
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 217–225

July 10-12, 2023 ©2023 Association for Computational Linguistics

TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models
of Different Modalities

Zhe Zhao1,∗, Yudong Li2, Cheng Hou1, Jing Zhao1, Rong Tian1, Weijie Liu1, Yiren Chen1,
Ningyuan Sun1, Haoyan Liu1, Weiquan Mao1, Han Guo1, Weigang Guo1, Taiqiang Wu1,

Tao Zhu1, Wenhang Shi3, Chen Chen1, Shan Huang1, Sihong Chen1, Liqun Liu1, Feifei Li1,
Xiaoshuai Chen1, Xingwu Sun1, Zhanhui Kang1, Xiaoyong Du3, Linlin Shen2, Kimmo Yan1

1 Tencent AI Lab
2 School of Computer Science and Software Engineering, Shenzhen University

3 School of Information and DEKE, MOE, Renmin University of China

Abstract

Recently, the success of pre-training in text
domain has been fully extended to vision, au-
dio, and cross-modal scenarios. The proposed
pre-training models of different modalities are
showing a rising trend of homogeneity in their
model structures, which brings the opportu-
nity to implement different pre-training mod-
els within a uniform framework. In this paper,
we present TencentPretrain, a toolkit support-
ing pre-training models of different modalities.
The core feature of TencentPretrain is the mod-
ular design. The toolkit uniformly divides pre-
training models into 5 components: embedding,
encoder, target embedding, decoder, and tar-
get. As almost all of common modules are
provided in each component, users can choose
the desired modules from different components
to build a complete pre-training model. The
modular design enables users to efficiently re-
produce existing pre-training models or build
brand-new one. We test the toolkit on text, vi-
sion, and audio benchmarks and show that it
can match the performance of the original im-
plementations.

1 Introduction

Pre-training on large-scale data and then fine-
tuning on downstream tasks has become a
paradigm for text, vision, and audio tasks (De-
vlin et al., 2019; Bao et al., 2021; Baevski et al.,
2020). In addition to the similarity in the pipeline
paradigm, these pre-training models as well have
close model structures: On one hand, most of them
consist of the following components, embedding,
encoder, target embedding, decoder, and target,
on the other hand, many modules in above compo-
nents are shared among models of different modal-
ities. For example, the transformer module (in
encoder component) (Vaswani et al., 2017), which

∗∗ Corresponding author.
E-mail: nlpzhezhao@tencent.com

is successful in the field of text, is increasingly
being applied to the vision and audio modalities.
(Dosovitskiy et al., 2020; Gulati et al., 2020). Table
1 lists the commonly used pre-training models and
their modules.

The trend towards homogeneity in pre-training
models is becoming more apparent, which makes it
possible to integrate them into a uniform frame-
work. A representative work in this direction
is Huggingface Transformers (Wolf et al., 2020),
which exploits a non-modular design mode. For
each pre-training model in Huggingface Transform-
ers, several separate classes are created, and the
code is not refactored with additional abstractions.
Users can develop their pre-training models inde-
pendently which is useful to collaborative develop-
ment in the community. However, in this design
mode, users need to implement the model from
scratch when adding a new pre-training model, re-
quiring considerable code work. In addition, with
the increased number of pre-training models, the
number of classes and lines of code also increases
linearly. Codes with the same function may be writ-
ten many times, which degrades the readability and
maintainability of the project.

In response to shortcomings of non-modular de-
sign mode, we introduce TencentPretrain, a modu-
lar toolkit specially designed for pre-training mod-
els of different modalities. As shown in Figure
1, TencentPretrain has five components, namely
embedding, encoder, target embedding, decoder,
and target. Among them, target embedding and
decoder components are optional, since the tar-
gets of many pre-training models do not involve
sequence decoding (Zhang et al., 2020; Lewis et al.,
2020). TencentPretrain is hierarchical modular de-
signed with two degrees of freedom. At component
level, users are free to combine modules within a
component, for example, combining multiple mod-
ules in target component to perform multi-task pre-
training (Lan et al., 2019; Sun et al., 2020). At

217

Pre-training model Modality Embedding Encoder Target
embedding Decoder Target

ELMo (Peters et al., 2018) Text word bi-lstm - - bilm
Infersent (Conneau et al., 2017) Text word gru - - cls

