
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 276–283

July 10-12, 2023 ©2023 Association for Computational Linguistics

Building Accurate Low Latency ASR for Streaming Voice Search

Abhinav Goyal, Nikesh Garera
Flipkart

{abhinav.goyal,nikesh.garera}@flipkart.com

Abstract
Automatic Speech Recognition (ASR) plays a
crucial role in voice-based applications. For
applications requiring real-time feedback like
Voice Search, streaming capability becomes
vital. While LSTM/RNN and CTC based
ASR systems are commonly employed for low-
latency streaming applications, they often ex-
hibit lower accuracy compared to state-of-the-
art models due to a lack of future audio frames.
In this work, we focus on developing accurate
LSTM, attention, and CTC based streaming
ASR models for large-scale Hinglish (a blend
of Hindi and English) Voice Search. We inves-
tigate various modifications in vanilla LSTM
training which enhance the system’s accuracy
while preserving its streaming capabilities. We
also address the critical requirement of end-of-
speech (EOS) detection in streaming applica-
tions. We present a simple training and infer-
ence strategy for end-to-end CTC models that
enables joint ASR and EOS detection. The eval-
uation of our model on Flipkart’s Voice Search,
which handles substantial traffic of approxi-
mately 6 million queries per day, demonstrates
significant performance gains over the vanilla
LSTM-CTC model. Our model achieves a
word error rate (WER) of 3.69% without EOS
and 4.78% with EOS while also reducing the
search latency by approximately ∼1300 ms
(equivalent to 46.64% reduction) when com-
pared to an independent voice activity detection
(VAD) model.

1 Introduction

As an e-commerce platform in India, we need to
cater to a variety of user bases, and a big part of that
consists of users who cannot or do not want to type
while interacting with the app, e.g., while search-
ing for a product. For such users, interaction via
a voice-based interface becomes an essential fea-
ture requiring an accurate and efficient Automatic
Speech Recognition (ASR) system.

Recent years have witnessed the popularity of
end-to-end ASR models, which have achieved

state-of-the-art results (Li et al., 2022). These
models offer simplified training and inference pro-
cesses and have demonstrated higher accuracy com-
pared to traditional pipelines with separate acous-
tic, pronunciation, and language models. Com-
mon approaches for end-to-end ASR models in-
clude CTC (Connectionist Temporal Classifica-
tion), AED (Attention-based Encoder-Decoder),
and RNNT (RNN-Transducer) (Graves et al., 2006;
Chan et al., 2016; Graves et al., 2013).

However, streaming capability plays a pivotal
role in choosing the most suitable ASR model.
While non-streaming models can leverage the en-
tire audio for text inference, streaming models have
access only to past context, which can result in re-
duced accuracy. Nevertheless, streaming models
provide immediate feedback, a critical requirement
for consumer-facing applications like Voice Search.
Additionally, low inference latency is essential to
ensure a user-friendly experience, as delayed feed-
back can adversely impact usability.

Another challenge in streaming ASR applica-
tions is accurately detecting the end of speech
(EOS). Conventional methods rely on standalone
Voice Activity Detection (VAD) models, which op-
erate independently from the ASR system and may
not offer optimal accuracy.

In this work, we focus on developing a stream-
ing ASR system for large-scale Hinglish Voice
Search. Our objective is to enhance accuracy and
reduce latency while preserving streaming capa-
bilities. Specifically, we propose modifications
to an LSTM and CTC based ASR system, aim-
ing to bridge the gap between streaming and non-
streaming ASR models. We also present a simple
training and inference strategy that enables joint
ASR and EOS detection within end-to-end CTC
models, effectively reducing user-perceived latency
in voice search. The contributions of this research
can be summarized as follows:

• Development of an accurate and efficient

276

streaming ASR model based on LSTM, MHA
(Multi-Head Attention), and CTC for Hinglish
Voice Search;

• Introduction of a straightforward training and
inference strategy to enable joint ASR and
EOS detection within end-to-end CTC mod-
els, addressing the need for accurate EOS de-
tection in streaming applications.

