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Abstract

Early exiting can reduce the average latency
of pre-trained language models (PLMs) via its
adaptive inference mechanism and work with
other inference speed-up methods like model
pruning, thus drawing much attention from the
industry. In this work, we propose a novel
framework, BADGE, which consists of two off-
the-shelf methods for improving PLMs’ early
exiting. We first address the issues of training a
multi-exit PLM, the backbone model for early
exiting. We propose the novel architecture of
block-wise bypasses, which can alleviate the
conflicts in jointly training multiple intermedi-
ate classifiers and thus improve the overall per-
formances of multi-exit PLM while introducing
negligible additional flops to the model. Sec-
ond, we propose a novel divergence-based early
exiting (DGE) mechanism, which obtains early
exiting signals by comparing the predicted dis-
tributions among the current layer and the pre-
vious layers’ exits. Extensive experiments
on three proprietary datasets and three GLUE
benchmark tasks demonstrate that our method
can obtain a better speedup-performance trade-
off than the existing baseline methods.

1 Introduction

Since BERT (Devlin et al., 2019), the pre-trained
language models (PLMs) have become the de-
fault state-of-the-art (SOTA) models for natural
language processing (NLP). Recent years have wit-
nessed the rise of many PLMs, such as GPT (Rad-
ford et al., 2019), XLNet (Yang et al., 2019), and
ALBERT (Lan et al., 2020), and so forth. These
BERT-style models achieved considerable improve-
ments in many Natural Language Processing (NLP)
tasks by pre-training on the unlabeled corpus and
fine-tuning on labeled tasks, such as text classifica-
tion, natural language inference (NLI), and named
entity recognition (NER). Despite their outstanding
performances, their industrial usage is still limited
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by the high latency during inference (Tambe et al.,
2020; Zhu, 2021). In addition, a special feature
of consumer queries is that there are time inter-
vals when the number of queries is exceptionally
high. For example, food search engines will be
used more often during dinner hours than usual.
Thus, deployed pre-trained models need to adjust
their latency dynamically.

A branch of literature focuses on making PLMs’
inference more efficient via adaptive inference
(Zhou et al., 2020; Xin et al., 2020; Liu et al.,
2020). The idea of adaptive inference is to pro-
cess simple examples with only shallow layers of
BERT and more difficult queries with deeper lay-
ers, thus significantly speeding up the inference
time on average while maintaining high accuracy.
Early exiting is one of the essential adaptive infer-
ence methods (Bolukbasi et al., 2017). As depicted
in Figure 1, it implements adaptive inference by
installing an early exit, i.e., an intermediate predic-
tion layer, at each layer of PLM (multi-exit PLM)
and early exiting "easy" samples to speed up in-
ference. All the exits are jointly optimized at the
training stage with BERT’s parameters. At the in-
ference stage, an early exiting strategy is designed
to decide whether to exit at each layer given the
currently obtained predictions (from previous and
current layers) (Teerapittayanon et al., 2016; Kaya
et al., 2019; Xin et al., 2020; Zhou et al., 2020). In
this mode, different samples can exit at different
depths. The average speedup ratio can be easily
controlled with certain hyper-parameters without
redeploying the model services or maintaining a
group of models.

In this work, we propose a novel framework,
BADGE, to improve the early exiting performances
of PLMs. BADGE consists of two modifications
to the current early exiting literature. First, we
propose to add a block-wise bypass to each trans-
former block so that two different representations
can be produced, one for the current layer’s exit
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Figure 1: The overview of our BADGE framework.

and the other passed to the next transformer block.
With this mechanism, an intermediate transformer
block will not be distracted by the conflicting
tasks in multi-exit BERT training, thus providing
high-quality representations for the subsequent lay-
ers. As a result, the overall performance of the
multi-exit BERT will improve. Second, we pro-
pose a novel divergence-based early exiting method
(DGE), which is effective in mining early exiting
signals by comparing the predicted probability dis-
tributions of the current and previous layers.

