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Abstract

Additive interventions are a recently-proposed
mechanism for controlling target-side attributes
in neural machine translation. In contrast to
tag-based approaches which manipulate the
raw source sequence, interventions work by
directly modulating the encoder representa-
tion of all tokens in the sequence. We ex-
amine the role of additive interventions in a
large-scale multi-domain machine translation
setting and compare its performance in vari-
ous inference scenarios. We find that while
the performance difference is small between
intervention-based systems and tag-based sys-
tems when the domain label matches the test do-
main, intervention-based systems are robust to
label error, making them an attractive choice un-
der label uncertainty. Further, we find that the
superiority of single-domain fine-tuning comes
under question when training data size is scaled,
contradicting previous findings.

1 Introduction

Multi-domain machine translation (MDMT) is the
paradigm in which a single model is trained to ser-
vice many domains by training on multiple corpora
covering disparate labeled domains. The goal of
MDMT is not only to provide high quality general
machine translation enabled by knowledge trans-
fer across domains, but also to enable high quality
domain-specific machine translation when a model
is provided cues about the target domain, used to
control the generation. Though an intuitive task,
the expectations surrounding the task were only
recently formalized by Pham et al. (2021) in which
the authors provided both a set of functional re-
quirements demanded of successful MDMT mod-
els and an experimental framework under which
those requirements can be tested.

Pham et al. (2021) explored several mechanisms
for controlling domain, ranging from simple tag-
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based approaches to meta-learning based mecha-
nisms. According to the functional requirements
outlined by the authors, no method meets all the ex-
pectations demanded of effective multi-domain ma-
chine translators, though the experiments were run
on a relatively small dataset of only in-domain data.
The primary remaining expectations, according to
the authors, are the superiority of fine-tuning based
methods as compared to these methods which can
control the target domain, and the ability to accom-
modate fuzzy or uncertain domains.

This framework is useful, but the authors leave
open several other questions regarding the state of
MDMT. The first of these is data size. Previous
experiments focused only on relatively small, in-
domain data in an otherwise high-resource setting
of English-French and found that most models pale
in comparison to models fine-tuned on a single
domain. We wonder whether this fine-tuning su-
periority conclusion holds under a more realistic
paradigm in which models trained on large, out-of-
domain datasets are fine-tuned on in-domain data.
While pretraining and fine-tuning on in-domain
data can yield strong in-domain performance—as
observed by the authors—this is likely to be at the
cost of general domain performance, calling into
question the transferability under MDMT.

Next, we wonder if new methods might help with
the issue of domain control in MDMT. The authors
examine reasonable mechanisms for controlling the
domain which were known at the time. Since then,
new methods have been developed which we hope
to investigate under the prescribed framework. We
hypothesize that additive interventions (Schioppa
et al., 2021), which learn tag embeddings separately
from the encoder, may be harder to ignore, and that
the learned interventions may be able to absorb
target-side properties more easily, while freeing the
encoder to learn strong representations purely for
translation.

In this work we scale the original experimental
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framework presented in Pham et al. (2021) by in-
cluding a significantly larger, more realistic dataset.
We also experiment with additive interventions as
an alternative to domain tagging. We find that:

• additive interventions perform roughly equiv-
alently with tag-based approaches in the ideal
case where provided tags match the target do-
main.

• additive interventions are much more robust
in the face of incorrect and uncertain domain
labels.

• when the experiment is scaled, models fine-
tuned targeting a single domain are strong
translators, but are never unmatched by other
models which can service multiple domains
suggesting that MDMT models in a high-
resource setting are competitive with best-in-
class baselines.

2 Method

As a baseline, we inject domain metadata using the
tag-based approach. In this scheme, a token repre-
senting the target-side attribute, t, is prepended to
source segment x and fed to the encoder E whose
hidden representation is finally exposed to decoder
D in a “normal" fashion:

ŷ = D(E([t] + x))

where + indicates sequence concatenation. In tag-
based approaches, the expectation is that the do-
main tag as a prefix acts as a conditioning variable
which encourages target-side attributes to appear
as desired in the final translation.

