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Abstract
Recently, neural models have been leveraged
to significantly improve the performance of in-
formation extraction from semi-structured web-
sites. However, a barrier for continued progress
is the small number of datasets large enough
to train these models. In this work, we in-
troduce the PLAtE (Pages of Lists Attribute
Extraction) benchmark dataset as a challeng-
ing new web extraction task. PLAtE focuses
on shopping data, specifically extractions from
product review pages with multiple items en-
compassing the tasks of: (1) finding product-
list segmentation boundaries and (2) extracting
attributes for each product. PLAtE is composed
of 52, 898 items collected from 6, 694 pages
and 156, 014 attributes, making it the first large-
scale list page web extraction dataset. We use
a multi-stage approach to collect and annotate
the dataset and adapt three state-of-the-art web
extraction models to the two tasks comparing
their strengths and weaknesses both quantita-
tively and qualitatively.

1 Introduction

Semi-structured data extraction, i.e., web extrac-
tion, is the task of extracting data found in tem-
plated text fields from HTML pages. Once ex-
tracted, the structured data can be utilized in vari-
ous downstream tasks such as information retrieval,
recommendation, and question answering.

While recent work has shown the potential of
neural approaches for web extraction (Lin et al.,
2020; Zhou et al., 2021; Li et al., 2021), there
are very few publicly available large-scale datasets
suitable for training and evaluation of these ap-
proaches, limiting progress in this area. Addi-
tionally, most existing datasets (Hao et al., 2011;
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Figure 1: A single item (i.e. product) from a list page
for a board game (from gamesradar.com).

Hotti et al., 2021) focus on one subset of the prob-
lem; namely detail page extraction. In this paper,
we introduce the PLAtE (Pages of Lists Attribute
Extraction) dataset1, that specifically targets the
task of list page extraction and focuses on product
review pages in the shopping vertical, i.e., multi-
product review pages.

To elaborate, item pages can be broadly catego-
rized into two classes: detail pages and list pages.
Detail pages provide detailed information about a
single item. List pages comprise a list of items with
abridged detail, organized under a single theme, e.g.
“best board games”. This organization facilitates
direct comparison of each item and allows for the
extracted data to be easily integrated into recom-
mender, question answering, or dialogue systems
powering digital assistants (Linden et al., 2003;
Gupta et al., 2019; Zhang et al., 2018). Extracted
product data can be utilized by both content cre-
ators (publishers) as well as customers looking to
make purchase decisions. 2

Because PLAtE is built from list (multi-item)
pages, we can evaluate two tasks: segmentation

1PLAtE will be publicly available at https://github.
com/amazon-science/plate

2We provide an example of a list page and a detail page in
the appendix.
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and attribute extraction. In the segmentation task,
the model should determine the boundaries of each
product, i.e. where the information for each prod-
uct begins and ends. In the attribute extraction task,
each node in the HTML DOM tree can be assigned
any number of three labels: product name, prod-
uct review text, and product link. The dataset is
comprised of 52, 898 products from 6, 694 pages
split into: training, development, and held-out test
sets. To evaluate the dataset, we adapt two state-
of-the-art neural web extraction models; Marku-
pLM (Li et al., 2021) and DOM-LM (Deng et al.,
2022), as well as explore a text-based Transformer
model, RoBERTa (Liu et al., 2019). We achieve
an F1-score of 0.787 and 0.735 for segmentation
and attribute extraction tasks respectively. We eval-
uate the potential of multi-task learning to improve
performance and find that multi-task learning im-
proves recall but slightly decreases precision, for
both tasks. To summarize, our contributions are:
(1) creating the first large-scale list page web ex-
traction dataset, (2) adapting state-of-the-art neural
web extraction approaches to the segmentation and
attribute extraction tasks, and (3) qualitatively and
quantitatively comparing the performance of differ-
ent models on the two presented tasks; segmenta-
tion and attribute extraction.

