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Abstract

This report describes our VolcTrans system for
the WMT22 shared task on large-scale multi-
lingual machine translation. We participated in
the unconstrained track which allows the use of
external resources. Our system is a transformer-
based multilingual model trained on data from
multiple sources including the public training
set from the data track, NLLB data provided
by Meta AI, self-collected parallel corpora, and
pseudo bitext from back-translation. A series of
heuristic rules clean both bilingual and mono-
lingual texts. On the official test set, our system
achieves 17.3 BLEU, 21.9 spBLEU, and 41.9
chrF2++ on average over all language pairs.
The average inference speed is 11.5 sentences
per second using a single Nvidia Tesla V100
GPU. Our code and trained models are avail-
able at https://github.com/xian8/wmt22

1 Introduction

Multilingual Machine Translation attracts much
attention in recent years due to its advantages in
sharing cross-lingual knowledge for low-resource
languages. It also dramatically reduces training
and serving costs. Training a multilingual model is
much faster and simpler than training many bilin-
gual ones. Serving multiple low-traffic languages
using one model could drastically improve GPU
utilization.

The WMT22 shared task on large-scale multi-
lingual machine translation includes 24 African
languages (Adelani et al., 2022b). Inspired by pre-
vious research works, we train a deep transformer
model to translate all languages since large models
have been demonstrated effective for multilingual
translation (Fan et al., 2021; Kong et al., 2021;
Zhang et al., 2020). We participated in the un-
constrained track that allows the use of external
data. Besides the official dataset for the constrained
track, and the NLLB corpus provided by MetaAI
(NLLB Team et al., 2022), we also collect parallel

and monolingual texts from public websites and
sources. These raw data are cleaned by a series
of commonly used heuristic rules, and a minimum
description length (MDL) based approach to re-
move samples with repeat patterns. Monolingual
texts are used for back translation. For some very
low-resource languages such as Wolof, iterative
back-translation is adopted for higher accuracy.

We compare different training strategies to bal-
ance efficiency and quality, such as streaming data
shuffling, and dynamic vocabulary for new lan-
guages. Furthermore, we used the open-sourced
LightSeq toolkit 1 to accelerate training and infer-
ence.

On the official test set, our system achieves 17.3
BLEU, 21.9 spBLEU, and 41.9 chrF2++ on aver-
age over all language pairs. Averaged inference
speed is 11.5 sentences per second using a single
Nvidia Tesla V100 GPU.

2 Data

2.1 Data Collection

Our training data are mainly from four sources:
the official set for constrained track, NLLB data
provided by Meta AI, self-collected corpora, and
pseudo training set from back translation.

For each source, we collect both parallel sen-
tence pairs and monolingual sentences. A parallel
sentence pair is collected if one side is in African
language and the other is in English or French. We
did not collect African-African sentence pairs as
we use English as the pivot language for African-
to-African translation. Instead, they are added to
the monolingual set. More specifically, we split ev-
ery sentence pair into two sentences and add them
to the monolingual set accordingly. For example,
the source side of a fuv-fon sentence pair is added
to the fuv set. This greatly enriches the monolin-
gual dataset, especially for the very low-resource

1https://github.com/bytedance/lightseq
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languages.
We merge multiple corpora from the same source

into one and use bloom filter 2(Bloom, 1970) for
fast deduplication. To reduce false positive errors
which over delete distinct samples, we set the error
rate 1e−7 and capacity of 4B samples which costs
100G host memory.

The official set includes the data from data track
participants, OPUS collections, and the NLLB par-
allel corpora mined from Common Crawl (com)
and other sources. All domains in OPUS collec-
tions are involved, such as Mozilla-I10n, which
could introduce many noises such as programming
languages, and needs extra rules to clean.

NLLB data provided by Meta AI has three sub-
sets: primary bitext including a seed set that is care-
fully annotated for representative languages and
a public bitext set downloaded from open sources
and mined bitexts that are automatically discovered
by LASER3 encoder in a global mining pipeline,
back-translated data from a pretrained model. We
add the first two subsets in our training set.

