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Abstract

Recently, self-learning methods based on user
satisfaction metrics and contextual bandits
have shown promising results to enable con-
sistent improvements in conversational AI sys-
tems. However, directly targeting such met-
rics by off-policy bandit learning objectives
often increases the risk of making abrupt policy
changes that break the current user experience.
In this study, we introduce a scalable frame-
work for supporting fine-grained exploration
targets for individual domains via user-defined
constraints. For example, we may want to en-
sure fewer policy deviations in business-critical
domains such as shopping, while allocating
more exploration budget to domains such as
music. We present a novel meta-gradient learn-
ing approach that is scalable and practical to
address this problem. The proposed method
adjusts constraint violation penalty terms adap-
tively through a meta objective that encourages
balanced constraint satisfaction across domains.
We conducted extensive experiments on a real-
world conversational AI and using a set of re-
alistic constraint benchmarks. The proposed
approach has been deployed in production for a
large-scale commercial assistant, enabling the
best balance between the policy value and con-
straint satisfaction rate.

1 Introduction

Conversational AI systems such as Apple Siri,
Amazon Alexa, Google Assistant, and Microsoft
Cortana rely on multiple processing components
for speech recognition, natural language under-
standing (NLU), taking proper actions, and generat-
ing a response to the user. In such a system, a skill
routing block is responsible for selecting the right
skill and NLU interpretation to serve the request.
Skill routing is a challenging problem as thousands
of skills are present in real-world conversational
systems and new skills are being introduced every
day. In such scenario, gathering human annotations
is very expensive and suffers from high turn-around

times. Moreover, often more than one skill is ca-
pable of serving a request which makes human
supervision even more challenging due to the lack
of clear ground-truth assignments (Sarikaya, 2017).

Recently, self-learning methods have been pro-
posed that leverage customer experience signals
to define reward values and create a closed feed-
back loop (Karampatziakis et al., 2019). In con-
trast to more traditional methods that are based
on replication of rule-based systems or defect re-
labeling (Park et al., 2020), self-learning methods
continuously explore different routing alternatives
and leverage user feedback to improve their deci-
sions (Kachuee et al., 2022).

Despite their scalability and efficiency, because
self-learning approaches directly optimize routing
decisions to achieve highest rewards, they suffer
from instability issues impacting the user experi-
ence. Specifically, off-policy contextual bandits
frequently used as the policy learning algorithm
are susceptible to off-policy optimization errors,
resulting in potentially breaking the current user ex-
perience due to overestimation of action values or
excessive explorations (Swaminathan et al., 2016;
Joachims et al., 2018; Lopez et al., 2021). Such
instabilities and drastic changes in the agent’s be-
havior not only regress user retention and trust, but
also manifest as direct revenue loss for business-
critical domains such as shopping.

In a production system, it is crucial to not only
estimate but also control the changes of behavior
a new policy introduces when compared to the
current production policy. In the literature, this
problem has been studied under safe bandit up-
dates (Jagerman et al., 2020; Daulton et al., 2019;
Amani et al., 2019) and budgeted bandit learn-
ing (Hoffman et al., 2014; Guha and Munagala,
2007), usually targeting exploration budgets or en-
couraging a behavior resembling a baseline policy.

In the context of off-policy bandit updates, we
define exploration as any change in the model be-
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havior resulting from replacing a current produc-
tion policy with a new updated policy. This defi-
nition is broad and encloses stochastic exploration
actions as well as any behavior change when com-
paring the two consecutive policies. Furthermore,
we consider the scenario in which samples are nat-
urally classified into a set of domains, each rep-
resenting a unique data segment. Note that in a
task-oriented conversational agent, domains are
typically defined based on NLU interpretation of
the request (e.g. music, shopping, books).