CoVe (McCann et al., 2017) Text word lstm word lstm lm
BERT (Devlin et al., 2019) Text word, pos, seg transformer - - mlm, sp

GPT-2 (Radford et al., 2019) Text word, pos transformer - - lm
T5 (Raffel et al., 2020) Text word transformer word transformer lm

ViT (Dosovitskiy et al., 2020) Vision patch, pos transformer - - cls
BEiT (Bao et al., 2021) Vision patch, pos transformer - - mlm
S2T (Wang et al., 2020) Audio speech, pos transformer word, pos transformer lm
ViLT (Kim et al., 2021) Text-vision word_patch, pos, seg transformer - - mlm, cls

Table 1: Typical pre-training models and their modules. The above models use different variants of transformer. Due to the page
limit, we do not list the details of transformer module in encoder component. In addition, abbreviations are used in embedding
and target columns. pos and seg respectively stand for position and segment embeddings. bilm, cls, lm, mlm, sp respectively
stand for bi-directional language model, classification, language model, masked language model, sentence prediction.

the model level, users can combine modules from
different components to constitute a complete pre-
training model.

Modularity in design makes TencentPretrain
scalable with the increasing number of newly pro-
posed pre-training models. Users are allowed to
reuse existing modules with little efforts, avoid-
ing repeated implementation of core functions. At
the same time, TencentPretrain provides a robust
and clear interface among different components. It
brings flexibility, allowing users to build custom
model structures through a configuration file with-
out any code work.

TencentPretrain is implemented with PyTorch
(Paszke et al., 2019), and it supports distributed
training and DeepSpeed optimization library
(Rasley et al., 2020). TencentPretrain is fully con-
nected with Huggingface Transformers, providing
comprehensive conversion scripts of pre-training
models between the two frameworks. Users can
switch between the two frameworks at low cost.
TencentPretrain is tested on text, vision, and au-
dio benchmarks and is able to reproduce the re-
sults of SOTA pre-training models. The Ten-
centPretrain toolkit is publicly available at https:
//github.com/Tencent/TencentPretrain.

2 Related Work

2.1 Pre-training models

Pre-training models have been widely applied in
text scenario. The success of pre-training is largely
due to the powerful encoders for feature extrac-
tion (e.g., LSTM and Transformer), as well as the
progress of pre-training target for learning knowl-
edge from unsupervised corpus (Zhang et al., 2020;
Lewis et al., 2020; Lan et al., 2019). More recently,

the text pre-training paradigm has been replicated
in other modalities. For example, Transformer en-
coder (and its variants) has been widely used in vi-
sion (Dosovitskiy et al., 2020), audio (Gulati et al.,
2020; Chen et al., 2022), and vision-language tasks
(Radford et al., 2021; Kim et al., 2021). Regarding
pre-training target component, text models have
inspired models of other modalities. Mirroring
the idea of masked language modeling (MLM),
MAE (He et al., 2022), BEiT (Bao et al., 2021),
and SimMIM (Xie et al., 2022) use masked im-
age modeling (MIM) for self-supervised vision pre-
training. Speech model Wav2vec2.0 (Baevski et al.,
2020) exploit negative sampling in pre-training tar-
get, which is previously used in word embedding
(Mikolov et al., 2013) and sentence prediction mod-
els (Logeswaran and Lee, 2018; Devlin et al., 2019;
Lan et al., 2019).

In addition to the sharing of modules, several
works have recently shown the feasibility of us-
ing the same pre-trained weight to handle dif-
ferent modalities simultaneously. For example,
ERNIE-ViLG (Zhang et al., 2021) and Talk2Face
(Li et al., 2022) exploit prefix language model to
achieve bi-directional text-and-image generation.
PolyViT uses a single transformer model for image,
video and audio classification (Likhosherstov et al.,
2021).

It can be seen that the trend towards homogene-
ity of pre-training models is becoming obvious,
from sharing modules, to using the same network
and parameters. This inspires us to build a unified
framework that can implement various pre-training
models efficiently.