2 Related Work

The vast majority of previous web extraction
datasets (e.g., SWDE (Hao et al., 2011), the Klarna
Product Page Dataset (Hotti et al., 2021), and WDC
(Petrovski et al., 2016)) are composed of single
item pages. Multiple item or list page datasets
are much less common. Zhu et al. (2006) created a
dataset of 771 list pages, while Dhillon et al. (2011)
created a small dataset (BSCM) of about 30 pages
from 4 verticals: Books, Seminars, CS Faculty and
MLConfs. Furche et al. (2012) built a dataset of
431 pages from two verticals: UK used car dealer
websites collected from a used car aggregator web-
site and UK real-estate websites collected from the
yellow pages. To the best of our knowledge, PLAtE
is the largest multi-item web extraction dataset. Ad-
ditionally, most previous web extraction datasets
assume a single DOM node has at most a single la-
bel. However, this assumption does not hold true in
many product pages. For example, for many prod-
ucts, the product name’s text-span is also a link
to the product. Our dataset does not have this as-
sumption; we allow a node to have multiple labels.

Finally, most existing list page datasets are not pub-
licly available. Table 1 compares the different web
extraction datasets.

From the methods side, web extraction has first
been tackled using wrapper induction methods that
create a set of rules (wrappers) to transform un-
structured input into structured output (Kushmer-
ick, 1997; Furche et al., 2014; Zheng et al., 2007;
Azir and Ahmad, 2017; Gulhane et al., 2011; Carl-
son and Schafer, 2008; Furche et al., 2012). Re-
cently, a number of advances have been made by
utilizing neural-based approaches to construct a
representation for each HTML node for the extrac-
tion task (Lockard et al., 2020; Lin et al., 2020;
Zhou et al., 2021; Li et al., 2021; Deng et al., 2022;
Xie et al., 2021).

Other tasks related to semi-structured informa-
tion extraction include boilerplate removal (Leon-
hardt et al., 2020), extraction from HTML ta-
bles (Cafarella et al., 2018; Deng et al., 2020;
Wang et al., 2021; Herzig et al., 2020), and seg-
menting pages, e.g., using clustering followed
by string alignment (Álvarez et al., 2008), op-
timization based on divide and conquer (Bing
et al., 2013), and Hierarchical Conditional Random
Fields (CRFs) (Zhu et al., 2006).

3 PLAtE Benchmark

In this work, we tackle two tasks: (1) segmentation,
i.e., identifying the boundaries of the individual
products in a given page and (2) attribute extrac-
tion, i.e., identifying the individual attributes for
each identified product. For each given product,
we extract the following three attributes: (1) prod-
uct name: This refers to the name of the product,
e.g. “iPhone 11”, (2) review text: This is generally
a high-level review or general description of the
product, and (3) purchase link: a link (or button)
to a merchant’s website (e.g., Amazon, Ebay). We
commonly see generic text such as “Buy Here”,
the name of the merchant such as “Amazon”, or
the name of the product. Similar to prior work, we
perform classification on the leaf nodes; i.e., only
nodes that contain text are passed to the classifica-
tion models.

3.1 PLAtE Construction Process

To construct PLAtE, we started with 270M docu-
ments from the large, publicly available web crawl
Common Crawl.3 We then filtered down to 6, 694

3https://commoncrawl.org/
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Name Pages/Vert. Sites/Vert. Records/Vert. Tot. Pages Year Mult. Item?

SWDE (Hao et al., 2011) 4,405-20,000 10 4,405-20,000 124,291 2011 ✗
WDC (Petrovski et al., 2016) 576 ? 576 576 2016 ✗
Klarna (Hotti et al., 2021) 51,701 8,175 51,701 51,701 2019 ✗
LDST (Zhu et al., 2006) 771 ? ∼ 8600 771 2006 ✓
(Dhillon et al., 2011) 5-15 5-8 ∼ 400 ∼ 30 2011 ✓
AMBER (Furche et al., 2012) 150-281 100-150 1608-2785 431 2012 ✓
PLAtE 6,694 43 52,898 6,694 2020 ✓