Some public bitext data that are no longer avail-
able or require authorization such as JW300 (Agić
and Vulić, 2019), Lorelei3 and Chichewa News 4

are not included. We noticed that the NLLB team
released another version of mined data recently in
hugging-face 5, which is different from the version
on the WMT22 website. We merge the new version
into the old one and remove duplicates.

We collected additional bitexts in two ways:
large-scale mining from general web pages, and
manually crawling from specific websites and
sources.

Large-scale mining focused on two scenarios,
parallel sentences appearing on a single web page
such as dictionary web pages that use multiple bilin-
gual sentences to exemplify the usage of a word,
and parallel web pages that describe the same con-
tent but are written in different languages. We ex-
tract these pages from the Common Crawl corpus.
Then we utilized Vecalign (Thompson and Koehn,
2019), an accurate and efficient sentence alignment
algorithm to mine parallel bilingual sentences. We
use LASER (Schwenk and Douze, 2017) encoders
released by WMT to obtain multilingual sentence
embeddings and facilitate the alignment work. We
collected about 3 million sentence pairs namely

2https://pypi.org/project/bloom-filter
3https://catalog.ldc.upenn.edu/LDC2021T02
4https://zenodo.org/record/4315018#.YypJWezML0p
5https://huggingface.co/datasets/allenai/nllb

LAVA corpus and submitted them to the data track.
And another 150M pairs for the unconstrained
track.

Specific websites and sources have fewer but
higher-quality sentence pairs. For example, the
bible website6 labels the order of sentences across
languages so we can align them easily without sen-
tence segmentation. Since JW300 is not publicly
available, we crawled pages from Jehovah’s Wit-
nesses7 to recover the dataset.

Monolingual texts have richer sources such as
VOA news in Amharic 8 and OSCAR (Abadji et al.,
2022), which improve English/French → African
translation using back-translation. Monolingual
texts from parallel data are also collected as de-
scribed above. For African → English/French
translation, we clean Wikipedia pages in En-
glish/French to get monolingual texts. For lan-
guages that gain significantly from back-translation
such as Wolof, we run another round of back-
translation to generate high-quality pseudo data.

2.2 Data Cleaning

We used the following rules to clean parallel
datasets, except the NLLB mined bitext.

• Filter out parentheses and texts in between if
the numbers of parentheses in two sentences
are different.

• Filter out sentence pairs if numbers mismatch
or one sentence ends with punctuation : ! ? ...
and the other mismatches.

• Filter out sentences shorter than 30 characters,
sentences having URLs or emails, or words
longer than 100 characters.

• De-duplication: remove sentence pairs shar-
ing the same source or target but having dif-
ferent translations.

• Sentences having programming languages are
removed. We manually create a set of key-
words to detect programming languages, such
as if ( , == and .getAttribute .

• Language identification using the NLLB lan-
guage identification model trained by fastText
(Joulin et al., 2017)

6https://www.bible.com/languages
7https://www.jw.org
8https://amharic.voanews.com/
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One type of noisy text could survive the rules
above, which has repeat patterns and commonly
exists in many datasets. Here are some examples,

Download Bongeziwe Mabandla mini esadibana ngayo
(#001) Mp3 Bongeziwe Mabandla - mini esadibana ngayo
(#001).

Coaster Gift,Paper-Cut Coaster Zodiac,Red Coaster
Cute,Paper-Cut Zodiac Coaster

mm mm mm MPEE(um) MPEP(um) mm mm mm mm mm

mm kg kg

A natural choice to detect these repeating pat-
terns is the minimum description length (MDL)
which finds the optimal compression by encoding
frequent substrings with shorter codes.

