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Abstract

In this paper, we introduce Ranger - a toolkit
to simplify the utilization of effect-size-based
meta-analysis for multi-task evaluation in NLP
and IR. We observed that our communities
often face the challenge of aggregating re-
sults over incomparable metrics and scenarios,
which makes conclusions and take-away mes-
sages less reliable. With Ranger, we aim to
address this issue by providing a task-agnostic
toolkit that combines the effect of a treatment
on multiple tasks into one statistical evaluation,
allowing for comparison of metrics and com-
putation of an overall summary effect. Our
toolkit produces publication-ready forest plots
that enable clear communication of evaluation
results over multiple tasks. Our goal with the
ready-to-use Ranger toolkit is to promote ro-
bust, effect-size based evaluation and improve
evaluation standards in the community. We pro-
vide two case studies for common IR and NLP
settings to highlight Ranger’s benefits.

1 Introduction

We in the NLP (natural language processing) and
IR (information retrieval) communities maneu-
vered ourselves into somewhat of a predicament:
We want to evaluate our models on a range of dif-
ferent tasks to make sure they are robust and gener-
alize well. However, this goal is often reached by
aggregating results over incomparable metrics and
scenarios (Thakur et al., 2021; Bowman and Dahl,
2021). This in turn makes conclusions and take
away messages much less reliable than we would
like. Other disciplines, such as social and medical
sciences have much more robust tools and norms
in place to address the challenge of meta-analysis.

In this paper we present Ranger – a toolkit to
facilitate an easy use of effect-size based meta-
analysis for multi-task evaluation. Ranger pro-
duces beautiful, publication-ready forest plots to
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help everyone in the community to clearly com-
municate evaluation results over multiple tasks.
Ranger is written in python and makes use of
matplotlib. Thus it will be easy and time-
efficient to customize if needed.

With the effect-size based meta-analysis (Boren-
stein et al., 2009) Ranger lets you synthesize the
effect of a treatment on multiple tasks into one sta-
tistical evaluation. Since in meta-analysis the influ-
ence of each task on the overall effect is measured
with the tasks’ effect size, meta-analysis provides
a robust evaluation for a suite of tasks with more
insights about the influence of one task for the over-
all benchmark. With the effect-size based meta-
analysis in Ranger one can compare metrics across
different tasks which are not comparable over dif-
ferent test sets, like nDCG, where the mean over
different test sets holds no meaning. Ranger is not
limited to one metric and can be used for all evalu-
ation tasks with metrics, which provide a sample-
wise metric for each sample in the test set. Ranger
can compare effects of treatments across different
metrics. How the effect size is measured, depends
on experiment characteristics like the computation
of the metrics or the homogeneity of the metrics be-
tween the multiple tasks. In order to make Ranger
applicable to a wide range of multi-task evaluation,
Ranger offers effect size measurement using the
mean differences, the standardized mean difference
or the correlation of the metrics. In order to have
an aggregated, robust comparison over the whole
benchmark, Ranger computes an overall combined
summary effect for the multi-task evaluation. Since
these statistical analysis are rather hard to interpret
by only looking at the numbers, Ranger includes
clear visualization of the meta-analysis comprised
in a forest plot as in Figure 1.

In order to promote robust, effect-size based eval-
uation of multi-task benchmarks we open source
the ready-to-use toolkit at:
https://github.com/MeteSertkan/ranger
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Overall summary effect 
(Using a random-effect model 
to estimate each effect’s 
contribution) 

Effect size: 🔹 = the mean; whisker = 95% confidence interval

We compare: 1 baseline (TAS-B) with 1 treatment (Uni-ColBERTer) method

One line per task
(Both visual information & 
exact numbers for diving deep 
into the results) 

Figure 1: Example forest plot, with explanations highlighting the output of our Ranger toolkit for a multi-task
meta-analysis using effect sizes between a control baseline and treatment methods (In this case we use experiments
from ColBERTer (Hofstätter et al., 2022)).

