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Abstract
Voice assistants help users make phone calls,
send messages, create events, navigate and do
a lot more. However assistants have limited
capacity to understand their users’ context. In
this work, we aim to take a step in this direc-
tion. Our work dives into a new experience
for users to refer to phone numbers, addresses,
email addresses, urls, and dates on their phone
screens. Our focus lies in reference under-
standing, which becomes particularly interest-
ing when multiple similar texts are present on
screen, similar to visual grounding. We col-
lect a dataset and propose a lightweight general
purpose model for this novel experience. Due
to the high cost of consuming pixels directly,
our system is designed to rely on the extracted
text from the UI. Our model is modular, thus
offering flexibility, improved interpretability,
and efficient runtime memory utilization.

1 Introduction

With the advent of internet and smartphones, the
world came to our fingertips. And with the emer-
gence of voice assistants (VAs), everything became
even more accessible. VAs have become pervasive
in the smartphones as they offer natural means of
communication to the user. They able a user to per-
form tasks faster with natural language instead of
several taps, app switches, scrolls and typing. How-
ever, they are limited in their ability to understand
the user’s context.

Let us look at an example. In Fig. 1, a user wants
to share a number from a webpage to a friend. They
might do either of the following:

• memorize the number → go to messages →
new message to friend → type the number
from memory → send

• select the number → copy → go to messages
→ new message to friend → paste → send

One solution might be that the user can read out
the number to the VA. However reading out may be
cumbersome and unnatural as this is not how one

would communicate with a person standing next
to them. Further, it may create unwarranted ASR
errors, especially for texts like URLs or emails.
Our work explores how to make this simpler by en-
abling users to refer to screen elements in requests
made to voice assistants. References make conver-
sations more natural and succinct, thus allowing
the user to say: “Send the middle number to Tim”.

We conduct a user study to explore how users
would make requests involving screen elements.
Participants are shown screenshots, each contain-
ing multiple entities of a category (eg. 3 phone
numbers), and asked to type requests for a VA to
act on one of them. The study reveals that a ma-
jority of users (57%) prefer to use references like
“Send that office number to Tim’ instead of repeat-
ing the full text.

For supporting such experiences, voice assistants
need to resolve the references. In this work, we
focus on such reference resolution. Specifically,
we consider requests referring to phone numbers,
addresses, email addresses, URLs, date/time. We

Figure 1: Suppose a user wants to share a number on
their screen. We aim to support this in a natural and suc-
cinct way by enabling users to refer to screen elements
in interactions with Voice Assistants.
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choose these actionable text since, ∼50% of screen
elements are texts (Zhang et al., 2021), and these
categories are commonly acted upon. Users of-
ten call or message numbers, share contact details,
navigate to addresses.

To understand and evaluate the task, we collect
ScreenRef, a dataset of 14k requests, with refer-
ences to actionable text or entities. ScreenRef
contains two collections. First, Descriptive Data,
which is based off screens with multiple similar
entities to get descriptive references like ‘call the
Apple Business Manager number’. This is simi-
lar to how visual grounding datasets (Kazemzadeh
et al., 2014; Mao et al., 2016) focus on images with
multiple objects of the same category to get chal-
lenging references. Second, Category level Data,
includes simpler references to a category without
disambiguating within a category, eg. ‘call this
number’. These are described in Sec. 4.

With the purpose of deploying in real world, it
is critical to design solutions with low latency. To
this end, we design Screen Reference Resolver, or
SRR, a modular attention based architecture for ref-
erence understanding. We focus on privacy, hence
our model is lightweight and executable on-device.
Our network re-uses existing signals available from
upstream including request embedding, and text
scraped from the UI. We also discuss a heuristic-
based baseline (designed for quick prototyping).

Overall, our main contributions are:

1. We explore a novel experience for Voice As-
sistant users to execute tasks on actionable
text on the phone screen by using references.

2. We conduct a user study to analyse users’ in-
teractions with entities on screen. This reveals
interesting insights about usage of references.

3. We design efficient data collection schemes
for collecting requests with references to ac-
tionable text on screen and collect a dataset.