While effective and architecturally non-invasive,
this method is not without downsides. Because the
target token’s contribution to the encoder represen-
tation is learned, there is a chance that the attribute
can be ignored. To address this and other weak-
nesses of tag-based approaches, Schioppa et al.
(2021) present the additive interventions method
which requires an encoder E, a decoder D, and a
separate attribute embedding layer Emb. Given
a source segment x and a sentence-level attribute
token t, we have

V = Emb(t)

ŷ = D(E(x)⊕ V )

where ⊕ is defined as addition broadcasted along
the token dimension. Importantly, this allows pro-
totypically discrete attributes to be represented and

Source Parallel sents (k) Source tokens (m)

ParaCrawl 229,340 4,190.0
BANK 190 6.3
IT 270 3.6
LAW 501 17.1
TALK 160 3.6
RELIG 130 3.2
MED 2,609 133.0
NEWS 254 5.6

Table 1: Effective training set sizes

controlled in a continuous fashion, allowing for in-
terpolation, scaling, and positionally invariant com-
binations, among other useful features. We note
that these are somewhat analogical to an “additive"
version of “source factors" approaches (Hoang
et al., 2016; Sennrich and Haddow, 2016) with one
major difference: additive interventions happen
after the encoder rather than before the encoder.

While the original work only introduces the in-
terventions to the top-most decoder layers in order
to allow for partially freezing pretrained networks,
we simplify by applying the intervention to the top
layer of the encoder, such that it affects all decoder
layers. Further, the authors report that improved
general performance can be promoted by randomly
inducing a zero-vector intervention. As such, we
can specify that t is randomly replaced by ⟨PAD⟩
with some probability with the same effect. We
report 20% masking in this paper, though we ex-
periment with 0% masking and find no significant
differences between the two.

3 Experimental Setup

3.1 Data

We follow the supervised data settings prescribed
by Pham et al. (2021) which includes splits from
seven domains of varying disparity: BANK, IT,
LAW, TALK, RELIG, MED, and NEWS. These
domains are drawn from various sources: the
European Central Bank corpus (BANK) (Tiede-
mann, 2012); the documentation for the KDE,
Ubuntu, GNOME, and PHP projects from Opus
(Tiedemann, 2009) combined to form IT; The JRC-
Acquis corpus (LAW) (Steinberger et al., 2006);
TED Talks (TALK) (Cettolo et al., 2012); the Tanzil
translation of the Koran (RELIG); the UFAL Medi-
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Method
BANK IT LAW TALK RELIG MED WMT15

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

general base 42.4 0.485 38.3 0.311 56.2 0.832 40.6 0.585 18.9 0.166 43.9 0.548 41.3 0.639

combined base 52.1 0.559 45.6 0.528 59.8 0.855 41.5 0.614 27.8 0.284 49.8 0.651 41.7 0.633
combined ints 51.9 0.573 44.7 0.512 59.9 0.859 41.3 0.610 27.6 0.268 50.1 0.647 41.6 0.638
combined tags 52.0 0.546 46.5 0.492 59.8 0.856 43.7 0.647 28.8 0.307 50.1 0.647 36.8 0.606

in-dom ints 58.5 0.615 51.9 0.615 66.6 0.891 39.2 0.494 88.7 0.872 55.4 0.695 30.1 0.289
in-dom tags 58.7 0.611 51.1 0.599 66.4 0.893 39.8 0.531 89.5 0.893 55.4 0.685 26.8 0.243

multi-dom FT ints 56.1 0.604 50.6 0.605 64.9 0.896 41.3 0.580 79.4 0.791 51.6 0.671 34.3 0.433
multi-dom FT tags 56.9 0.614 50.9 0.595 64.8 0.870 41.6 0.605 83.6 0.850 51.9 0.673 33.4 0.439

single-dom FT 58.2 0.637 50.8 0.629 67.0 0.917 45.1 0.653 39.0 0.402 52.6 0.679 − −

Table 2: MT quality scores per test set. Statistically significant differences between tags and ints at the 95%
confidence interval with 1000 bootstrapped samples bolded.
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Figure 1: COMET scores (×100) by domain and approach

cal corpus v1.0 (MED)1; and News Commentary
corpus v12 (NEWS) (Tiedemann, 2012). For sake
of consistency, we rely on roughly the same splits
as provided by the authors,2, though we remove
duplicates within each domain, which changes the
size of each training set slightly. Additionally we
include English-French ParaCrawl v9 (Bañón et al.,
2020) to serve as a large out-of-domain training
set for some experimental settings. The effective
training set sizes are summarized in Table 1.