Extensive experiments and ablation studies are
conducted on the GLUE benchmark datasets. The
experimental results show that: (a) training multi-
exit PLM with block-wise bypasses consistently
performs better than the previous SOTA multi-
exit model training methods, thus providing a bet-
ter backbone for early exiting. (b) we show that,
with the same multi-exit PLM backbone, our DGE
method can provide better efficiency-performance
trade-offs than the previous SOTA early exiting
methods. Thus, with our framework, BADGE, a
PLM can achieve significantly better early exiting
performances.

The main contributions of our BADGE frame-
work are two-fold:

(a) We propose a novel method, block-wise
bypass, to improve the training of multi-exit PLMs.

(b) We propose a novel divergence-based early
exiting method, DGE, which outperforms the pre-
vious SOTA early exiting methods.

2 Related Work

Due to the length limit, readers are referred to
Appendix A for more related works on more infer-
ence speedup methods and dynamic early exiting
mechanisms.

2.1 Early exiting

Early exiting requires a multi-exit network, a neural
network backbone with an intermediate classifier
(or exit) installed on each layer. Early exiting lit-
erature mainly focuses on the design of the early
exiting strategies (Teerapittayanon et al., 2016; Xin
et al., 2020; Kaya et al., 2019; Xin et al., 2021;
Sun et al., 2022; Zhou et al., 2020; Schuster et al.,
2021). However, the literature address less atten-
tion to the training of the multi-exit neural network.
There are three types of training methods for train-
ing the multi-exit neural network: (a) joint train-
ing (JT) (Teerapittayanon et al., 2016; Zhou et al.,
2020), that is, all the exits are jointed optimized to-
gether with the fine-tuning of BERT. (b) two-stage
training method (2ST) (Liu et al., 2020; Xin et al.,
2020), which first fine-tunes the backbone BERT
and the last layer’s exit till convergence and trains
only the intermediate exits by distilling knowledge
from the last exit. (c) BERxiT (Xin et al., 2021)
propose an alternating training (ALT) method, com-
bining 2ST and JT.

Our work complements the literature on early
exiting by proposing the BADGE framework to
improve early exiting performance via the novel
design of block-wise bypasses and a novel early
exiting mechanism.
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3 Methodology

3.1 Block-wise bypasses

We now present the core of our novel BADGE
framework: the block-wise bypasses (depicted in
Figure 1). Denote the representations of the input
sentence from the previous transformer block as
Hm−1. Initially, Hm−1 will go through the cur-
rent transformer block, first the multi-head self-
attention (MHSA) module with the residue to be-
come Hm,MHA, then the positional feed-forward
(FFN) module with residue, to become Hm,F , and
finally a LayerNorm operation to output Hm.

We would like to employ an efficient bypass
Bm to adjust the current layer’s representations to
fit the task better. Bm is simple in architecture
(On the right side of Figure 1). Upon receiving
the input Hm−1, Bm down-projects it to H

(1)
m,B ,

from dimension d to dimension r (where r << d)
using a down-projection matrix Wdown ∈ Rd×r.
The H

(1)
m,B will go through a non-linear activation

function g1, and become H
(2)
m,B . H

(2)
m,B will then

be up-projected to H
(3)
m,B with dimension d, by an

up-projection matrix Wup ∈ Rr×d. We refer to r
as the bottleneck dimension. Formally, Bm can be
expressed as:

H
(3)
m,B ← g1(Hm−1Wdown)Wup. (1)

Finally, the current transformer block will output
two representations, Hm, which is the original in-
termediate representation, and H

′
m, which is modi-

fied by the bypass, via:

H
′
m = LayerNorm(H

(3)
m,B +Hm,F ),

Hm = LayerNorm(Hm,F ). (2)

Hm will be passed to the following transformer
block as input, and H

′
m is the modified representa-

tion which will be the input of the current layer’s
exit. We rely on the bypass Bm to extract task-
specific representations to facilitate the learning of
the exit. Note that the introduction of Bm will not
bring little computational overhead since (a) the
two representations Hm and H

′
m can be calculated

in a single forward pass; (b) the bottleneck dimen-
sion r can be very small, like 16, so that the added
parameters or flops are negligible compared to the
pre-trained backbone.

