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Abstract

Teachers often guide students to improve their
essays by adding engaging modifiers to polish
the sentences. In this work, we present the
first study on automatic sentence polishing by
adding modifiers. Since there is no available
dataset for the new task, we first automatically
construct a large number of parallel data by
removing modifiers in the engaging sentences
collected from public resources. Then we fine-
tune LongLM (Guan et al., 2022) to reconstruct
the original sentences from the corrupted ones.
Considering that much overlap between inputs
and outputs may bias the model to completely
copy the inputs, we split each source sentence
into sub-sentences and only require the model
to generate the modified sub-sentences. Fur-
thermore, we design a retrieval augmentation
algorithm to prompt the model to add suitable
modifiers. Automatic and manual evaluation
on the auto-constructed test set and real human
texts show that our model can generate more
engaging sentences with suitable modifiers
than strong baselines while keeping fluency.
We deploy the model at http://coai.cs.
tsinghua.edu.cn/static/polishSent/. A
demo video is available at https://youtu.
be/Y6gFHOgSv8Y.

1 Introduction

Teachers’ guidance is necessary for students to im-
prove their essays in primary and secondary writing
education. For example, teachers can point out po-
tential logical errors and incoherence issues, and
polish sentences to improve the engagingness of
the essays. A typical way to polish sentences is to
add engaging modifiers (e.g., from “I ate a pear”
to “I ate a big pear enjoyably”), which usually are
adjectives or adverbs that enhance the meaning of
a sentence (Witte and Faigley, 1981). Since an es-
say usually contains tens of sentences, it is a heavy
burden for teachers to polish each one. To reduce
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Original Sentences Corrupted Sentences

先是轻盈的雨滴轻轻地
滴落，发出悦耳的“叮
咚”声，就像是乐曲的前
奏。 (First, light raindrops
drip softly, emitting a pleas-
ant “ding-dong” sound, like
a prelude to the music.)

先是雨滴轻轻地滴落，
发出“叮咚”声，就像是
乐曲的前奏。 (First, rain-
drops drip softly, emitting
a “ding-dong” sound, like a
prelude to the music.)

情不自禁地哼起那首
《乡间的小路》，抛
开了一切繁重的心事，
直 到 夜 幕 降 临 。 (I
can’t help but hum the
song Country Road, leav-
ing aside all heavy thoughts
until nightfall.)

哼起那首《乡间的小
路》，抛开了一切繁
重的心事，直到夜幕降
临。 (I hum the song Coun-
try Road, leaving aside all
heavy thoughts until night-
fall.)

Table 1: Examples of automatically constructed data.
After collecting original sentences, we corrupt them
to construct less engaging sentences by removing the
modifiers that are in a vocabulary of engaging words
(marked in red).

teachers’ workload and enable students to improve
their essays independently, we present a new study
on automatic sentence polishing, which requires
polishing a given sentence given its context. The
goal of polishing a sentence is to make the sen-
tence more expressive, attractive and engaging. We
only consider inserting modifiers for polishing in
this work, and leave other types of polishing to fu-
ture work (e.g., replacing words or rephrasing the
sentence). The challenges of the new task mainly
manifest in the following two folds: (1) finding
the words that can be modified; and (2) deciding
suitable modifiers for those words.

Considering that there are no available parallel
data for this new task, we propose a self-supervised
learning approach using automatically constructed
training data. We firstly collect a large number of
engaging sentences from public books and student
essays in Chinese, and then corrupt the sentences
to construct less engaging ones by removing the
modifiers in them, as exemplified in Table 1. We
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learn a generation model for sentence polishing
by training it to reconstruct the original sentences
from the corrupted ones. To alleviate the model’s
tendency to completely copy inputs as generation
outputs, we train the model to generate only the
changed sub-sentences split by commas (e.g., “I
can’t help but hum the song Country Road” in the
second example). Furthermore, we propose a novel
retrieval augmentation algorithm to improve the
correctness of added modifiers by retrieving suit-
able pairs of modifiers and modified words from
the training set as additional inputs.