While previous studies considered different as-
pects of constraining a bandit model, to the best
of our knowledge the problem of controlling off-
policy bandit behavior changes across subsequent
model updates with a fine-grained control on bud-
gets for different data segments (domains) remains
unaddressed. This study is the first to tackle the
aforementioned issues by providing a scalable and
practical approach. The main contributions of this
paper are as follows: (i) Introducing a formula-
tion for controlled exploration in the context of off-
policy contextual bandit learning considering fine-
grained control over domains based on user-defined
constraints. (ii) Presenting a solution based on
the primal-dual minimax constraint optimization
method that is effective but requires adjusting a few
hyperparameters. (iii) Proposing a novel meta gra-
dient algorithm to balance constraint satisfaction
and reward maximization that works out-of-the-box
and outperforms other methods with no need for
hyperparameter adjustment. (iv) Conducting ex-
tensive online and offline experiments on the skill
routing problem in a real-world conversational AI
agent using a set of realistic constraint benchmarks.

2 Related Work

2.1 Skill Routing in Conversational AIs

In contrast to traditional rule-based systems, model-
based skill routing approaches leverage machine
learning models to understand a user request and
predict the best action to serve the request (Li et al.,
2021; Park et al., 2020).

To improve scalability, self-learning methods
have been proposed that rely on user feedback
rather than human annotations to learn and improve
their skill routing policies in a closed-loop. The
recent work by Kachuee et al. (2022) is an excel-
lent example of such approach in which model-
based customer satisfaction metrics (Kachuee et al.,
2021) are used to define the reward function, then a

stochastic mixture of replication and bandit models
is used to control the exploration rate and safeguard
the user experience. Nonetheless, such design may
result in sub-optimal decisions as the bandit opti-
mization does not consider the exploration budgets,
the stochastic mixture may not be sufficiently fine-
grained to protect user experience in smaller traffic
segments, and deploying such architecture requires
dealing with additional complexity of maintaining
a separate replication model.

2.2 Constrained Bandit Learning

The majority of studies on controlled bandit
learning consider the case of simple multi-armed
stochastic bandits (i.e., without context) with prac-
tical applications in experiment design (Guha
and Munagala, 2007) and automated machine
learning (Hoffman et al., 2014). Hoffman et al.
(2014) suggested a Bayesian approach to two-phase
exploration-exploitation bandit learning in which
there is a pre-specified budget for exploration arm
evaluations. Another aspect is to ensure safe ex-
ploration actions, which is especially useful for
sensitive applications in industrial machine learn-
ing or healthcare. Amani et al. (2019) introduced
a solution in which an initial set of exploration ac-
tions is defined, then the exploration set is gradually
expanded to ensure minimal unexpected behavior.

For contextual bandits, constraints can be de-
fined in the action space or in terms of model up-
dates. For example, Daulton et al. (2019) solves
a two-metric setting in which the reward is being
maximized while enforcing a limit for regression
on an auxiliary metric compared to a baseline sta-
tus quo model. Balakrishnan et al. (2018) attempts
to learn behavioral constraints by balancing be-
tween replication of the current baseline policy and
making new actions that show promising rewards.
In (Jagerman et al., 2020) authors define safety in
terms of user experience metrics and suggest decid-
ing on deploying a new model based on conserva-
tive confidence bounds on the off-policy estimates
of such metrics.

3 Constrained Bandit Exploration

3.1 Problem Formulation

We consider the general framework of off-policy
contextual bandits in which a policy Π is used to
select an action a ∈ A given the observed con-
text vector (x) to maximize the scalar reward (r)
received from the environment. Here, we assume
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stochastic policies of the form Πθ(a|x) in which a
model parameterized by θ (e.g., a neural network)
is used to assign action selection probabilities to
each action given the context. Furthermore, we as-
sume that each sample belongs to a domain denoted
by k ∈ 1 . . .M provided as a feature in x.

