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Introduction

Welcome to the 2nd WIT (Workshop On Deriving Insights From User-Generated Text)!
Recent advances in Conversational AI, Natural Language Processing, Natural Language Understanding,
Language Generation, Machine Learning, Deep Learning, Knowledge Bases, and others, have demon-
strated promising results and far-reaching uses of text. Such results can be seen in many different tasks
including, but not limited to better extractions from user-generated content, better language models, new
approaches related to (commonsense) knowledge-bases, knowledge graphs, better information seeking
QA (or Dialogue) systems, etc. Classical data management problems such as data cleaning/integration
and search may also benefit from these new approaches.
The WIT workshop series was started to provide a venue to exploit and explore the use of advanced
AI/ML/NLP techniques on user-generated text, which is rich in user insights and experiences. There-
fore, the goal of this workshop series is to bring together researchers interested in the development and
the application of novel approaches/models/systems to address challenges around harnessing text-heavy
user-generated data that is available to organizations and over the Web.
For this 2nd edition, the workshop will have a great line-up of invited speakers (Mirella Lapata - Univer-
sity of Edinburgh, Rada Mihalcea - University of Michigan, Ann Arbor, Nina Balcan - Carnegie Mellon
University, Carlos Guestrin - Stanford University) as well oral (and poster) presentations of contribu-
ted research papers. Following the tradition started in the 1st WIT, the 2nd WIT will host a panel of
experts from the academia and industry to discuss and share their experiences and challenges faced in
deriving insights from user-generated text. The panel is tentatively titled “User generated content and
deep learning: Sorting out ‘the good, the bad, and the ugly”’ and is intended to highlight and surface
the effects of training data on downstream applications and whether or not organizations prepare efforts
around removing biases in data that they use for training or other purposes.
We would like to congratulate the authors of accepted papers, as well as to thank all the authors of
submitted papers, members of the Program Committee and all the ACL main conference organization
team.
2nd WIT Organizing Committee
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Keynote Talk: Invited Talk 1
Mirella Lapata

School of Informatics, University of Edinburgh

Abstract: Invited Talk at the 2nd WIT: Workshop On Deriving Insights From User-Generated Text at
ACL2022

Bio: Mirella Lapata is a professor in the School of Informatics at the University of Edinburgh. I’m
affiliated with the Institute for Communicating and Collaborative Systems and the Edinburgh Natural
Language Processing Group.
Her research focuses on computational models for the representation, extraction, and generation of se-
mantic information from structured and unstructured data, involving text and other modalities such as
images, video, and large scale knowledge bases. I have worked on a variety of applied NLP tasks such
as semantic parsing and semantic role labeling, discourse coherence, summarization, text simplification,
concept-to-text generation, and question answering. I have also used computational models (drawing
mainly on probabilistic generative models) to explore aspects of human cognition such as learning con-
cepts, judging similarity, forming perceptual representations, and learning word meanings. The overar-
ching goal of my research is to enable computers to understand requests and act on them, process and
aggregate large amounts of data, and convey information based on them. Critical for all these tasks are
models for extracting and representing meaning from natural language text, storing meanings internally,
and working with stored meanings to derive further consequences.
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Keynote Talk: Invited 2
Rada Mihalcea

University of Michigan, Ann Arbor

Abstract: Invited Talk at the 2nd WIT: Workshop On Deriving Insights From User-Generated Text at
ACL2022

Bio: Rada Mihalcea is the Janice M. Jenkins Collegiate Professor of Computer Science and Engineering
at the University of Michigan and the Director of the Michigan Artificial Intelligence Lab. Her research
interests are in computational linguistics, with a focus on lexical semantics, multilingual natural langua-
ge processing, and computational social sciences. She serves or has served on the editorial boards of
the Journals of Computational Linguistics, Language Resources and Evaluations, Natural Language En-
gineering, Journal of Artificial Intelligence Research, IEEE Transactions on Affective Computing, and
Transactions of the Association for Computational Linguistics. She was a program co-chair for EMNLP
2009 and ACL 2011, and a general chair for NAACL 2015 and *SEM 2019. She currently serves as
ACL President. She is the recipient of a Presidential Early Career Award for Scientists and Engineers
awarded by President Obama (2009), an ACM Fellow (2019) and a AAAI Fellow (2021). In 2013, she
was made an honorary citizen of her hometown of Cluj-Napoca, Romania.

viii



Keynote Talk: Invited 3
Nina Balcan

Carnegie Mellon University

Abstract: Invited Talk at the 2nd WIT: Workshop On Deriving Insights From User-Generated Text at
ACL2022

Bio: Maria-Florina (Nina) Balcan is the Cadence Design Systems Professor of Computer Science at
the School of Computer Science (MLD and CSD) at Carnegie Mellon University, she is also Sloan Fel-
low and Microsoft Faculty Fellow. Nina’s main research interests are in machine learning, artificial
intelligence, and theoretical computer science. Current research focus includes developing foundations
and principled, practical algorithms for important modern learning paradigms. These include interac-
tive learning, distributed learning, learning representations, life-long learning, and metalearning. Her
research addresses important challenges of these settings, including statistical efficiency, computational
efficiency, noise tolerance, limited supervision or interaction, privacy, low communication, and incenti-
ves. Other research topics are i) Foundations and applications of data driven algorithm design. Design
and analysis of algorithms on realistic instances (a.k.a. beyond worst case).; ii) Computational and
data-driven approaches in game theory and economics; iii) computational, learning theoretic, and game
theoretic aspects of multi-agent systems, and iv) Analyzing the overall behavior of complex systems in
which multiple agents with limited information are adapting their behavior based on past experience,
both in social and engineered systems contexts.
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Keynote Talk: Invited 4
Carlos Guestrin

Stanford University

Abstract: Invited Talk at the 2nd WIT: Workshop On Deriving Insights From User-Generated Text at
ACL2022

Bio: Carlos Guestrin is a Professor in the Computer Science Department at Stanford University. His
previous positions include the Amazon Professor of Machine Learning at the Computer Science and
Engineering Department of the University of Washington, the Finmeccanica Associate Professor at Car-
negie Mellon University, and the Senior Director of Machine Learning and AI at Apple, after the acquisi-
tion of Turi, Inc. (formerly GraphLab and Dato) — Carlos co-founded Turi, which developed a platform
for developers and data scientist to build and deploy intelligent applications. He is a technical advisor
for OctoML.ai. His team also released a number of popular open-source projects, including XGBoost,
LIME, Apache TVM, MXNet, Turi Create, GraphLab/PowerGraph, SFrame, and GraphChi.
Carlos received the IJCAI Computers and Thought Award and the Presidential Early Career Award for
Scientists and Engineers (PECASE). He is also a recipient of the ONR Young Investigator Award, NSF
Career Award, Alfred P. Sloan Fellowship, and IBM Faculty Fellowship, and was named one of the 2008
‘Brilliant 10’ by Popular Science Magazine. Carlos’ work received awards at a number of conferences
and journals, including ACL, AISTATS, ICML, IPSN, JAIR, JWRPM, KDD, NeurIPS, UAI, and VLDB.
He is a former member of the Information Sciences and Technology (ISAT) advisory group for DARPA.
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Unsupervised Abstractive Dialogue Summarization with
Word Graphs and POV Conversion

Seongmin Park, Jihwa Lee
ActionPower, Seoul, Republic of Korea

{seongmin.park, jihwa.lee}@actionopwer.kr

Abstract

We advance the state-of-the-art in unsuper-
vised abstractive dialogue summarization by
utilizing multi-sentence compression graphs.
Starting from well-founded assumptions about
word graphs, we present simple but reli-
able path-reranking and topic segmentation
schemes. Robustness of our method is demon-
strated on datasets across multiple domains,
including meetings, interviews, movie scripts,
and day-to-day conversations. We also iden-
tify possible avenues to augment our heuristic-
based system with deep learning. We open-
source our code1, to provide a strong, repro-
ducible baseline for future research into unsu-
pervised dialogue summarization.

1 Introduction

Compared to traditional text summarization, di-
alogue summarization introduces a unique chal-
lenge: conversion of first- and second-person
speech into third-person reported speech. Such dis-
crepancy between the observed text and expected
model output puts greater emphasis on abstrac-
tive transduction than in traditional summarization
tasks. The disorientation is further exacerbated by
each of many diverse dialogue types calling for a
differing form of transduction – short dialogues re-
quire terse abstractions, while meeting transcripts
require summaries by agenda.

Thus, despite the steady emergence of dialogue
summarization datasets, the field of dialogue sum-
marization is still bottlenecked by a scarcity of
training data. To train a truly robust dialogue sum-
marization model, one requires transcript-summary
pairs not only across diverse dialogue domains, but
also across multiple dialogue types as well. The
lack of diverse annotated summarization data is
especially pronounced in low-resourced languages.
From such state of the literature, we identify a need
for unsupervised dialogue summarization.

1https://github.com/seongminp/graph-dialogue-summary

Figure 1: Our summarization pipeline.

Our method builds upon previous research on
unsupervised summarization using word graphs.
Starting from the simple assumption that a good
summary sentence is at least as informative as any
single input sentence, we develop novel schemes
for path extraction from word graphs. Our contri-
butions are as follows:

1. We present a novel scheme for path rerank-
ing in graph-based summarization. We show
that, in practice, simple keyword counting
performs better than complex baselines. For
longer texts, we present an optional topic seg-
mentation scheme.