Automatic and manual evaluation on the auto-
constructed test set and real human texts show that
our model can generate more engaging sentences
with suitable modifiers and comparable fluency
than strong baselines. Furthermore, we build a
website to enable real-time interaction with our de-
ployed model, where a user can upload a Chinese
sentence with its context and get the retrieval result
along with the polished sentence.

2 Related Work

2.1 Constrained Text Generation

Automatic sentence polishing can be regarded as
a kind of constrained text generation task (Gar-
bacea and Mei, 2022), which requires generating
coherent text that meets given constraints. Typ-
ical constrained generation tasks span from ma-
chine translation (Yang et al., 2020), summariza-
tion (Paulus et al., 2018), sentence generation from
input concepts (Lin et al., 2020a), story gener-
ation from input phrases (Rashkin et al., 2020)
or events (Ammanabrolu et al., 2020). Previous
studies usually adopt the encoder-decoder frame-
work (Sutskever et al., 2014) equipped with the at-
tention mechanism (Bahdanau et al., 2015) to deal
with constrained generation tasks. Recently, large-
scale pretraining models based on the Transformer
model (Vaswani et al., 2017) such as BART (Lewis
et al., 2020) and LongLM (Guan et al., 2022)
achieve more surprising performance (Lin et al.,
2020b) although they are still far from humans (Lin
et al., 2020a).

2.2 Text-Editing Models

There is significant overlap between inputs and out-
puts in many constrained generation tasks such as
grammatical error correction (Omelianchuk et al.,
2020) and sentence polishing in this work. When
applying the vanilla encoder-decoder framework

Train Val TestAuto TestReal

# Examples 143,185 17,898 1000 1000

Avg. M Len 29.33 29.41 29.48 28.71
Avg. S Len 37.89 37.76 38.31 41.92
Avg. N Len 29.22 29.38 27.89 27.37

Avg. T Len 42.40 42.22 42.79 N/A

Table 2: Statistics of the dataset. Len is the abbrevia-
tion of Length. Train, Val and TestAuto are the auto-
constructed training, validation and test sets, respec-
tively. TestReal is the test set from real human-written
sentences. We compute the length by counting the num-
ber of Chinese characters.

to such tasks, the models tend to directly copy the
input without modification and it seems wasteful to
generate the whole output text from scratch (Malmi
et al., 2019). Text-editing models are proposed to
address this issue, which usually conduct token-
wise prediction for how to edit the token. LaserTag-
ger (Malmi et al., 2019) presented three editing
types including retaining the token, deleting the
token, and inserting tokens before the token using a
fixed phrase vocabulary obtained from the training
set. Felix (Mallinson et al., 2020) further adopted a
pointer network to learn to reorder the input tokens,
and utilized a pretrained masked language model
to predict inserted tokens. Seq2Edits (Stahlberg
and Kumar, 2020) proposed a span-level editing
type that allowed to generate a span as insertion or
replacement. Lewis (Reid and Zhong, 2021) used a
two-step editor which first predicted coarse editing
types and then filled in replacements and insertions.
EdiT5 (Mallinson et al., 2022) was a semi-auto-
regressive approach with non-auto-regressive text
labeling and auto-regressive decoding. It first de-
cided the subset of input tokens to be retained using
an encoder, then reordered the tokens with a pointer
module, and finally infilled the missing tokens us-
ing a decoder. In this work, we proposed a simple
but effective approach to address the copy issue by
only decoding the changed sub-sentences.

3 Dataset Construction

We formulate our task as follows: given three con-
secutive sentences M,S,N , the model should out-
put a polished sentence T that is more engaging
than S while maintaining the original meaning of
S and the coherence along with M and N . Since
there are no available data for this task, we con-
struct a new dataset through automatic annotation.

Firstly, we use an off-the-shelf OCR tool to col-
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秋到了，⾛进空旷的
校园，⼀阵冷风吹来，
让⼈感到⼀阵凉意。
Autumn has arrived, 
walking into the empty 
campus, a cold wind 
blows, making people 
feel a chill.