Our work is inspired by the recent work in pa-
rameter efficient tuning (He et al., 2021). However,

our work is different in the following three aspects:
(a) our work deals with the training of multi-exit
BERT, not the parameter-efficient tuning settings.
(b) Our work introduces the block-wise bypasses,
while He et al. (2021) only considers the bypasses
around the feed-forward layer or the self-attention
layer of a transformer block. We will show in
our experiments that block-wise bypasses perform
better under our settings. (c) We add encoding op-
erations inside the bypasses, which proves to be
beneficial.

3.2 Divergence-based Early Exiting

We now introduce our divergence-based early
exiting method, DGE. The inference procedure is
illustrated in Figure 1. Assume the forward pass
has reached layer m. Denote the divergence score
between the prediction results of layer m and layer
m

′
(m > m

′
) as sm,m′ = S(pm, pm′ ) ∈ R, where

S(·, ·) is a divergence measure of two probability
distributions. The smaller the value of sm,m′ , the
predicted distributions pm and pm′ are more con-
sistent with each other. Denote cntm as the number
of previous layers that have a predicted distribution
that is consistent with pm. At layer m, cntm is
calculated as:

cntm =

m−1∑

i=1

1(sm,i < τ), (3)

where τ > 0 is a pre-defined threshold, and 1(·)
is the indicator function. 1(x) is equal to 1 if x is
true, and equal to 0 if x is not true. If cntm reaches
the pre-defined patience value t, the model stops in-
ference and exits early. Otherwise, the model goes
to the next layer. If the model does not exit early at
intermediate layers, the model uses the final classi-
fier fM for prediction. Unless stated otherwise, we
will mainly use the knowledge distillation objective
(Hinton et al., 2015) as the divergence measures:1

S(pi, pj) = LKD(pi, pj) = −
K∑

k=1

pi(k) log(pj(k)).

(4)
Note that the above-described framework is

flexible and general, wrapping the patience-based
method (Zhou et al., 2020) as a particular case. In
Zhou et al. (2020), the value of si,i−1 is 0 only

1In our initial experiments, we find that different diver-
gence measures like Kullback–Leibler divergence and Jensen-
Shannon divergence perform comparably. Thus we adopt the
one with the most simple form.
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when the labels predicted by two layers are identi-
cal; otherwise, it is set to 1. However, compared to
PABEE, our method has the following advantages:
(a) even if the the current and previous layers give
the same label, their output distributions might dif-
fer. Thus, PABEE might exit early even when the
layers have not reached a consensus in the predic-
tions. Thus, PABEE’s early exiting performances
with low patience parameters may not be reliable.
Our method compares the intermediate layers in
the distribution level, providing more reliable exit-
ing signals. (b) PABEE can not adjust the speedup
ratio flexibly, while our method can achieve differ-
ent speedup ratios by setting patience and threshold
parameters.

4 Experiments

4.1 Datasets

We evaluate our proposed approach to the clas-
sification tasks on three tasks from GLUE bench-
mark (Wang et al., 2018) (RTE, MRPC, MNLI) and
three proprietary natural language understanding
tasks (QID, DoS, QDR) we collected for devel-
oping and testing question-answering or dialogue
systems. The detailed introductions of the datasets
are put in Appendix B.

4.2 Baseline methods

For multi-exiting BERT training, we compare
our BADGE framework with the following base-
lines: (a) joint training (JT) (Zhou et al., 2020;
Teerapittayanon et al., 2016); (b) two-stage train-
ing (2ST) (Liu et al., 2020; Xin et al., 2020); (c)
alternating training (ALT) (Xin et al., 2021); (d)
Gradient equilibrium (GradEquil) (Li et al., 2019),
which incorporates JT with gradient adjustments;
(e) fine-tuning ALBERT with a single exit of dif-
ferent depths separately (Single-exits); (f) Global
Past-Future, which develops a series of techniques
to enhance the performances of lower layers by
mimicking the deeper layers. We also implement
JT with a multi-head attention exit (Liu et al., 2020)
(JT+MHA-exit).