2. We introduce a point-of-view (POV) conver-
sion module to convert semi-extractive sum-
maries into fully abstractive summaries. The
new module by itself improves all scores on
baseline methods, as well as our own.

3. Finally, We verify our model on datasets be-
yond those traditionally used in literature to
provide a strong baseline for future research.

With just an off-the-shelf part-of-speech (POS)
tagger and a list of stopwords, our model can be
applied across different types of dialogue summa-
rization.

2 Background

2.1 Multi-sentence compression graphs
Pioneered by Filippova (2010), a Multi-Sentence
Compression Graph (MSCG) is a graph whose
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Figure 2: Construction of word graph. Red nodes and edges denote the selected summary path. Node highlighted
in purple ("Poodles") is the only non-stopword node included in the k-core subgraph of the word graph. We use
nodes from the k-core subgraph as keyword nodes. All original sentences from the unabridged input is present as
a possible path from vbos to veos. Paths that contain more information than those original paths are extracted as
summaries.

nodes are words from the input text and edges
are coocurrance statistics between adjacent words.
During preprocessing, words “<bos>” (beginning-
of-sentence) and “<eos>” (end-of-sentence) are
prepended and appended, respectively, to every
input sentence. Thus, all sentences from the in-
put are represented in the graph as a single path
from the <bos> node (vbos) to the <eos> node
(veos). Overlapping words among sentences will
create intersecting paths within MSCG, creating
new paths from vbos to veos, unseen in the original
text. Capturing these possibly shorter but informa-
tive paths is the key to performant summarization
with MSCGs.

Ganesan et al. (2010) introduce an abstractive
sentence generation method from word graphs to
produce opinion summaries. Tixier et al. (2016)
show that nodes with maximal neighbors – a con-
cept captured by graph degeneracy – likely belong
to important keywords of the document. Shortest
paths from vbos to veos are scored according to how
many keyword nodes they contain. Subsequently,
a budget-maximization scheme is introduced to
find the set of paths that maximizes the score sum
within designated word count (Tixier et al., 2017).
We also adopt graph degeneracy to identify key-
word nodes in MSCG.

2.2 Unsupervised Abstractive Dialogue
Summarization

Aside from MSCGs, unsupervised dialogue sum-
marization usually employ end-to-end neural ar-

chitectures. Zhang et al. (2021) and Zou et al.
(2021) utilize text variational autoencoders (VAEs)
(Kingma and Welling, 2014; Bowman et al., 2016)
to decode conditional or denoised abridgements.
Fu et al. (2021) reformulate summary generation
into a self-supervised task by equipping auxiliary
objectives to the training architecture. Among end-
to-end frameworks we only include Fu et al. (2021)
as our baseline, because the brittle nature of train-
ing text VAEs, coupled with the lack of detail on
data and parameters used to train the models, ren-
der VAE-based methods beyond reproducible.

3 Summarization strategy

In following subsections we outline our proposed
summarization process.

3.1 Word graph construction
First, we assemble a word graph G from the in-
put text. We use a modified version of Filippova
(2010)’s algorithm for graph construction:

• Let SW be a set of stopwords and T =
s0, s1, ... be a sequence of sentences in the
input text.

• Decompose all si ∈ T into a sequence of
POS-tagged words.

si = (“bos”, “meta”), (wi,0, posi,0), ...,

(wi,n−1, posi,n−1), (“eos”, “meta”) (1)

• For every (wi,j , posi,j) ∈ si such that wi /∈
SW and si ∈ T , add a node v in G. If a

2



node v′ with the same lowercase word wi,k

and tag posi,k such that j 6= k exists, pair
(wi,j , posi,j) with v′ instead of creating a new
node. If multiple such matches exist, select
the node with maximal overlapping context
(wi,j−1 and wi,j+1).

• Add stopword nodes – (wi,j , posi,j) ∈ si such
that wi,j ∈ SW and si ∈ T – to G with the
algorithm described above.

• For all si ∈ T , add a directed edge be-
tween node pairs that correspond to subse-
quent words. Edge weight w between nodes
v1 and v2 is calculated as follows:

w′ =
freq(v1) + freq(v2)

(
∑

si∈T diff(i, v1, v2))−1
(2)

w′′ = freq(v1) ∗ freq(v2) (3)

w = w′/w′′ (4)

freq(v) is the number of words from original
text mapped to node v. diff(i, v1, v2) is the
absolute difference in word positions of v1
and v2 within si:

diff(i, v1, v2) = |k − j| (5)

, where wij and wik are words in si that cor-
respond to nodes v1 and v2, respectively.

In edge weight calculation, w′ favors edges
with strong cooccurrence, while w′′−1 favors
edges with greater salience, as measured by
word frequency.

It follows from above that only a single <bos>
node and a single <eos> node will exist once the
graph is completed.

3.2 Keyword extraction
The resulting graph from the previous step is a com-
position that captures syntactic importance. Tra-
ditional approaches utilize centrality measures to
identify important nodes within word graphs (Mi-
halcea and Tarau, 2004; Erkan and Radev, 2004).
In this work we use graph degeneracy to extract
keyword nodes. In a k-degenerate word graph,
words that belong to k-core nodes of the graph
are considered to be keywords. We collect KW ,
a set of nodes belonging to the k-core subgraph.
The k-core of a graph is the maximally degenerate
subgraph, with minimum degree of at least k.

Figure 3: Topic segmentation on AMI meeting ID
ES2005b. Green bars indicate sentence boundaries
with highest topic distance.

3.3 Path threshold calculation
Once keyword nodes are identified, we score ev-
ery path from vbos to veos that corresponds to a
sentence from the original text. Contrary to previ-
ous research into word-graph based summarization,
we use a simple keyword coverage score for every
path:

Scorei =
|Vi ∩KW |
|KW | (6)

, where Vi is the set of all nodes in path pi, a rep-
resentation of sentence si ∈ T , within the word
graph. We calculate the path threshold t, the mean
score of all sentences in the original text. Later,
when summaries are extracted from the word graph,
candidates with path score less than t are discarded.
We also experimented with setting t as the mini-
mum or maximum of all original path scores, but
such configurations yielded inferior summaries in-
fluenced by outlier path scores.

Our path score function is reminiscent of the
diversity reward function in Shang et al. (2018).
However, we use the function as a measure of cov-
erage instead of diversity. More importantly, we
utilize the score as means to extract a threshold
based on all input sentences, which is significantly
different from Shang et al. (2018)’s utilization of
the function as a monotonically increasing scorer
in submodularity maximization.

3.4 Topic segmentation
For long texts, we apply an optional topic segmen-
tation step. Our summarization algorithm is sepa-
rately applied to each segmented text. Similar to
path ranking in the next section, topics are deter-
mined according to keyword frequency. For every

3



Dataset Domain Test files Dialogue length (chars) Summary length (chars)
AMI Meeting 20 22,499 (4,665 words) 1,808 (292 words)
ICSI Meeting 6 42,484 (8,926 words) 2,271 (371 words)

DialogSum Day-to-day 500 633 (125 words) 115 (19 words)
SAMSum Day-to-day 819 414 (84 words) 109 (20 words)
MediaSum Interview 10,000 8,718 (1,562 chars) 335 (59 words)

SummScreen Screenplay 2,130 23,693 (5,642 words) 1,795 (342 words)
ADS Debate 45 2918 (534 words) 882 (150 words)

Table 1: Statistics for benchmark datasets. All character-level and word-level statistics are averaged over the test
set and rounded to the nearest whole number.

sentence in the input, we construct a topic cover-
age vector c, a zero-initialized row-vector of length
|KW |. Each column of the row vector is a binary
representation signaling the presence of a single
element in KW . Topic coverage vector of a path
containing two keywords from KW , for instance,
would contain two columns with 1.

Every transition between sentences is a potential
topic boundary. Since each sentence (and corre-
sponding path) has an associated topic coverage
vector, we quantify the topic distance d of a sen-
tence with the next as the negative cosine distance
of their topic vectors:

di,i+1 = − ci · ci+1

‖ci‖‖ci+1‖
(7)

If p is a hyperparameter representing the total
number of topics, one can segment the original text
at p−1 sentence boundaries with the greatest topic
distance. Alternatively, sentence boundaries with
topic distance greater than a designated threshold
can be selected as topic boundaries. For simplicity,
we proceed with the former segmentation setup
(top-p boundary) when necessary.

3.5 Summary path extraction

We generate a summary per-speaker. Our construc-
tion of the word graph allows fast extraction of
sub-graphs containing only nodes pertaining to ut-
terances from a single speaker. For each speaker
subgraph, we generate summary sentences as fol-
lows:

1. We obtain k shortest paths from vbos to veos by
applying the k-shortest paths algorithm (Yen,
1971) to our word graph.

2. Iterating from the shortest path, we collect any
paths with keyword coverage score above the
threshold calculated in 3.3.

3. For each path found, we track the set of en-
countered keywords in KW . We stop our
search if all keywords in KW were encoun-
tered, or a pre-defined number of iterations
(the search depth) is reached.

A good summary has to be both concise and
informative. Intuitively, edge weights of the pro-
posed word graph captures the former, while key-
word thresholding prioritizes the latter.