2 Related Work

In the last years, increasingly more issues of bench-
marking have been discussed in NLP (Church et al.,
2021; Colombo et al., 2022) and IR (Craswell
et al., 2022; Voorhees and Roberts, 2021). Bow-
man and Dahl (2021) raise the issue that unreli-
able and biased systems score disproportionately
high on benchmarks in Natural Language Under-
standing and that constructing adversarial, out-of-
distribution test sets also only hides the abilities
that the benchmarks should measure. Bowman
(2022) notice that the now common practices for
evaluation lead to unreliable, unrealistically posi-
tive claims about the systems. In IR one common
multi-task benchmark is BEIR Thakur et al. (2021),
which evaluates retrieval models on multiple tasks
and domains, however in the evaluation the over-
all effect of a model is measured by averaging the
nDCG scores over each task. As the nDCG score
is task dependent and can only be compared within
one task, it can not be averaged over different tasks
and the mean of the nDCG scores does not hold
any meaning. Thus there is the urgent need in the
NLP and IR community for a robust, synthesized
statistical evaluation over multiple tasks, which is
able to aggregate scores, which are not comparable,
to an overall effect.

To address these needs Soboroff (2018) propose

effect-size based meta-analysis with the use case
of evaluation in IR for a robust, aggregated evalua-
tion over multiple tasks. Similarily, Colombo et al.
(2022) propose a new method for ranking systems
based on their performance across different tasks
based on theories of social choice.

In NLP and IR research exist numerous single
evaluation tools (Azzopardi et al., 2019; MacA-
vaney et al., 2022), however to the best of our
knowledge there exists no evaluation tool address-
ing the needs for robust, synthesized multi-task
evaluation based on meta-analysis.

In order to make this robust, effect-size based
evaluation easily accessible for a broad range of
tasks, we present our Ranger toolkit and demon-
strate use cases in NLP and IR.

3 Ranger

3.1 Methodology

Besides analyzing the effects in individual studies,
meta-analysis aims to summarize those effects in
one statistical synthesis (Borenstein et al., 2009).
Translated to the use case of NLP and IR, meta-
analysis is a tool to compare whether a treatment
model yields gains over a control model within dif-
ferent data collections and overall (Soboroff, 2018).
A treatment, for example, could be an incremental
update to the control model, a new model, or a
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model trained with additional data; a control model
can be considered as the baseline (e.g., current
SOTA, etc.) to compare the treatment with. To
conduct a meta-analysis, defining an effect size is
necessary. In this work, we quantify the effect size
utilizing the raw mean difference, the standardized
mean difference, and the correlation. In particular,
we implement the definitions of those effect sizes
as defined by Borenstein et al. (2009) for paired
study designs since, typically, the compared met-
rics in IR and NLP experiments are obtained by
employing treatment and control models on the
same collections.

Raw Mean Difference D. In IR and NLP experi-
ments, researchers usually obtain performance met-
rics for every item in a collection. By comparing
the average of these metrics, they can make state-
ments about the relative performance of different
models. Thus, the difference in means is a simple
and easy-to-interpret measure of the effect size, as
it is on the same scale as the underlying metric. We
compute the raw mean difference D by averaging
the pairwise differences between treatment XT and
control metric XC and use the standard deviation
(Sdiff ) of the pairwise differences to compute its
corresponding variance VD as follows:

D =
XT −XC

n
,

VD =
S2
diff

n
,

(1)

where n is the number of compared pairs.

Standardized Mean Difference d. Sometimes,
we might consider standardizing the mean differ-
ence (i.e., transforming it into a “unitless” form)
to make the effect size comparable and combin-
able across studies. For example, if a benchmark
computes accuracy differently in its individual col-
lections or employs different ranking metrics. The
standardized mean difference is computed by divid-
ing the raw mean difference D by the within-group
standard deviation Swithin calculated across the
treatment and control metrics.

d =
D

Swithin
(2)

Having the standard deviation of the pairwise differ-
ences Sdiff and the correlation of the correspond-
ing pairs r, we compute Swithin as follows:

Swithin =
Sdiff√
2(1− r)

(3)

The variance of standardized mean difference d is

Vd = (
1

n
+

d2

2n
)2(1− r), (4)

where n is the number of compared pairs. In small
samples, d tends to overestimate the absolute value
of the true standardized mean difference δ, which
can be corrected by factor J to obtain an unbiased
estimate called Hedges’ g (Hedges, 1981; Boren-
stein et al., 2009) and its corresponding varianceVg:

J = 1− 3

4df − 1
,

g = J × d,

Vg = J2 × Vd,

(5)

where df is degrees of freedom which is n− 1 in
the paired study setting with n number of pairs.