4. To understand references to entities on screen,
we propose a heuristic-based baseline and a
modular attention-based network, SRR. The
model has a small memory footprint, low
latency, can run on device, and drastically
boosts performance compared to the baseline.

2 Related Work

Grounding to UI elements. Past works have ex-
plored mapping natural language commands to UI
elements for Chrome web pages (Pasupat et al.,

2018), grounding executable actions for UI nav-
igation (Li et al., 2020) and user interaction (Xu
et al., 2021). These works primarily focus on navi-
gational commands, thus target buttons, links and
input boxes. Our goal is to explore screen refer-
encing capability for common VA tasks, thus we
target ‘actionable text entities’ like phone num-
bers. Hsiao et al. (2022) propose ScreenQA with
questions about UI elements including text, which
could also benefit from UI grounding. Wang et al.
(2022); Rozanova et al. (2021) investigate LLM
abilities for UI grounding. Li et al. (2021); Li and
Li (2022) use vision and language transformers for
the task. However, we only use the screen texts
and no pixels directly. Our solution design focuses
on low latency, less memory and privacy-preserved
inference that can be run on device.

Voice assistants and Multimodal Interactions.
The power of replacing multiple low-level actions
by natural language has been explored for webpage
designing (Kim et al., 2022), image editing (La-
put et al., 2013). Users use VAs for controlling
screen content, particularly the visually challenged
(Vtyurina et al., 2019). Ljungholm; Luger and
Sellen (2016) discuss how lack of context under-
standing makes VA usage unnatural. Bolt (1980)
employed a point-and-speak approach for desktops.
Prior works have explored tracking user gaze for
multimodal interactions (Drewes et al., 2007), for
digital screens (Hutchinson et al., 1989; Mardan-
begi and Hansen, 2011) as well as for external,
real-world objects (Mayer et al., 2020). In this
work, we explore using language to reduce the low-
level actions needed to interact with certain text
categories on phone screens and thereby increase
the context understanding of VAs.

Grounding to objects and text in open
scenes. A related task to ours is visual ground-
ing (Kazemzadeh et al., 2014; Mao et al., 2016;
Yu et al., 2018), resolving references to physical
objects in scenes. The physical form and seman-
tics of text is much different, resulting in different
reference forms. Rong et al. (2019, 2017) look
at references to text in scenes. However, a lot of
their references are of the form ‘the text on . . . ’,
thus grounding requires less knowledge of text and
more of physical objects. Also, the major challenge
in open scenes is text localisation and recognition,
which is much simpler on phone screens. On the
other hand, screens are challenging as they contain
a lot more text. TextVQA, from Singh et al. (2019);
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Figure 2: Distribution of request types in the user study.
References using labels i.e. text within or around entity
are most common, followed by repeating full text. For
entities like addresses and URLs, repeating full text may
be cumbersome, hence references are more common.

Biten et al. (2019) could utilise grounding to text,
but doesn’t contain labels for this. Lastly, none of
these works cater to task-oriented dialog for text
on screen, which is our primary focus.

3 User Study

To understand how users would make requests
about entities on the screen, we conduct a user
study on Pollfish (pol). We use 4 screens for each
actionable text category (phone numbers, emails,
addresses, and URLs), and each screen has 3 in-
stances of the category (eg. 4 screens with 3 phone
numbers each). A total of 300 participants are se-
lected from across US, balanced for VA usage, gen-
der and English as first or other language. Overall,
4800 typed requests were collected.

The responses were reviewed by two researchers.
Using heuristics, three common types of requests
surfaced: 1. Full Text: “call 1-866-902-7144” 2.
Labels: using text other than full entity text “direc-
tions to the one in Portland” 3. Ordinals: “send
the third email address”. The data shows a heavy
preference towards the first two (Fig. 2). Intu-
itively, when browsing information, the eyes are
often scanning for a topic of interest. For instance,
“I need to call support”, explaining the label based
requests. Our hypothesis for the high use of full
text is that they didn’t want to rely on VA’s ability
to understand the context. Within references, using
the text in or around the entity is common and the
position is used sometimes. Note that our study
was performed on a limited set of users and for
a limited set of screens, but we uncover interest-
ing patterns on how users might request actions on
screen texts. It is important to keep in mind that
speaking full texts could be cumbersome, unnatural
and have speech recognition errors, especially for
entities like URLs.