3.2 Models

We consider several models falling into two cate-
gories: those trained with (control) and with-
out(no control) a method for selecting the tar-
get domain.

We use approximately the same architecture for
all settings, though note that all intervention-based

1https://ufal.mff.cuni.cz/ufal_
medical_corpus

2https://github.com/qmpham/experiments

models have an extra embedding layer with the
same embedding dimension as the encoder3. The
basic architecture follows a 12-layer encoder, 6-
layer decoder transformer with 8 attention heads
each (Vaswani et al., 2017), encoder and decoder
feedforward embedding dimensions of 4096, and
encoder and decoder embedding dimensions of
1024.

3.2.1 no control

We train three models with no training-time infor-
mation about the domain that the data comes from
and, as a consequence, have no ability to explicitly
control the target domain:

1. we have an out-of-domain baseline which is
trained only on ParaCrawl: general base.

2. we have a model which is trained on the
in-domain plus out-of-domain training sets:

3Adding |D| × 1024 parameters, where D is the set of
domain labels

222

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus
https://github.com/qmpham/experiments


combined base.

3. we have six quasi-oracle fine-tuned mod-
els which are produced by fine-tuning the
general base model on each target do-
main’s training set; we collectively refer to
this set of models as single-domain fine-tuned
(single-dom FT).

3.2.2 control

As mechanisms for controlling the target domain
we consider:

1. prepending the domain tag to the source se-
quence, tags

2. additive interventions with 20% masking,
ints

We apply these two methods to three settings:

1. an in-domain plus out-of-domain setting,
combined

2. an in-domain-only setting, in-dom

3. a multi-domain fine-tuning setting,
multi-dom FT, where general base is
fine-tuned on all in-domain data with domain
information available at training time.

This results in six models:

• combined ints

• in-dom ints

• multi-dom FT ints

• combined tags

• in-dom tags

• multi-dom FT tags.

3.3 Training
We train a joint unigram segmentation model
(Kudo, 2018) using SentencePiece (Kudo and
Richardson, 2018) with a vocabulary of size 32k for
each setting in general base, combined, and
in-dom (reusing general base’s model for
multi-dom FT and single-dom FT). We
train each model by sampling 10M sentences
randomly, splitting on digits and enabling byte-
fallback. We add a special token for each domain
for which we have splits: ⟨BANK⟩, ⟨IT⟩, ⟨LAW⟩,
⟨TALK⟩, ⟨RELIG⟩, ⟨MED⟩, and ⟨NEWS⟩. We
use these models to segment the data as appropriate
in each setting.

We use dropout of 0.1 but disable attention
dropout and ReLU dropout. We optimize label
smoothed cross-entropy loss with a label smooth-
ing factor of 0.1 (Szegedy et al., 2016) using Adam
(Kingma and Ba, 2015). All models are built and
trained using fairseq (Ott et al., 2019).

For models trained with out-of-domain data, we
shard the effective dataset with each shard contain-
ing approximately 1b target tokens. For models
trained with in-domain data only, we consider the
entire combined in-domain dataset to be a single
shard. We train for 30 virtual epochs, where a vir-
tual epoch is defined as a single pass over one shard.
For models which are fine-tuned, we fine-tune for
10 additional virtual epochs.

Each in-domain training set is assigned a unique
special token which is included in the vocabulary
and examples drawn from these in-domain training
sets are provided the associated special token at
training time. Examples from ParaCrawl are as-
signed no special domain token (i.e., no token is
prepended in tags models and ⟨PAD⟩ is always
provided in ints models).