We compare the early exiting performances of
our DGE method with the following early exit-
ing methods: (a) Entropy-based method (Entropy)
originated from (Teerapittayanon et al., 2016);
(b) Maximum probability-based method (Max-
prob) (Schwartz et al., 2020); (c) Patience-based
method (Patience) (Zhou et al., 2020); (d) learning-
to-exit based method (LTE) proposed by Xin et al.

(2021), which incorporates a meta layer to evaluate
the confidence of the current exit.

4.3 Exprimental settings

For the GLUE tasks, we use the open-sourced
ALBERT-base (Lan et al., 2020) as the backbone.
And for the three proprietary tasks, we use a pre-
trained Chinese ALBERT-base2. In the ablation
studies, we also consider BERT-base (Devlin et al.,
2019) (in English and in Chinese). Our BADGE
model with block-wise bypasses is optimized fol-
lowing the JT method with simple linear exits.
Since we are training multi-exit models in which
each layer’s exit has a performance score, we
mainly focus on improving S-avg, which denotes
the cross-layer average score for a given metric S.
We also report S-best, the best score among all the
layers for the given metric S.

Following prior work on input-adaptive infer-
ence (Teerapittayanon et al., 2016; Kaya et al.,
2019), inference is on a per-instance basis, i.e.,
the batch size for inference is set to 1.3 The av-
erage speedup ratio on the test set of each task
will be reported, which is defined as Speedup =

1−
∑Ntest

1 ti∑Ntest
1 Ti

, where Ntest is the number of sam-

ples on the test set, ti is the inference time under
early exiting, and Ti is the inference time without
early exiting.

We implement our BADGE and all the base-
lines on the base of Hugging Face’s Transformers
(Wolf et al., 2020). Experiments are conducted
on four Nvidia RTX 3090 GPUs. We report the
median performance over five runs with different
random seeds. More detailed settings regarding
hyper-parameters can be found in Appendix C.

4.4 Overall comparison

We first compare our BADGE method with
the previous best-performing training methods of
multi-exit PLMs. Table 1 reports the results. The
following takeaways can be made.
BADGE outperforms the baselines With the
help of block-wise bypasses, our BADGE frame-

2This model is pre-trained by us, and this model
is distilled from an open-sourced ALBERT-large
model (available at https://huggingface.co/uer/
albert-large-chinese-cluecorpussmall ) on our corpus
following the pretraining distillation pipeline of TinyBERT
(Jiao et al., 2019)

3This setting is consistent with the common scenario in
the industry where individual requests from different users
(Schwartz et al., 2020) come at different time points.
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RTE MRPC MNLI QID DoS QDR
ALBERT-base fine-tuning

acc acc-f1 acc acc mf1 f1
ALBERT 77.6 89.1 83.7 91.9 88.0 87.3

Multi-exit ALBERT fine-tuning
acc-avg acc-best acc-f1-avg acc-f1-best acc-avg acc-best acc-avg acc-best mf1-avg mf1-best f1-avg f1-best

Single exits 67.5 77.6 85.4 89.1 76.4 83.7 89.5 92.3 82.9 88.0 83.3 87.3
2ST 68.9 77.6 83.0 89.1 76.2 83.7 89.3 91.9 82.5 88.0 81.9 87.3

JT 66.8 72.5 84.4 87.9 76.0 83.8 89.2 91.1 81.6 87.3 82.2 87.2
JT+MHA exit 67.5 75.9 84.8 87.9 76.8 83.2 89.3 91.5 81.7 87.6 82.3 87.1

GradEquil 67.3 77.4 84.2 88.4 76.5 83.6 89.2 91.8 82.4 88.0 82.4 87.0
ALT 68.5 77.8 84.6 88.3 76.6 82.9 88.6 90.6 82.3 87.8 81.5 86.8