Correlation r. Some studies might utilize the
correlation coefficient as an evaluation metric, for
example, how the output of an introduced model
(treatment) correlates with a certain gold standard
(control). In such cases, the correlation coefficient
itself can serve as the effect size, and its variance
is approximated as follows:

Vr =
(1− r2)2

n− 1
, (6)

where n is the sample size. Since the variance
strongly depends on the correlation, the correlation
coefficient is typically converted to Fisher’s z scale
to conduct a meta-analysis (Borenstein et al., 2009).
The transformation and corresponding variance is:

z = 0.5× ln(
1 + r

1− r
),

Vz =
1

n− 3

(7)

As already mentioned, z and Vz are used
throughout the meta-analysis; however, for report-
ing/communication, z metrics are transformed back
into the correlation scale using:

r =
e2z − 1

e2z + 1
(8)

Combined Effect M∗. After calculating the indi-
vidual effect sizes (Yi) and corresponding variances
(VYi) for a group of k experiments, the final step
in meta-analysis is to merge them into a single
summary effect. As Soboroff (2018), we assume
heterogeneity, i.e., that the effect size variance
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varies across the experiments. Following (Sobo-
roff, 2018), we employ the random-effects model
as defined in (Borenstein et al., 2009) to consider
the between-study variance T 2 for the summary
effect computation. We use the DerSimonian and
Laird method (DerSimonian and Laird, 2015) to
estimate T 2:

T 2 =
Q− df

C
,

Q =
k∑

i=1

WiY
2
i − (

∑k
i=1WiY

2
i )

2

∑k
i=1Wi

,

df = k − 1,

C =
∑

Wi −
∑

W 2
i∑

Wi
.

(9)

where the weight of the individual experiments
Wi = 1/VYi . We adjust the weights by T 2 and
compute the weighted average of the individual
effect sizes, i.e., the summary effect M∗, and its
corresponding variance VM∗ as follows:

W ∗
i =

1

VYi + T 2
,

M∗ =

∑k
i=1W

∗
i Yi∑k

i=1W
∗
i

,

VM∗ =
1

∑k
i=1W

∗
i

.

(10)

Confidence Interval (CI). We determine the cor-
responding confidence interval (represented by the
lower limit, LLY , and the upper limit, ULY ) for a
given effect size Y , which can be the result of an
individual experiment (Yi) or the summary effect
(M∗), as follows:

SEY =
√
VY ,

LLY = Y − Zα × SEY ,

ULY = Y + Zα × SEY ,

(11)

where SEY is the standard error, VY the variance of
the effect size, and Zα the Z-value corresponding
to the desired significance level α. Given α we
compute Zα:

Zα = ppf(1− α

2
), (12)

where ppf() is the percent point function (we use
scipy.stats.norm.ppf1). For example, α = 0.05
yields the 95% CI of Y ± 1.96× SEY .

1https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.norm.html

Forest Plots. The meta-analysis results in the
individual experiments’ effect sizes, a statistical
synthesis of them, and their corresponding confi-
dence intervals. Forest plots are a convenient way
of reporting those results, which enables a very
intuitive interpretation at one glance. Ranger sup-
ports forest plots out of the box, which can easily
be customized to one’s needs since it is based on
python and matplotlib. We provide an example
with explanations in Figure 1. Effect sizes and
corresponding confidence intervals are depicted as
diamonds with whiskers ⊢ ♦ ⊣. The size of the dia-
monds is scaled by the experiments’ weights (W ∗

i ).

The dotted vertical line
... at zero represents the zero

effect. The observed effect size is not significant
when its confidence interval crosses the zero effect
line; in other words, we cannot detect the effect
size at the given confidence level.

3.2 Usage

We explain the easy usage of Ranger along with
two examples on classification evaluation of GLUE
in NLP and retrieval evaluation of BEIR in IR.