Table 1: Comparison of existing web extraction datasets against PLAtE. PLAtE has the greatest number of records
per vertical, and the freshest HTML content. Additionally, it has an order of magnitude larger number of records
than any of the other multiple item datasets. “?” Means the information is not available in the paper. The multi-item
dataset with the highest statistic is bolded and the overall dataset with the highest statistic is underlined.

candidate pages from 43 internet websites by (1)
removing duplicate URLs and non-English pages,
(2) filtering out non-multi-product pages using a
linear classifier with word embedding and TF-IDF
features as well as keywords-based heuristics (e.g.,
“best”, “compare”, etc.), (3) selecting top/popular
websites using the Tranco List (Pochat et al., 2019),
(4) selecting sites with the highest number of list
pages, and (5) filtering out pages with inappropriate
(i.e. sensitive or offensive) content.

After selecting the candidate pages, we per-
formed the initial segmentation and attribute ex-
traction by using CSS selector rules.4 Two ex-
pert annotators used a custom annotation tool to
annotate a representative page from each site by
selecting a CSS selector for each attribute. The
annotated CSS selectors were then used to extract
the attributes from the rest of the pages from the
same site. Multiple rounds of quality checks were
performed in order to ensure the quality of the final
selector rules.

The final step in creating PLAtE used Amazon
Mechanical Turk annotations in order to remove
any errors introduced by the rule-based extraction
step. For the Mechanical Turk annotation task, we
presented a web page to the annotators. We first
asked the annotators a set of page-level questions
to ensure that the web page is a valid multi-product
review page. We then asked the annotators to verify
that a piece of highlighted text within the web page
should be extracted as an attribute and asked them
to indicate if any text of the attribute of interest
was not highlighted, i.e., was not captured by the
rules.5 Overall, 20% of workers that attempted the

4CSS selector rules are patterns composed of HTML tag
names and HTML class names used to select one or more
HTML elements (e.g., [.product-slide p])

5We only qualified annotators from English speaking coun-
tries that completed at least 100 prior annotation tasks with
an acceptance rate of 95% or more, and who passed a custom

Site theinventory.com
URL theinventory.com/best-iphone ...
Product Index 4
Attr. Name Product Name
Num. Extracted 1
XPath /html/body/div[3]/ ... /span/a/strong
Text [’AirPods Pro’]

Table 2: An example PLAtE annotation.

Split # Sites # Pages # Products # Attrs

Train 28 4, 202 35, 383 103, 731
Dev 5 655 6, 038 18, 019
Test 10 1, 837 11, 477 34, 264

All 43 6, 694 52, 898 156, 014

Table 3: Statistics of the train, development, and test
sets.

qualification task were qualified, resulting in 77
annotators. To identify spammers, we blocked any
annotator that spent less than 20 seconds on aver-
age per annotation task. Finally, to minimize anno-
tation costs while ensuring high-quality evaluation
and development data, we used one annotation per
task for the training set and three annotations per
task for the development and test sets. Majority
vote was used to aggregate the annotations from
the development and held-out test sets.

To build the final dataset, we split the data such
that the training, development, and held-out test
sets have approximately the same distribution in
terms of number of products and pages. Moreover,
we ensured that sites from the same website family,
e.g., thespruce.com and thespuceeats.com, appear
in the same split. Table 2 shows a sample PLAtE
annotation, while Table 3 shows statistics of the
dataset.

qualification task.
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Figure 2: Sample Mechanical Turk task. In the left panel, the text-span “Honeywell42. Pt Indoor Portable
Evaporative Air Cooler” is highlighted as the extraction of interest. In the right panel, a checkbox denotes whether
the highlighted text-span falls under the named attribute, i.e., “Product Name”. The annotator is also asked to
determine whether the left panel is a valid product and if any named attributes are missing.

Attribute Tag Text Crowd Annotations Gold

Review Text <p> And those are our recommendations for the best mattresses!... [True, False, False] False
Product Link <a> Tempur-Pedic [True, True, False] True
Review Text <p> And those are our recommendations for best outdoor grills... [True, True, False] False
Product Link <a> Original Sprout’s miracle detangler [True, False, False] True

Table 4: Annotator disagreements on the page https://www.wisebread.com/the-5-best-mattresses.