3.4 Evaluation

We evaluate in three settings to probe various as-
pects of MT quality:

• we evaluate in-domain performance with each
model from control and no control
to determine the relative effectiveness of the
methods of control against methods without
control.

• we evaluate on the WMT15 English-French
test set (Bojar et al., 2015) with no domain
label provided (i.e., as if the models were in
the no control setting) to test catastrophic
forgetting (Goodfellow et al., 2013) in a gen-
eral setting. Importantly, while the models
trained on in-domain data have been exposed
to newswire data, the labels are not provided
at test time in this setting.

• we evaluate the effect of providing the incor-
rect tag to each test set, as computed by Sacre-
BLEU (Post, 2018) and COMET (Rei et al.,
2020), to test the resilience of models to label
errors

4 Results

No clear winner in ideal case We evaluate the
setting in which the provided domain label matches
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Figure 2: Impact of domain label error on COMET per test set and approach

Figure 3: COMET of combined models under various domain labels. ints left, tags right. ints maintain
high quality translations under mismatching domain labels in all cases, unlike tags.

Figure 4: COMET of in-dom models under various domain labels. ints left, tags right. ints maintain high
quality translations under mismatching domain labels in all cases, unlike tags.

the target test domain, and the setting of WMT15
without a provided domain label, for each setting
apart from single-dom FT. The results can be
read in Table 2 and are visualized in Figure 1.

Table 2 shows that when comparing control

models within a training setting using bootstrap re-
sampling (sample sizes of 1000) (Koehn, 2004), the
difference in performance of tags and ints are
insignificant in the majority of cases. While there
are a few cases of statistically significant differ-
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Figure 5: COMET of multi-dom FT models under various domain labels. ints left, tags right. ints
maintain high quality translations under mismatching domain labels in all cases, unlike tags.

ences, neither tags nor ints are uniformly pre-
ferred in these cases. The opposite is observed on
the out-of-domain WMT15, where ints performs
uniformly better than tags, often significantly.

We observe that methods with control in the
combined setting perform approximately equally
to the combined base, showing that naive com-
bination of in-domain and out-of-domain with a
mechanism to control the domain does not improve
over approaches without control, though in-dom
and multi-dom FT models tend to perform bet-
ter on average than any model in the combined
setting.

ints are robust under domain label mismatch
Next, we perform an ablation study in which we
score each test across all domain label assignments
(including the correct label and no label), which
allows us to observe the effects of test-time label-
ing error. While we compute both BLEU and
COMET, we include only COMET here.4 We
include the full results in Tables 3–8, but summa-
rize the findings in Figures 2-5, which show the
robustness of various models and settings to misla-
beled domains.

Figures 3–5 show heatmaps resulting from this
ablation, but we refer interested readers to Tables 3–
8 for the long-form charts. We see that tags sys-
tems’ performances vary dramatically, incurring
severe degradation in the face of domain label er-
ror but performing strongest along the diagonal.
ints systems, on the other hand, see only small
performance changes when provided with incor-
rect domain labels and roughly equal performance
under all possible labels, as observed in Figure 2.
We see that in-dom tags have the highest aver-

4Similar results for BLEU are listed in Appendix A.2

age variation in performance, likely owing to the
small amount of data which suggests that in-dom
tags overfits to the training data. The variation
in performance of ints systems approaches that
of the general base, which by definition ig-
nores the domain label and therefore has 0 vari-
ance; however, ints has demonstrably stronger
performance than general base in all domains
and, indeed, stronger performance than tags in a
handful of domains and thus seems to learn strong
general representations for translation which disen-
tangles the representations of the encoder from the
representations of the attribute.