3.6 POV conversion

Finally, we convert our collected semi-extractive
summaries into abstractive reported speech using a
rule-based POV conversion module. We describe
sentences extracted from our word graph as semi-
extractive rather than extractive, to recognize the
distinction between previously unseen sentences
created from pieces of text, and sentences taken
verbatim from the original text. Similar to exist-
ing extract-then-abstract summarization pipelines
(Mao et al., 2021; Liu et al., 2021), our method
hinges on the assumption that the extractive path-
reranking step will optimize for summary content,
while the succeeding abstractive POV-conversion
step will do so for summary style. FewSum (Bražin-
skas et al., 2020) also applies POV conversion in
a few-shot summarization setting. FewSum condi-
tions the summary generator to produce sentences
in targeted styles, which is achieved by nudging
the decoder to generate pronouns appropriate for
each designated tone.

Popular literature has established that defining
an all-encompassing set of rules for indirect speech
conversion is infeasible (Partee, 1973; Li, 2011).
In fact, the English grammar is mostly descrip-
tive rather than prescriptive – no set of official
rules dictated by a single governing authority ex-
ists. Even so, rule based POV conversion does pro-
vide a strong baseline compared to state-of-the-art

4



Model AMI ICSI
R1 R2 RL R1 R2 RL

RepSum Fu et al. (2021) 18.88 2.38 15.62 - - -
Filippova (2010) 33.47 6.21 15.15 26.53 3.69 12.09
Mehdad et al. (2013) 34.62 6.49 15.41 27.20 3.57 12.55
Boudin and Morin (2013) 34.21 6.37 14.92 26.90 3.64 12.18
Shang et al. (2018) 34.34 6.13 15.58 26.93 3.65 12.68
Filippova (2010) +POV 34.16 6.35 15.27 26.79 3.81 12.21
Mehdad et al. (2013) +POV 35.39 6.59 15.54 27.48 3.65 12.66
Boudin and Morin (2013) +POV 34.93 6.49 15.07 27.14 3.72 12.20
Shang et al. (2018) +POV 34.91 6.18 15.70 27.27 3.72 12.78
Ours PreSeg 32.21 5.55 14.85 27.60 4.43 11.66
Ours TopicSeg 33.30 6.59 14.19 27.66 4.27 12.16
Ours PreSeg+POV 33.66 6.85 14.17 27.80 4.56 11.77
Ours TopicSeg+POV 33.21 5.84 15.30 27.84 4.33 12.29

Table 2: Results on meeting summarization datasets. All reported scores are F-1 measures. Models with POV
indicate post-proceessing with our suggested POV conversion module. PreSeg models utilize topic segmentations
provided in Shang et al. (2018), and TopicSeg models intake unsegmented raw transcripts and perform the topic
segmentation algorithm suggested in this paper. Results for RepSum are quoted from the original paper.

techniques, such as end-to-end Transformer net-
works (Lee et al., 2020). In this study, we limit
our scope to rule-based conversion because only
the rule-based system among all tested methods in
Lee et al. (2020) confers to the unsupervised nature
of this paper. We encourage further research into
integrating more advanced reported speech conver-
sion techniques into the abstractive summarization
pipeline.

In this work, we apply four conversion rules:

1. Change pronouns from first person to third
person.

2. Change modal verbs can, may, and must to
could, might, and had to, respectively.

3. Convert questions into a pre-defined template:
<Speaker> asks <utterance>.

4. Fix subject-verb agreement after applying
rules above.

We notably omit prepend rules suggested in (Lee
et al., 2020), because the input domain of our sum-
marization system is unbounded, unlike with task-
oriented spoken commands for virtual assistants.
We also leave tense conversion for future research.

4 Experiments

4.1 Datasets
We test our model on dialogue summarization
datasets across multiple domains:

1. Meetings: AMI (McCowan et al., 2005), ICSI
(Janin et al., 2003)

2. Day-to-day conversations: DialogSum (Chen
et al., 2021b), SAMSum (Gliwa et al., 2019)

3. Interview: MediaSum (Zhu et al., 2021)

4. Screenplay: SummScreen (Chen et al., 2021a)

5. Debate: ADS (Fabbri et al., 2021)

Table 1 provides detailed statistics and descrip-
tions for each dataset.

For AMI and ICSI, we conduct several abla-
tion experiments with different components of
our model omitted: semi-extractive summariza-
tion without POV conversion is compared with
fully-abstractive summarization with POV conver-
sion; utilization of pre-segmented text provided by
Shang et al. (2018) is compared with application
of topic segmentation suggested in this paper.

4.2 Baselines
For meeting summaries, we compare our method
with previous research on unsupervised dialogue
summarization. Along with Filippova (2010),
Shang et al. (2018), and Fu et al. (2021), we se-
lect Boudin and Morin (2013) and Mehdad et al.
(2013) as our baselines. All but Fu et al. (2021) are
word graph-based summarizers.

For all other categories, we choose LEAD-3 as
our unsupervised baseline. LEAD-3 selects the

5



Dataset Our results LEAD-3
R1 R2 RL R1 R2 RL

DialogSum 20.79 5.43 15.14 19.46 6.19 15.99
SAMSum 26.48 9.69 19.65 21.93 8.52 18.65
MediaSum 7.19 1.79 5.66 8.58 3.19 6.62
SummScreen 21.25 2.23 9.40 5.18 0.55 3.75
ADS 28.00 7.33 14.75 19.39 5.72 13.22

Table 3: Results on day-to-day, interview, screenplay, and debate summarization datasets. All reported scores are
F-1 measures. In our method, topic segmentation is applied to datasets with average transcription length greater
than 5,000 characters (MediaSum, SummScreen), and POV conversion is applied to all datasets.

first three sentences of a document as the sum-
mary. Because summary distributions in several
document types tend to be front-heavy (Grenander
et al., 2019; Zhu et al., 2021), LEAD-3 provides
a competitive extractive baseline with negligible
computational burden.

4.3 Evaluation
We evaluate the quality of generated system sum-
maries against reference summaries using standard
ROUGE scores (Lin, 2004). Specifically, we use
ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L
(RL) scores that respectively measure unigram, bi-
gram, and longest common subsequence coverage.

5 Results

5.1 Meeting summarization
Table 2 records experimental results on AMI and
ISCI datasets. In all categories, our method or
a baseline augmented with our POV conversion
module outperforms previous state-of-the-art.

5.1.1 Effect of suggested path reranking
Our proposed path-reranking without POV con-
version yields semi-extractive output summaries
competitive with abstractive summarization base-
lines. Segmenting raw transcripts into topic
groups with our method generally yields higher
F -measures than using pre-segmented transcripts
in semi-extractive summarization.

5.1.2 Effect of topic segmentation
Summarizing pre-segmented dialogue transcripts
results in higher R2, while applying our topic
segmentation method results in higher R1 and
RL. This observation is in line with our method’s
emphasis on keyword extraction, in contrast to
keyphrase extraction seen in several baselines
(Boudin and Morin, 2013; Shang et al., 2018).
Models that preserve token adjacency achieve

higher R2, while models that preserve token pres-
ence achieve higher R1. RL additionally penalizes
for wrong token order, but token order in extracted
summaries tend to be well-preserved in word graph-
based summarization schemes.

5.1.3 Effect of POV conversion module
Our POV conversion module improves benchmark
scores on all tested baselines, as well as on our own
system. It is only natural that a conversion module
that translates text from semi-extractive to abstrac-
tive will raise scores on abstractive benchmarks.
However, applying our POV module to already ab-
stractive summarization systems resulted in higher
scores in all cases. We attribute this to the fact that
previous abstractive summarization systems do not
generate sufficiently reportive summaries; past re-
search either emphasize other linguistic aspects like
hyponym conversion (Shang et al., 2018), or treat
POV conversion as a byproduct of an end-to-end
summarization pipeline (Fu et al., 2021).

5.2 Day-to-day, interview, screenplay, and
debate summarization

Our method outperforms the LEAD-3 baseline on
most benchmarks (Table 3). The model shows con-
sistent performance across multiple domains in R1
and RL, but shows greater inconsistency in R2.
Variance in the latter metric can be attributed, as
in 5.1.2, to our model’s tendency to optimize for
single keywords rather than keyphrases. Robust-
ness of our model, as measured by consistency
of ROUGE measures across multiple datasets, is
shown in Figure 4.

Notably, our method falters in the MediaSum
benchmark. Compared to other benchmarks, Me-
diaSum’s reference summaries display heavy posi-
tional bias towards the beginning of its transcripts,
which benefits the LEAD-3 approach. It also is
the only dataset in which references summaries are
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Transcript Summary
Maya: Bring home the clothes that are hanging outside
Maya: All of them should be dry already and

it looks like it’s going to rain
Boris: I’m not home right now
Boris: I’ll tell Brian to take care of that
Maya: Fine, thanks

bring home the clothes that are hanging outside
boris ’ll tell brian to take care of that

Keywords: ’care’, ’clothes’, ’home’, ’thanks’

Megan: Are we going to take a taxi to the opera?
Joseph: No, I’ll take my car.
Megan: Great, more convenient

are we going to take a taxi to the opera ?
no , joseph ’ll take my car

Keywords: ’car’, ’convenient’, ’taxi’, ’opera’

Anne: You were right, he was lying to me :/
Irene: Oh no, what happened?
Jane: who?
Jane: that Mark guy?
Anne: yeah, he told me he’s 30, today I saw his

passport - he’s 40
Irene: You sure it’s so important?
Anne: he lied to me Irene

he lied to me he ’s 30 , today anne saw his
passport - he ’s 40 yeah , he told me
oh no , what happened? who ?
annerene he lied to me : /

Keywords: ’guy’, ’/’, ’passport’, ’yeah’, ’today’

Table 4: Summarizing the SAMSum corpus (Gliwa et al., 2019).