In the off-policy setting, the policy is refreshed
after collecting a dataset of samples from the cur-
rent policy. We adopt a definition of exploration
which considers any change in the agent behavior
compared to the current policy as an exploration
action. Alternatively, we can consider replication
with respect to the current policy as the rate at
which the new policy makes similar decisions to
the current policy when both evaluated and sam-
pled stochastically. We define replication for Πθ

with respect to Π0 based on the L1-distance of their
action propensities given a context x:

Rθ(x) = 1− |Πθ(x)−Π0(x)|1
2

. (1)

In a production system, it is desirable to precisely
control the rate at which the new policy replicates
the current policy for each domain. This ensures
robust and controlled model updates for critical
domains while enabling exploration for others that
may benefit from an extra exploration budget. Ac-
cordingly, we define constraints to encourage the
desired behavior for samples of each domain, while
learning an off-policy bandit:

argmin
θ

Ex,a,r,k∼D LΠθ
,

s.t. cmin
k ≤ Rθ(x) ≤ cmax

k

(2)

where context, action, reward, and domain
(x, a, r, k) are sampled from a dataset collected
from the current policy. In (2), we use cmin

k

and cmax
k to indicate user-defined replication con-

straints for domain k.
LΠθ

can be any differentiable off-policy ban-
dit learning objective, for simplicity of discussion,
we consider the vanilla inverse propensity scoring
(IPS) objective:

LΠθ
(x, a, r) = −r

Πθ(a|x)
Π0(a|x)

, (3)

where Π0 is the current policy and r is the observed
reward for taking action a collected in the dataset.

A common approach to optimize constrained
problems such as (2) is to use the penalty method,

translating constraints into penalty terms that en-
courage constraint satisfaction:

argmin
θ

Ex,a,r,k∼D [LΠθ
(x, a, r) +

euk max(0, cmin
k −Rθ(x)) +

evk max(0,Rθ(x)− cmax
k )] . (4)

Here, penalty terms are always non-negative and
increase if the new policy assigns action probabili-
ties that deviate from the current policy outside the
desired boundary. u ∈ RM and v ∈ RM are vari-
ables that adjust the weight of each constraint vio-
lation term. The exponentiation improves the sensi-
tivity to these parameters and ensures having non-
negative penalty terms. For (4) to actually solve the
original constrained problem of (2), proper values
for u and v need to be used that enable the best bal-
ance between constraint satisfaction and the policy
value. In the constrained optimization literature,
various methods have been suggested to solve this
form of problem. In this paper, to solve this prob-
lem, we use the primal-dual minimax method sug-
gested by Nandwani et al. (2019) (Section 3.2) as
well as a novel meta-learning method (Section 3.3).

3.2 Minimax Primal-Dual Method

Nandwani et al. (2019) suggested a formulation of
the augmented Lagrangian method that supports
inequality constraints. They solve the dual problem
which is optimizing the dual maximin problem to
improve the scalability:

min
θ

max
u,v

Ex,a,r,k∼D [LΠθ
(x, a, r) +

euk max(0, cmin
k −Rθ(x))+

evk max(0,Rθ(x)− cmax
k )] . (5)

Algorithm 1 shows an outline of the policy train-
ing using the minimax method. This method has
four hyperparameters controlling the max player
optimization via adjusting the update frequency,
learning rate, and decay factors.

Intuitively, the min player is trying to update the
policy while the max player is increasingly penal-
izing it for any constraint violation. A stable point
of this algorithm would be to gradually reduce the
max player update rate as the min player is getting
better at satisfying the constraints, eventually satis-
fying all constraints resulting in a zero loss for the
max player due to the zero hinge penalty terms.
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Algorithm 1: Minimax constrained bandit
input :D (dataset), η (max learning rate), γ (max

learning rate decay), τ (max update
frequency), ξ (max update frequency decay)

u,v, t← 0; Initialize(Πθ)
for x, a, r, k ∼ D do

/* loss function of (5) */
L← Loss(x, a, r, k, θ,u,v)
if t%τ is 0 then

/* gradient ascent, max player */
u← u+ η∇uL
v← v + η∇vL
/* lr/update decay */
η ← γ × η
τ ← ξ × τ