Specifically, given a sentence s, our MDL objec-
tive minimizes the length of the codebook plus the
bits to encode the sentence:

MDL(s) = min
s=w1w2...wn

(
C

∑

distinct w

|w|

−
∑

i

log (p(wi|wi−1))

)

where w1, w2, . . . wn is the word (coding entry)
sequence, C is a positive constant, which bal-
ances the contribution of the codebook and length
of the encoded sequence. |w| is the length of
word w. In our experiments, we set C = 2.
p(wi|wi−1) = #wi−1wi

#wi−1
is the conditional proba-

bility of word bigrams in the sequence.
A sentence is noisy if the ratio of MDL over

sentence length is less than a predefined threshold:

s is noisy if
MDL(s)

len(s)
< T

If a sentence has no repeat patterns at all, then the
length of the codebook should be Clen(s), and
MDL(s) ≥ Clen(s). Thus we choose T = C.

For the NLLB mined corpus, we remove pairs
with laser score < 1.06 or language score <
0.95 provided by LASER. Monolingual texts are
cleaned using language scores only.

Table 1 and Figure 1 summarize the size of our
training data after data cleaning and deduplication.

2.3 Preprocessing and Post Processing
There are thousands of languages in the world, thus
statically training a tokenizer on a predefined list of
languages is not flexible for new languages. There
are several studies on dynamic vocabulary for new
language adaption, the general principle is to maxi-
mize the overlap with the old vocabulary. (Lakew
et al., 2018, 2019)

Source Sentence Pairs
Constrained Track 50.5M

NLLB 29.1M
Self Collected 151.6M

Back Translation 1.41B

Total 1.64B

Table 1: Number of sentence pairs from different
sources after data cleaning.

Figure 1: Number of sentences (in millions) in different
African languages after data cleaning.

We reuse the mRASP2 tokenizer, a unigram
model trained on 150 languages using Sentence-
Piece (Pan et al., 2021). To support new African
languages, we train another tokenizer for new lan-
guages and merge it to the mRASP2 tokenizer. To
ensure that the merged tokenizer produces the same
segmentation for old languages, new words that can
be made by joining two or more old words are re-
moved and the rest new words’ probabilities are
scaled down.

We notice that the Yoruba text in FLORES200
has more accented characters than other corpora.
According to NLLB team’s report, the way FLO-
RES200 marks the tone of vowels is similar to
MAFAND dataset (Adelani et al., 2022a). Thus,
we use the MAFAND data to train an accent model
to post-process the translated sentences for X →
Yoruba translation. It takes the Yoruba character
sequence with accents removed as the input and out-
puts the accented characters. The structure of the
model is a two-layer bidirectional LSTM having
50 hidden units in each layer. Correspondingly, we
train another accent model using non-MAFAND
datasets to preprocess source text for Yoruba→ X
translation.

1070



3 Model

3.1 Model Architecture

Existing research works demonstrate that small
models suffer from the underfitting problem for
multilingual machine translation. On the other
hand, training and serving large models are ex-
pensive. Sometimes model parallelism or pipeline
parallelism is necessary if it is impossible to run
training on a single GPU due to memory con-
straints. And quantization is required to reduce
the latency of inference. Our compromised model
is a pre-layer norm transformer with 2.1B parame-
ters which can be trained using A100 GPUs with
80G memory without parallelism. Details of the
model are described in Table 2

Parameter Value
Encoder Layer 64
Decoder Layer 64

Hidden Size 1024
FFN dimension 4096

Max Length 512
Shared Embedding Decoder input output

Positional Embedding Learned

Table 2: Architecture of our transformer model

3.2 Language Tag

There are two popular language tag strategies
for multilingual MT: S-ENC-T-DEC which adds
source language token to encoder input and target
language token to decoder input (Fan et al., 2021;
Liu et al., 2020; Wu et al., 2021), and T-ENC which
adds target language token to encoder input (Yang
et al., 2021; Wu et al., 2021). Our system uses T-
ENC-T-DEC which adds the target language token
to both encoder and decoder inputs. We did not use
source language information for two reasons. First,
most translation engines detect input languages au-
tomatically, which may introduce incorrect source
language tokens. Second, a source sentence may
be written in mixed languages.