Additionally, through manual analysis we find
that tags systems are more prone to hallucinating
translation artifacts from the corpus associated with
the domain label being used, often causing quality
degradation. We refer to Table 15 for an example
of such artifacts, which includes topical and target
language mismatches along with tokens which ap-
pear as a result of the HTML-encoded nature of the
⟨IT⟩ dataset.5

Single-domain fine-tuning is not as competi-
tive in large-data settings We compare the per-
formance of models trained only with in-domain
data and out-of-domain data. From Table 2, we
see slightly stronger in-domain performance for
in-dom models as compared to models fine-tuned
with out-of-domain data at the cost of out-of-
domain performance on WMT15, suggesting that
multi-dom FT models generalize better and
may surpass in-dom models with more training
due to the relatively little fine-tuning budget of 10
epochs afforded to them comparatively.

5Escaping seems to be an artifact of Moses preprocessing
leakage of raw data; not germane to all domains in this work.
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Finally, we see that while single-dom FT
is typically among the highest performing sys-
tems for a given test set, it is never unmatched
by an alternative system in control. We observe
that single-dom FT is uniformly stronger than
general base and combined, in-dom and
multi-dom FT show competitive in-domain
performance. We note that because there is one
single-dom FT model per test set, the effec-
tive parameter budget is six times larger than any
of the individual models, providing support for
both its impracticality and untenability as com-
pared to any other setting. This suggests that single-
domain fine-tuning is not as effective as expected
in high-resource settings as a strong upper-bound
in MDMT.

5 Related Work

Incorporating extra-sentential information has a
rich history in NMT. Aside from controlling for
the domain, Sennrich et al. (2016) use a politeness
tag at training and inference time to accommodate
coarse politeness control in machine translation.
Additionally, Kuczmarski and Johnson (2018) use
tags to afford users the ability to vary binary gender
in the translations of gender-neutral inputs, hoping
to address gender bias in MT.

At the sub-sequence level, Hoang et al. (2016)
and Sennrich and Haddow (2016) included
linguistically-informed word-level “source fac-
tors”, such as part-of-speech tags and dependency
relations, as additional feature factors to be concate-
nated to form a full encoder representation with the
goal of reducing ambiguity and sparseness issues.

Perhaps more relatedly, several works have ex-
plored the impacts of incorporating domain infor-
mation into training using various methods. Kobus
et al. (2017) explore two methods: a tag-based ap-
proach which concatenates a special token to the
end of the source sequence, and a “source factors”-
style approach which concatenates domain-level
embeddings to each token embedding in the source.
Sharaf et al. (2020) explore few-shot domain adap-
tation, rather than domain control, through the lens
of meta-learning and show that a meta-learning
based approach is generally stronger than other
adaptation approaches, though we note that adap-
tation and control address different needs. Finally,
Stojanovski and Fraser (2021) frame machine trans-
lation with document-context as an unsupervised
domain adaptation problem and incorporate do-

main embeddings within the encoder, summed with
positional and word embeddings, yielding strong
improvements over competitive baseline models.

6 Conclusion

In this work we examined the relative impact of
additive interventions in a large-scale MDMT set-
ting. We find that typically there are no significant
differences between additive interventions and tag-
based approaches when the provided domain label
matches the test set, but find that additive inter-
ventions exhibit much more desirable degradation
properties when the domain label is unknown or
incorrectly provided. In addition, we find that mod-
els first trained on a large, general corpus and then
fine-tuned on a single-domain—a realistic base-
line in machine translation—rarely perform signif-
icantly better than approaches which are trained
or fine-tuned only on in-domain data, which is in
contrast to their generally superior performance in
low-resource settings.

In future work we consider developing exten-
sions to additive interventions which can further
improve their performance in MDMT settings. Ad-
ditionally, studying additive interventions in other
tasks where tag-based approaches are dominant,
such as multi-lingual machine translation, could be
an interesting avenue for exploration.
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A Raw scores

A.1 Ablation (COMET)

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.573 0.566 0.570 0.570 0.570 0.569 0.561 0.569
IT 0.510 0.512 0.512 0.512 0.512 0.514 0.507 0.509
LAW 0.858 0.859 0.859 0.857 0.857 0.861 0.856 0.859
TALK 0.611 0.610 0.611 0.610 0.611 0.610 0.607 0.611
RELIG 0.269 0.270 0.274 0.273 0.268 0.276 0.269 0.274
MED 0.648 0.646 0.647 0.646 0.649 0.647 0.648 0.648