218

https://github.com/Tencent/TencentPretrain
https://github.com/Tencent/TencentPretrain

Word embedding

Position embedding

Embedding
component

……
Segment embedding

Patch embedding

Speech embedding Word embeddingTarget
embedding
component ……

Encoder
component

(single/dual)

Decoder
componentRNN/LSTM/GRU

Gated CNN

Attention NN

……

Transformer

Fully visible/Causal/Prefix mask

Pre-LN/Post-LN/ Residual attention

RPE

RNN/LSTM/GRU

Gated CNN

Transformer

……Gated FNN

Attention sacle

……

Target
component

Pre-train Masked LM

LM

Classification

Bi-directional LM

Contrastive learning

……

Fine-tune Classification

NER Multi-choice

Regression QA

MRC ……

Multi-head/Fourier/Flow

Figure 1: The architecture of TencentPretrain. Pre-training models are implemented through module combination.
TencentPretrain encourages reusing the existing modules and writing code at the module granularity.

2.2 Toolkits with modular design

Modular design regards a complex system as the
combination of multiple modules, each of which
can be independently modified and replaced. In the
field of artificial intelligence, a typical work with
modular design is Keras (Chollet et al., 2015). The
core data structure of Keras is layer. Keras allows
building arbitrary graphs of layers to construct NN
models. In the NLP field, modular toolkits are pre-
vailing and they decompose models from different
perspectives with different abstraction levels. For
example, OpenNMT (Klein et al., 2017) is a mod-
ular toolkit designed for NMT. It builds an NMT
model through the combination of encoder and de-
coder modules. Related NLP modular toolkits in-
clude OpenAttack (designed for text attack) (Zeng
et al., 2021), Ngram2vec (designed for word em-
bedding) (Zhao et al., 2017), TextFlint (designed
for robustness evaluation) (Wang et al., 2021), Neu-
ralClassifier (designed for text classification) (Liu
et al., 2019a), and etc.

Inspired by the above-mentioned works, this
paper proposes TencentPretrain, a modular de-
signed toolkit for pre-training models of different
modalities. Compared with Huggingface Trans-
formers (Wolf et al., 2020), the most well-known
pre-training toolkit, TencentPretrain provides addi-
tional abstractions on pre-training model implemen-
tations, splitting a complete model into multiple
modules hierarchically. Pre-training weights be-
tween two toolkits can be switched easily. In fact,
TencentPretrain can be regarded as the high-level
encapsulation of Huggingface Transformers.

It is worth mentioning that TencentPretrain

reuses part of the code in UER (Zhao et al., 2019),
which is published in 2019 and supports several text
pre-training models. Compared with UER, Ten-
centPretrain is improved in three aspects: 1) It sup-
ports the modular design within components, pro-
viding a more scalable manner to build pre-training
models; 2) The target embedding and decoder com-
ponents are introduced to support sequence genera-
tion; 3) In addition to text, TencentPretrain supports
vision, audio, and cross-modal pre-training mod-
els. Currently, TencentPretrain supports around 30
pre-training models.

3 Framework

The current mainstream pre-training models are
basically similar in structure. In the embedding
component, the data is mapped into an embedding
matrix. And then the matrix is passed through
the encoder. Finally the target layer performs pre-
training tasks according to the output of the encoder
layer. If the pre-training task requires sequence
generation, the decoder is inserted between the
encoder and the target.

Figure 1 demonstrates the overall framework of
TencentPretrain. It divides a pre-training model
into five components, and various modules are pro-
vided in each component. In practice, a user firstly
selects one or multiple modules from each compo-
nent (modularization within component), and then
combine modules from different components to
build a pre-training model (modularization cross
components). In the rest of this section, we respec-
tively introduce the above five components and
modules included in them.

219

3.1 Embedding

In the embedding component, TencentPretrain con-
verts text, image, and audio modal data into em-
bedding matrix. The matrix holds the low-level
features as the input to the encoder.

TencentPretrain also contains auxiliary embed-
ding modules, e.g., position embedding and seg-
ment embedding. The embedding of pre-training
model is usually obtained by the addition of mul-
tiple modules. As shown in Table 1 (Embedding
column), the addition of word, position, and seg-
ment embeddings constitutes the embedding layer
of BERT; the addition of patch and position em-
beddings constitutes the embedding layer of ViT.
TencentPretrain supports hierarchical modular de-
sign, enabling users to freely combine modules
within embedding component to construct the de-
sired embedding layer. This design greatly reduces
code redundancy since different models often use
similar, instead of identical combinations.