• Analysis of the impact of model modifications
on reducing the performance gap between
streaming and non-streaming ASR models.

Next, we discuss some related work in Section 2.
Section 3 describe the model architecture we use,
EOS integration and the inference method. We
talk about the dataset and experimental setup in
Section 4. Finally, we conclude with a discussion
on results and limitations in Section 5.

2 Related Work

CTC, the first E2E approach developed for ASR
(Graves et al., 2006), has been widely used over
the last few years (Soltau et al., 2016; Li et al.,
2018). Although it provides simplicity, it makes
a conditional independence assumption, that out-
put token at any time doesn’t depend on past to-
kens, which can make it sub-optimal. AED and
RNNT models relax this assumption by leverag-
ing past output tokens. While AED models like
LAS (Listen, Attend and Spell) (Chan et al., 2016)
work very well for non-streaming tasks, they re-
quire complex training strategies for streaming sce-
narios (Raffel et al., 2017; Chiu and Raffel, 2017).
RNNT (Graves et al., 2013) provides a natural alter-
native in streaming scenarios but has high training
complexity and inference latency rendering it diffi-
cult to use in a real-world setting without complex
optimizations/modifications (Li et al., 2019; Ma-
hadeokar et al., 2021).

There have been many attempts to improve the
accuracy of CTC models that preserve their training
and inference simplicity. Fernández et al. (2007)
leverages hierarchical structure in the speech by
adding auxiliary losses to train a CTC-based
acoustic-to-subword model. Their hierarchical
CTC (HCTC) model predicts different text segmen-
tations in a fine-to-coarse fashion. Recent studies
have explored the use of attention in CTC models
to implicitly relax the conditional independence
assumption by enriching the features using other

time frames. Das et al. (2018) uses component
attention and implicit language model to enrich
the context while Salazar et al. (2019) evaluates
a fully self-attention-based network with CTC. In
this work, we explore how augmenting an LSTM-
based network with windowed self-attention can
help improve the transcription while preserving
streaming capability.

Another line of work in improving the output of
streaming models is the second pass rescoring that
uses an additional (usually non-streaming) compo-
nent to re-rank the streaming model’s hypotheses
(Sainath et al., 2020). While we also rescore the
candidate hypotheses at the last step, our system
doesn’t employ any external acoustic model to do
so and leverages the hierarchical losses that are part
of the model itself.

For addressing EOS detection, conventional ap-
proaches use VAD models with a threshold on si-
lence amount. This may lead to early termination
of user speech. Shannon et al. (2017) addresses
this by training an EOQ (End-of-Query) classifier
which performs better than VAD but is still opti-
mized independent of the ASR system. VAD based
on output CTC labels has also been explored to de-
tect EOS based on the length of non-speech (blank)
region (Yoshimura et al., 2020). Li et al. (2020)
jointly train an RNNT model for EOS detection by
using and extra < /s > token with early and late
penalties. Prediction of < /s > token by the model
during inference marks as the signal for EOS. We
follow a similar approach where we train the model
with early and late penalties. During inference, we
use a dynamic threshold on < /s > probability to
detect the endpoint before decoding the text.

3 Methodology

3.1 Model Architecture

Inspired by Fernández et al. (2007), we build a
3-level HCTC architecture based on LSTM and
attention as shown in Fig. 1. Going in a fine-to-
course fashion, the model predicts characters (73
tokens), short subwords (300 tokens) and long sub-
words (5000 tokens) at the respective levels. Each
level consists of an N-layer LSTM-attention block
(N being 5, 5 and 2) followed by a linear softmax
layer. A time convolution layer with a kernel size
of 5 and a stride of 3 after the second level reduces
the number of time steps to one-third. This helps
emit longer subwords at the third level by increas-
ing the context and receptive field of a time frame.