Table 3: COMET scores of combined ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.546 0.489 0.476 0.484 0.381 0.511 -0.114 0.513
IT -0.111 0.492 0.310 0.398 -0.065 0.367 -0.715 0.374
LAW 0.606 0.791 0.856 0.785 0.699 0.815 0.126 0.829
TALK 0.237 0.547 0.568 0.647 0.364 0.576 -0.150 0.572
RELIG 0.112 0.194 0.238 0.139 0.307 0.132 -0.215 0.209
MED 0.359 0.598 0.597 0.591 0.472 0.647 0.214 0.607

Table 4: COMET scores of combined tags under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.615 0.616 0.620 0.623 0.621 0.621 0.613 0.620
IT 0.615 0.615 0.610 0.609 0.615 0.613 0.610 0.610
LAW 0.889 0.891 0.891 0.889 0.889 0.890 0.891 0.890
TALK 0.494 0.494 0.495 0.494 0.490 0.498 0.474 0.496
RELIG 0.879 0.883 0.875 0.870 0.872 0.876 0.890 0.878
MED 0.685 0.694 0.695 0.696 0.695 0.695 0.692 0.696

Table 5: COMET scores of in-dom ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.611 -0.089 -0.001 -0.074 -1.448 -0.009 -0.289 -0.073
IT -0.625 0.599 -0.557 -0.539 -1.520 -0.527 -1.043 -0.550
LAW 0.193 0.255 0.893 0.273 -1.226 0.368 0.104 0.282
TALK -0.443 -0.334 -0.292 0.531 -1.430 -0.247 -0.444 -0.287
RELIG -0.958 -0.977 -0.820 -0.801 0.893 -0.796 -0.941 -0.872
MED -0.150 -0.062 0.052 0.006 -1.443 0.685 -0.223 0.017

Table 6: COMET scores of in-dom tags under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.604 0.611 0.611 0.611 0.610 0.610 0.610 0.611
IT 0.609 0.605 0.607 0.608 0.609 0.610 0.610 0.609
LAW 0.896 0.897 0.896 0.896 0.896 0.896 0.896 0.896
TALK 0.580 0.576 0.577 0.580 0.577 0.577 0.578 0.578
RELIG 0.816 0.819 0.817 0.816 0.791 0.820 0.816 0.817
MED 0.677 0.675 0.677 0.676 0.675 0.671 0.677 0.676

Table 7: COMET scores of multi-dom FT ints under various domain labels
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Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 0.614 0.576 0.580 0.573 0.231 0.578 0.293 0.505
IT 0.369 0.595 0.465 0.486 -0.773 0.496 -0.372 0.435
LAW 0.681 0.832 0.870 0.810 0.468 0.867 0.620 0.657
TALK 0.206 0.491 0.522 0.605 -0.965 0.514 0.061 0.504
RELIG 0.084 0.198 0.449 0.180 0.850 0.330 -0.162 0.313
MED 0.538 0.637 0.671 0.638 0.436 0.673 0.494 0.609

Table 8: COMET scores of multi-dom FT tags under various domain labels

A.2 Ablation (BLEU)
All scores reported are from SacreBLEU6 (Post, 2018).

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 51.9 51.7 51.9 51.9 51.9 51.8 51.8 51.9
IT 44.6 44.7 44.8 44.8 44.6 44.7 44.7 44.6
LAW 59.8 59.8 59.9 59.8 59.7 59.8 59.7 59.9
TALK 41.3 41.3 41.4 41.3 41.4 41.3 41.1 41.5
RELIG 27.6 27.8 27.7 27.8 27.6 27.9 27.5 27.7
MED 50.0 50.0 50.0 50.0 49.9 50.1 50.0 50.0

Table 9: BLEU scores of combined ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 52.0 43.5 43.0 40.4 39.0 45.2 30.2 44.2
IT 18.5 46.5 36.3 39.9 26.5 37.2 11.0 35.0
LAW 50.2 56.4 59.8 50.7 51.4 55.5 36.9 56.2
TALK 29.5 39.2 38.1 43.7 28.3 39.7 22.7 37.1
RELIG 21.6 24.4 25.5 16.3 28.8 18.9 14.5 22.6
MED 43.5 48.5 48.3 47.3 45.0 50.1 41.6 49.1