<1>...<2>树依旧是那么绿；花⼉好像不知道深
秋已经来了<3>...<4>依旧⽤它那芳⾹吸引着只
只蜜蜂；蝴蝶依旧在校园⾥翩翩起舞<5>...
<1>...<2>the trees are still so green and the 
flowers don’t seem to know that the late autumn 
has arrived<3>...<4>it still attracts bees with its 
fragrance and butterflies still dance on the 
campus<5>...

校园的花坛⾥落着从树上落下来
的⼏⽚黄叶，⼈们的呼吸在空⽓
中凝成了乳⽩⾊的热⽓。
The flower beds on campus are 
covered with a few yellow leaves 
that have fallen from the trees, and 
people's breathing has condensed 
into milky white heat in the air.

Retrieving

盛开的花
⼉，勤劳
的蜜蜂...
Blooming 
flowers, 
industrious 
bees...

Sampling

Preceding Sentence M
Retrieved 
Modifiers Subsequent Sentence NSource Sentence S

Input

Encoder

Polished Sentence T

<2>郁郁葱葱的树依旧是那么绿；盛开的花⼉好像不知道深秋已经来了<4>依旧⽤它那芳⾹吸引着只只勤劳的蜜蜂；
美丽的蝴蝶依旧在校园⾥翩翩起舞
<2> the lush trees are still so green and the blooming flowers don’t seem to know that the late autumn has arrived<4> it still 
attracts industrious bees with its fragrance and beautiful butterflies still dance on the campus

Training Set

Decoder

Figure 1: Model overview. We split the source sentence S into sub-sentences by commas and only generate the
modified sub-sentences. We also retrieve relevant modifiers from the training set, which are taken as input. The
modifiers added by the model are marked in red.

lect about 50k engaging sentences and a vocabulary
of 61k engaging words from several books1, and
collect 26k high-quality Chinese student essays
from public resources2 that describe the scenery
and thus potentially contain lots of engaging sen-
tences. Then we take every triple of adjacent three
sentences in these texts collected from books and
websites as M,T and N3, respectively. We obtain
S by removing modifiers in T . Specifically, we
adopt a public Chinese NLP toolkit LTP 4 to iden-
tify attribute and adverbial words in T , and regard
those words included in the vocabulary of engaging
words as the modifiers that can be removed. Note
that we also remove the structural particle words
including “的” and “地” following the removed
modifiers to ensure the fluency of the final sentence
S. If there is no removed modifier in T , we will

1《1000篇好词好句好段（初中）》，《小学生好词
好句好段手册（新课标教材版）》，《书通网》，《黄
冈作文-小学生好词好句好段》。

2https://www.leleketang.com/zuowen/
list10-0-0-1-1.shtml

3An engaging text example collected from books may
contain less than three sentences. In this case, M or N can be
missing.

4https://github.com/HIT-SCIR/ltp

discard the example.
Table 2 shows the statistics of our dataset. Con-

sidering that the auto-constructed inputs may be
different from real texts, we construct an additional
test set, i.e., TestReal, where the inputs are original
sentences whose modifiers are not removed. We
set the size of both test sets to 1000 to balance the
estimation error and the inference time.

4 Methodology

An overview of our model is shown in Figure 1.
We build our model on LongLMLarge (Guan et al.,
2022) for the sentence polishing task, which is
an encoder-decoder model pretrained on Chinese
novels with 1 billion parameters. Considering the
significant overlap between the source sentence S
and the polished sentence T , we split S into several
sub-sentences by commas and require the model
to generate only the modified sub-sentences. We
describe the detailed input-output format in §4.1.
Moreover, we retrieve relevant modifiers from the
training corpus, which are taken as input for both
training and inference to help the model find suit-
able modifiers. We show the retrieval augmentation
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algorithm in §4.2.