The meta-analysis with Ranger requires as input
either 1) a text file already containing the sample-
wise metrics for each task (in the GLUE example)
or 2) a text file containing the retrieval runs and the
qrels containing the labels (in the BEIR example).

The paths to the text files for each task are
stored in a config.yaml file and read in with
the class ClassificationLocationConfig or
RetrievalLocationConfig. The entry point for
loading the data and possibly computing metrics
is load_and_compute_metrics(name, measure,
config). Having the treatment and control data,
we can analyze the effects and compute effect sizes:

from ranger.metric_containers import
AggregatedPairedMetrics, AggregatedMetrics
from ranger.meta_analysis import
analyze_effects

effects = AggregatedPairedMetrics(
treatment=t.get_metrics(),
control=c.get_metrics())

eff_size = analyze_effects(
list(conf.display_names.values()),
effects=effects,
effect_type="SMD")

Here the effect_type variable refers to the type
of difference measurement in the meta-analysis as
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−0.1 0.0 0.1 0.2
Standardized Mean Difference

BERT vs. DistilBERT

Effect Size

0.7%

16.2%

1.7%

27.1%
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7.0%

24.3%

Weight

-0.02

0.11

-0.01

-0.08

-0.01

-0.02

-0.02

-0.03

Mean

[-0.03, -0.01]

[0.01, 0.22]

[-0.03, 0.00]

[-0.14, -0.01]

[-0.01, -0.01]

[-0.03, -0.01]

[-0.05, 0.01]

[-0.03, -0.02]

CI 95%

Summary Effect (RE)

WNLI

SST-2

RTE

QQP

QNLI

MRPC

MNLI

Figure 2: Forest plot of Ranger toolkit for tasks of the
GLUE benchmark. Comparison in terms of accuracy
between BERT and DistilBERT.

introduced in the previous section. The choice
is between Raw Mean differences ("MD"), stan-
dardized mean differences ("SMD") or correlation
("CORR"). In order to visualize the effects, Ranger
produces beautiful forest plots:

from ranger.forest_plots import forest_plot

plot = forest_plot(title=title,
experiment_names=list(config.display_names
.values()),
label_x_axis="Standardized Mean Difference",
effect_size=eff_size,
fig_width=8,
fig_height=8)

4 Case Study NLP: GLUE benchmark

In order to demonstrate the usage of the Ranger
toolkit for various multi-task benchmarks, we con-
duct an evaluation on the popular General Lan-
guage Understanding (GLUE) Benchmark (Wang
et al., 2018).

We train and compare two classifiers on the
GLUE benchmark: one classifier based on BERT
(Devlin et al., 2018), the latter based on a smaller,
more efficient transformer model trained on BERT
scores, namely DistilBERT (Sanh et al., 2019) 2.

The official evaluation metric for two of the nine
tasks (for CoLA and STS-B) is a correlation-based
metric. Since these correlation-based metrics can
not be computed sample-wise for each sample in
the test set, the effect-size based meta-analysis can
not be applied to those metrics and we exclude
these two tasks from our evaluation.

2Checkpoints from Huggingface. bert-base-cased for
BERT, distilbert-base-cased for DistilBERT.

We conduct the effect-size based meta-analysis
based on the accuracy as metric and use Standard-
ized Mean Difference to measure the effect-size
(type in Ranger toolkit is ’SMD’). We illustrate the
meta-analysis of the BERT and DistilBERT clas-
sifier in Figure 2. We also publish the Walk-you-
Through Jupyter notebook in the Ranger toolkit to
attain this forest plot for GLUE.

The location of the black diamonds visualizes
the effect of the treatment (DistilBERT) compared
to the baseline (BERT), whereas the size of the
diamonds refers to the weight of this effect in the
overall summary effect. We can see that using Dis-
tilBERT as base model for the classifier compared
to BERT, has overall effect of a minor decrease in
effectiveness. This behaviour is similar with the re-
sults on the MNLI, QNLI, and QQP where we also
notice that the confidence intervals are very narrow
or even non existent in the forest plot. For MRPC
and SST-2 there is also a negative effect, however
the effect is not significant, since the confidence
intervals overlap with the baseline performance.
For RTE and WNLI the effect of using DistilBERT
compared to BERT is rather big compared to the
summary effect, where for RTE the mean is 8%
lower and for WNLI the mean is 11% higher than
for the BERT classifier. However the large con-
fidence intervals of these tasks indicate the large
variability in the effect and thus the weight for tak-
ing these effects into account in the summary effect
are rather low (0.7% and 1.7%).