Figure 3: Screen processing is done by upstream sys-
tems using data detectors to get entity categories. We get
texts with their location, and texts classified as phone,
email, address, date/time, URL that form the candidate
entities. Example entity: [text: +91 9998888, location:
[0.04, 0.36, 0.4, 0.03], category: Phone Number]. These
are the inputs to our grounding system.

4 Task and Dataset

Given a screen S (with OCR texts t), text entities
e1, ..., ek and a request r, the task is to select the
entity(entities) e ∈ e1, ..., ek being referred to in r.

We collect ScreenRef, a collection of requests
to Voice Assistants with references to actionable
text categories on screen (phone number, address,
email address, URL, date/time). Due to privacy
concerns on sharing a dataset with extracted phone
numbers/emails from web pages, we are unable
to share the dataset but we discuss the collection
protocol in detail (see samples in Fig. 4 and anno-
tation guidelines in Appendix A). We collect full
requests, not just reference phrases, since words
outside of the explicit reference phrase may hint
at the targeted entity. For instance, call this has
the reference this which is ambiguous, however the
request can be understood as referring to a phone
number. 20 annotators are recruited for our data
collections.

We first started with a simple collection protocol.
After extracting entities of our interest using data
detectors for a list of web pages, we show a web
page screen with one highlighted entity and ask
graders to provide a request referring to that entity.
This would get us a dataset of requests referring to
screen entities and their referred entity. However,
this ran into major issues. First, annotators would
often miss other similar entities on the screen and
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Figure 4: Samples from ScreenRef. Descriptive data is
collected using screens and has entities and texts from
the screen. Category-level data is collected without
screens and has an entity pool containing one dummy
entity from each of our scoped categories.

provide requests which are ambiguous, eg. “call
this number”, when there is more than 1 number
on the screen and only 1 of them is highlighted,
thereby resulting in an incorrect sample for the res-
olution task. Second, there were a large number of
duplicate requests (>40%). This may happen due
to several screens may have one entity and thereby
annotators may use simple references. Other issues
included the need of screens with entities to collect
any data, lack of representation of different refer-
ence types within the collected data and lack of
awareness of ambiguous requests.

The quality and efficiency concerns led us to de-
velop a new protocol in the form of descriptive and
category level data collections. Within descriptive
collection, we use a similar screen based collection
technique. However we restrict to screens with
more than one instance of a category in order to
collect challenging and diverse requests (similar to
visual grounding datasets like RefCOCO). Along-
side the target entity, we highlight all entities of
that category to reduce chances of erroneous am-
biguous requests. Within category level collection,
we do not use screens and the focus is on unique di-
verse requests with simple references. This split ad-
dresses the issues described above leading to more
efficient collection and better quality datasets.
Descriptive Data Collection. Though we aim to
support references on all apps on phone, this col-
lection is carried out with web pages due to their
varied layouts and ease of access. For a list of top

visited web pages, we extract texts by UI scraping
and get text categories using data detectors. This is
similar to running object detectors in open scenes.
In order to get challenging references, we only keep
screens with more than one entity from a category
(eg. 2 URLs).
One entity on the screen is highlighted as target
and users are asked to provide requests for that
(Fig. 7b). Guidelines provided in A.2. For quality
check, we run a verification to confirm the requests
are unambiguous: three independent annotators
are shown the screen and the collected request and
asked which entity from the screen is the request
referring to. Samples where at least 2/3 annotators
agree are kept, leading to ∼6% data drop.