Global Past-Future 68.1 78.4 84.3 88.1 75.9 82.9 89.1 92.3 82.4 87.9 82.4 87.1
BADGE 70.2 77.9 86.0 89.6 77.8 83.8 90.0 92.4 83.2 88.1 84.3 87.2

Table 1: Experimental results of models with ALBERT backbone (English and Chinese) on the GLUE benchmark
datasets and our three proprietary datasets.

work consistently outperforms the baseline meth-
ods in terms of the average performances across
all the intermediate layers and the cross-layer best
scores. The experimental results are foreseeable:
introducing the block-wise bypasses can help the in-
termediate transformer layer to concentrate on pro-
viding hidden representations, while the bypasses
can provide features more suitable for the current
layer’s exit. In this way, both the cross-layer best
and cross-layer average scores can improve.
Demonstrating that BADGE does not achieve
improvements by merely adding more param-
eters It is natural to question whether the per-
formance gains of BADGE are from additional
parameters. With the bottleneck dimension r = 16,
our bypass architecture introduces 26k parameters
per layer. A multi-head attention exit (Liu et al.,
2020) with a bottleneck dimension r = 32 intro-
duces 98k parameters per layer. As shown in Table
1, JT with MHA exits performs better than JT (with
simple linear exits). However, our BADGE method
successfully outperforms JT with MHA exits with
fewer parameters. The results demonstrate that
BADGE’s advantages come from designing our
bypass mechanisms.

4.5 Dynamic early exiting performances

We compare our DGE method with the previ-
ous best-performing early exiting methods. For the
patience-based method (Zhou et al., 2020), early
exiting is run on different patience parameters. For
the other methods, we run early exiting under differ-
ent confidence thresholds or patience parameters so
that the speedup-performance curves consist of at
least 20 points evenly distributed across the interval
(0, 1) of speedup ratios. The speedup-performance
curves for the MRPC, QID, and QDR tasks are
plotted in Figure 2.

The following takeaways can also be made from
Figure 2: (a) With the same backbone model
trained with our BADGE framework, our DGE
method achieves better speedup-performance trade-
offs than the previous SOTA early exiting meth-
ods, especially when the speedup ratio is large. (b)
The comparison between Patience (with the model
trained with BADGE) and JT+Patience (with the
model trained with the JT method) demonstrates
that our BADGE can provide superior backbones
for early exiting and consistently result in su-
perior performances under different speedup re-
quirements. (c) Note that the pre-trained Chi-
nese ALBERT-base model we use is a compressed
model from a larger one. Our method can further
speed up its inference, proving that it can work well
with other model inference speedup methods like
Jiao et al. (2019).

4.6 Ablation studies

Ablation on the placement of bypasses Since
we want to provide separate hidden states in a sin-
gle forward pass on the BERT backbone, our by-
passes must be added to the end of the transformer
layer. To show that the design of our block-wise
bypasses is essential, we now consider another
two placements of bypasses: (a) placed around
the multi-head self-attention module, denoted as
MHSA bypasses; (b) placed around the positional
feed-forward module (FFN bypasses). Note that
MHSA bypasses can not provide two different hid-
den states at the end of the transformer block within
a single forward pass, thus slowing down inference
speed. The results on RTE and QID tasks are re-
ported in Table 2. We can see that: (a) FFN by-
passes perform comparably with the block-wise
bypasses; (b) MHSA bypasses perform worse than
the block-wise bypasses since, in this setting, the
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(a) MRPC (b) QID (c) QDR

Figure 2: The speedup-score curves on the MRPC, QID and QDR datasets.

RTE QID
acc-avg acc-best acc-avg acc-best

block-wise bypasses 70.2 77.9 90.0 92.4
MHSA bypasses 68.4 77.3 89.4 91.7

FFN bypasses 69.6 77.8 89.7 92.1

Table 2: Experimental results for different placement
settings for the bypasses.

RTE QID
acc-avg acc-best acc-avg acc-best

r = 64 70.2 77.8 89.9 92.1
r = 32 70.1 77.6 90.0 92.2
r = 16 70.2 77.9 90.0 92.4
r = 8 70.0 78.0 89.8 92.3
r = 4 69.9 77.8 89.7 92.0

Table 3: Experimental results for comparing different
bottleneck dimensions. The acc-avg and acc-best scores
are reported.