277

Figure 1: ASR model. Characters, Subword 300 and
Subword 5000 are used as targets to compute the CTC
losses at resp. levels.

Along with the HCTC loss, we use label smooth-
ing (Szegedy et al., 2016) by adding a negative
entropy term to it. This mitigates overconfidence in
output distributions leading to improved transcrip-
tion. Mathematically, the loss for a given training
sample, (x, y) = (x, {ychar, ys300, ys5k}), is:

L(x, y) =
∑

k

[
CTCLoss(x, yk)

− λ
∑

t

Entropy(Pk(: |xt))
]

=
∑

k

[
− log(P (yk|x))

+ λ
∑

t,v

Pk(v|x)log(Pk(v|x))
]

For an N-layer LSTM-attention block (Fig. 2),
we stack N LSTM layers with 700 hidden dimen-
sions which are followed by a dot-product based
multi-headed self-attention layer (MHA) (Vaswani
et al., 2017). We use 8 attention heads and project
the input to 64-dimensional key, query and value
vectors for each head. We project back the 512
(8x64) dimensional output to 700 dimensions and
pass it through a linear layer with ReLU activation.
To retain the model’s streaming capabilities, we
restrict the attention to a 5-frame window (t±2)
instead of complete input i.e., for input features ft,
we use Q(ft) as the query vector and K(ft−2:t+2),
V (ft−2:t+2) as key-value vectors where Q,K and

V are linear projections. To improve the gradient
flow, we add a skip connection and layer normal-
ization after each layer.

We use 80 filterbanks from standard log-mel-
spectrogram as inputs, computed with a window of
20ms, a stride of 10ms, and an FFT size of 512. To
prevent overfitting, we use time-frequency masking
(Park et al., 2019) during training. We also stack
five adjacent frames with a stride of three, giving
an input feature vector of 400 dimensions with a
receptive field of 60ms and stride of 30ms for each
time step. Windowed MHA and time convolution
increase overall receptive field and stride to 780ms
and 90ms resp. Consequently, our model has a
forward lookahead of 390ms when deployed in a
streaming mode.

Figure 2: N layer LSTM-attention Block

3.2 Speech End-pointing

Once we have a trained ASR model, we augment
the vocabulary with an additional < /s > token
and use forced alignment to get the ground truth
speech endpoints. We use the output from 1st (char-
acter) level of the ASR model for alignment as it
has the least lookahead and empirically works bet-
ter than the output from other blocks. We append
the extra < /s > token at the end of each transcript
and add early-late (EL) penalties (Li et al., 2020)
to the training loss to fine-tune the model for a few
more iterations. EL penalties penalize the model
for predicting < /s > too early or too late. During
online inference, we determine if the current time
step (t) is the speech endpoint by evaluating the

278

following conditions:

• There is at least one word in output text - to
avoid termination before the user starts speak-
ing;

• < /s > is the most probable token among all
vocab items i.e., Pt(< /s >) ≥ Pt(:) - call
this an EOS peak;

• Pt(< /s >) ≥ thresholdt = α1+nt/β where
nt is the number of EOS peaks before time t.

Thus, the earliest time step satisfying the above con-
ditions is the EOS. Here α controls the aggressive-
ness of EOS detection as decreasing α decreases
the EOS threshold for all time steps resulting in an
earlier EOS signal. Empirically, we observe that
the model gives a lower probability to < /s > to-
ken after each EOS peak. To address this, we add
an nt/β term that gradually reduces the threshold
whenever an EOS peak appears, giving an addi-
tional (but marginal) reduction in latency. For au-
dios where the above conditions are never satisfied,
a combination of a small independent VAD model
and a maximum time limit works as a backup.

3.3 Decoding and Re-scoring
For each chunk of input audio stream, we use prefix
beam search, with a beam size of 1000 hypothe-
ses, to decode the text from probability distribution
given by the last (subword 5000) level. We use the
same probability distribution to detect EOS as well.
When we observe an EOS or the stream ends, a 5-
gram KenLM and HCTC loss (sum of CTC losses
from all levels) are used to re-rank and select the
best hypothesis from the top 100 candidates. We
use grid search to find the weights of the scores.