Figure 4: Normalized standard deviation (also called
coefficient of variance) of R1, R2, and RL scores across
all datasets. Normalized standard deviation is calcu-
lated as σ/x̄, where σ is the standard deviation and x̄ is
the mean.

not generated for the purpose of summary evalua-
tion, but are scraped from source news providers.
Reference summaries for MediaSum utilize less
reported speech compared to other datasets, and
thus our POV module fails to boost the precision
of summaries generated by our model.

6 Conclusion

6.1 Improving MSCG summarization

This paper improves upon previous work on multi-
sentence compression graphs for summarization.
We find that simpler and more adaptive path rerank-
ing schemes can boost summarization quality. We
also demonstrate a promising possibility for inte-
grating point-of-view conversion into summariza-
tion pipelines.

Compared to previous research, our model is
still insufficient in keyphrase or bigram preserva-
tion. This phenomenon is captured by inconsistent
R2 scores across benchmarks. We believe incor-
porating findings from keyphrase-based summariz-
ers (Riedhammer et al., 2010; Boudin and Morin,
2013) can mitigate such shortcomings.

6.2 Avenues for future research

While our methods demonstrate improved bench-
mark results, its mostly heuristic nature leaves
much room for enhancement through integration
of statistical models. POV conversion in particular
can benefit from deep learning-based approaches
(Lee et al., 2020). With recent advances in unsuper-
vised sequence to sequence transduction (Li et al.,
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2020; He et al., 2020), we expect further research
into more advanced POV conversion techniques
will improve unsupervised dialogue summariza-
tion.

Another possibility to augment our research with
deep learning is through employing graph networks
(Cui et al., 2020) for representing MSCGs. With
graph networks, each word node and edge can
be represented as a contextualized vector. Such
schemes will enable a more flexible and interpolat-
able manipulation of syntax captured by traditional
word graphs.

One notable shortcoming of our system is the
generation of summaries that lack grammatical co-
herence or fluency (Table 4). We intentionally leave
out complex path filters that gauge linguistic va-
lidity or factual correctness. We only minimally
inspect our summaries to check for inclusion of
verb nodes, as in Filippova (2010). Our system can
be easily augmented with such additional filters,
which we leave for future work.
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Abstract

With millions of documented recoveries from
COVID-19 worldwide, various long-term se-
quelae have been observed in a large group of
survivors. This paper is aimed at systemati-
cally analyzing user-generated conversations
on Twitter that are related to long-term COVID
symptoms for a better understanding of the
Long COVID health consequences. Using an
interactive information extraction tool built es-
pecially for this purpose, we extracted key in-
formation from the relevant tweets and ana-
lyzed the user-reported Long COVID symp-
toms with respect to their demographic and
geographical characteristics. The results of our
analysis are expected to improve the public
awareness on long-term COVID-19 sequelae
and provide important insights to public health
authorities.

1 Introduction

The COVID-19 pandemic has affected millions
of people all over the world. Despite the grow-
ing knowledge of COVID-19, much still remains
unclear, especially potential long-term health con-
sequences.

The term of Long COVID was brought up by the
patients on Twitter in May 2020, in order to express
their long-term COVID illness (Callard and Perego,
2021). Many Long COVID sufferers shared their
persistent symptoms on social media bringing nu-
merous discussions of similar symptoms experi-
enced by others. Long COVID, also known as post
COVID-19 syndrome, has no strict definition. The
CDC of the United States1 describes Long COVID
as symptoms for four or more weeks after the infec-
tion, however, WHO2 and British National Institute

1https://www.cdc.gov/coronavirus/2019-ncov/long-term-
effects/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.
%cdc.gov%2Fcoronavirus%2F2019-ncov%2Flong-term-
effects.html

2https://www.who.int/publications/i/item/WHO-2019-
nCoV-Post_COVID-19_condition-Clinical_case_definition-
2021.1

for Health and Care Excellence (NICE)3 suggest
three months after onset of COVID-19.

Though the majority of infected people expe-
rience mild symptoms with no necessity of hos-
pitalization, the post-COVID syndrome is being
reported by not just hospitalized patients. There-
fore, massive user-generated Long COVID data
available on social media has a significant value for
tracking and analyzing the long-term syndrome.

Thus, in this work, we aim to apply Natural Lan-
guage Processing (NLP) approaches to explore the
characteristics of Long COVID symptoms reported
by the Twitter users in terms of the patient gen-
der, age, and location, as well as in terms of the
symptoms duration. By extracting and analyzing
key information from Long COVID-related tweets,
we can discover less known chronic physical or
mental conditions experienced by large groups of
COVID-19 patients, and explore the relations be-
tween symptoms and demographic or geographic
characteristics of patients. Moreover, we also seek
to study the Long COVID evolution over time.
To address this need, we compare the results of
datasets collected in different time periods.

As part of this study, we developed an on-
line dashboard4 to visualize the analysis of Long
COVID symptoms harvested from Twitter. A snap-
shot is shown in Fig. 1. This interactive dashboard
provides multi-scale information and insights.

Our contributions can be summarized as follows:

• We build and publish two repositories of Long
COVID-related tweets, which include user-
generated reports on Long COVID experience
from different periods of time5.

• We conduct a comprehensive analysis of the
3https://www.nice.org.uk/news/article/nice-rcgp-and-

sign-publish-guideline-on-managing-the-long-term-effects-
of-covid-19

4https://longcovid-dashboard.herokuapp.com/
5https://github.com/Lin1202/Longcoivd/blob/main/ long-

covid_tweets.tar
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Figure 1: Snapshot of the dashboard

generated Long COVID datasets, which can
provide insights to decision-makers and re-
searchers.

• We explore several noun phrase classification
models for information extraction from tweets
to accurately recognize the long-term seque-
lae.

• We develop an online dashboard for interac-
tive analysis of Long COVID symptoms from
different perspectives.

2 Related Work

In response to the COVID-19 pandemic, extensive
research has been conducted to help the healthcare
community respond to this unprecedented emer-
gency. As the concerns of COVID-19 long-term
consequences are rising, more efforts are being in-
vested in this topic. Current research about Long
COVID uses standardized questionnaires or med-
ical assessment to follow up the long-term symp-
toms of patients with clinical records (Carfì et al.,
2020; Blomberg et al., 2021). Due to the lack of
sufficient data about long-term COVID-19 com-
plications, some studies explore the COVID-19
sequelae through the review of earlier papers (Mi-
trani et al., 2020; Kumar et al., 2021; Willi et al.,
2021).

Numerous studies are using NLP approaches to
contribute to the global response to this pandemic
crisis. For instance, Silverman et al. (2021) use
NLP pipeline to extract COVID symptoms from un-
structured notes. With the use of NLP algorithms,
Cury et al. (2021) assess the CT imaging reports
for tracking of COVID-19 pandemic in the United
States.

Data from social media is widely used for
COVID symptom analysis (Sarker et al., 2020; Krit-
tanawong et al., 2020). However, very few studies

Figure 2: Methodology pipeline using synthetic data
example

focus on Long COVID with social media attributes.
Singh and Reddy (2020) and Banda et al. (2020)
analyzed the long-term symptoms distribution by
mining and manually reviewing tweets of around
100 self-reporting users. Sarker and Ge (2021) ana-
lyzed the major Long COVID symptoms distribu-
tion by extracting symptoms from posts on Reddit,
using approximate matching approach based on an
expanded meta-lexicon. They mainly analyzed the
major symptoms distribution.

In this work, we utilize various NLP approaches
to explore the Long COVID symptoms reported
on Twitter. We aim to conduct multi-scale analy-
sis of Long COVID symptoms, including not only
the symptoms distribution and duration but also
the effect of demographic and geographical patient
characteristics.

3 Methodology

Our data analysis pipeline is demonstrated in Fig. 2,
using a synthetic tweet based on several real tweets
as an example. First, noun phrases (NPs) are iden-
tified in each tweet and then classified to different
categories. Next, Long COVID-related informa-
tion is extracted from the identified NPs for further
analysis.

3.1 Noun Phrase Classification

We extract relevant information from tweets by
identifying NPs from seven categories, as shown in
Table 1. As observed, some NPs may carry more
than one information category. For example, "my
31 year old daughter" contains ’age’, and ’gen-
der.’ As such, we regard the NPs classification as a
multi-label and multi-class classification task. Af-
ter manually labeling some data, we aim to train a
supervised classification model. In this work, we
evaluate and compare the following NP classifica-
tion models: (a) Support vector machine (SVM);
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(b) Bidirectional Gated Recurrent Unit (GRU); (c)
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019). The most
accurate model is selected for this stage.