end
/* optimize Πθ, min player */
θ ← f(θ,∇θL)
/* increment counter */
t← t+ 1

end

3.3 Meta Gradient Method
Theoretically, the primal-dual minimax method is
capable of achieving Pareto optimal solutions (Jin
et al., 2019; Nandwani et al., 2019). However, in
practice, it is infeasible to train for an infinite num-
ber of iterations, and therefore approximate inner
optimization loops are being used. To find the right
balance between constraint satisfaction and policy
improvement for the minimax algorithm, it is nec-
essary to carefully adjust multiple hyperparameters.
Note that an extensive hyperparameter search is un-
desirable in many real-world scenarios as it entails
not only significant compute costs associated with
the search but also increases the turn-around time
to deploy refreshed models. To mitigate this issue,
we suggest a meta-gradient optimization idea that
adapts u and v based on a meta objective within
the training process.

Specifically, we define the the meta objective as:

Lmeta = Ex,a,r,k∼D (1− λ)LΠθ
(x, a, r)+

λ
max(0, cmin

k −Rθ(x)) + max(0,Rθ(x)− cmax
k )

p(k)
(6)

where λ is a hyperparameter to balance between
the bandit objective and the constraint penalty
terms. The second term is the macro average of
violation penalties, in which p(k) is the prior proba-
bility of samples belonging to domain k that can be
easily pre-computed for a large batch of samples.

Note that (6) is not directly dependent on u and
v, instead we rely on online cross-validation (Sut-
ton, 1992; Xu et al., 2018) to update these variables.

We define an inner objective the same as the min
optimization problem of (5), do a differentiable
optimization step, evaluate the meta objective on
another batch of data, then update u and v by tak-
ing the derivative of the meta objective through the
inner optimization trace.

Algorithm 2 presents an outline of the meta gra-
dient optimization method. Due to practical is-
sues of dealing with high-order gradients, we only
consider the immediate impact of a single inner
loop update on the meta objective. We found that
discarding the vanilla gradient descent used for
the inner optimization and using a more advanced
optimizer (e.g., Adam) to update Πθ works best.
Regarding the λ hyperparameter, we found that
simply setting λ = 1 works well in practice. It
effectively means that the meta-gradient solution
does not require any hyperparameter adjustments
(experimental evidence presented in Section 4.4).

Algorithm 2: Meta-grad constrained bandit
input :D (dataset), η (learning rate), λ (penalty

weight)
u,v← 0; Initialize(Πθ)
for x, a, r, k ∼ D and x′, a′, r′, k′ ∼ D do

/* clone parameters */
θ′ ← clone(θ)
/* inner loss with θ′ */
Linner ← Lossinner(x, a, r, k, θ

′,u,v)
/* grad. descent on cloned model */

θ′ ← θ′ − η∇θ′Linner

/* compute meta loss */
Lmeta ← Lossmeta(x

′, a′, r′, k′, θ′, λ)
/* diff. through inner update */

Compute∇uLmeta and∇vLmeta

/* use any optimizer for u,v */
u← f(u,∇uLmeta)
v← f(v,∇vLmeta)
/* inner loss with θ */
L← Lossinner(x, a, r, k, θ,u,v)
/* use any optimizer for Πθ */
θ ← f(θ,∇θL)

end

Intuitively, at each training iteration, the inner
objective naturally minimizes the bandit loss that
is penalized by constraint violation terms propor-
tional to the current u/v. Then, the meta objec-
tive computes a validation loss that measures the
impact of the inner policy update and u/v on the
macro-averaged constraint violations. Finally, by
computing the meta-gradient of the meta objective
through the inner optimization loop, u and v are
updated to better encourage the constraint satisfac-
tion for the next policy update iteration. Thanks to
the online cross-validation update for u and v, the
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Figure 1: Model architecture overview: a set of hypoth-
esis are encoded as vectors and fed to a bi-directional
LSTM followed by a shared MLP and a softmax layer
to get the candidate selection probabilities .

meta-gradient method adjusts the penalty weights
such that their value does not unnecessarily keep
increasing when it does not result in further im-
provements to the constraint satisfaction.