Attribute Missing(%) Valid (%) Fleiss-Kappa

Product Name 2.7 97.0 0.596
Review Text 2.3 85.1 0.728
Product Link 6.0 96.7 0.560

Table 5: Annotation statistics.

3.2 Dataset Analysis
We manually analyzed PLAtE annotations to as-
sess their quality. In the annotation task, as seen
in Figure 2, the first two annotation questions were
designed to filter out cases of mislabeled or mal-
formed snippets. Specifically, the first question
asked whether the annotation snippet contained at
least one product while the second question asked
if the snippet contained more than one product.
Annotators indicated that 99.6% of snippets con-
tained at least one product and that only 0.8% con-
tained more than one product, indicating that the
vast majority of tasks sent to annotators were valid
product snippets. The next set of annotation ques-
tions are meant to identify if any annotations were
missing from the presented snippet. Between 3%
and 6% of the extracted attributes were missing
some text spans. Finally, the last set of questions
asked the annotators to select the text-spans that
matched an attribute from a set of check-boxes (all
text-spans matching the CSS rule). Overall, more
than 85% of the text-spans were correctly matched

to the corresponding attribute. We also calculated
the inter-annotator agreement using Fleiss-Kappa
(Fleiss and Cohen, 1973) to measure the quality
of the annotation guidelines and found that the
inter-annotator agreement is moderate for “Prod-
uct Name” and “Product Link” and substantial for
“Review Text”. For “Product Link”, some product
name spans were also product link spans, causing
confusion among the raters. The annotation statis-
tics are shown in Table 5. Percentage of missing
attributes is relatively low indicating that our CSS
selector rules have high recall. Additionally, per-
centage of valid extractions is quite high especially
for Product Name and Product Link indicating that
our CSS selector rules have high precision. Table
4 shows examples of annotator disagreement. The
third example is challenging because the text is
about outdoor grills in general, and not a particular
outdoor grill product, so it should be annotated as
False. In the fourth example, the annotators likely
missed the correct label (True), because the link
does not follow the standard format of “Buy Now”
or a retailer’s name such as “Amazon”.

4 Models

We evaluate the performance of three recent neural
models: RoBERTa (Liu et al., 2019), DOM-LM
(Deng et al., 2022) and MarkupLM (Li et al., 2021)
on PLAtE.
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Attribute Extraction Segmentation
Model Test P Test R Test F1 Test P Test R Test F1 Test ARI Test NMI

RoBERTa 0.843 0.652 0.735 0.692 0.665 0.678 0.693 0.744
DOMLM 0.815 0.655 0.726 0.718 0.728 0.722 0.716 0.764
MarkupLM 0.839 0.620 0.711 0.769 0.805 0.787 0.771 0.870

Table 6: Performance of the different models on the segmentation and attribute extraction tasks. For segmentation,
MarkupLM has the best performance while for attribute extraction, DOM-LM outperforms RoBERTa on Recall, but
RoBERTa overall has the highest F1.

RoBERTa is a Transformer-based (Vaswani
et al., 2017) model pre-trained with natural lan-
guage texts sourced from the BookCorpus (Zhu
et al., 2015) and Wikipedia. The pre-training task
is masked language modeling. In our experiments,
the input to RoBERTa is a sequence of text tokens
from the DOM tree. Consequently, it does not uti-
lize other types of information from the DOM tree
such as XPaths or HTML tags.

DOM-LM is designed to generate contextual-
ized representations for HTML documents. It uses
RoBERTa as the base encoder and is pre-trained
over the SWDE dataset (Hao et al., 2011) with
masked language modeling over the text tokens as
well as the DOM tree nodes. To encode a DOM
tree, DOM-LM first slices the tree into a set of
subtrees such that important tree-level context is
kept in each subtree. Then each node is represented
by its tag, text, class/id attributes, as well as a po-
sitional matrix based on its position in the DOM
tree.