3.2 Information Extraction

After identifying NPs implicating valuable infor-
mation, we process and extract information from
these NPs for further analysis.

Symptom Categorization At this stage, we try
to identify symptom-related NPs. The symptom
classification task needs to capture the synonyms
for each symptom category. Because text on Twit-
ter is informal, the symptoms are not named in a
consistent or complete way. We chose to overcome
this problem using BERT embeddings. BERT is
not only capable of providing similar embeddings
for close meanings, it also gives contextualised em-
beddings. Additionally, as a Masked Language
Model, BERT produces significant results in under-
standing an incomplete text. Therefore, we built
the classification model by fine-tuning BERT to
identify all the symptom-related NPs.

Gender Extraction We label NPs as "Gender" if
they include gender information about the reported
person, such as, "my daughter", "my husband".
Also, some self-reported tweets mention the gender
explicitly. We extract the patient gender ("male"
or "female") from the relevant NPs by conducting
binary classification.

Symptom Duration Calculation Considering
the different definitions for Long COVID, we chose
to use ’week’ to measure the duration of the symp-
toms. It is observed that the users may report the
time period of their Long COVID symptoms or the
date of diagnosis, both of which can provide the
duration of the symptoms. Therefore, we extract
the symptom duration from NPs labeled as "Time"
or "Date". The NPs classified as "Time", which
are representing the time period, are converted into
weeks directly. As for the NPs of "Date" category,
which are expressing the date of the reported diag-
nosis, the duration is calculated by subtracting the
creation date of the tweets.

Age Extraction The user age in years is extracted
from the NPs assigned to the "Age" category by
converting number text to integers and extracting
the integers. Any extracted values that are out of
age range ([0,100]) are then filtered out.

Location Process The geolocation information
considers "Location" NPs and the reported loca-
tions in account profiles. However, if the geolo-
cation information retrieved from the NP and the
account profile are nonidentical for a single tweet,
we keep the geolocation information from the NP.
Later, the location information is converted into
coordinates.

3.3 Data Analysis

In this work, we conduct analysis of three cate-
gories: demographic analysis, geographical analy-
sis, and textual content analysis.

Demographic Analysis We analyze the distri-
bution of the reported symptoms. Aligning the
creation date of the tweets and the mentioned symp-
toms, we explore how the symptom distributions
evolve through the timeline. To explore the associa-
tions of other features with symptoms, we associate
the extracted information with the symptoms men-
tioned in the same tweet. Associated with gender
information, we analyze the gender distribution of
symptoms, to compare the symptoms experienced
by men and women. Associated with gender and
age/duration, we also present the joint distributions
of gender, age/duration and several major symp-
toms respectively. The average age and duration of
each symptom are calculated and demonstrated.

Geographical Analysis We visualize the loca-
tions on a global map, marked for different symp-
toms. The distribution of each symptom can be
clearly seen on the map, providing a geographical
perspective.

Textual Content Analysis To drill down into the
tweets content, we generate a word cloud for the
data of each month. The word cloud presents the
most frequent words related to symptoms. Word
cloud could enable to discover new symptoms and
the interaction of several different symptoms. We
use word distance with symptom words to filter
out the frequent words that are irrelevant to Long
COVID. Each word is represented by a word2vec
vector. For each word, we calculate the distance
to each vector in the symptom list, then keep the
closest distance as the score for this word. Later,
we sort these words by their scores from closest to
farthest. The top 100 words are used for generating
the word cloud.
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(a) Example 1

(b) Example 2

Figure 3: Examples of Long COVID-related tweets

4 Case Study

Based on the proposed pipeline, we conducted in-
depth analysis of Long COVID symptoms reported
on Twitter using a sample of Long COVID-related
tweets between May to December 2020, and a sam-
ple of October 2021. To explore the Long COVID
evolution over time, we compared the results of
May-December 2020 and October 2021.

4.1 Data

Leveraging Twitter’s streaming API, Chen et al.
(2020) are using keywords to continuously col-
lect a significant amount of COVID-19 tweets and
periodically release it for research use. We used
specific keywords (shown in Appendix A.1) to re-
trieve relevant tweets about Long COVID symp-
toms from this public coronavirus twitter dataset.
We built two datasets: one is containing Long
COVID-related tweets from 1st May to 31st De-
cember 2020; the other one is containing Long
COVID-related tweets of October 2021. After re-
moving non-English tweets and duplicates, our two
datasets contain 2.3M relevant tweets, in which
the amount is approximately 3.2% of the original
dataset for the same period of time. Some Long
COVID tweet examples are shown Fig. 3. Using
keyword-based approach to gather tweets might
exclude some relevant ones because of missing
certain keywords or misspellings (as tweets are
notoriously noisy). To estimate the False Nega-
tive (ratio of missing tweets) in our collection, we

Category Description #Labeled
Symptom symptoms reported in tweets 340
Time time period mentioned in tweets 179
Date date mentioned in tweets 68
Age age reported in tweets 44
Gender gender reported in tweets 30
Location location reported in tweets 45
None none of the above 436

Table 1: Noun phrase categories and labeled data for
NPs classification

manually verified 1432 tweets randomly selected
from the original COVID-19 dataset. As a result,
we got True Positive Rate of 78.8%, finding only
two Long COVID-related tweets, which were miss-
ing in our collection. Hence, we may assume that
our keyword-based approach with only 0.1% False
Negative Rate is sufficient to cover most relevant
tweets from the source dataset.

4.2 Noun Phrases Extraction and
Classification

We used spaCy6 for extracting the NPs from each
tweet.

For NPs classification, one of the authors man-
ually labeled a small subset of data from the
2020 dataset for training a supervised classification
model. The details of the labeled data are shown
in Table 1. The labeled data was randomly split
into training and testing sets (80/20). Using the
labeled data, we evaluated the following text rep-
resentations and classification algorithms to select
the most accurate model for NPs classification: (a)
SVM using tf-idf vectors for NPs representation;
(b) Bidirectional GRU using the Global Vectors
for Word Representation (GloVe) model (Penning-
ton et al., 2014) for NPs representation; (c) BERT,
fine-tuned on our NPs classification task.

We applied TfidfVectorizer7 for tf-idf text repre-
sentation, utilized 200d GloVe for text representa-
tion of NPs, and implemented GRU in Keras8. The
maximum sequence length was set to 5. We relied
on the Sigmoid activation function and learned the
weights using the Adam optimizer and Cross En-
tropy loss. We used a typical batch size of 32. We
fine tuned BERT using the pre-trained English bert-
base-cased model(Devlin et al., 2019), which has
12 transformer layers, 12 self-attention heads, and a
hidden size of 768. We applied a pre-trained BERT

6https://spacy.io/
7https://scikit-learn.org/stable/modules/generated/sklearn.

feature_extraction.text. TfidfVectorizer.html
8https://keras.io/
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Classifier Accuracy HammingLoss
SVM_tf-idf 0.72 0.043
GRU_GloVe 0.76 0.049
BERT 0.89 0.022

Table 2: Results of different classifiers for NPs classifi-
cation

Category Precision Recall F1
Age 1.00 1.00 1.00
Date 0.92 0.92 0.92
Gender 1.00 0.67 0.80
Location 1.00 1.00 1.00
None 0.90 0.88 0.89
Symptom 0.94 0.88 0.91
Time 1.00 1.00 1.00
Micro avg 0.93 0.89 0.91
Macro avg 0.97 0.91 0.92
Weighted avg 0.93 0.89 0.91
Samples avg 0.90 0.89 0.90
Accuracy 0.89
Hamming Loss 0.022

Table 3: The detailed results of NPs classification using
fine-tuned BERT

model to produce dense vector representations for
NPs, attaching a dense layer and a softmax layer to
fine tune the model for our task. We used the Adam
optimizer and Cross Entropy loss for training, with
1e-5 as the initial learning rate, and batch size 32.

The results of different NP classifiers are shown
in Table 2. The fine-tuned BERT classifier outper-
formed others, so we apply it for the NPs classifi-
cation. More detailed results of fine-tuned BERT
are shown in Table 3.

Since we are only interested in the tweets con-
taining Long COVID symptoms, the tweets without
"Symptom" NPs were also filtered out. As a result,
61% of the data was retained for further steps.

4.3 Information Extraction from Noun
Phrases

Referring to Long COVID Wikipedia9 and other
related studies (Del Rio et al., 2020; Olliaro,
2021), we summarized the long-term symptoms
to 16 classes (shown in Table 4). We used semi-
automatic method to label a 1K sample of symptom
NPs from the 2020 dataset for training supervised
classification models. First, we applied K-means
with K=17, for dividing all NPs to 17 clusters (for
16 symptom classes and 1 for miscellaneous NPs
describing symptoms that are not included in our
list). Then, we manually corrected the clustering
results, where 32.6% of each cluster instances were

9https://en.wikipedia.org/wiki/Long_COVID

Symptom #Labeled P R F1
Blood Clotting 24 1.00 1.00 1.00
Brain Fog 76 0.96 1.00 0.98
Breathlessness 186 0.96 0.98 0.97
Chest Pain 45 0.95 0.95 0.95
Cough 16 1.00 1.00 1.00
Fatigue 201 0.95 1.00 0.98
Fever 45 1.00 0.80 0.89
Gastrointestinal Prob-
lems

30 1.00 1.00 1.00

Headache 32 0.77 1.00 0.87
Heart Problems 138 0.97 1.00 0.99
Joint or Muscle Pain 147 0.93 0.93 0.93
Mental Problems 69 0.92 1.00 0.96
Parosmia 18 1.00 1.00 1.00
Skin Rash 18 1.00 0.83 0.91
Sleep Disorders 24 1.00 1.00 1.00
Sore Throat 21 0.80 0.57 0.67
None 31 1.00 0.29 0.44
Macro avg 0.95 0.90 0.91
Weighted avg 0.95 0.95 0.94
Accuracy 0.95

Table 4: The detailed results of symptom classification
using fine-tuned BERT

corrected on average. Subsequently, we used this
labeled data to fine-tune BERT for a symptom NPs
classification task. The labeled data was randomly
split into 80% for training and 20% for test. Details
of the model performance are shown in Table 4.
Given this model, all of the symptom NPs were
automatically labeled. We used the same configu-
rations, as shown in 4.2 for the NPs classification,
for fine tuning BERT for symptoms categorization.