4 Experiments

4.1 Setup

In a commercial dialogue agent, making controlled
policy updates is crucial because any change in the
skill routing policy directly impacts the user expe-
rience. Making abrupt policy changes may nega-
tively impact user retention and in certain business-
critical domains may result in loss of revenue.

Figure 1 shows an overview of the model archi-
tecture used in our experiments. Input to the model
is a set of routing candidates i.e., a combination of
embedded ASR, NLU, and context vectors as well
as skill embeddings. The output is the softmax-
normalized propensity of selecting each candidate
to handle the user request. The final model has
about 12M trainable parameters consisting of a lan-
guage model to encode utterance, embeddings for
contextual signals, and fully-connected layers. As
our architecture closely follows the design choices
from Kachuee et al. (2022), we refer interested
readers to that paper for details.

To train and evaluate our models, we use logged
data from a current production policy. The ob-
served reward is based on a curated function of
user satisfaction metrics (Kachuee et al., 2021).
Our dataset consists of about 40M samples divided
into 85% training, 10% validation, and 5% test sets
covering 27 domains with imbalanced number of
samples. Data used in this work was deidentified
to comply with our customer privacy guidelines.

4.2 Benchmarks

In our experiments, we use three different
benchmarks for the constraint settings: global,
critical, and exploration. The global bench-
mark aims to constrain the new policy to be within
an exploration limit for all domains. In addition
to the global constraint, critical assert stronger
limits for a set of critical domains defined based on
the expert knowledge. The exploration bench-
mark extends the critical benchmark by adding
constraints to encourage exploration for domains
that may benefit from additional exploration. Each
benchmark is a list of constraints consisting of a
short description, applicable domain, and the de-
sired replication range. We provide the exact con-
straint configurations in the appendix.

4.3 Baselines and Metrics

As the first baseline, we consider the vanilla IPS
objective which disregards the constraints. Addi-
tionally, we build on the IPS baseline for constraint
optimization approaches: quadratic (uniform con-
stant penalty weight), minimax (Algorithm 1), and
meta-gradient (Algorithm 2). Unless expressed oth-
erwise, we use Adam optimizer with the default
configuration (Kingma and Ba, 2014) .

Regarding hyperparameters, for the penalty
weight of the quadratic method we use values from
{0.1, 1, 10, 100, 1000}. For the minimax method
(Algorithm 1), we found that setting τ and ξ to one
while adjusting η and γ presents very similar re-
sults to adjusting all four hyperparameters. Conse-
quently, we use a grid search of η ∈ {1, 0.1, 0.01}
and γ ∈ {1, 0.999, 0.995} to find the best settings
for each benchmark. For the meta-gradient method
(Algorithm 2), we found that simply using λ equal
to one in the meta objective (i.e., meta objective
only focusing on the constraints) outperforms other
works. As a result, it does not require adjusting
any hyperparameter and the same setting is used
across all benchmarks. We provide additional ex-
periment details, sensitivity analysis, and the final
hyperparametersin Appendix A.2, A.3, and A.4.

Regarding the evaluation metrics, we use the
expected off-policy reward as well as the rate of
change in constraint violations averaged over all
samples (i.e., micro-averaged) and individual do-
mains (i.e., macro-averaged). To comply with our
privacy and business guidelines, in all instances, we
only report relative and normalized results which
do not represent the actual scales or metric values.
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Benchmark
global critical explore

Method reward violation reduction reward violation reduction reward violation reduction

(%) macro (%) micro (%) (%) macro (%) micro (%) (%) macro (%) micro (%)

IPS 89.45±0.01 0 0 89.45±0.01 0 0 89.45±0.01 0 0

Quadratic 88.95±0.01 63.67±0.46 63.67±0.46 88.94±0.01 50.13±0.90 69.29±0.67 88.36±0.04 28.37±4.62 65.24±2.30

Minimax 88.91±0.01 63.28±0.08 63.28±0.08 88.93±0.01 37.88±0.49 62.51±0.21 88.11±0.01 61.51±0.59 81.50±0.24

MetaGrad 88.94±0.01 75.91±0.49 75.91±0.49 88.94±0.01 60.63±0.95 79.69±0.85 88.41±0.01 78.23±0.17 89.95±0.20

Table 1: A comparison of the baseline IPS method with the quadratic, minimax, and meta-gradient constrained
optimization methods on different benchmarks. We report the normalized percentage of reduction in the number of
constraint violations compared to the IPS method.