3.2 Encoder

TencentPretrain supports traditional encoders (e.g.,
LSTM and CNN) (Hochreiter and Schmidhuber,
1997; Kim, 2014), as well as transformer and its
variants (e.g., different normalization (He et al.,
2021), attention (Lee-Thorp et al., 2021), masking
strategies (Dong et al., 2019)). Users can construct
customized transformer encoder by combining re-
lated options.

In addition, TencentPretrain supports dual-
stream encoder, with which the users specify two
encoder modules separately. Dual-stream encoder
is usually used by models related with semantic
search, such as text pair model SBERT (Reimers
and Gurevych, 2019) and text-image pair model
CLIP (Radford et al., 2021).

3.3 Target embedding and decoder (optional)

The pre-training tasks of some models involve se-
quence generation. These models require modules
in target embedding component and decoder com-
ponent. The modules in these two components are
identical with the modules in embedding compo-
nent and encoder component respectively.

3.4 Target

The module in target component receives high-
level features obtained from encoder (or decoder)
and then uses the features to perform pre-training
tasks. Specifically, the target estimates gradients by

objectives and updates the network weights. The
target is of vital importance to the performance and
has been extensively investigated in the pre-training
field (Devlin et al., 2019; Lan et al., 2019; Sun et al.,
2020). TencentPretrain supports comprehensive
target modules, including language model (Radford
et al., 2019), classification (Conneau et al., 2017),
contrastive learning (Radford et al., 2021), etc.

Sometimes pre-training models use multiple
tasks, e.g., predicting word and sentence relation-
ship simultaneously in BERT and ALBERT. And
multi-task is especially common in cross-modal
scenario (Kim et al., 2021; Lu et al., 2019; Qi et al.,
2020) since pre-training models have to deal with
supervision signals from different modalities. The
model can learn knowledge from different perspec-
tives through multiple tasks. With the characteris-
tic of hierarchical modular design, TencentPretrain
facilitates the implementation of multi-task pre-
training models. One can introduce multiple tasks
by combining different modules in target compo-
nent. The pre-training task can be easily added,
modified, and replaced.

3.5 Downstream task fine-tuning
TencentPretrain supports comprehensive down-
stream tasks, including classification, regression,
sequence labeling, reading comprehension, ques-
tion answering, automated speech recognition, etc.
As shown in Figure 1, the downstream task model
can be constructed by replacing the pre-training
target with specific task. In evaluation section, we
show the performances of TencentPretrain on a
range of benchmarks.

4 Usage

This section provides examples of building pre-
training models with TencentPretrain. The modular
design enables the users to quickly build the pre-
training model through the combination of modules.
Modules used in pre-training models are specified
in configuration files and the examples are shown
as follows1:
BERT implementation
{

"embedding" : [" word " , " pos " , " seg "] ,
"encoder" : " t r a n s f o r m e r " ,
"target" : [" mlm " , " sp "]

}

1Due to the page limit, we do not list entire configuration
files. More details (e.g., Transformer encoder options) can be
found in TencentPretrain project.

220

T5 implementation
{

"embedding" : [" word "]
"encoder" : " t r a n s f o r m e r "
"tgt_embedding" : [" word "]
"decoder" : " t r a n s f o r m e r "
"target" : [" lm "]

}

ViLT implementation
{
"embedding" : [" pa tch_word " , " pos " , " seg "]
"encoder" : " t r a n s f o r m e r "
"pooling" : " f i r s t "
"target" : [" c l s " , "mlm "]
}

CLIP implementation
{

"stream_0" : {
"embedding" : [" word " , " pos "] ,
"encoder" : " t r a n s f o r m e r " ,
"pooling" : " f i r s t "

}
"stream_1" : {

"embedding" : [" p a t c h " , " pos "] ,
"encoder" : " t r a n s f o r m e r "
"pooling" : " f i r s t "

}
"target" : [" c l r "]

}

• BERT configuration file provides modules in
embedding, encoder, and target components.
Since BERT has two pre-training tasks, its
target is the combination of masked language
model (mlm) and sentence prediction (sp).