4 Dataset and Training Setup

Queries from E-commerce Voice Search are our pri-
mary source of data. We also collect speech from
other sources like on-call customer support, crowd-
sourced read-speech, etc., to augment training data.
We transcribe all the utterances, except read-speech,
using an existing ASR system and manually cor-
rect them. The ASR system that generates refer-
ence transcripts progressively improves as part of
model iterations. Collectively, the training datasets
amount to ∼14M audio-text pairs (8M from the
target domain and 6M from other) or roughly 22.5k
hours of audio. For evaluation, we randomly sam-
ple ∼19k audios from e-commerce voice search

queries, transcribe it manually (without any refer-
ence text) and reduce the human error by using
multiple iterations of verification.

We categorize the test set into clean and noisy
subsets, containing ∼16k and ∼3k samples resp.
Clean utterances are audios where only one
speaker’s speech is intelligible. Noisy utterances
are those where more than one speaker has intel-
ligible speech (overlapping or non-overlapping).
In noisy utterances, the primary speaker is the
user whose utterance is more relevant for the e-
commerce voice search application. Note that clean
utterances may also have non-intelligible secondary
speakers. We train and evaluate the model to tran-
scribe only the primary speaker’s speech while ig-
noring the rest.

For training KenLM and Sentencepiece models,
we use a large corpus comprising text from various
sources like transcribed voice search queries and
on-call customer support queries, customer support
chatbot queries, and product catalogues.

We use a cyclical learning rate (LR) (Smith,
2017) with Adam optimizer to train the ASR model
for 200k iterations with a batch size of ∼55 min-
utes. Training the model on two A100 (40 GB)
GPUs takes ∼50 hours. For EOS detection, we
fine-tune the model with EL penalties for an addi-
tional 48k iterations (∼12 hours).

5 Results and Discussion

Figure 3: Mean EOS latency vs %WER as we change
α and β.

We report WER and mean EOS latency on the
test set for evaluating the performance of our model
in Table 1. We get the best results when the model
is first pre-trained on all the data and then fine-
tuned on the target domain, followed by fine-tuning
with EL penalties. To see how α and β affect the re-
sults, we do a sweep over both the parameters and
plot mean EOS latency vs %WER in Fig. 3. For fur-

279

Model %WER Mean EOS Latency
all clean noisy all clean noisy

Google Speech-to-Text API* 13.14 12.62 16.30
LSTM-attention HCTC (all data) 4.03 3.11 9.52 2858 2457 5080
+ fine-tune on target domain 3.75 3.03 8.02 2858 2457 5080
+ EL penalty (our best model) 3.69 2.95 8.12 2858 2457 5080
+ EOS detection (without n/β term) 4.77 4.10 8.75 1565 1268 3215
+ EOS detection (with n/β term) 4.78 4.19 8.32 1525 1242 3096
Reduction in Latency 1333 1215 1985

Table 1: Results for the best model with and without EOS detection. EOS detection reduces mean latency by
∼1300 ms. *Google’s API has a much higher WER because it is trained for open domain whereas our data is in
e-commerce domain and also has background noise.

ther analysis, we consider the point with α = 0.8
and β = 2.0 that gives us a WER of 4.78% and a re-
duction of 1333 ms in mean EOS latency with EOS
coverage (fraction of audios receiving an EOS sig-
nal) of 64.13%. Our model performs significantly
better than Google Speech-to-Text API, which is
expected since Google’s API is trained for the open
domain, but our data is in the e-commerce domain.
The evaluation utterances also have a lot of noise
which our model is more robust to as it is trained
on similar data.