4.1 Input-Output Format

In our pilot experiments, we take the concatenation
of M,S and N as input5 and train the model to min-
imize the log-likelihood of the whole target output
T . We observe that the model tends to directly
copy S as the generation result. We conjecture this
is because most tokens in T overlap with S dur-
ing training, making the model take the shortcut of
copying instead of generating new tokens. To alle-
viate this issue, we split the source sentence S into
several sub-sentences by commas (S without com-
mas is not split), and train the model to decode only
the modified sub-sentences. As shown in Figure 1,
the source sentence S is split into 5 sub-sentences
by commas, and the decoder only needs to decode
the second and the fourth sub-sentence since the
left three sub-sentences remain unchanged. This
training strategy not only reduces the ratio of gen-
erated tokens that completely copy from the source
inputs, but also improves the generation speed. Fi-
nally, we use the generated sub-sentences to replace
the original ones in S to obtain the whole output
sentence.

4.2 Retrieval Augmentation

We observe that the model trained with the frame-
work described in §4.1 sometimes adds unsuitable
modifiers (e.g., using “colourful” to modify “sun”).
To alleviate this problem, we propose a retrieval
augmentation algorithm to prompt the model to
find suitable modifiers.

To this end, we first collect all pairs of modifiers
and corresponding modified words from the en-
gaging sentences in the training corpus, including
attribute words paired with the modified nouns, and
adverbial words paired with the modified verbs. We
identify the attribute and adverbial words in each
sentence through the dependency parsing toolkit
of LTP. Furthermore, we restrict that the identified
attribute and adverbial words are included in the
vocabulary of engaging words. In this way, we
obtain a dictionary that can map a noun or verb to
a list of its suitable modifiers.

During inference, we first find all nouns and
verbs in the source sentence S that are included in
the dictionary and do not have engaging modifiers.
Then, we randomly sample at most five modifiers
for each noun or verb from its corresponding list

5M,S and N are separated by <sep>.

of modifiers. The sampled modifiers along with
the nouns and verbs are inserted before the original
input. During training, considering that condi-
tioning on too many modifiers that are not used for
generating may make the model tend not to use the
retrieved modifiers, we drop the retrieved modifiers
corresponding to the nouns or verbs that do not
have any modifiers in the target output with a prob-
ability p1. Furthermore, to avoid excessive depen-
dence on the retrieved modifiers, for those nouns
or verbs that have modifiers in the target output,
we drop all corresponding modifiers with a proba-
bility p2, randomly sample at most five modifiers
with the probability p3, or randomly sample at most
four modifiers along with the ground-truth modifier
with a probability p4. Note that p2 + p3 + p4 = 1.
Finally, we insert the selected modifiers with the
nouns and verbs before the original input.

5 Experiments

5.1 Compared Models

We compare our model with the following three
variants: (1) Retrieve, which randomly samples
modifiers from the retrieved phrases, and then adds
the sampled modifiers to the sentence without using
neural language model. (2) LongLMvanilla, which
generates the whole polished sentence instead of
only generating the modified sub-sentences; (3)
LongLMno-retrieve, which generates the modified
sub-sentences without retrieval augmentation.

5.2 Experiment Settings

We initialize our model using the pretrained
checkpoint of LongLMLarge. For retrieval aug-
mentation, the probability p1, p2, p3, p4 is set to
0.75, 0.25, 0.25, 0.5, respectively. And the sam-
pled modifiers are dynamically changed at different
epochs during training. We run our experiments on
6 Tesla V100 GPUs (32GB memory). We use Deep-
Speed6 with mixed precision to train our model,
which helps significantly reduce the memory us-
age. We set learning rate to 5e-5 and batch size
per GPU to 8. The maximum input length is set to
384 and the maximum output length is set to 128.
We train the model for 10 epochs and select the
best checkpoint that has the lowest perplexity on
the validation set. During inference, we combine
beam search (beam size = 10) (Graves, 2012), top-
k sampling (k = 50) (Fan et al., 2018) and top-p

6https://github.com/microsoft/DeepSpeed
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sampling (p = 0.9) (Holtzman et al., 2020) for
decoding. We apply these settings to all models.