MarkupLM is another RoBERTa-based model.
The input to MarkupLM is a node represented by
both an XPath embedding and its text. The XPath
embedding is created by embedding each tag and
subscript in the XPath separately and then concate-
nating and passing them through a FFN layer. The
model was pre-trained on three tasks: (1) masked
markup language modeling, (2) node relation pre-
diction, and (3) title page matching using 24 mil-
lion pages from Common Crawl.

For the segmentation task, we label each of the
nodes as begin (B) to denote the first text-span of a
product, or other (O) for the rest of the nodes. We
then apply a softmax layer to the logits and train
with cross-entropy loss. For the attribute extraction
task, the model predicts the attribute labels from
the logits using a multi-label sigmoid layer that
was trained with binary cross-entropy loss. As a
multi-label classification task, the model can assign
each node with any subset of the labels or no label.

In both tasks, we begin with one of the three pre-
trained models and then fine-tune on the training
set of PLAtE.

5 Experiments

For both segmentation and attribute extraction
tasks, we report the precision, recall, and F1-
score. Results are macro-averaged over the dif-
ferent classes. In addition, for segmentation, we re-
port clustering metrics following (Bing et al., 2014),
where the attributes in the same segment are consid-
ered to be in the same cluster. In our dataset, when
looking at two adjacent products in a page, there is
a single node which we label as a “segmentation
boundary”. In reality, there can be multiple nodes
which appear between two adjacent products and
split the products apart. If multiple valid segmenta-
tion boundaries for a product are possible, F1-score
will penalize the model for picking any segmenta-
tion boundary which is not labelled as such. On
the other hand, the clustering metrics provide a re-
laxation which checks that product attributes are
assigned to the correct product. For clustering met-
rics, we report adjusted rand index (ARI) (Hubert
and Arabie, 1985) and normalized mutual infor-
mation (NMI) (Strehl and Ghosh, 2002) where a
higher number indicates better performance. 6,7

Overall, we observe that MarkupLM performs
well on the segmentation task yielding scores of
0.787, and 0.771 and 0.870 for F1, ARI and NMI
respectively while DOM-LM performs worse on
this task with scores of 0.722 and 0.716 and 0.764
for F1, ARI and NMI respectively. This can likely
be attributed to the fact that MarkupLM was pre-
trained on the task of relation prediction between
nodes. Identifying if two nodes have a parent-child,
sibling, or ancestor-descendant relation could help
the model distinguish nodes within the same prod-
uct from nodes of different products, and conse-

6ARI ranges from −0.5 to 1 and NMI ranges from 0 to 1.
7We average all results for each of the two tasks over three

runs from different random seeds.
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Model Attribute P R F1

Product Name 0.858 0.645 0.737
RoBERTa Review Text 0.922 0.721 0.808

Product Link 0.750 0.590 0.661

Product Name 0.843 0.672 0.747
DOM-LM Review Text 0.863 0.695 0.769

Product Link 0.741 0.599 0.662

Product Name 0.885 0.621 0.730
MarkupLM Review Text 0.822 0.671 0.737

Product Link 0.808 0.569 0.667

Table 7: Precision, recall, and F1-score for all models
on the attribute extraction task by attribute type.

quently identify the product boundaries better.
The attribute extraction task shows a different

trend from segmentation where RoBERTa performs
the best, outperforming MarkupLM and DOM-LM.
We look into the reason behind this in Section 6.
Detailed results for both tasks are presented in Ta-
ble 6 while precision, recall, and F1-score for the
attribute extraction task broken down by attribute
are shown in Table 7. We find that product link ex-
traction performs worst while product review text
performs best. For product link, this difficulty can
be attributed to the diverse nature of product links
which can take the form of a product name, or the
price of the product e.g., a hyperlink with the text
$10 or a button (e.g. with the text “Buy Now”).
For review text, the higher performance is not sur-
prising given that it normally has a more consistent
style than product links.