Method reward Violation Reduction Replication

(%) (%) (%)

RPDR -0.01 (p>0.05) 0 98.13

MetaGrad +0.19 (p<0.05) 38.05 99.11

Table 2: Comparison of the proposed method (Meta-
Grad) and the robust self-learning method by Kachuee
et al. (2022) (RPDR) using an online A/B experiment.
We report: percentage of change in the reward compared
to a control model, violation reduction for the MetaGrad
normalized by the RPDR result, and percentage of repli-
cation compared to the control policy actions.

4.4 Results

4.4.1 Offline Experimentation
Table 1 shows a comparison of results for the IPS,
quadratic, minimax, and meta-gradient methods
on all benchmarks. For each case, we report the
expected reward and the percentage of reduction
in the rate of violations compared to the simple
IPS objective. The meta-gradient approach consis-
tently shows the best results across all benchmarks.
The simple quadratic method behaves very compet-
itively to minimax, except for the explore bench-
mark which requires a more fine-grained control on
multiple constraints . The meta-gradient method,
while having the highest reduction in constraints
violations, also has very competitive performance
in terms of the reward metric.

4.4.2 Online Experimentation
We conducted an A/B experiment to compare the
proposed method with the stochastic gating method
of Kachuee et al. (2022) for robust self-learning
(indicated by RPDR in the table). We conducted
our A/B in two phases, deploying and comparing
each approach to a baseline skill routing production
system. Each phase took one week and consisted
of traffic from about 6M customers (3M control

and 3M treatment). For the RPDR method, we
used a target replication rate of 99% for each do-
main. The meta-gradient model was trained with
the global benchmark, constraining to a similar
99% replication. For both RPDR and MetaGrad
models, we used the same training set which was
collected from the control model behavior and fol-
lowed the same model architecture.

Table 2 presents the results of the A/B experi-
ment. For each method we report the percentage
of changes in the achieved reward compared to
the control model. For violation reduction, we
report the percentage of reduction for MetaGrad
compared to the RPDR method. For the replication
metric, we simply report the percentage of time
that each policy makes actions that replicate the
control model decision. As we can see from the
results, MetaGrad approach not only shows more
stable behavior by better constraint satisfaction and
replication rates, but it also achieves statistically
significant improvements in the reward value.

5 Conclusion

This paper studied the problem of controlled explo-
ration to control the policy updates in self-learning
skill routing systems. We presented a constrained
optimization formulation that enables defining the
boundary of the desired exploration rate for individ-
ual domains. We proposed a scalable and practical
solution based on meta-gradient learning which
provides the highest constraint satisfaction rates
without any extensive hyperparameter adjustment.
Finally, we conducted experiments on a real-world
conversation system for the skill routing problem.
The proposed method was deployed in the produc-
tion as it showed not only more control over policy
changes but also gains in the policy value.
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Limitations

While we conducted extensive experiments and
demonstrated the effectiveness of the suggested
approach for controlled bandit learning in the con-
text of the skill routing problem, there are multi-
ple directions of improvement for future studies.
We believe one of the limitations of the suggested
constrained optimization framework is that it re-
lies on expert-defined conditions on an arbitrary
segmentation of samples. It entails the need for
human intervention and manual constraint defini-
tion/optimization which can be challenging. An-
other limitation we faced was during our experi-
ments which showed additional compute overhead
of between 2 to 3 times for different constrained op-
timization methods due to additional optimization
objectives, inner loops, and backward passes.