4 Training and Optimization

4.1 Platform

Our models are trained on 6 machines each
equipped with 8 Nvidia A100 80G GPUs. We
use our internal version of ParaGen 9 (Feng et al.,

9https://github.com/bytedance/ParaGen

2022) , a self-developed text generation framework,
to train the model. For back-translation, monolin-
gual data are split and translated in parallel using
50 Nvidia Tesla V 100 GPUs.

To accelerate training, LightSeq is integrated.
Unlike approaches that proposed alternative model
structures to trade quality for speed, LightSeq used
a series of GPU optimization techniques tailored
to the specific computation flow and memory ac-
cess patterns of transformer models. It has been
demonstrated 50% to 250% faster than Apex 10

on machine translation tasks. (Wang et al., 2021,
2022) Its inference speed is about 11.5 sentences
per second using a single Nvidia Tesla V 100 GPU,
which allows us to translate all monolingual texts
within a month.

As the training set’s size exceeds the local disk’s
capacity, it is stored on a remote Hadoop file sys-
tem.

4.2 Hyper-parameter Tuning

We tune the hyperparameters using a hill climbing
approach where each iteration searches along one
direction with a different value in the hyperparame-
ter space while keeping the others constant in order
to converge to the locally optimal solution on the
validation set. To search efficiently, we fix a small
batch size and tune other parameters, then increase
the batch size after the other parameters have been
tuned.

The final configuration is listed in Table 3.

Hyperparameter Value
Initial Learning Rate 0.001

Warmup Steps 1000
Learning Rate Scheduler Inverse Square Root

Dropout Rate 0.1
Sampling Temperature 5

Label Smoothing 0.1
Optimizer AdamW(0.9, 0.98)

Activation Function ReLU
Batch Size 21M tokens

Table 3: Hyperparameters for training.

4.3 Streaming Data Shuffling

Data Shuffling reduces the variance of mini-batches
and lowers the risk of local optimum. However, it
is challenging to shuffle a Terabyte-scale dataset

10https://github.com/NVIDIA/apex
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dynamically. Our system uses multi-source stream-
ing data based shuffling, which maintains a small
in-memory buffer and a set of file pointers that
point to random offsets of the training set. Each
time a file pointer is selected randomly and loads
the next sample to the buffer. A batch of samples
is drawn from the buffer randomly once the buffer
is full. This approach takes the advantage of data
prefetching for sequential access in the Hadoop file
system. The randomness of the sampling is con-
trolled by the number of file pointers and the size
of the buffer. In our experiments, we use about 5k
file pointers and 300G host memory for the buffer.

To compare with global dynamic shuffling, we
run a simulation experiment. We train a model until
convergence, then shuffle the full dataset statically,
and continue training on the shuffled data. Repeat
shuffling until no significant change in loss or per-
formance. For clarity, the original model is named
as M0, and the model trained with i− th round of
shuffled data is named as Mi.

Table 4 shows the averaged per token loss of the
last 100 training steps and averaged BLEU of Mi

on English ↔ African language translations. We
observed a slight improvement in the first round,
but no significant change in the second round. This
experiment suggests that our shuffling method com-
bined with a limited number of static shuffling is a
good approximation of global dynamic shuffling.

M0 M1 M2

Averaged Loss 1.95 1.91 1.91
Averaged BLEU 21.39 21.48 21.49

Table 4: Simulation Experiment of global dynamic data
shuffling: M0 is the model trained on original training
data. Mi is the model trained on the i − th round of
statically shuffled data using Mi−1 as the initial point.
The averaged training loss over the last 100 steps and
averaged BLEU of English ↔ African translations are
reported.

4.4 Small Dynamic Vocabulary vs Large
Static Vocabulary

Existing studies on vocabulary size do not reach
a consensus. Large vocabularies often outperform
small ones (Gowda and May, 2020), but not always
(Liao et al., 2021)

Our vocabulary has 100k words, smaller than
most of the other systems. Another difference is
that our vocabulary is incrementally built for more
than 150 languages, it may miss important words

in new languages.
To understand the impact of vocabulary, we train

another large unigram model with 200K words
on the 26 languages in this shared task. Table 5
shows the performance with different vocabularies.
It is obvious that the 100K vocabulary outperforms
the 200K vocabulary, about 0.3 improvement in
BLEU on average.