5.3 Automatic Evaluation

We evaluate the models on both TestAuto and
TestReal. We adopt the following two metrics:
(1) Copy ratio: It calculates the ratio of samples
whose output and input are exactly the same.(2) #
Added Modifiers: It calculates the averaged num-
ber of added modifiers in the outputs. These two
metrics aim to measure the differences between the
inputs and outputs.

Models Copy Ratio # Added Modifiers

LongLMvanilla 3.8% / 38.6% 1.16 / 0.40
LongLMno-retrieve 0.2% / 8.5% 1.27 / 0.94
Ours 0.3% / 7.1% 1.23 / 0.92

Table 3: Automatic evaluation result. The two values
separated by “/” indicate the performance on TestAuto

and TestReal, respectively.

The automatic evaluation result is shown in Ta-
ble 3. We do not report the results of the Retrieve
model because it adds as many modifiers as possi-
ble without considering fluency. LongLMvanilla has
the highest copy ratio and adds the fewest modi-
fiers among the three models. Moreover, all three
models tend to copy more from inputs on TestReal

than TestAuto, and LongLMvanilla shows a larger
margin than other two models which only generate
the modified sub-sentences. The result suggests
the worse generalization ability of LongLMvanilla.
Besides, we find that our model has a lower copy ra-
tio than LongLMno-retrieve when tested on TestReal,
indicating that the retrieval augmentation module
helps improve generalization to real texts by pro-
viding references for adding modifiers.

Aspects Scores Descriptions

Fluency
0 The output is obviously not fluent.
1 The output is a little bit not fluent.
2 The output is fluent.

Correctness

0 The modifiers in the output are incorrect.

1 The correctness of the modifiers in the out-
put is ambiguous.

2 The modifiers in the output are correct.

Engagingness

1 The Engagingness of the output drops.

2 The engagingness of the output is un-
changed.

3 The engagingness of the output improves
slightly.

4 The engagingness of the output improves.

5 The engagingness of the output improves
significantly.

Table 4: Scoring rules in manual evaluation.

Models Fluency (κ) Correctness (κ) Engagingness (κ)

Retrieve 0.82 (0.42) 0.61 (0.50) 2.00 (0.64)
LongLMvanilla 1.93 (0.69) 1.87 (0.52) 2.91 (0.75)
LongLMno-retrieve 1.81 (0.55) 1.73 (0.52) 3.21 (0.76)

Ours 1.88 (0.57) 1.84 (0.57) 3.44 (0.85)

Table 5: Manual evaluation result. We show Fleiss’s
kappa value κ in the parentheses to measure the inter-
annotator agreement.

5.4 Manual Evaluation

Considering there may be many plausible modifica-
tions for the same input, it is hard to automatically
evaluate the quality of the added modifiers. There-
fore, we resort to manual evaluation in terms of
three aspects including: (1) Fluency (0-2): whether
the polished sentence is fluent in terms of grammat-
ical quality; (2) Correctness (0-2): whether the
added modifiers in the polished sentence are suit-
able to modify the corresponding nouns, verbs, etc.;
(3) Engagingness (1-5): whether the engagingness
of the polished sentence improves compared with
the source sentence. We show the detailed scoring
rules in Table 4. We first randomly sample 100
inputs from TestReal. Then we use the Retrieve
model, LongLMvanilla, LongLMno-retrieve and our
model to generate polished sentences for the sam-
pled inputs. For each generated sample, we hire
three well-trained professional annotators to give a
score for each of the three evaluation aspects. Note
that these aspects are evaluated independently. We
directly average the scores given by three annota-
tors to get the final scores.