Overall the summary effect shows that the Dis-
tilBERT classifier decreases effectiveness consis-
tently by 2%. Since the confidence intervals are
so narrow for the overall effect and do not overlap
with the baseline (BERT classifier), we see that the
overall effect is also significant.

5 Case Study IR: BEIR benchmark

Especially in IR evaluation, where it is common
to evaluate multiple tasks with metrics, which are
not comparable over different tasks (Thakur et al.,
2021), we see a great benefit of using Ranger to
aggregate the results of multiple tasks into one com-
parable statistical analysis. Thus we demonstrate
the case study of using the Ranger toolkit for eval-
uation on commonly used IR collections, including
a subset of the BEIR benchmark (Thakur et al.,
2021). We presented this study originally as part
of (Hofstätter et al., 2022), and the Ranger toolkit
is a direct descendent of these initial experiments.
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DBPedia Entity

NFCorpus
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Figure 3: Forest plot of Ranger toolkit for tasks of the BEIR benchmark. Comparison in terms of nDCG@10
between TAS-B and ColBERTer.

We select tasks, which either 1) were annotated
at a TREC 3 track and thus contain high quality
judgements, 2) were annotated according to the
Cranfield paradigm (Cleverdon, 1967) or 3) con-
tain a large amount of labels. All collections are
evaluated with the ranking metric nDCG@10. We
compare zero-shot retrieval with TAS-B (Hofstät-
ter et al., 2021) as baseline to retrieval with Uni-
ColBERTer (Hofstätter et al., 2022) as treatment.

We conduct a meta-analysis of the evaluation
results based on nDCG@10 as metric and mea-
sure the effect-size with the mean difference (type
is ’MD’). The output of the Ranger toolkit is il-
lustrated in Figure 3. We publish a walk-through
Jupyter notebook in the Ranger toolkit to attain this
forest plot for BEIR benchmark evaluation.

In Figure 3 the effect size, the weight of the
effect on the overall effect as well as the mean
and confidence intervals of the effect are visual-
ized. As an extension for IR we also visualize the
nDCG@10 performance and J@10 judgement ratio
from baseline → to treatment.

For NFCorpus and TREC Podcast we see a
small positive effect of Uni-ColBERTer compared
to TAS-B, however the confidence intervals are
overlapping with the baseline performance incdi-
cating no clear positive effect on these tasks. For
TripClick, DBPedia Entity and TREC Robust 04
we see a consistent and significant small positive
effect with narrow confidence intervals of Uni-
ColBERTer and this effect is even greater for An-
tique and TREC Covid. Notice the great confidence
intervals for TREC Covid, since the evaluation of
TREC Covid is only based on 50 queries and thus

3https://trec.nist.gov/

its influence for the overall effect should be and is
the lowest (6.2%) among the test sets.

The judgement ratio J@10 in the left most col-
umn shows the percentage of judged documents
in the Top 10 of retrieved results. Analyzing the
judgement ratio one can also get an understanding
of how reliable the evaluation results are and how
comparable the results of the two different retrieval
models are, since a high difference in judgement
ratio could indicate lower comparability of the two
models with the respective test set.

Overall the summary effect of Uni-ColBERTer
compared to TAS-B is consistent and significantly
positive, increasing effectiveness by 0.05.

6 Conclusion

We presented Ranger – a task-agnostic toolkit
for easy-to-use meta-analysis to evaluate multiple
tasks. We described the theoretical basis on which
we built our toolkit; the implementation and usage;
and furthermore we provide two cases studies for
common IR and NLP settings to highlight capabil-
ities of Ranger. We do not claim to have all the
answers, nor that using Ranger will solve all your
multi-task evaluation problems. Nevertheless, we
hope that Ranger is useful for the community to
improve multi-task experimentation and make its
evaluation more robust.
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