Ethics Statement

The presented work is focused on improving robust-
ness of off-policy bandit updates in conversational
systems by introducing robustness constraints on
the policy behavior. We do not believe there is
any additional risk associated with this work when
using the suggested platform on constraints that en-
courage controlled deviations from a current base-
line. Regarding human data handling practices, we
ensured anonymity of data samples used in this
study and did not reveal any specifics that would
violate our internal policies or our customer privacy
policies.
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A Appendix

A.1 Constraint Benchmarks
Figure 2 presents the definition of constraint bench-
marks used in this paper: global, critical, and
explore. The global benchmark sets a general
minimum replication rate for all domains. The
critical benchmark defines a tighter minimum
replication rate for three business-critical domains
(home automation, shopping, and notifications)
and a more relaxed default case for all other do-
mains. In the explore benchmark, we extend
the critical benchmark to include exploration
encouragement for the knowledge and music do-
mains.

(a) global benchmark

(b) critical benchmark

(c) explore benchmark

Figure 2: The constraint benchmarks used in this paper:
(a) global, (b) critical, and (c) explore.

A.2 Training Details
We train each model until convergence or reach-
ing 32 epochs and take the best performing model
based on the macro-averaged violation rate mea-
sured on the validation set. Each experiment was

run four times using different random seeds for
data sampling and weight initialization to report
the mean and standard deviation of each result.
We used a cluster of 32 NVIDIA V100 GPUs to
process a mini-batch size of 32K samples. Each
individual run took between 4 to 24 hours.

A.3 Selected Hyperparameters

Table 3 shows the final selected hyperparameters
for each benchmark and method. The definition of
each hyper-parameter is presented in Algorithm 1
and 2.

Benchmark
Method global critical explore

Quadratic w 10 1000 1000

Minimax
η 0.1 0.1 1

γ 1 0.999 1

Meta-Grad λ 1 1 1

Table 3: The selected hyperparameters for each bench-
mark and method.

A.4 Impact of Hyperparameters

To study the impact of hyperparameters, we con-
ducted an experiment using the critical bench-
mark by training minimax and meta-gradient
based models using different hyperparameter
values. Specifically, we train minimax mod-
els (Algorithm 1) using η ∈ {1.0, 0.1, 0.01}
and γ ∈ {1.0, 0.999, 0.995}. For the meta-
gradient method (Algorithm 2), we use λ ∈
{0.01, 0.05, 0.1, 0.5, 0.75, 0.95, 1.0}. Figure 3
shows the results of such experiment. Based on
this experiment, the minimax approach shows a
much higher sensitivity to its two hyperparameters,
showing a significant impact on both the reward
and violation reduction metrics. However, the meta-
gradient method shows much less sensitivity to the
λ hyperparameter. We found that simply setting
λ = 1 works very well in practice. It can be very
desirable for real-world large-scale settings such
as conversational systems which require frequent
model updates as new features are on-boarded ev-
ery day, and having a dependency on an extensive
hyperparameter search is very costly, if not imprac-
tical.
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Figure 3: Comparing the hyper-parameter sensitivity for the minimax and meta-gradient methods on the critical
benchmark. For the minimax method: (a) reward and (b) macro violation reduction wrt. different η and γ settings.
For the meta-gradient method: (c) reward and (d) macro violation reduction wrt. different λ settings.

A.5 Analysis of Penalty Weights
To dive deeper into the reason behind the better
performance for the meta-gradient algorithm com-
pared to the minimax approach, we investigated the
constraint penalty weight value for the first 3,000
iterations of training using the global benchmark.
From Figure 4, we can see the minimax method is
monotonically increasing the penalty weight with
each iteration which is a behavior consistent with
the gradient ascent update rule in Algorithm 1. In
other words, as long as there are any constraint vi-
olations, minimax will keep increasing the penalty,
which in our opinion is the reason for high sensi-
tivity to the hyperparameters. On the other hand,
the meta-gradient approach is using a validation
signal to dynamically adjust the penalty weight.
Consequently, it may keep the penalty term near
zero for an initial phase, rapidly increase it, then
decay when violations are reduced and getting a
higher reward is preferred.
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Figure 4: The constraint penalty weight values for the
first 3,000 iterations of training using the global bench-
mark.
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