Model %WER ∆WER
LSTM-attention HCTC 5.37
- Windowed MHA 5.94 9.60%
- HCTC rescoring 6.19 4.04%
- HCTC loss 6.62 6.50%
- Skip connections 7.68 13.80%

(= Baseline LSTM CTC)

Table 2: Change in WER when each component is re-
moved. All results are with LM rescoring using the
same KenLM.

To understand how modifications in the archi-
tecture contribute to improving the accuracy of the
vanilla LSTM CTC model, we conduct an ablation
study and report the WER in Table 2. We train these
models for 200k iterations on a reduced dataset of
∼5500 hours sampled from the target domain. As
seen from the table, windowed MHA improves
the WER by 9.6%. Intuitively, the improvement
comes from an increased receptive field (780ms
with vs 180ms without attention) and the ability
to extract better context from neighbouring frames
using self-attention. HCTC loss forces the model
to learn hierarchical structure in the speech at mul-
tiple levels - from characters to short subwords and

then long subwords. The model can then utilize
this structure to achieve more accurate predictions.
Adding auxiliary losses at intermediate levels helps
the convergence as well. The hierarchical loss also
facilitates the rescoring since the combination of
losses acts like an ensemble of ranking models. To-
gether, HCTC loss and rescoring give a relative
improvement of 10.28%. Finally, skip connections
improve the gradient flow in training, which fur-
ther helps the convergence, improving the WER
by 13.80%. These modifications, when combined,
result in a significant total relative improvement of
∼30% in WER over the baseline.

5.1 Comparison with other models
In addition to the baseline LSTM CTC (Table 2),
we also compare our model with a non-streaming
BiLSTM version, and a streaming Conformer CTC
inspired by (Li et al., 2021). For Conformer CTC,
we use the causal encoder-only network and train
it using CTC loss. As evident from the results in
Table 4, the discussed modifications help bridge the
gap between streaming LSTM and non-streaming
BiLSTM CTC models. The streaming Conformer
CTC also performs only marginally better than our
LSTM-attention HCTC model while it has much
higher training complexity and inference latency.

We evaluate a bidirectional version of our model
to analyse the consistency of these improvements.
Observe that the same modifications improve the
BiLSTM CTC model by a relative 13.4%, vs
30% the LSTM CTC model because BiLSTM al-
ready has access to full future context, limiting
the scope of improvement. Even then, it per-
forms significantly better than a vanilla BiLSTM
CTC model and only slightly worse than a Trans-
former AED+CTC model (Nakatani, 2019). Thus,
these modifications also reduce the gap between

280

Ground truth ASR output Reason for error
no search impact
mixer machine mixture machine wrong pronunciation
ooni kapda baby ooni kapda multiple speakers with similar voice
sasta sasta mobile vivo ka sasta mobile vivo ka overlapping speakers
choli photos choli photos choli photos repetition after EOS
chappal slipper chappal repetition after EOS (in other lang.)
-ve search impact
great cycle grey cycle background noise
capacitor cap sitter wrong pronunciation
earing car earing multiple speakers with similar voice
atlas three chaubis inch headlight three chaubis pin overlapping speakers
joota guitar two eligible primary speakers
oppo a thirty three back cover oppo a thirty three additional information after EOS

Table 3: Examples of different types of errors. The upper section of the table shows examples where the mistakes
don’t have any search impact, and the lower section shows the ones having a negative effect. Red indicates incorrect
words and insertion errors, and orange indicates deletions and correct counterparts of erroneous words.

Model %WER
all clean noisy

Streaming models
LSTM CTC 7.68 6.50 14.70
LSTM-atten. HCTC 5.37 4.57 10.12
Str. Conformer CTC 5.30 4.33 11.01
Non-streaming models
BiLSTM CTC 5.37 4.64 9.68
BiLSTM-atten. HCTC 4.65 3.97 8.69
Transf. AED+CTC 4.37 3.30 10.72
(Nakatani, 2019)

Table 4: Our model in comparison with others (details
in Sec. 5.1). All models are made similar in size and
trained on ∼5500 hours.