FFN module in a transformer block still has to con-
duct multi-task learning.
Different bottleneck dimensions r We set the
bottleneck dimension r to be 16 for the main part
of the experiments (as in Table 1). We now con-
duct experiments for r on the RTE and QID tasks,
and Table 3 reports the results. From Table 3, we
can see that: (a) smaller bottleneck dimensions
do not result in significant performance drops. (b)
bottleneck dimensions do not provide performance
improvements, demonstrating that the superior per-
formances of our BADGE indeed come from our
block-wise bypass mechanism instead of the addi-
tional parameters.
Ablation on different PLMs To show that our
BADGE framework is off-the-shelf and can work
well with other pre-trained models, we now switch
the backbone model to BERT-base (Devlin et al.,
2019), or ElasticBERT (Liu et al., 2022). Due to
limited length, the results are reported in Table 6 of
Appendix D. The results demonstrate that BADGE
outperforms the JT and ALT methods under differ-

ent backbones by clear margins.
Also, note that the cross-layer average scores of

BERT-base and ElasticBERT are lower than that
of ALBERT-base, showing that ALBERT is more
suitable for early exiting. We hypothesize that the
ALBERT model employs a cross-layer parameter-
sharing strategy. Thus, the representations given by
intermediate blocks are more similar to one another,
and the performances of its intermediate layers will
be closer.

5 Conclusion

In this work, we propose a novel framework,
BADGE, to improve the early exiting of pre-trained
language models. First, we propose to add block-
wise bypasses to facilitate the joint training of the
intermediate exits, thus improving the overall per-
formance of multi-exit PLMs. Second, we propose
a novel divergence-based early exiting method,
DGE, which can effectively mine the exiting sig-
nals by comparing the predicted distributions of
the current and previous intermediate layers. DGE
achieves better efficiency-performance trade-offs
than the previous SOTA early exiting methods un-
der the same multi-exit backbone. Our BADGE is
off-the-shelf and can effectively speed up the infer-
ences of PLMs with less performance degradation.
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Limitations

Although our BADGE framework is shown to be
effective in improving the multi-exit model train-
ing and early exiting, it still has certain limitations
that need to be addressed in the future: (a) block-
wise bypasses indeed introduce new parameters
and additional flops. We would like to explore more
parameter-efficient methods to improve multi-exit
model training in future works. (b) In this work,
we demonstrate our framework’s performance on
sentence classification or pair classification tasks.
In future works, we would like to extend our work
to broader tasks such as sequence labeling, relation
extraction, and text generation. We would like to
explore this aspect in future work.

Ethics Statement

Our BADGE framework is designated to im-
prove the training of multi-exit BERT and dynamic
early exiting performances. Our work can facili-
tate the deployment and applications of pre-trained
models on devices with less powerful computation
capabilities, making the state-of-the-art models ac-
cessible for everyone. In addition, we hope this
technology can help reduce the carbon footprints of
NLP-based applications. Furthermore, the GLUE
datasets we experiment with are widely used in
previous work. Thus, to our knowledge, our work
does not introduce new ethical concerns.
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A Appendix: Related work

A.1 Inference acceleration methods

Since the rise of BERT, there are quite large
numbers of literature devoting themselves to speed-
ing up the inference of BERT. Standard method
include direct network pruning (Zhu and Gupta,
2017; Xu et al., 2020; Fan et al., 2019; Gordon
et al., 2020), distillation (Sun et al., 2019; Sanh
et al., 2019; Jiao et al., 2020), Weight quantiza-
tion (Zhang et al., 2020b; Bai et al., 2020; Kim
et al., 2021) and Adaptive inference (Zhou et al.,
2020; Xin et al., 2020; Liu et al., 2020). Among
them, adaptive inference has drawn much atten-
tion. Adaptive inference aims to deal with simple
examples with only shallow layers of PLMs, thus
speeding up inference time on average.
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A.2 Early exiting mechanisms