To better understand the different factors affect-
ing the performance of the attribute extraction task,
we (1) break down the scores by site in our test
set to see whether some sites are more challenging
than others, (2) analyze the relationship between
the number of products in a page and attribute ex-
traction performance (3) explore whether the index
of the product (i.e., where it appears in the page) af-
fects the performance, (4) study the effect of adding
more pages (versus sites) to the training data, and
(5) explore whether a multi-task model that jointly
tackles both segmentation and attribute extraction
tasks can yield better performance through utiliz-
ing the complementary signals between both tasks.

As can be seen in Figure 3, extraction perfor-
mance varies greatly by site. We suspect that this
is due to the diverse page layouts and styles of
different sites. When grouping pages by number
of products, we find that for all three models, as

Figure 3: Precision, recall, and F1 of MarkupLM’s
attribute extraction scores grouped by site. We observe a
high variance in scores, due to differing HTML structure
between different sites.

the number of products increases, the F1-score im-
proves. We believe this is due to the increased
ease of the model to learn patterns within a page
given more examples in a page. When grouping
the scores by product index, we find that product
index does not have a significant impact on the per-
formance of attribute extraction; i.e. performance
is relatively uniform across different locations in
the page.8

To study the value of annotating more sites com-
pared to annotating more pages, we sampled two
subsets of pages from our original training set. We
collected all pages from 14 randomly sampled sites
from the training set for a total of 1514 pages, then
sampled 1514 random pages across all sites in the
training set. The 14 sites achieved an F1=0.595
compared to sampling from all sites achieving an
F1=0.681. From this, we can conclude there is in-
deed value in annotating a greater sites instead of
simply annotating more pages from the same site.
We suspect the model is better able to generalize
to the test set, when provided with a more diverse
training set of different sites. Finally, we look into
whether multi-task learning improves model per-
formance on PLAtE. To this end, we train a Marku-
pLM model with a shared encoder, but distinct loss
functions and output layers for the segmentation
and attribute extraction tasks.9 We find that multi-
task learning improves the recall of both tasks – as
shown in Table 8 – but slightly harms precision.
F1-score performance increases by 0.023 for the
segmentation task but goes down for the attribute
extraction task due to the decrease in precision.

8Figures showing the detailed results of these experiments
are provided in the appendix.

9We use a weighted sum of the loss functions for both
tasks and determine the weights empirically based on the
performance on the development set.
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Task Setting P R F1

Attribute
Extraction

No MTL 0.839 0.620 0.711
MTL (weight=0.5) 0.803 0.628 0.703

Segmentation No MTL 0.769 0.805 0.787
MTL (weight=0.25) 0.768 0.859 0.810

Table 8: Precision, recall, and F1 for Multitask Learning
(MTL) for the MarkupLM model.

6 Discussion

Contrary to our expectations, RoBERTa outper-
formed DOM-LM, a model specially designed to
model webpages, on the attribute extraction task.
As can be seen in Table 7, RoBERTa mainly out-
performs DOM-LM in review text precision. We
analyze 20 examples where DOM-LM makes a
false positive review text error and RoBERTa does
not. We find in 95% of the examples, the misclassi-
fied node is outside of the main review content, and
in 80% of the examples the misclassified node is a
<p> tag. This indicates that DOM-LM’s structural
encoder is likely over-fitting to the HTML tag and
disregarding the text content, hence is less able to
generalize to unseen HTML structures.

We perform additional analysis of the outputs
from the MarkupLM model, to identify areas
for improvement for the attribute extraction task.
Specifically, we sampled up to 5 false positive
(FP) and 5 false negative error examples for each
attribute from each site in the test set, and ended up
with a total of 257 examples.10 For product review
text, we find that many of the false negatives
are very short textspans such as “These”, “as
well”, and “require” representing a single text
leaf node within a larger paragraph. We suspect
that the model has not been trained with enough
examples of varied text length. In the future, we
could also consider training the model to classify
the parent nodes representing a whole paragraph
instead of classifying at the leaf node level. For
false positives, we find 4 examples of user-written
comments (as opposed to reviewer-written text).
While these do not represent the official review
text, they are semantically similar to the official
review text hence are easily confused by the model.
One such example is a user’s comment mentioning
that “the design and functionality of these cookers
is top-notch” which has a similar style to text
which could have been written by a reviewer. For