LSTM and transformer-based ASR models for
voice search in both - streaming and non-streaming
settings. One explanation could be that transform-
ers usually have an advantage in capturing long-
term dependencies. This doesn’t help as much for
speech recognition on short utterances as in our
dataset, where audios usually are 4-6 seconds long
with an average of 3.34 spoken words. For a fair
comparison, we ensure all models are similar in
size and use the same KenLM for rescoring.

5.2 Error Analysis

To understand the errors better, we analyze 50 ran-
dom utterances each from clean and noisy subsets
where the model makes mistakes. The most com-
mon reasons for errors in the clean subset are -

wrong pronunciation and background noise. For
noisy utterances, multiple speakers with a similar
voice, overlapping speakers, and more than one
eligible primary speakers contribute to additional
errors. Table 3 lists some examples demonstrating
these reasons. We also observe that around 62% of
the mistakes in the evaluation set have no negative
impact on search. In these cases, the errors are
usually in stop words or produce a variant of the
reference word which can be used, like singular vs
plural or the same word with a different spelling.

When using EOS detection, there are additional
errors due to early termination in 2.24% of the
utterances. In all such cases, EOS is detected pre-
maturely because of a pause in the speech. Usually,
after this pause, the user repeats their query, adds
more information, or corrects it. In around 47%
of the cases, not capturing this additional speech
has no negative impact on search. In the rest 53%
cases, i.e. 1.19% of the total samples, the missed
utterance usually has more information about the
query, added by the user, that could have helped in
refining the search results.

5.3 Conclusions

This work focuses on developing a robust and ef-
ficient streaming ASR model for Hinglish Voice
Search. We achieve this by utilizing an LSTM-
attention architecture and employing the HCTC
loss. We explore architectural modifications that
help bridge the accuracy gap between streaming
and non-streaming LSTM-based ASR models.

281

Our proposed model performs on par with a
streaming conformer-based system but offers the
advantage of lower latency. Additionally, we
present a straightforward method to integrate End-
of-Speech (EOS) detection with CTC-based mod-
els, requiring only a small number of additional
training iterations and utilizing simple thresholding
during inference.

The simplicity and low latency of our model
contribute to a fast and accurate voice search expe-
rience, making it an appealing solution for practical
applications.

Limitations and Future Work

In our study, we focused on a high-resource setting
with access to approximately 22.5k hours of labeled
speech data. While we compared our models with
conformer and transformer-based AED and CTC
models, we did not include RNNT models due to
their higher compute resource requirements. To ac-
commodate deployment constraints, we employed
a smaller model with approximately 60 million pa-
rameters, which limited its performance.

Moving forward, our future work aims to explore
the potential benefits of leveraging large unsuper-
vised datasets and larger models to further enhance
our system and extend its applicability to other In-
dian languages, which typically have less available
data compared to Hinglish. Building upon our pre-
vious success in adapting a non-streaming model
for end-to-end speech-to-intent detection in cus-
tomer support voicebots (Goyal et al., 2022), we
are motivated to investigate the feasibility of devel-
oping a single joint model for Automatic Speech
Recognition (ASR), End-of-Speech (EOS) detec-
tion, and Spoken Language Understanding (SLU).
Additionally, we are keen on exploring the devel-
opment of multilingual ASR models.

References
William Chan, Navdeep Jaitly, Quoc Le, and Oriol

Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE international conference
on acoustics, speech and signal processing (ICASSP),
pages 4960–4964. IEEE.

Chung-Cheng Chiu and Colin Raffel. 2017. Mono-
tonic chunkwise attention. arXiv preprint
arXiv:1712.05382.

Amit Das, Jinyu Li, Rui Zhao, and Yifan Gong. 2018.
Advancing connectionist temporal classification with

attention modeling. In 2018 IEEE International con-
ference on acoustics, speech and signal processing
(ICASSP), pages 4769–4773. IEEE.