Early exiting requires a multi-exit BERT, a
BERT backbone with an intermediate classifier (or
exit) installed on each layer. Early exiting literature
mainly focuses on the design of the early exiting
strategies, that is, determining when an intermedi-
ate exit’s prediction is suitable as the final model
prediction. Score based strategies (Teerapittayanon
et al., 2016; Xin et al., 2020; Kaya et al., 2019;
Xin et al., 2021), prior based strategies (Sun et al.,
2022) and patience based strategies (Zhou et al.,
2020) have been proposed. Teerapittayanon et al.
(2016) uses the entropy of an intermediate layer’s
predicted distribution to measure the in-confidence
level and decide whether to exit early. PABEE de-
termines whether to exit by comparing the current
layer’s prediction with the previous layers.

A.3 Introductions to more multi-exit BERT
training methods

A.3.1 Two-stage training method
The two-stage (2ST) (Xin et al., 2020; Liu et al.,

2020) training strategy divides the training proce-
dure into two stages. The first stage is identical to
the vanilla BERT fine-tuning, updating the back-
bone model and only the final exit. In the second
stage, we freeze all parameters updated in the first
stage and fine-tune the remaining exits separately:

Stage1 : Lstage1 = LCE
M (yi, fM (xi; θM )) (5)

Stage2 : Lstage2 = LCE
m ,m = 1, ...,M − 1. (6)

where LCE
m = LCE

m (yi, fm(xi; θm)) denotes the
cross-entropy loss of m-th exit.

A.3.2 Alternating training
This method alternates between joint training

and two-stage training across different optimization
steps, and it was proposed by BERxiT (Xin et al.,
2021):

Odd : Lstage1 = LCE
M (yi, fM (xi; θM )) (7)

Even : Ljoint =
M∑

m=1

LCE
m (8)

B Appendix for datasets and evaluation
metrics

B.1 Introduction to our proprietary tasks

In this work, we experiment with three propri-
etary datasets collected by our teams. The samples

in these datasets are collected from users of a real-
world production environment and are manually
annotated by an data annotation team.
Query intent classification in dialogues (denoted
as QID) This task asks a model predict the intent
of an utterance from a user in a dialogue. The dia-
logue history are also provided as a part of the input
text sequence. The samples of this task is collected
from the dialogues between customers and clerks
in grocery stores, hotels, pharmaceutical stores and
gyms. All the participants of the dialogues have
signed the data collection agreements. We assign a
single label to each user utterance, and the number
of intent labels are 78. The evaluation metric is
accuracy (acc).
Query-doc ranking task (denoted as QDR) In
this task, for a given search query in the scientific
domain (including topics like bio-medicine, drug
development and artificial intellegence), a pool of
documents are given. The documents are either
blog posts from our institution or abstracts of aca-
demic journal papers from Medline4. The pool size
is between 12 to 128. The relevant documents are
labeled as 1, and the other are labeled as 0. The
annotation is based on whether the content of a doc-
ument can provide sufficient answers to the query.
In this task, a model is expected to predict the rel-
evancy label for each query-document pair with
high accuracy. The evaluation metric for this task
is F1 of query-document relevancy labels (f1).
Document classification (denoted as DoS) In this
task, a pre-defined label is assign to each document,
to help guide the users to find articles of interests.
The collection of documents have the same sources
with QDR. The number of labels are 109. In this
task, a classification model reads the text contents
and predicts the label of a document. We develop
this dataset in the hope that the model can help us
automatically organize the documents, or at least fa-
cilitate the human workers to do so to reduce costs.
The evaluation metric for this task is macro F1,
since this task has in-balanced label distributions
(macro-f1).

B.2 Evaluation metrics of GLUE tasks

For RTE, the metric is accuracy (acc). For
MRPC task, the metric the average of the accu-
racy and F1 score (acc-f1). For MNLI, the metric
is the average of the accuracy score on the matched
and mis-matched test subsets (denoted as acc).