Vocabulary Size Languages BLEU
100k words 173 21.97
200k words 26 21.64

Table 5: Average BLEU of English ↔ African trans-
lations on the FLORES200 devtest set for the models
with different vocabularies.

4.5 Pivot vs Direct

As reported in Microsoft’s work, pivot-based trans-
lation is more robust, especially for directions be-
tween low-resource languages since corpora of
X ↔ Y are commonly sparser than X ↔ English.
(Yang et al., 2021) Therefore we use English as
the pivot language for African-African translation.
For French-African translation, the size of X ↔
French data is comparable to X ↔ English. Thus,
we train a model for both English and French and
choose the better one during inference time.

4.6 Model Averaging

As suggested by other works, model averaging is
a simple trick that could significantly improve the
performance without changing the model structure
or slowing the inference speed. The only cost is
the external disk spaces to save intermediate check-
points, which is trivial compared with GPU and
memory costs.

We save the checkpoints every 100 updates of
gradients and average the last K checkpoints. By
enumerating K from 1 to 20, we find that K = 10
is large enough to capture most of the gains.

5 Results

5.1 System Tuning

We tune our model on the FLORES200 devtest
dataset, starting with a base model trained on the
official data for the constrained track. Then we
add more datasets and apply the optimization de-
scribed above to boost performance. Table 6 re-
ports the averaged BLEU over 56 directions includ-
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ing 24 African languages from and to English and
4 African languages from and to French.

Model Description BLEU
Base model 16.92
+ NLLB and self-collected data 18.89
+ Data cleaning 19.64
+ Back-translation data 22.85
+ X → English → French 22.95

+ French → English → X † 22.90
+ Yoruba Accent for X → Yoruba 23.20

+ Yoruba Accent for Yoruba → X † 23.17
+ Model Averaging 23.35

Table 6: System tuning on FLORES200 devtest set, av-
eraged BLEU over 56 directions is reported. Superscript
† means the modification is not included in the final sub-
mission.

We can see that the amount of training data is
proportional to the performance of the model, es-
pecially when back-translation data is added. For
some very low resource languages such as Wolof,
back-translation improves Wolof → English from
11.1 to 19.3, and English → Wolof from 4.17 to
7.07.

Another observation is that pivot translation out-
performs direct translation for X → French direc-
tions, but underperforms for French → X , which
indicates that the final step in pivot translation dom-
inates the overall performance.

The impact of Yoruba accent models also shows
mixed results. There is a significant improvement
for X → Yoruba translation, but a little damage
to Yoruba→ X translation. One possible rea-
son is that the non-MAFAND dataset has multiple
sources with different accent annotation standards,
making the accent model confused. Therefore we
only apply post-processing for X → Yoruba trans-
lations.

5.2 Final Result

Official evaluation metrics include BLEU,
sentence-piece BLEU (spBLEU) score, and
chrF++. Table 7 shows the results of our primary
submission on FLORES200 dev, FLORES200
devtest set, and hidden test sets respectively. The
sentence-piece model for calculating spBLEU is
SPM-200 provided by Meta AI 11

11https://github.com/facebookresearch/fairseq/tree/nllb

Dataset BLEU spBLEU chrF++
FLORES dev 17.41 21.70 42.01

FLORES devtest 17.43 21.71 41.99
Official test 17.30 21.90 41.87

Table 7: Results of our primary submission on FLO-
RES200 dev, FLORES200 devtest and official test
datasets respectively. Metrics are averaged over 100
language pairs.

6 Conclusion

This paper presents our system for the WMT22
shared task on Multilingual Machine Translation
for African Languages. We focus on data collec-
tion, augmentation, and cleaning. Due to the lim-
ited time, we did not try modeling tricks such as
reranking and ensemble. Our finding is that the
amount of data is crucial for translation quality,
especially monolingual data in low-resource lan-
guages.
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