Table 10: BLEU scores of combined tags under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 58.5 58.6 58.6 58.6 58.5 58.8 58.2 58.7
IT 52.0 51.9 51.4 51.4 51.8 51.6 51.4 51.8
LAW 66.1 66.2 66.1 66.0 65.9 66.1 66.0 66.1
TALK 39.0 39.1 39.1 39.2 39.1 39.2 38.8 39.0
RELIG 89.2 89.2 89.0 88.7 88.7 89.2 89.3 89.1
MED 55.4 55.5 55.3 55.4 55.4 55.4 55.4 55.5

Table 11: BLEU scores of in-dom ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 58.7 31.2 36.0 34.3 3.9 36.1 27.3 34.4
IT 15.5 51.1 16.6 20.0 0.4 18.8 5.9 15.9
LAW 42.2 43.5 66.4 45.3 12.4 48.2 40.2 44.7
TALK 18.6 21.0 20.7 39.8 1.0 23.8 17.2 21.5
RELIG 6.2 6.1 8.2 8.7 89.5 9.0 5.5 7.6
MED 32.2 33.2 32.8 33.3 5.5 55.4 29.5 33.5

Table 12: BLEU scores of in-dom tags under various domain labels

6BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.0
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Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 56.1 55.9 56.5 56 56.1 56.4 55.3 56.3
IT 50.6 50.6 50.0 50.4 50.3 50.6 49.8 50.9
LAW 64.8 64.7 64.9 64.9 64.8 65.2 64.5 65.0
TALK 41.2 40.8 41.1 41.3 41.3 41.2 40.4 41.5
RELIG 80.4 81.1 80.5 80.2 79.4 81.8 79.3 82.2
MED 51.7 51.3 51.6 51.7 51.7 51.6 51.3 51.7

Table 13: BLEU scores of multi-dom FT ints under various domain labels

Test set
Provided label ⟨BANK⟩ ⟨IT⟩ ⟨LAW⟩ ⟨TALK⟩ ⟨RELIG⟩ ⟨MED⟩ ⟨NEWS⟩ None

BANK 56.9 54.5 54.4 52.0 49.6 55.0 43.4 54.9
IT 43.1 50.9 47.4 46.9 28.0 46.9 17.3 40.8
LAW 55.7 63.7 64.8 61.2 59.4 64.2 55.9 60.3
TALK 28.0 37.4 36.1 41.6 8.4 36.1 23.1 36.2
RELIG 32.6 38.6 61.9 22.9 83.6 50.7 19.2 49.1
MED 49.6 51.4 51.8 50.4 49.4 51.9 49.7 51.2

Table 14: BLEU scores of multi-dom FT tags under various domain labels
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C Examples

Src Never; soon they will deny ever worshipping them, and will turn into their opponents.
Ref Bien au contraire! [ces divinités] renieront leur adoration et seront pour eux des adversaires.

multi-dom FT ints Bien au contraire! [ces divinités] renieront leur adoration et seront pour eux des adversaires.
multi-dom FT tags You are about to translate the ’None ’COMMAND, there are

some rules on how to translate it. Please see http: / / / /www.mysql.com /.
Src And the evil-doers say: Ye are but following a man bewitched.
Ref Les injustes disent: «Vous ne suivez qu’un homme ensorcelé».

in-dom ints Les injustes disent: «Vous ne suivez qu’un homme ensorcelé».
in-dom tags Et les « & #160; diaboliques & #160; » disent & #160;: « & #160; fired & #160; »

est le suivant d’un homme.

Table 15: Example translation artifacts from incorrect domain label; a translation of ⟨RELIG⟩ sentences with
⟨IT⟩ domain label under different models. We note that the HTML-encoded artifact “& #160;" appears with high
frequency in ⟨IT⟩.
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