• T5 involves text generation. Its configuration
file specifies modules used in target embed-
ding and decoder components.

• ViLT, an image-text pre-training model, is ba-
sically similar with text pre-training model
BERT. The main difference is that an image-
text embedding module is used in embedding
component.

• CLIP is a dual-stream model. The modules
in stream0 process text and the modules in
stream1 process image. Contrastive learning
(clr) module is used in target component.

If the desired pre-training model cannot be built
by the combination of existing modules, Tencent-
Pretrain encourages users to develop a new module,
and combine it with existing modules. We take the
implementation of ASR model S2T (Wang et al.,
2020) as an example. Most modules required by
S2T are available and we only need to implement

a new module, speech embedding, which greatly
speeds up the implementation process.

TencentPretrain and Huggingface Transformers
are interoperable. The conversion scripts are pub-
licly available2, and the weights of different pre-
training models can be converted between the two
frameworks. In practical use, users are free to
switch between these two frameworks.

With TencentPretrain, we build a pre-trained
weight model zoo. Each pre-trained weight has two
versions which can be loaded by either TencentPre-
train or Huggingface Transformers. Currently, the
TencentPretrain model zoo includes over 50 pre-
trained weights. We provide pre-training data as
well as training details, allowing users to reproduce
results with less effort. The weights (pre-trained
by TencentPretrain) are currently downloaded over
500 thousand times per month3.

Model HF UER TP
Transformer 1135 749 795

+BERT +822
+130

(+word_pos_seg,
bert)

+149
(+pos,seg,
mlm,sp)

+RoBERTa +696 +92
(+word_pos,mlm)

+0

+GPT-2 +688 +0 +0
+T5 +1008 +17(+word) +0
+ViT +493 - +59(+patch)
+S2T +824 - +51(+speech)

+ViLT +618 - +15
(+word_patch)

Table 2: The number of code lines required for imple-
menting a new pre-training model. The comment line
in code is not counted. For UER and TencentPretrain,
the added modules are also listed. Green and violet are
used to denote embedding and target modules. Since
UER does not support modularization within compo-
nent, it has to introduce more modules (classes), e.g.,
word_pos_seg embedding and bert target, which are
decomposed into multiple modules in TencentPretrain.

5 Evaluation

This section evaluates TencentPretrain framework
quantitatively. Firstly, we compare TencentPretrain
with non-modular framework in terms of imple-
mentation cost. Then we show that TencentPretrain
can reproduce the results of SOTA models on a
range of benchmarks.

2https://github.com/Tencent/TencentPretrain/tree/main/scripts
3https://huggingface.co/uer

For Huggingface account, we inherit UER account instead of
using TencentPretrain account.

221

Model MNLI QNLI QQP RTE SST MRPC CoLA STS AVG
BERT-base (Ori.) (Devlin et al., 2019) 83.9 90.7 90.7 65.7 92.3 88.9 56.5 88.6 82.2

BERT-base (DistilBERT) (Sanh et al., 2019) 86.7 91.8 89.6 69.3 92.7 88.6 56.3 89.0 83.0
BERT-base (DynaBERT) (Hou et al., 2020) 84.8 92.0 90.9 71.1 92.9 87.7 58.1 89.8 83.4
BERT-base (Metadistil) (Zhou et al., 2022) 84.6 91.2 91.4 71.4 93.0 87.6 58.9 90.2 83.5

BERT-base (Ours) 83.4 91.1 91.2 67.9 92.4 86.5 59.6 89.1 82.6
RoBERTa-large (Ori.) (Liu et al., 2019b) 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9

RoBERTa-large (Ours) 90.4 94.7 92.1 86.6 96.4 90.2 67.0 92.5 88.7

Table 3: The comparison of TencentPretrain with other implementations on GLUE benchmark. We pre-train from
scratch and then fine-tune on a range of datasets

5.1 Implementation cost

The number of code lines is used to estimate the
implementation cost. We only count the code
lines in classes inheriting nn.Module. We com-
pare three frameworks, Huggingface Transformers
(HF), UER, and TencentPretrain (TP). Huggingface
Transformers exploits non-modular design. UER
exploits semi-modular design, which doesn’t sup-
port modularization within component.