Table 5 shows the evaluation results. All re-
sults show moderate or better (κ > 0.4) inter-
annotator agreement. By comparing LongLMvanilla
and LongLMno-retrieve, we can see that only gen-
erating the modified sub-sentences helps improve
the engagingness of the polished sentence due to
the lower copy ratio. However, the drop of copy
ratio also brings a higher risk of adding unsuitable
modifiers. Our retrieval augmentation algorithm
improves the correctness of the polished sentences
by providing multiple possible modifier candidates.
Moreover, the suitable modifiers make the polished
sentences more fluent and engaging. However, if
we remove LongLM and only utilize the retrieved
modifiers, it is hard to create fluent and coherent
sentences as the result shows, which suggests the
necessity to integrate the contextualization abil-
ity of generation models. In summary, our model
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M S N LongLMno-retrieve Ours

从远处看，桃花星
星点点，似一群娇
小可爱的小女孩，
从近处看，这桃花
恰似那闭月羞花的
少女，在风中轻歌曼
舞，柔美的身姿随风
摇摆。 (From a dis-
tance, the peach blos-
soms are dotted, like
a group of petite and
cute little girls. From
a close point of view,
this peach blossom is
just like the girl who
closes the moon and
shy flowers, singing
and dancing softly in
the wind, and the fem-
inine posture sways
with the wind.)

冬天，桃花树养精蓄
锐，吮吸着冬天仅有的
丝丝阳光，它们饱经风
霜，静待那一声撕破寒
冬的惊雷；终于，明媚
的春天来了，当迎春花
开过，它们便向世人展
示出那闭月羞花、沉鱼
落雁的姿态。 (In winter,
peach blossom trees nour-
ish themselves, sucking in
the only shred of sunlight
in winter. They are full
of wind and frost, waiting
for the thunder that tears
through the cold winter. Fi-
nally, the bright spring has
come, and when the spring
flowers have bloomed, they
show the world their beau-
tiful posture.)

我觉得不
是“梅 花
香自苦寒
来 ，”还
是“桃 花
艳 自 苦
寒 来 。”
(I think
it’s not
just “plum
blossom
fragrance
comes
from bitter
cold", but
also“peach
blossoms
come
from bitter
cold".)

冬天，桃花树养精蓄
锐，无助地吮吸着冬天仅
有的丝丝阳光，它们饱经
风霜，静待那一声撕破寒
冬的惊雷；终于，明媚
的春天来了，当迎春花
开过，它们便向世人展
示出那闭月羞花、沉鱼
落雁的姿态。 (In winter,
peach blossom trees nourish
themselves, helplessly suck-
ing in the only shred of sun-
light in winter. They are
full of wind and frost, wait-
ing for the thunder that tears
through the cold winter. Fi-
nally, the bright spring has
come, and when the spring
flowers have bloomed, they
show the world their beauti-
ful posture.)

冬天，桃花树养精蓄锐，贪婪地吮
吸着冬天仅有的丝丝阳光，它们
饱经风霜，静待那一声撕破寒冬
的沉闷的惊雷；终于，明媚的春
天来了，当热情的迎春花开过，它
们便骄傲地向世人展示出那闭月羞
花、沉鱼落雁的姿态。 (In winter,
peach blossom trees nourish themselves,
greedily sucking in the only shred of
sunlight in winter. They are full of wind
and frost, waiting for the dull thunder
that tears through the cold winter. Fi-
nally, the bright spring has come, and
when the enthusiastic spring flowers
have bloomed, they proudly show the
world their beautiful posture.)
Retrieved Phrases: 沉闷的惊雷，贪婪地吮吸，
热情的迎春花，充分地展示，火辣辣的阳光...
(Dull thunder, greedily suck, enthusiastic spring
flowers, fully show, fiery sunlight...)

秋风一阵阵吹来，
一 层 层 桔 色 的“海
浪”迎面“扑”来，感
觉 像 看 四 维 电 影
一样。 (The autumn
wind blows in waves,
and the layers of or-
ange "waves" "flutter"
in the face, feeling
like watching a four-
dimensional movie.)

仔细一看，像一大团桔
红色的火焰在燃烧，
花蕊被花瓣紧紧团住，
最大的有爸爸拳头那么
大。 (If you look closely,
it looks like a large orange-
red flame burning, and the
flower buds are tightly held
by the petals, the largest
of which is the size of
Daddy’s fist.)