For gender NPs classification, we used the
zero-shot text classification pipeline10, which is
based on the Bart (Lewis et al., 2020) model pre-
trained on Multi-Genre Natural Language Infer-
ence (MultiNLI) corpus11.

We applied geopy12 to convert the location infor-
mation into geographic coordinates.

When generating word clouds for the symptom-
related tweets, we calculated semantic similarity
between each word and any of explored symp-
toms using the cosine similarity between their 300d
word2vec vectors. Words with low similarity to all
symptoms were discarded.

More detailed performance of information ex-
traction is shown in Appendix A.2.

10https://discuss.huggingface.co/t/new-pipeline-for-zero-
shot-text-classification/681

11https://cims.nyu.edu/ sbowman/multinli/
12https://pypi.org/project/geopy/
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(a) May-December 2020 (b) October 2021

Figure 4: Distribution of symptoms

5 Results Analysis

After conducting information extraction with mul-
tiple pre-trained models, we performed comprehen-
sive analysis of symptom-related data. We com-
pared the results of May-December 2020 and the re-
sults of October 2021 to analyze the Long COVID
evolution over time. The results of May-December
2020 were presented in an interactive dashboard.

Long COVID Symptoms Analysis Extracting
the symptoms from the tweets, we analyzed the
symptom distribution using the frequency of each
symptom reported in each dataset. Fig. 4(a) shows
the distribution of the symptoms in May-December
2020. From Fig. 4(a), we can see that the ma-
jor symptoms are fatigue, breathlessness, joint or
muscle pain, heart problems, and brain fog. Some
rarely reported symptoms are headache, sleep dis-
orders, cough, sore throat, skin rash.

Fig. 4 shows the comparison of symptom distri-
bution in May-December 2020 and October 2021.
Generally speaking, the top symptoms and rare
symptoms stay approximately the same, except for
the following changes. The percentages of fatigue
and heart problems have increased from 46.6% to
56.7% and from 9.42% to 13.6%, respectively. The
percentage of breathlessness and joint or muscle
pain have decreased from 12% to 4.98% and from
16% to 10.2%, respectively. These changes may be
explained by the mutations of the virus over time.

Symptoms Association with Gender We asso-
ciated the extracted gender with the symptoms re-
ported in the same tweet, analyzing the gender
distribution with each symptom to explore the dif-
ferent experiences between men and women. Fig. 5
shows the gender distribution with symptoms of
two datasets. Specifically, in our dataset of 2020,
62% of mentioned patients are reported as female,
and 38% are reported as male. However, it is re-

Figure 5: Gender distribution of each symptoms (Male:
red; female: blue)

Figure 6: Duration(weeks) distribution

ported that about 30% Twitter users are female,
and about 70% are male13. This may indicate that
women are significantly more likely than men to
suffer ongoing symptoms after COVID-19. Most
of the symptoms appear to have an approximately
equal distribution between men and women. Some
very common symptoms, such as breathlessness,
brain fog, and heart problems are more likely to
happen to women than men. However, men are
more likely to suffer from sleeping difficulties than
women. And women are reported far more than
men to suffer from parosmia and gastrointestinal
problems.

Different from the 2020 dataset containing 62%
female and 38% male, the dataset of October 2021
contains 54% female and 46% male. It still shows
that women patients are more likely to be reported
suffering Long COVID, however, the percentage
of reported men patients is increasing. Similarly to
the results of 2020, most symptoms show approxi-
mately equal distribution between men and women.
The symptoms having big differences of distribu-
tion between men and women include cough and
sleeping disorders.

13https://www.statista.com/statistics/828092/distribution-
of-users-on-twitter-worldwide-gender/

15



Symptom May-Dec 2020 Oct 2021
Blood Clotting (17.898, 21.121) (18.762, 27.016)
Brain Fog (18.942, 20.195) (17.156, 21.957)
Breathlessness (17.510, 18.362) (17.259, 20.020)
Chest Pain (20.077, 22.510) (8.373, 22.126)
Cough (11.656, 14.386) (7.177, 14.756)
Fatigue (18.591, 19.074) (19.788, 20.830)
Fever (17.562, 19.207) (14.743, 18.396)
Gastrointestinal
Problems

(14.433, 16.872) (14.858, 19.714)

Headache (16.504, 19.029) (10.129, 26.501)
Heart Problems (18.692, 19.690) (18.607, 20.303)
Joint or Muscle Pain (18.543, 19.291) (17.758, 20.041)
Mental Problems (18.216, 19.515) (22.178, 25.745)
Parosmia (16.707, 18.956) (15.263, 22.151)
Skin Rash (10.241, 14.558) (1.282, 35.117)
Sleep Disorders (18.382, 23.617) (10.141, 30.413)
Sore Throat (16.472, 21.527) (15.273, 30.998)

Table 5: The confidence intervals of symptom dura-
tion(weeks)

Symptoms Duration Associating symptoms
with duration information, we analyzed for how
much time people reported themselves to suffer
from the Long COVID symptoms. Duration distri-
butions of all symptoms of both datasets are shown
in Fig. 6. In general, the duration of symptoms
reported ranges from less than one month to more
than ten months. From the comparison of symp-
toms duration distributions shown in Fig. 6, we can
see that the distribution of October 2021 roughly
follows the results of 2020. Most of the duration is
less than half year, but the results of October 2021
contain a bigger proportion of duration, which is
less than three months. It should be considered that
some reported symptoms duration did not follow
the same definition of Long COVID. However, con-
sidering the data of October 2021 observes longer
time of COVID, some reported duration can reach
80 weeks.

Table. 5 shows the confidence intervals of symp-
toms duration in both datasets. In 2020 dataset, the
duration for the most symptom categories is around
five months. However, cough has been reported to
last a relatively short time.

Symptoms Association with Age After extract-
ing the age information, we linked the age and the
symptom reported in the same tweet. Fig. 7 shows
the distributions of age reported for ’long haulers’
in our datasets and also compares the age distribu-
tion of all Twitter users14. The extracted age values
in our datasets are mostly below 50. A possible
reason is that people below 50 years old are more

14https://www.statista.com/statistics/283119/age-
distribution-of-global-twitter-users/

Symptom May-Dec 2020 Oct 2021
Blood Clotting (30.010, 36.076) (28.692, 39.036)
Brain Fog (35.513, 39.132) (29.639, 35.804)
Breathlessness (37.198, 38.987) (31.097, 34.411)
Chest Pain (35.191, 41.665) (28.707, 60.403)
Cough (16.184, 30.482) (18.636, 46.613)
Fatigue (35.641, 36.688) (28.711, 29.681)
Fever (26.829, 31.232) (29.640, 33.714)
Gastrointestinal
Problems

(38.418, 46.581) (26.491, 32.196)

Headache (35.162, 42.837) (15.174, 30.825)
Heart Problems (36.291, 38.292) (28.497, 30.460)
Joint or Muscle Pain (36.291, 38.292) (30.348, 32.757)
Mental Problems (35.916, 39.837) (28.389, 31.763)
Parosmia (36.460, 45.967) (29.415, 42.908)
Sleep Disorders (31.259, 44.740) (8.391, 62.608)

Table 6: The age confidence intervals of each symptom

active on Twitter. However, despite the low percent-
ages of age groups below 18 and above 50 among
Twitter users, these age groups are reported more
frequently to have Long COVID in our datasets.
Notably, comparing the results of October 2021 to
the results of 2020, the age group below 30 has a
big proportion in the data of October 2021.

Table. 6 shows the age confidence intervals of
each symptom. Comparing the results of October
2021 to the results of 2020, it can be observed that
except for the increased age of cough and fever, the
average age of patients experiencing other symp-
toms clearly decreased.

Symptoms Association with Geolocation Using
the extracted geolocation information, we demon-
strate geographic distributions of each symptom in
the world map. As the COVID-19 pandemic has
spread all over the world, the geographic distribu-
tions of May-December 2020 and October 2021
are approximately the same. Fig. 8 shows one
example symptom "Joint Pain" association with ge-
olocation based on the dataset of May-December
2020. Britain and USA have more twitter users
reporting Long COVID symptoms than any other
country. A possible explanation might be that peo-
ple in Britain and USA are more aware about the
long COVID symptoms. It can also be explained by
these two countries being most popular on Twitter
out of English-speaking countries15.