When we continue to add new pre-training mod-
els (as shown in Table 2 from top to bottom), the
number of code lines required by the Tencent-
Pretrain is less than the other two toolkits. Take
RoBERTa as an example, TencentPretrain does not
require any code work since it reuses modules for
BERT. UER needs to add word_pos module in em-
bedding component and mlm module in target com-
ponent. Huggingface Transformers builds a series
of classes specific to RoBERTa, such as RoBERTa-
Model, RoBERTaEmbeddings, RoBERTaEncoder,
RoBERTaPooler, which greatly increases the num-
ber of code lines. For other pre-training mod-
els, the conclusions are similar. The homogene-
ity among pre-training models makes the modular
design much more advantageous.

In general, the code styles of Huggingface and
TencentPretrain are inconsistent. Huggingface cre-
ates separate classes for each pre-training model,
while TencentPretrain establishes generic modules
that are independent of the specific model. There-
fore, for most pre-training models, no additional
code implementation is required in TencentPre-
train.

5.2 Reproducibility

In this section, we follow the experimental settings
of original papers. The scripts for running models
on benchmarks are organized here4, and users can
easily reproduce the results in Table 3 and 4.

4https://github.com/Tencent/TencentPretrain/wiki/
Competition-solutions

For text modality, we use GLUE benchmark to
test TencentPretrain’s performance. BERT-base
and RoBERTa-large are used as test models. The
results of BERT-base are listed in the first five rows
in Table 3. As shown in AVG column, our result is
82.6, which falls into the range of 82.2-83.5 (the
lowest and highest results reported by other pa-
pers). The average scores reported by DynaBERT
and Metadistil are slightly higher than our result.
One of the reasons is that development set of RTE
only includes 277 instances, which leads to large
fluctuations. The RTE results reported by Dyn-
aBERT and Metadistil are 3 point higher than our
implementation. For RoBERTa-large, we can ob-
serve that our implementation results are close to
the results reported by original RoBERTa paper.

Table 4 provides the results on vision and audio
tasks. ViT (Dosovitskiy et al., 2020) and BEiT
(Bao et al., 2021) are used as test models for vi-
sion datasets. Top1 accuracy on vision datasets is
reported. The original paper of BEiT only reports
results on ImageNet. For audio dataset, we report
the Automatic Speech Recognition (ASR) results
on LibriSpeech with S2T (Wang et al., 2020). Word
Error Rate (WER) is shown in Table 4 (bottom).
We can observe that the results of TencentPretrain
are close to the results reported by original papers.

Model CIFAR10 CIFAR100 ImageNet
1000

ViT-base 98.95 91.67 83.97
ViT-base(Ours) 98.73 92.12 83.97

BEiT-large - - 87.30
BEiT-large(Ours) - - 87.24

Model devclean devother testclean testother
S2T 3.8 8.9 4.4 9.0

S2T(Ours) 3.8 9.2 4.1 9.0

Table 4: The comparison of TencentPretrain with orig-
inal implementations on datasets of vision and audio
modalities.

222

6 Conclusion

This paper presents TencentPretrain, a pre-training
toolkit characterized by modular design and multi-
modal support. In TencentPretrain, pre-training
models of different modalities are regarded as the
combination of multiple modules, which is easy to
configure and extensible. Furthermore, we quanti-
tatively demonstrate that TencentPretrain facilitates
the users to reuse existing modules and decreases
the cost of model development. At last, we test
TencentPretrain on a range of datasets and show
that it can reproduce the SOTA results.

7 Limitations

Although the TencentPretrain pre-training frame-
work has integrated optimization libraries like
Deepspeed and Apex, it still lacks support for other
components such as Megatron. In the future, we
will provide more parallelism modes to achieve
efficient training of large-scale language models
(LLM).

Acknowledgements

The work was supported by the National Natu-
ral Science Foundation of China under Grant No.
62072458. We are grateful to Lusheng Zhang, Xi-
ayu Li, Jian Kang, Jinwen Luo, Weidong Guo, Ji-
achi Liu, Jianwei Cui, Dongxiao Huang, Xingyu
Bai, Yang Xu, Huanqin Wu, Tongwen Huang, Peng
Meng, Yanming Xu, Chunquan Chen, Xuefeng
Yang, Qi Ju for code contribution. We also re-
ceived helpful ideas and feedback from members
of the TencentNLP Oteam and Institute of Com-
puter Vision, Shenzhen University.