Category-level Data Collection. This collection
targets simple references for a category (“phone
number - Call that number”, “URL - Open it”).
During screen mining, we observe that a lot of the
screens have only one entity from a category. In
these cases, users may prefer succinct simple refer-
ences instead of descriptive ones. Note that these
references do not use the screen layout. Hence, we
design this collection independent of screens. This
gives a simpler collection scheme that allows us to
scale to new categories and/or locales more quickly,
with reduced time and cost.
We show a category and ask annotators to give
requests, assuming that entity is on their screen.
The collection is carried out on shared spread-
sheets, one sheet per category (Fig. 7a) in or-
der to avoid duplicate requests across annotators.
Annotators are given automatic instant feedback
by COUNT_UNIQUE to encourage variations.
Through pilot annotation projects, we recognize
several constraints to ensure that the uniqueness
is not from spurious modifications, which are also
added to the guidelines. Detailed grading guide-
lines provided in A.1. For verification, 3 indepen-
dent annotators are shown a request and asked to
mark all categories it could refer to. This also gives
annotated multi-label samples i.e. requests that
are category ambiguous: “take me there” could be
referring to a URL or an address. Requests with
majority agreement are kept. After the requests
are collected, dummy entities, one of each scoped
category, are added to each request to form a data
sample. In a way, this makes the dataset more com-
plete and challenging than real screens which may
include only a subset of the entity categories. (Fig.
4).
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(a) Requests across categories. (b) # of entities on screens. (c) # of entities with same category as gt.

Figure 5: Histogram of various factors in the Descriptive Data

5 Models

5.1 Heuristic-based Baseline
This is designed for quick prototyping and devel-
opment without much training data. We define a
set of hand-crafted rules using keywords from a
subset of the training data. The rules are applied in
sequence:

1. Phrase-match. Look for synonyms or verbs
or apps in the request that indicate the target
category (like ‘number’, ‘call’ indicate phone
number, ‘navigate’, ‘maps’ indicate address).

2. Location-match. Regex match to find posi-
tional or ordinal reference in request, sort can-
didates by coordinates and pick the entity at the
mentioned position.

3. Label-match. Locate the text on screen that
has maximum match to the request using a set
of string matching features like word overlap
(after removing stopwords). Pick the entity clos-
est to this text.

4. If none of the entities are selected above (like
“Share this”), score all entities identically.

5.2 Screen Reference Resolver
We design SRR, a modular attention-based net-
work for resolving references (Fig. 6). Inspired
by MattNet (Yu et al., 2018), the model contains
3 modules, each of which use a subset of signals
from entities, use soft attention to attend to rele-

Category-level Descriptive
Train Test Train Test

Total requests 4137 486 7993 1082
Unique requests 4123 486 6520 957
Multilabel 934 126 0 0
Tokens per request 7.78 7.95 7.46 7.65
Tokens per reference 2.09 2.06 4.25 4.31
Screenshots - - 336 42

Table 1: Statistics for all requests in ScreenRef

vant tokens of the request, and compute relevance
scores for each entity with the request. We focus
on two key dimensions crucial for deploying in an
industrial setup- first, memory footprint; second,
reusing the existing components in the pipeline.

We re-use the request token embeddings gener-
ated by the upstream embedder (like Bert (Devlin
et al., 2018)) and the text categories recognized by
upstream. The embedded request passes through
the weight compute block, an MLP followed by
softmax, that predicts weights for each module.
A request like “call the top phone number” could
give high weight to location and category mod-
ules, while “call the one in Palo Alto” could give
higher weight to the text and category modules.
Embedded tokens also go to the module-specific
embedder where soft attention is applied on the to-
ken embeddings to get embeddings independently
for the category and location modules. For “call the
top phone number”, category module could attend
more to ‘call’ and ‘phone number’, while location
to ‘top’. Modules produce scores by fusing entity
features with these embeddings. Module scores are
combined using the module weights to get the final
score for each entity. Specifically, the final score is
wcat × scat + wloc × sloc + wtext × stext. Let us
understand the three modules.
Category module. Entity categories (phone num-
ber, URL etc) are embedded using the same em-
bedder as the request. These are pre-computed for
all categories. During runtime, given an entity and
a request, the embedding for the entity category
is loaded and matched with the request embed-
ding from the module specific embedder. Both are
passed through separate MLP blocks, followed by
an inner-product to compute the matching score.
Location module. This takes in bounding boxes
of the entity and of other entities of the same
category (similar to (Yu et al., 2018)). Bound-
ing boxes of entities [x, y, w, h] are normalized by
K = max(Iwidth, Iheight), preserving the aspect
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Figure 6: Architecture for the Screen Reference Re-
solver. It uses the embedded request, embedded entity
category, location features and text matching features to
predict a matching score for the entity and the request.