花是桔红
色的，绿
色的叶子
把花瓣裹
住。 (The
flowers
are orange-
red, and
the green
leaves wrap
the petals.)

Same as the input source
sentence S.

仔细一看，像一大团桔红色的火焰
在燃烧，花蕊被鲜艳的花瓣紧紧团
住，最大的有爸爸拳头那么大。 (If
you look closely, it looks like a large
orange-red flame burning, and the flower
buds are tightly held by the brightly col-
ored petals, the largest of which is the
size of Daddy’s fist.)
Retrieved Phrases: 鲜艳的花瓣，纤细的花蕊...
(brightly colored petals, slender flower buds...)

Table 6: Cases generated by different models on TestReal. M,S and N are the preceding, source and subsequent
sentences, respectively. LongLMvanilla copies the source sentences for both cases and we omit the generation results.
We mark the added modifiers generated by LongLMno-retrieve in orange. In the generation result of ours, we mark the
added modifiers that have been retrieved in red, and others in blue.

can improve the engagingness significantly7 while
keeping fluency and correctness comparable with
baselines.

5.5 Case Study

We show two cases in Table 6. Our model can
add suitable modifiers in multiple sub-sentences
with the help of various retrieved modifiers. In
contrast, LongLMno−retrieve uses “helplessly” to
modify “sucking”, which is reasonable in isolation
but is incoherent with the context, thus decreasing
the engagingness of the sentence. We additionally
show the result of the Retrieve model in Table 7 in
the appendix.

6 Demonstration

We have deployed our model online to automati-
cally polish the source sentence given its context.
Figure 2 shows a screenshot of our demo website.
Users need to enter the source sentence and its pre-
ceding and subsequent sentences. Note that the

7p < 0.01 when compared with LongLMvanilla (Wilcoxon
signed-rank test).

Figure 2: A screenshot of our demo website.

source sentence is mandatory but its context can
be empty. Then users can submit the request and
the result will be returned after a few seconds. We
show the polished sentence at the bottom of the
page, and the retrieved modifiers for reference.

7 Conclusion

We propose a new task named sentence polishing,
which requires polishing a given sentence while
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maintaining fluency and coherence with the con-
text. To this end, we construct about 160k parallel
examples by removing modifiers in collected en-
gaging sentences. Then we fine-tune LongLM to re-
construct the original sentences from the corrupted
ones by generating the modified sub-sentences. We
also propose a retrieval augmentation algorithm to
retrieve engaging modifiers from the training set,
which can help generate suitable modifiers. Auto-
matic and manual evaluation demonstrate strong
performance of our model to generate engaging
sentences. We have deployed our model online for
public use. Although we focus on adding modifiers
in this paper, the perturbation-and-reconstruction
framework can be potentially adapted to other pol-
ishing techniques such as adding metaphors, which
is left as future work. Moreover, although we train
our model on collected Chinese data, we believe
the method can be easily transferred to other lan-
guages.
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"一大团" ). Moreover, the sentence generated by
Retrieve is less fluent than the sentence generated
by our model.

506

https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


M S N Retrieve Ours

从远处看，桃花星
星点点，似一群娇
小可爱的小女孩，
从近处看，这桃花
恰似那闭月羞花的
少女，在风中轻歌曼
舞，柔美的身姿随风
摇摆。 (From a dis-
tance, the peach blos-
soms are dotted, like
a group of petite and
cute little girls. From
a close point of view,
this peach blossom is
just like the girl who
closes the moon and
shy flowers, singing
and dancing softly in
the wind, and the fem-
inine posture sways
with the wind.)

冬天，桃花树养精蓄
锐，吮吸着冬天仅有的
丝丝阳光，它们饱经风
霜，静待那一声撕破寒
冬的惊雷；终于，明媚
的春天来了，当迎春花
开过，它们便向世人展
示出那闭月羞花、沉鱼
落雁的姿态。 (In winter,
peach blossom trees nour-
ish themselves, sucking in
the only shred of sunlight
in winter. They are full
of wind and frost, waiting
for the thunder that tears
through the cold winter. Fi-
nally, the bright spring has
come, and when the spring
flowers have bloomed, they
show the world their beau-
tiful posture.)