References
Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,

and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in Neural Information Processing Systems,
33:12449–12460.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei.
2021. Beit: Bert pre-training of image transformers.
In International Conference on Learning Representa-
tions.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2022.
Wavlm: Large-scale self-supervised pre-training for
full stack speech processing. IEEE Journal of Se-
lected Topics in Signal Processing.

François Chollet et al. 2015. keras.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 670–680.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in Neural Information Process-
ing Systems, 32.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. arXiv preprint
arXiv:2005.08100.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi-
otr Dollár, and Ross Girshick. 2022. Masked autoen-
coders are scalable vision learners. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16000–16009.

Ruining He, Anirudh Ravula, Bhargav Kanagal, and
Joshua Ainslie. 2021. Realformer: Transformer likes
residual attention. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 929–943.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782–9793.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt:
Vision-and-language transformer without convolu-
tion or region supervision. In International Con-
ference on Machine Learning, pages 5583–5594.
PMLR.

223

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. EMNLP.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M Rush. 2017. Opennmt: Open-
source toolkit for neural machine translation. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
67–72.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2021. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Yudong Li, Xianxu Hou, Zhe Zhao, Linlin Shen, Xue-
feng Yang, and Kimmo Yan. 2022. Talk2face: A
unified sequence-based framework for diverse face
generation and analysis tasks. In Proceedings of the
30th ACM International Conference on Multimedia,
pages 4594–4604.

Valerii Likhosherstov, Anurag Arnab, Krzysztof Choro-
manski, Mario Lucic, Yi Tay, Adrian Weller, and
Mostafa Dehghani. 2021. Polyvit: Co-training vision
transformers on images, videos and audio. arXiv
preprint arXiv:2111.12993.

Liqun Liu, Funan Mu, Pengyu Li, Xin Mu, Jing Tang,
Xingsheng Ai, Ran Fu, Lifeng Wang, and Xing Zhou.
2019a. Neuralclassifier: an open-source neural hi-
erarchical multi-label text classification toolkit. In
Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demon-
strations, pages 87–92.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence representa-
tions. arXiv preprint arXiv:1803.02893.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. Ad-
vances in neural information processing systems, 32.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. Advances in neural infor-
mation processing systems, 30.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Di Qi, Lin Su, Jia Song, Edward Cui, Taroon Bharti,
and Arun Sacheti. 2020. Imagebert: Cross-modal
pre-training with large-scale weak-supervised image-
text data. arXiv preprint arXiv:2001.07966.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

224

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A
continual pre-training framework for language under-
standing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8968–8975.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
s2t: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33–39.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou,
Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui Zheng,
Zexiong Pang, et al. 2021. Textflint: Unified multi-
lingual robustness evaluation toolkit for natural lan-
guage processing. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 347–355.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jian-
min Bao, Zhuliang Yao, Qi Dai, and Han Hu. 2022.
Simmim: A simple framework for masked image
modeling. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 9653–9663.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Zixian Ma, Bairu Hou, Yuan Zang, Zhiyuan
Liu, and Maosong Sun. 2021. Openattack: An open-
source textual adversarial attack toolkit. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
System Demonstrations, pages 363–371.

Han Zhang, Weichong Yin, Yewei Fang, Lanxin Li, Bo-
qiang Duan, Zhihua Wu, Yu Sun, Hao Tian, Hua Wu,
and Haifeng Wang. 2021. Ernie-vilg: Unified gen-
erative pre-training for bidirectional vision-language
generation. arXiv preprint arXiv:2112.15283.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Zhe Zhao, Hui Chen, Jinbin Zhang, Wayne Xin Zhao,
Tao Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju,
and Xiaoyong Du. 2019. Uer: An open-source
toolkit for pre-training models. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
241–246.

Zhe Zhao, Tao Liu, Shen Li, Bofang Li, and Xiaoyong
Du. 2017. Ngram2vec: Learning improved word
representations from ngram co-occurrence statistics.
In Proceedings of the 2017 conference on empirical
methods in natural language processing, pages 244–
253.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley.
2022. Bert learns to teach: Knowledge distillation
with meta learning. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7037–
7049.

225