Content Analysis In order to demonstrate the
representative context of long COVID reports, we
generated a word cloud for each month to present
the most frequent symptom-related words. In gen-

15https://www.statista.com/statistics/242606/number-of-
active-twitter-users-in-selected-countries/

16



(a) Age distribution of Twitter users
worldwide

(b) Age distribution in our dataset of
May-December 2020

(c) Age distribution in our dataset of
October 2021

Figure 7: Age distribution comparison of Twitter users and reported in our datasets

Figure 8: "Joint Pain" association with geolocation

(a) October 2020 (b) October 2021

Figure 9: Word clouds

eral, the most frequent words are related to the most
frequent symptoms. By presenting the word cloud
on monthly basis, we explored the dynamics of the
frequent words. The examples of the word clouds
are shown in Fig. 9. Comparing the word clouds of
October 2020 and October 2021, we can see that
some common symptoms are frequently discussed
in both datasets. However, considering the vac-
cination progress in 2021, from Fig. 9(b) we can
see that vaccination-related words are frequently
discussed along with Long COVID symptoms. No-
tably, "depression", "anxiety", and "mental", which
represent the symptoms of mental problems are
more frequently discussed in the dataset of 2021.

In conclusion, the results of October 2021 are
partially consistent with 2020. Notably, with the
evolving COVID-19 pandemic including muta-
tions and vaccination some characteristics of Long
COVID symptoms appear to be evolving over time.

6 Discussion

Some important insights can be gained from the
analysis. For example, women tend to experience
Long COVID more frequently than men, which
is similar to the findings of some medical stud-
ies (Sudre et al., 2021; Ortona and Malorni, 2021;
Bai et al., 2021; Blomberg et al., 2021). Addition-
ally, ’mental problems’ is one of the top symptoms
shown in our results, which is rarely mentioned
as a common symptom in other works. In our
work, ’mental problems’ refers to depression, anxi-
ety, loneliness and other mental or emotional health
issues. Similarly, Sarker and Ge (2021) reported
55.2% users in the Reddit dataset experiencing
mental problems since their COVID onset.

7 Conclusions

In this work, we conducted a comprehensive anal-
ysis of Long COVID symptoms reported by the
Twitter users with respect to their demographic and
geographical characteristics. The presented case
study provides detailed information and important
insights about multiple aspects of long-term symp-
toms. The comparative analysis of two periods of
time (in 2020 and 2021) shows the consistent and
the evolving characteristics of the Long COVID.
Furthermore, an interactive online dashboard was
built to visualize the results of the 2020 dataset.
Limitations of this work include the possible effect
of large amounts of noise in the Twitter data on our
results. Besides, the data analyzed was limited to
English tweets, which might not be representative
of all segments of the world population affected
by COVID-19. Thus, our future work will focus
on analyzing larger amounts of data in multiple
languages. Symptoms co-occurrence and presence
of comorbidities may also be explored in the future
work. Moreover, non-binary gender class may be
taken into account in the future work as well.
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A Appendix

A.1 Keywords list of searching tweets

Keywords related to Long COVID are (uncased):
LongCovid, Long Covid, Long haul Covid, Long
hauler, Chronic Covid Syndrome (CCS), Post
Covid symptoms, Long lasting symptoms, Long-
term symptoms, sequelae covid, persistent symp-
toms.

A.2 Performance of Information Extraction

To validate the automatic labeling results, we man-
ually verified some labeled samples. The accuracy
of the validation samples is 98%. More specifi-
cally, the errors are caused by gender bias of the
pre-trained model. For example, " My kid" is la-
beled as "male", "My mother’s friend" is labeled
as "female". However, the accuracy shows that the
approach is valid for gender extraction.

In order to investigate the accuracy of informa-
tion extraction, we manually checked some sam-
ple sets for each class label after extraction. The
results are shown in Table A.1.1. Besides, be-
cause our work aims to explore the association
of symptoms with gender, age, duration, and ge-
olocation, we are interested to see the distributions
of these features in symptom-related tweets. We

(a) Joint distribution of symptoms with
gender and duration

(b) Joint distribution of symptoms
with gender and age

Figure A.3.1: Joint distribution in May-December 2020
Data

calculated the ratios of gender, age, duration, and
location in symptom-related tweets separately. For
duration extraction, NPs automatically labeled as
"Time" and "Date" were utilized. About 50% of
symptom-related tweets contain the relevant infor-
mation, specifically 38% of them are labeled as
"Time" and 12% as "Date". We summarized the
key information detection accuracy and the distri-
bution of the detected labels in Table A.1.1.

A.3 Joint Distribution
We linked symptoms with gender and duration get-
ting the joint distribution, which demonstrates for
how long time men and women were more likely
to be reported experiencing certain symptoms.

We also present the joint distributions of age
and gender in tweets reporting about long COVID
symptoms, showing in which age group men or
women were more likely to report experiencing
certain symptoms. One example of the results of
2020 is shown in Fig. A.3.1, from which it can be
seen that mostly women of 30 years old frequently
reported to experience fatigue.
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Abstract

Classification of posts in social media such as
Twitter is difficult due to the noisy and short
nature of texts. Sequence classification models
based on recurrent neural networks (RNN) are
popular for classifying posts that are sequential
in nature. RNNs assume the hidden represen-
tation dynamics to evolve in a discrete man-
ner and do not consider the exact time of the
posting. In this work, we propose to use recur-
rent neural ordinary differential equations (RN-
ODE) for social media post classification which
consider the time of posting and allow the com-
putation of hidden representation to evolve in
a time-sensitive continuous manner. In addi-
tion, we propose a novel model, Bi-directional
RNODE (Bi-RNODE), which can consider the
information flow in both the forward and back-
ward directions of posting times to predict the
post label. Our experiments demonstrate that
RNODE and Bi-RNODE are effective for the
problem of stance classification of rumours in
social media.

1 Introduction

Information disseminated in social media such as
Twitter can be useful for addressing several real-
world problems like rumour detection, disaster
management, and opinion mining. Most of these
problems involve classifying social media posts
into different categories based on their textual con-
tent. For example, classifying the veracity of tweets
as False, True, or unverified allows one to debunk
the rumours evolving in social media (Zubiaga
et al., 2018a). However, social media text is ex-
tremely noisy with informal grammar, typograph-
ical errors, and irregular vocabulary. In addition,
the character limit (240 characters) imposed by so-
cial media such as Twitter make it even harder to
perform text classification.

Social media text classification, such as ru-
mour stance classification1 (Qazvinian et al.,

1Rumour stance classification helps to identify the veracity

2011; Zubiaga et al., 2016; Lukasik et al., 2019)
can be addressed effectively using sequence la-
belling models such as long short term memory
(LSTM) networks (Zubiaga et al., 2016; Augen-
stein et al., 2016; Kochkina et al., 2017; Zubiaga
et al., 2018b,a; Dey et al., 2018; Liu et al., 2019;
Tian et al., 2020). Though they consider the se-
quential nature of tweets, they ignore the temporal
aspects associated with the tweets. The time gap
between tweets varies a lot and LSTMs ignore this
irregularity in tweet occurrences. They are discrete
state space models where hidden representation
changes from one tweet to another without con-
sidering the time difference between the tweets.
Considering the exact times at which tweets occur
can play an important role in determining the label.
If the time gap between tweets is large, then the
corresponding labels may not influence each other
but can have a very high influence if they are closer.

We propose to use recurrent neural ordi-
nary differential equations (RNODE) (Rubanova
et al., 2019) and developed a novel approach bi-
directional RNODE (Bi-RNODE), which can natu-
rally consider the temporal information to perform
time sensitive classification of social media posts.
NODE (Chen et al., 2018) is a continuous depth
deep learning model that performs transformation
of feature vectors in a continuous manner using or-
dinary differential equation solvers. NODEs bring
parameter efficiency and address model selection
in deep learning to a great extent. RNODE gen-
eralizes RNN by extending NODE for time-series
data by considering temporal information associ-
ated with the sequential data. Hidden representa-
tions are changed continuously by considering the
temporal information.

We propose to use RNODE for the task of se-
quence labeling of posts, which considers arrival
times of the posts for updating hidden representa-

of a rumour post by classifying the reply tweets into different
stance classes such as Support, Deny, Question, Comment
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tions and for classifying the post. In addition, we
propose a novel model, Bi-RNODE, which con-
siders not only information from the past but also
from the future in predicting the label of the post.
Here, continuously evolving hidden representations
in the forward and backward directions in time are
combined and used to predict the post label. We
show the effectiveness of the proposed models on
the rumour stance classification problem in Twit-
ter using the RumourEval-2019 (Derczynski et al.,
2019) dataset. We found RNODE and Bi-RNODE
can improve the social media text classification by
effectively making use of the temporal information
and is better than LSTMs and gated recurrent units
(GRU) with temporal features.