10Some sites had less than 5 errors, in which case we exam-
ined all errors.

product link, 17 false positives are hyperlinks that
link to a homepage rather than to a specific product
which indicates that the model is over-fitting to
the <a> tag. Training the model using contrastive
learning with positive and negative product link
<a> tag examples should help with this case.

Next we explore the effect of threshold-tuning
on the performance of attribute extraction. In the
presence of an oracle that specifies whether or not a
node should be tagged with an attribute, we can use
the argmax of the logits of the different attribute
classes in order to guarantee that the node is tagged
with one of the three attributes. Based on the very
high agreement between the argmax and the ac-
tual label for product name (89.4%) and product
review text (91.8%), it is clear that some of the
challenges in tagging nodes in PLAtE stem from
needing to determine whether or not a node should
be tagged with any attribute, on top of determining
what the correct attribute tag is.

Finally, we analyze the errors in the segmenta-
tion task, collecting all pages with an ARI and NMI
< 0.5 within test set. We find that in 97% of these
pages the number of gold segmentation boundaries
is higher than the number of predicted segmenta-
tion boundaries. This means that when ARI and
NMI are very low, the model is failing to split the
page into enough segments. To improve perfor-
mance, we could consider utilizing a structured
prediction to model segmentation interdependen-
cies e.g. the model could explicitly model that it is
unlikely that two segmentation boundaries appear
directly next to one another.

7 Conclusion

In this work, we introduce PLAtE, the first large-
scale list page dataset for web extraction. We
describe our methodology in creating the dataset,
from pre-processing to crowd-sourced annotation
collection. We evaluate the performance of three
strong web extraction baselines and achieve an F1-
score of 0.787 and 0.735 on the segmentation and
attribute extraction tasks respectively. While we
focus on shopping domain due to its importance to
several downstream applications, in the future we
intend to extend our work to other verticals to facili-
tate further research studying model generalization
and domain adaptation.
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Limitations

To ensure high quality extractions for PLAtE, we
optimize our annotation process for precision. For
example, for the Product Link attribute, we gener-
ally annotate only one product link per product. In
an application scenario, the user would not need
multiple links to a purchase page, but this could
potentially harm the precision of the evaluated mod-
els. In addition, we assume that all attributes are
text-based. This has the potential of missing addi-
tional product information which could be helpful
to users, such as images of the product. In future
work, we would like to extend PLAtE by incorpo-
rating other modalities.
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B Additional Tables

Attribute Argmax Correct (%)

Product Name 89.4
Review Text 91.8
Product Link 16.2

Table 9: Percentage of false negative examples where
the model would be correct if the argmax of the at-
tributes was chosen instead of requiring the activation
to be above the threshold 0.5.

C Additional Figures

Figure 4: An example extraction “Godinger Luminal
Hobnail Glasses” which is both a product name and
product link.

Figure 5: The average attribute extraction F1-score
based on product index normalized by number of prod-
ucts for the MarkupLM model. The performance is rela-
tively uniform across all indices indicating that product
index does not have a significant effect on extraction
performance. (We observed a similar trend for both
RoBERTa and DOM-LM.)

Figure 6: Average attribute extraction F1-score based
on number of products in a page. In MarkupLM, as the
number of products increases, F1-score also increases.
(We observed a similar trend for both RoBERTa and
DOM-LM.)

293



Figure 7: An example of a list page compared to a detail page. On the left is a list page with two products:
“Blockbuster” and “Wingspan”. Both products have a similar format and directly comparable attributes from our
schema: Product Name, Product Link, and Review Text. On the right is a detail page with more in-depth details and
longer review text for the “Blockbuster” boardgame. (Screenshots from gamesradar.com)
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