ratio and featurised as:
[
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K
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,
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K
,
w ∗ h
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]

These features are concatenated and passed through
an MLP. Embedding from the module specific em-
bedder is passed through a separate MLP, and lastly
an inner product gives the module score.
Text module. We do not embed the screen texts but
instead use string matching features. This choice is
made for three main reasons. First, we observe in
the user study users typically use the text and not
synonyms of the text present on screen when mak-
ing references. Second, our entities of interest, like
numbers, emails, URLs make little sense to embed
due to their content and presence of OOVs. Third,
screens can have a large number of texts. Embed-
ding so many texts in run time could cause compute
overhead. Hence, instead of embedding, we utilize
the texts by designing simple features like: is the
text fully contained in the request, word overlap
after removing stopwords, digit overlap. Along
with matching the request to the entity text, we also
match with the entity’s neighboring texts (sorted by
distance). All features are concatenated and passed
through an MLP to get the module score.

Since the Category-level data has multi-label in-
stances (eg. ‘take me there’ could refer to a URL or
an address), we use a threshold (a hyperparameter
obtained from fine-tuning on val data as 0.7) to
get final predictions. We add intermediate super-
vision on the module weights by annotating ∼500
samples each for ordinal references (labelled for
high weight to location module), references using
visible text (text module), and simple reference
(category module).

Modular nature offers memory efficiency, giving
an option to skip running some modules which get
very low weights for a request. It also provides
flexibility for varied reference resolution use cases,
eg. scenarios with only entity categories available.
Note that SRR is only 1MB in size, does not need
access to DOM or view hierarchy and hence can
work on any screen, in fact any context where rec-
ognized texts are available, including documents.

6 Results

Experimental Setup. Data is split into
train/val/test in 80/10/10 ratio. To avoid data leak
in Descriptive data, we split the data by screens,
thus all requests for a screen are in one set. Table 1
summarizes the overall statistics for the dataset. We
randomly pick a negative sample for each positive
sample and use binary cross entropy loss and Adam
optimizer with an initial learning rate of 4× 10−4.
Metrics. We use two metrics to measure perfor-
mance. First, exact match accuracy indicates
whether the predicted entities, after applying the
threshold, exactly match the true entities (if an addi-
tional entity crosses the threshold or one of the true
entities doesn’t, exact match is 0). Second, top-1
error indicates whether the entity with the high-
est score, regardless of threshold, is in the ground
truth entities. This is useful as often only the top
prediction is used by downstream.
Results. We summarize the results in Table 2.

Dataset Model Top-1 Err. EM

Category- Heuristic 6.5 87.5
level SRR 1.1 89.9

Cat. Oracle 0.0 100
No text Oracle 0.0 100

Descriptive Heuristic 25.0 74.2
SRR 14.2 78.7
Cat. Oracle 54.0 0.0
No text Oracle 32.6 45.5

Table 2: Top-1 Error and Exact Match accuracy of var-
ious systems on ScreenRef. SRR reduces the relative
top-1 error by 83% on category-level data and 43% on
Descriptive data compared to the heuristic baseline. Cat-
egory Oracle predicts all entities of the true category.
Exact Match going from 100 to 0 and top-1 error from
0 to 55 between the two subsets shows how they differ
by design. No text Oracle knows all simple and ordinal
references but not the text values.
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Modules in SRR
Category Location Text Top-1 Error

✓ ✓ ✓ 14.2
× ✓ ✓ 31.2
✓ ✓ × 33.7
✓ × ✓ 35.3
× ✓ × 49.7
× × ✓ 51.5
✓ × × 54.9

Table 3: Ablation Study results for the different mod-
ules in SRR namely category, location and text modules.
Top-1 Error on the Descriptive data is reported. The
observed loss in performance across all subsets under-
scores that all modules are critical for achieving high
performance.

Observe that the performance on Category data
is higher than on the Descriptive data, indicating
the challenging nature of the latter. SRR reduces
the relative top-1 error by 43% on Descriptive and
83% on Category-level data compared to the base-
line. The oracles know the true category hence get
perfect results on category-level data. Their low
performance on Descriptive reflects the importance
of all inputs, particularly screen texts. We carry out
an ablation study on the model (Fig. 3). It shows
that each attribute and thus each module is critical
in understanding the references.

