilitated their widespread deployment
on various devices. However, the deployment
of knowledge distillation systems faces great
challenges in real-world industrial-strength ap-
plications, which require the use of complex
distillation methods on even larger-scale PLMs
(over 10B), limited by memory on GPUs and
the switching of methods. To overcome these
challenges, we propose GKD, a general knowl-
edge distillation framework that supports dis-
tillation on larger-scale PLMs using various
distillation methods. With GKD, developers
can build larger distillation models on memory-
limited GPUs and easily switch and combine
different distillation methods within a single
framework. Experimental results show that
GKD can support the distillation of at least
100B-scale PLMs and 25 mainstream methods
on 8 NVIDIA A100 (40GB) GPUs. !

1 Introduction

Pre-trained language models, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
their variants, have achieved excellent success in
natural language processing (NLP) tasks when they
usually have hundreds of millions of parameters.
Considering computationally expensive resource
constraints, a wide range of real-world applica-
tions are often impeded. Knowledge distillation
(Hinton et al., 2015), as a method for compressing
large-scale pre-trained language models, is attract-
ing more and more attention. As large-scale PLMs
continue to grow in scale, and with advancements

*This work was done when the author visited Zhipu.AlL
Corresponding authors.
The other authors also include Yang Yang, Hongyin Tang,
Keqing He, Jiahao Liu, and Jingang Wang from Meituan.
'The code is available at https://github.com/aitsc/
GLMKD.

in knowledge distillation methods, it becomes in-
creasingly pressing to apply knowledge distillation
research in controlled laboratory settings to the real
world.

The field of knowledge distillation for language
models has witnessed a phenomenal progress in
recent years, particularly with regards to the reduc-
tion of model size, leading to the development of
a plethora of sophisticated distillation techniques
(Liu et al., 2022; Wu et al., 2022) and a comprehen-
sive toolkit (Yang et al., 2020b). However, despite
these rich research outcomes, there are still major
challenges in deploying knowledge distillation sys-
tems for real-world industrial-strength applications,
including:

* Obstacles to Distilling Ultra-large-scale
PLMs. Contrary to distillation in controlled
laboratory settings aimed at models with bil-
lions of parameters, many industrial-strength
applications (Yu et al., 2022) rely on ultra-
large-scale PLMs (on the order of 10B or
even larger). The training of ultra-large-scale
PLMs is already challenging, and the distilla-
tion process requires simultaneous training of
both large and small models, leading directly
to difficulties in distillation of ultra-large-scale
PLMs. Furthermore, there are also methods
(Wuetal., 2021a; Yuan et al., 2021) for distill-
ing multiple large models into a single small
model, which pose significant challenges in
memory-constrained GPU environments.

* Obstacles to Switching Distillation Meth-
ods. Deploying a knowledge distillation sys-
tem requires the implementation of numerous
distillation methods to meet different require-
ments, but due to the differences in implemen-
tation of these methods, it is difficult to switch
and combine them easily within a framework.
It is important to have an architecture that
accommodates a range of distillation meth-
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ods while ensuring efficient training, such as
avoiding excessive extraction of intermediate
features that lead to memory waste. Thus, a
compatible and efficient architecture is cru-
cial for successful deployment of knowledge
distillation systems.

To overcome these challenges, we present a gen-
eral knowledge distillation framework (GKD) for
deploying knowledge distillation systems that sup-
port various scale PLMs and methods. To over-
come the obstacles to distilling ultra-large-scale
PLMs, GKD leverages the techniques of training
large transformer models to the distillation process
that requires training multiple large (teacher) and
small (student) models simultaneously, incorporat-
ing the latest model and data parallel strategies.
To overcome the obstacles to switching distillation
methods, GKD employs a dynamic hook mech-
anism and auxiliary model to extract and operate
intermediate layer features and inference process of
models in each iteration. While being compatible
with various methods, it avoids the waste of mem-
ory caused by extracting all intermediate layers.
GKD presents the first exploration of knowledge
distillation for language models in industrial sce-
narios. Specifically, our main contribution lies in:

» Larger-scale Model Distillation. We pro-
pose a teacher-student parallel strategy based
on advanced memory optimization methods,
addressing the challenge of distilling ultra-
large-scale PLMs (over 10B) due to memory
constraints. The proposed strategy supports
distillation of at least 100B-scale PLMs on 8
NVIDIA A100 (40GB) GPUs.

* More Compatible Method Architecture.
We propose an efficient adaptive architecture
compatible with various methods, addressing
the challenge of switching and using different
distillation methods within a single framework
with difficulty. The proposed architecture sup-
ports at least 25 model distillation methods.

» Easy-to-use Open Source Toolkit. We have
open-sourced the required toolkit for GKD,
which provides a command-line interface for
25 distillation methods, facilitating developers
to deploy 