4https://www.medline.com/
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Category Datasets |train| |dev| |test| |Y| Type Labels

Single-sentence
QID 125365 15670 15670 78 intent classification 0, 1, ..., 77
DoS 1083278 135410 135410 109 document classification 0, 1, ..., 108

Sentence-pair
MNLI 390702 2000 19647 3 NLI entailment, neutral, contradiction
RTE 2490 138 139 2 NLI entailment, not entailment

MRPC 3668 204 204 2 paraphrase equivalent, not equivalent
QDR 3568930 446116 446116 2 text matching 0, 1

Table 4: The statistics of datasets evaluated in this work. For MNLI task, the number of samples in the test set is
summed by matched and mismatched samples. |Y| is the number of classes for a dataset.

B.3 Dataset splits

For the QID, QDR and DoS tasks, we ran-
domly split the annotation samples train/dev/test
splits with 8:1:1 ratio. Since the original test sets
of GLUE are not publicly available, we follow
Zhang et al. (2020a) and Mahabadi et al. (2021)
to construct the train/dev/test splits as follows: (a)
for datasets with fewer than 10k samples (RTE,
MRPC), we divide the original validation set in
half, using one half for validation and the other for
testing. (b) for larger datasets (MNLI), we split 2k
samples from the training set as the development
set, and use the original development set as the test
set. The detailed dataset statistics are presented in
Table 4.

C Appendix for experimental settings

We add a classification layer after each interme-
diate layer of the PLM as the exits. The exit is a
simple linear layer by default, but we also consider
the MHA exit suggested by Liu et al. (2020). We
fine-tune the multi-exit BERT with one of the four
bypasses architectures (in Section 3.1) or without
bypasses, and the bottleneck dimension r is set
as 16. The bottleneck dimension for multi-head
attentional exit is set to be 32.

We fine-tune models for at most 25 epochs with
an Adam optimizer and warm-up. The warm-up
steps are set to be 10% of the optimization steps.
Early stopping with patience eight is performed,
and the best checkpoint is selected based on the dev
set performances. Since we are training multi-exit
models in which each layer’s exit have a perfor-
mance score, we mainly focus on improving S-avg,
which denotes the cross-layer average score for a
given metric S. We also report S-best, the best
score among all the layers for the given metric S.

We perform grid search for the following hyper-
parameter search space: the {GELU, ReLU,
SWISH, Tanh, Identity} for the activation func-
tions in the bypasses; {16, 32, 64, 128, 512, 1024}

batch size lr g1
RTE 16 1e-5 GELU

MRPC 16 2e-5 Tanh
MNLI 1024 5e-5 GELU
QID 128 1e-5 GELU
DoS 128 2e-5 ReLU
QDR 1024 3e-5 LeakyReLU

Table 5: Hyper-prameters adopted by our best BADGE
models on each GLUE tasks.

RTE QID
acc-avg acc-best acc-avg acc-best

ElasticBERT as backbone
JT 62.3 70.7 88.6 92.0

ALT 63.1 70.9 88.4 91.6
BADGE 64.5 72.3 89.3 92.1

BERT-base as backbone
JT 61.5 68.9 87.5 91.3

ALT 61.9 69.3 87.7 91.2
BADGE 62.7 70.5 88.9 92.5

Table 6: Experimental results of different PLM back-
bones.

for the batch size; {1e-5, 2e-5, 3e-5, 5e-5} for
the learning rate. We implement our BADGE and
all the baselines on the base of Hugging Face’s
Transformers (Wolf et al., 2020). Experiments are
conducted on four Nvidia RTX 3090 GPUs.

Table 5 presents the detailed hyper-parameters
for the best performing BADGE model. The hyper-
parameters we present are: (a) training batch size
(bsz); (b) learning rate (lr); (c) activation functions
g in the bypasses. From Table 5, many tasks favor
the GELU activation function.

D Ablation studies on different PLMs

In the experiments of the main content, the PLM
backbone is the ALBERT-base. In Table 6, we re-
port the results using BERT-base and ElasticBERT
as backbones. The results show that our BADGE
works well with different pre-trained models.
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