我觉得不
是“梅 花
香自苦寒
来 ，”还
是“桃 花
艳 自 苦
寒 来 。”
(I think
it’s not
just “plum
blossom
fragrance
comes
from bitter
cold", but
also“peach
blossoms
come
from bitter
cold".)

冬天，桃花树养精蓄
锐，尽情吮吸着冬天仅
有的丝丝清澈的阳光，它
们饱经风霜，静待那一
声撕破凛冽的寒冬的沉闷
的惊雷；终于，明媚的
春天轻盈地来了，当许许
多多的迎春花热热闹闹开
过，它们便向世人努力展
示出那闭月羞花、沉鱼
落雁的轻盈的一种姿态。
(In winter, peach blossom
trees nourish themselves, en-
joyably sucking in the only
shred of clear sunlight in
winter. They are full of
wind and frost, waiting for
the dull thunder that tears
through the nippy and cold
winter. Finally, the bright
spring has come airily, and
when a lot of spring flow-
ers have bloomed with high
spirits, they show the world
their beautiful and light-
some posture.)

冬天，桃花树养精蓄锐，贪婪地吮
吸着冬天仅有的丝丝阳光，它们
饱经风霜，静待那一声撕破寒冬
的沉闷的惊雷；终于，明媚的春
天来了，当热情的迎春花开过，它
们便骄傲地向世人展示出那闭月羞
花、沉鱼落雁的姿态。 (In winter,
peach blossom trees nourish themselves,
greedily sucking in the only shred of
sunlight in winter. They are full of wind
and frost, waiting for the dull thunder
that tears through the cold winter. Fi-
nally, the bright spring has come, and
when the enthusiastic spring flowers
have bloomed, they proudly show the
world their beautiful posture.)
Retrieved Phrases: 沉闷的惊雷，贪婪地吮吸，
热情的迎春花，充分地展示，火辣辣的阳光...
(Dull thunder, greedily suck, enthusiastic spring
flowers, fully show, fiery sunlight...)

秋风一阵阵吹来，
一 层 层 桔 色 的“海
浪”迎面“扑”来，感
觉 像 看 四 维 电 影
一样。 (The autumn
wind blows in waves,
and the layers of or-
ange "waves" "flutter"
in the face, feeling
like watching a four-
dimensional movie.)

仔细一看，像一大团桔
红色的火焰在燃烧，
花蕊被花瓣紧紧团住，
最大的有爸爸拳头那么
大。 (If you look closely,
it looks like a large orange-
red flame burning, and the
flower buds are tightly held
by the petals, the largest
of which is the size of
Daddy’s fist.)

花是桔红
色的，绿
色的叶子
把花瓣裹
住。 (The
flowers
are orange-
red, and
the green
leaves wrap
the petals.)

仔细一看，像一大团桔
红色的粗犷的火焰在一团
团燃烧，漂亮的花蕊被娇
嫩的小花瓣紧紧团住，最
大的有爸爸拳头那么大。
(If you look closely, it looks
like a large and clouds of
orange-red and rough flame
burning, and the beautiful
flower buds are tightly held
by the delicate petals, the
largest of which is the size
of Daddy’s fist.)

仔细一看，像一大团桔红色的火焰
在燃烧，花蕊被鲜艳的花瓣紧紧团
住，最大的有爸爸拳头那么大。 (If
you look closely, it looks like a large
orange-red flame burning, and the flower
buds are tightly held by the brightly col-
ored petals, the largest of which is the
size of Daddy’s fist.)
Retrieved Phrases: 鲜艳的花瓣，纤细的花蕊...
(brightly colored petals, slender flower buds...)

Table 7: Cases generated by the Retrieve model on the same test examples as Table 6. We mark the added modifiers
generated by the Retrieve model in orange. We also show the generation result of our model for reference.

507