Santiago Fernández, Alex Graves, and Jürgen Schmid-
huber. 2007. Sequence labelling in structured do-
mains with hierarchical recurrent neural networks. In
Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, IJCAI 2007.

Abhinav Goyal, Anupam Singh, and Nikesh Garera.
2022. End-to-end speech to intent prediction to
improve E-commerce customer support voicebot in
Hindi and English. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing: Industry Track, pages 579–586, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal process-
ing, pages 6645–6649. Ieee.

Bo Li, Shuo-yiin Chang, Tara N Sainath, Ruoming Pang,
Yanzhang He, Trevor Strohman, and Yonghui Wu.
2020. Towards fast and accurate streaming end-to-
end asr. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6069–6073. IEEE.

Bo Li, Anmol Gulati, Jiahui Yu, Tara N Sainath, Chung-
Cheng Chiu, Arun Narayanan, Shuo-Yiin Chang,
Ruoming Pang, Yanzhang He, James Qin, et al. 2021.
A better and faster end-to-end model for streaming
asr. In ICASSP 2021-2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5634–5638. IEEE.

Jinyu Li, Guoli Ye, Amit Das, Rui Zhao, and Yifan
Gong. 2018. Advancing acoustic-to-word ctc model.
In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5794–
5798. IEEE.

Jinyu Li, Rui Zhao, Hu Hu, and Yifan Gong. 2019.
Improving rnn transducer modeling for end-to-end
speech recognition. In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 114–121.

Jinyu Li et al. 2022. Recent advances in end-to-end
automatic speech recognition. APSIPA Transactions
on Signal and Information Processing, 11(1).

282

https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-124.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-124.pdf
https://aclanthology.org/2022.emnlp-industry.59
https://aclanthology.org/2022.emnlp-industry.59
https://aclanthology.org/2022.emnlp-industry.59
https://doi.org/10.1109/ASRU46091.2019.9003906
https://doi.org/10.1109/ASRU46091.2019.9003906

Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren,
Hang Su, Thong Le, Ching-Feng Yeh, Christian Fue-
gen, and Michael L Seltzer. 2021. Alignment re-
stricted streaming recurrent neural network trans-
ducer. In 2021 IEEE Spoken Language Technology
Workshop (SLT), pages 52–59. IEEE.

Tomohiro Nakatani. 2019. Improving transformer-
based end-to-end speech recognition with connec-
tionist temporal classification and language model
integration. In Proc. Interspeech.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In International Conference on Machine Learning,
pages 2837–2846. PMLR.

Tara N Sainath, Yanzhang He, Bo Li, Arun Narayanan,
Ruoming Pang, Antoine Bruguier, Shuo-yiin Chang,
Wei Li, Raziel Alvarez, Zhifeng Chen, et al. 2020.
A streaming on-device end-to-end model surpassing
server-side conventional model quality and latency.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6059–6063. IEEE.

Julian Salazar, Katrin Kirchhoff, and Zhiheng Huang.
2019. Self-attention networks for connectionist tem-
poral classification in speech recognition. In Icassp
2019-2019 ieee international conference on acous-
tics, speech and signal processing (icassp), pages
7115–7119. IEEE.

Matt Shannon, Gabor Simko, Shuo-Yiin Chang, and
Carolina Parada. 2017. Improved end-of-query detec-
tion for streaming speech recognition. In Interspeech,
pages 1909–1913.

Leslie N Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pages
464–472. IEEE.

Hagen Soltau, Hank Liao, and Hasim Sak. 2016. Neural
speech recognizer: Acoustic-to-word lstm model for
large vocabulary speech recognition. arXiv preprint
arXiv:1610.09975.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Takenori Yoshimura, Tomoki Hayashi, Kazuya Takeda,
and Shinji Watanabe. 2020. End-to-end automatic
speech recognition integrated with ctc-based voice
activity detection. In ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6999–7003. IEEE.

283