7 Conclusion

We explore a new user experience of executing
actions on screen elements with Voice Assistants.
To make interactions more natural, we explore the
use of references. An important decision was what
UI elements to support. We decided to use texts that
are most commonly used for task oriented dialogue
and, commonly present on phone screens and easy
to classify. We collected a dataset of requests and
proposed solutions to understand references. This
is a step towards making Voice Assistants more
context aware, but there is a lot more context. We
hope that our work will motivate further research
towards this goal, and towards semantic visual text
referencing.

Limitations

Our work explores a dimension of context under-
standing by Voice Assistants but it is only a small
step. Firstly, we only consider 5 categories, while
screens have a myriad of other texts and visual

content. We do not include image context into our
reference understanding models. But users could
use them when formulating references to texts near
them. Using image captions or some pixels would
improve coverage. Our system leverages entities
extracted by upstream and hence is bounded by
the performance of that. Also our model evaluates
each entity separately while there may be benefit
in considering the entire screen holistically.

Ethics Statement

This work aims at improving user experiences with
voice assistants. By allowing users to refer to enti-
ties on screen, it reduces user friction and enables
a smoother and more natural experience. No voice
assistant usage log data was used and all requests
were collected by recruited annotators.
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A Appendix

A.1 Annotation Guidelines for Category Level
Request Collection

In this project, you will be shown an entity category
(phone number, url etc). Assume you see a partic-
ular instance of that entity on your screen. You
have to come up with various requests you would
say to a Voice Assistant to perform action on that.
The main idea is to provide varied natural ways of
interacting with that entity. The request should be
one which holds valid when looking at different
kinds of images containing that entity.

Consider you see that entity on the screen. Do
not assume any other information about that entity,
like what digits occur in the number or what place
is the address for (note to readers - such references
are the focus of the unambiguous request collection,
hence skipped here).

• Take me to the California address - Incorrect

• Call the number ending in 99 - Incorrect

• Take me to COUNTRYNAME address - In-
correct

• Call COMPANYNAME number - Incorrect

1. You are encouraged to use varied request for-
mulations with different ways of referring to
the entity as well as carrying out different ac-
tions on that entity. Example - Phone number

• place a call to that phone number
• dial this number
• add this to my contacts
• remind me to call here at 5
• send this to PERSON on text message

2. Constraints to follow -

(a) Enter requests only in column 1 and do
not change the values in column 2 in any
way.

(b) The number in the second column re-
flects the number of unique requests so
far.

i. When you enter a request and
the number does not increase, this
means that request is already present.
CHANGE the request.

ii. When you enter a request and the
number in column 2 increases by
1, you have successfully entered a
unique request. Move to the next
row.

(c) Do not make minor irrelevant varia-
tions. Replace proper nouns with upper-
case tags like “PERSON”, “COMPANY-
NAME”, “DAY”.

i. Incorrect -
• send this to Mom on text message
• send this to Dad on text message
• send this to John on text message

ii. Correct -
• send this to PERSON on text mes-

sage
• share the number with PERSON

(d) Use only lowercase letters in the re-
quest, apart from the proper noun re-
placements with all uppercase tags (PER-
SON, COMPANYNAME etc). Use these
only in a way that one can replace them
with any name without knowing the ac-
tual screen. The request should hold
valid for a variety of different screens
containing phone numbers.

i. Incorrect - Send this to PERSON-
NAME on text message - first letter
should be small

ii. Incorrect - copy PERSONNAME’s
number - assumes you see PERSON-
NAME

iii. Correct - send this to PERSON-
NAME on text message

iv. Correct - send PERSONNAME’S
number to this number - here PER-
SONNAME can be any person in
your contacts.
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(e) No fullstops after the request. 1. Incor-
rect - call this. 2. Correct - call this

(f) No trailing or leading whitespaces
should be added.

(g) Assume you see the entity in front of
you. Target the request to ask a VA to
act on the entity type mentioned. Do not
just add the entity type in the request
randomly. Do not assume anything more
about what you see. Invalid requests -

• tell me the number that just called
me - the request is not about a phone
number you are seeing - “did I just
receive a call from that number” is a
valid request

• is PERSON’s number in my missed
calls - the request is not about a num-
ber you are seeing - “is this number
in my missed calls” is valid

• get rid of COMPANYNAME’s num-
ber - You may not be seeing a com-
pany name- get rid of their number is
valid

(h) Use varied ways to refer to the enti-
ties. For instance, for ‘phone num-
ber’, You can use generic references like
“this”, “that” as well as phrases including
“phone number”, “contact number” etc.

• call that
• call this contact number
• call them
• call this number

(i) You need not explicitly use the phrase
mentioning the entity type always, spe-
cially if the intent conveys that. Example
- Email address

• draft a mail to this
• draft them a mail

(j) Use varied ways of referring to the entity
• generic phrases - this/that/it/them/....

etc
• specific phrases - email/email ad-

dress/address/contact/... etc

A.2 Annotation Guidelines for Unambiguous
Request Collection

Overview The goal of this task is to generate a
variety of requests for text in a screen. The requests
should be queries or requests you would make to

(a) Category Level Data Collection: First, annotators are
asked to provide category level requests in a spread sheet (Left).
Column2 of the sheet reflects the unique count so far, which
encourages varied requests for a diverse dataset. We define
constraints in the guidelines so that variations are not spurious
changes. Second, annotators are asked to verify the collected
requests to capture entity level ambiguity (Right). 3 annotators
are asked to verify each collected request.

(b) Unambiguous Data Collection: First, annotators are shown
a screen with multiple instances of a category (Left). One
is highlighted in a green box, while others in red boxes as
initially annotators tended to provide ambiguous references. An
annotator provides 3 different requests with references. Second,
the correctness of a request is verified by showing the screen
and request (Right). 3 annotators are asked to mark the referred
one.

Figure 7: Unambiguous and Category level Data collec-
tions protocols.

a voice assistant, based on the text. You will be
shown a screen with a green bounding box around
specific text. You will need to:

Write three uniquely referential requests
about the marked text for a voice assis-
tant

A.2.1 Green vs. Red Boxes
Screens will contain green and red boxes. The
green box contains the text for which you need to
write the requests. The requests for the text within
the green box need to uniquely identify it. Red
boxes mark the texts that are similar to the text
within the green box. For example, if an image has
three phone numbers, the red box will capture the
other two phone numbers. Do not write requests
for the text within the red box. They are intended to
serve as a guidance so that you don’t miss them out
and ensure you write uniquely referential requests
for the text within the green box.
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A.2.2 Request Guidelines
Imagine you are viewing that screen on your phone,
and were to ask a voice assistant about that text you
came across. What would you ask the voice assis-
tant regarding the text that you could not gather
just from looking at it? What additional actions
or requests would you ask the voice assistant to
execute in relation to the text that can be carried
out on your mobile device?

Keep in mind the following:

• Unique: Each request will require a refer-
ring expression that uniquely identifies the
detected text.

• Require a voice assistant’s help: Requests
should not be questions that a user can an-
swer simply by looking at the text. Example:
“Does this phone number contain 007 at the
end” is invalid.

• Mix it up: Requests can be a mix of ques-
tions about the text or action commands to be
executed on the text.

• Sound natural: Come up with requests that
would sound natural, coming from a user. Ver-
bally say the request out loud to ensure it
sounds natural and not too long.

• Make sense for a user to request a VA: Think
about whether the request would make sense
for a user to request, based upon the text
type/context of the screen, and what a user
would usually do on a device with that infor-
mation.

Uniquely Referential Use references that ensure
the request uniquely identifies the marked text. All
3 requests for a particular text need to be uniquely
referential. Use varied actions and request types.
Do not use the same reference across the requests.
Remember that the request needs to be uniquely
referential, not just with other similar texts marked
in red, but also with all content within the screen.
Example errors:

• Too General:

1. Call that
2. Text it to John
3. Save that to my notes

• Same references for all 3 requests:

1. Call the third number
2. Share the third number
3. Copy the third number to my notes
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