2 Background
We consider the problem of classifying social me-
dia posts into different classes. Let D be a collec-
tion of N posts, D = {pi}Ni=1. Each post pi is
assumed to be a tuple containing information such
as textual and contextual features xi, time of the
post ti and the label associated with the post yi,
thus pi = {(xi, ti, yi)}. Our aim is to develop a
sequence classification model which considers the
temporal information ti along with xi for classify-
ing a social media post. In particular, we consider
the rumour stance classification problem in Twitter
where one classifies tweets into Support, Query,
Deny, and Comment class, thus yi ∈ Y={Support,
Query, Deny, Comment}.
2.1 Neural Ordinary Differential Equations
NODE were introduced as a continuous depth
alternative to Residual Networks (ResNets) (He
et al., 2016). ResNets uses skip connections to
avoid vanishing gradient problems when networks
grow deeper. Residual block output is computed
as ht+1 = ht + f(ht, θt), where f() is a neural
network (NN) parameterized by θt and ht repre-
senting the hidden representation at depth t. This
update is similar to a step in Euler numerical
technique used for solving ordinary differential
equations (ODE) dh(t)

dt = f(h(t), t, θ). The se-
quence of residual block operations in ResNets can
be seen as a solution to this ODE. Consequently,
NODEs can be interpreted as a continuous equiva-
lent of ResNets modeling the evolution of hidden
representationsh(t) over time.

For solving ODE, one can use fixed step-
size numerical techniques such as Euler, Runge-
Kutta or adaptive step-size methods like Do-
pri5(Dormand and Prince, 1980). Solving an

Figure 1: Architecture details of RNODE

ODE requires one to specify an initial value
h(0) (input x or its transformation) and can
compute the value at t using an ODE solver
ODESolverCompute(fθ,h(0), 0, t). An ODE
is solved until some end-time T to obtain the fi-
nal hidden representation h(T ) which is used to
predict class labels ŷ. For classification problems,
cross-entropy loss is used and parameters are learnt
through adjoint sensitivity method (Zhuang et al.,
2020; Chen et al., 2018) which provides efficient
back-propagation and gradient computations.

3 Bi-Directional Recurrent NODE
LSTMs are popular for sequence classification but
only considers the sequential nature of the data and
ignore the temporal features associated with the
data in its standard setting. As the posts occur in
irregular intervals of time, the nature of a new post
will be influenced by the recent posts, influence
will be inversely proportional to the time gap. In
these situations, it will be beneficial to use a model
where the number of transformations depend on
the time gap.

We propose to use RNODE which considers the
arrival time and accordingly the hidden representa-
tions are transformed across time. In RNODE, the
transformation of a hidden representation h(ti−1)
at time ti−1 to h(ti) at time ti is governed by an
ODE parameterized by a NN f(). Unlike standard
LSTMs where h(ti) is obtained from h(ti−1) as
a single NN transformation, RNODE first obtains
a hidden representation h′(ti) as a solution to an
ODE at time ti with initial value h(ti−1). The
number of update steps in the numerical technique
used to solve this ODE depends on the time gap
ti−ti−1 between the consecutive posts. The hidden
representation h′(ti) and input post xi at time ti
are passed through neural network transformation
(RNNCell()) to obtain final hidden representation
h(ti), i.e., h(ti) = RNNCell(h′(ti),xi). The pro-
cess is repeated for every element (xi, ti) in the
sequence. The hidden representations associated
with the elements in the sequence are then passed
to a neural network (NN()) to obtain the post labels.
Using standard cross-entropy loss, the parameters
of the models are learnt through backpropagation.
Figure 1 provides the detailed architecture of the
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Figure 2: Bi-RNODE Architecture

RNODE model.
Bi-directional RNNs (Schuster and Paliwal,

1997) such as Bi-LSTMS (Graves et al., 2013) were
proven to be successful in many sequence labeling
tasks in natural language processing such as POS
tagging (Huang et al., 2015). They use the infor-
mation from the past and future to predict the label
while standard LSTMs consider only information
from the past. We propose a Bi-RNODE model,
which uses the sequence of input observations from
past and from the future to predict the post label
at any time t. It assumes the hidden representation
dynamics are influenced not only by the past posts
but also by the futures posts. Unlike Bi-LSTMs, Bi-
RNODE considers the exact time of the posts and
their inter-arrival times in determining the transfor-
mations in the hidden representations. Bi-RNODE
consists of two RNODE blocks, one performing
transformations in the forward direction (in the or-
der of posting times) and the other in the backward
direction. The hidden representations H and Hb

computed by forward and backward RNODE re-
spectively are aggregated either by concatenation
or by averaging appropriately to obtain a final hid-
den representation and is passed through a NN to
obtain the post labels. Bi-RNODE is useful when
a sequence of posts with their time of occurrence
needs to be classified together.

Figure 2 provides an overview of Bi-RNODE
model for post classification. For Bi-RNODE, an
extra neural network fθ′() is required to compute
hidden representations hb(t

′
i) in the backward di-

rection. Training in Bi-RNODE is done in a similar
manner to RNODE, with cross-entropy loss and
back-propagation to estimate parameters.

4 Experiments
To demonstrate the effectiveness of the proposed
approaches, we consider the stance classification
problem in Twitter and RumourEval-2019 (Der-
czynski et al., 2019) data set. This Twitter data set
consists of rumours associated with eight events.
Each event has a collection of tweets labelled with
one of the four labels - Support, Query, Deny

and Comment. We picked four major events
Charliehebdo, Ferguson, Ottawashooting and Syd-
neysiege (each with approximately 1000 tweets per
event) from RumourEval-2019 to perform experi-
ments.

Features : For dataset preparation, each data
point xi associated with a Tweet includes text em-
bedding, retweet count, favourites count, punctu-
ation features, negative and positive word count,
presence of hashtags, user mentions, URLs etc. ob-
tained from the tweet. The text embedding of the
tweet is obtained by concatenating the word em-
beddings 2 . Each tweet timestamp is converted to
epoch time and Min-Max normalization is applied
over the time stamps associated with each event to
keep the duration of the event in the interval [0, 1].

4.1 Experimental setup

We conducted experiments to predict the stance of
social media posts propagating in seen events and
unseen events.

-Seen Event Here we train, validate and test
on tweets of the same event. Each event data is
split 60:20:20 ratio in sequence of time. This setup
helps in predicting the stance of unseen tweets of
the same event.

-Unseen Event: This setup helps in evaluating
performance on an unseen event and training on a
larger dataset. Here, training and validation data
are formed using data from 3 events and testing is
done on the 4th event. Last 20% of the training
data (after ordering based on time) are set aside
for validation. During training, mini-batches are
formed only from the tweets belonging to the same
event.

Baselines: We compared results of our proposed
RNODE and Bi-RNODE models with RNN based
baselines such LSTM (Kochkina et al., 2017), Bi-
LSTM (Augenstein et al., 2016), GRU (Cho et al.,
2014), Bi-GRU, and Majority (labelling with most
frequent class) baseline models. We also use a
variant of LSTM baseline considering temporal in-
formation (Zubiaga et al., 2018b), LSTM-timeGap
where the time gap of consecutive data points is
included as part of the input data.

Evaluation Metrics: We consider the standard
evaluation metrics such as precision, recall, F1 and
in addition the AUC score to account for the data
imbalance. We consider a weighted average of the

2Using pre-trained word2vec vectors which are trained on
Google News dataset: https://code.google.com/p/word2vec,
each word is represented as an embedding of size 15.
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(a) RNODE (b) LSTM (c) GRU (d) Bi-RNODE (e) Bi-LSTM (f) Bi-GRU

Figure 3: ROC curves of different models trained on sydneysiege event for seen event experimental setup. Bi-RNODE exhibits
better AUC and class separability overall classes.

Model Charliehebdo Ferguson Ottawashooting

AUC F1 Recall Preci- AUC F1 Recall Preci- AUC F1 Recall Preci-
sion sion sion

RNODE 0.665 0.653 0.674 0.658 0.600 0.591 0.659 0.598 0.638 0.654 0.692 0.670
0.638 0.672 0.700 0.721 0.618 0.632 0.677 0.640 0.659 0.651 0.703 0.642

Bi-RNODE 0.696 0.659 0.693 0.629 0.595 0.599 0.673 0.641 0.669 0.667 0.692 0.658

0.651 0.697 0.737 0.690 0.615 0.643 0.695 0.635 0.652 0.624 0.662 0.618

Bi-LSTM 0.628 0.625 0.679 0.609 0.563 0.599 0.650 0.614 0.622 0.627 0.654 0.622

0.662 0.690 0.717 0.671 0.603 0.623 0.667 0.600 0.650 0.637 0.686 0.622

Bi-GRU 0.654 0.643 0.660 0.641 0.588 0.571 0.631 0.625 0.640 0.651 0.686 0.644

0.656 0.690 0.724 0.682 0.613 0.634 0.678 0.611 0.648 0.636 0.683 0.610

LSTM 0.625 0.600 0.637 0.637 0.567 0.602 0.650 0.611 0.605 0.609 0.635 0.603

0.645 0.690 0.728 0.686 0.602 0.611 0.631 0.603 0.630 0.626 0.680 0.627

GRU 0.616 0.610 0.647 0.623 0.578 0.588 0.664 0.631 0.591 0.539 0.513 0.574

0.682 0.695 0.713 0.686 0.614 0.640 0.687 0.623 0.638 0.632 0.683 0.618

LSTM- 0.638 0.631 0.679 0.605 0.565 0.581 0.627 0.590 0.625 0.640 0.679 0.650

timeGap 0.652 0.695 0.732 0.696 0.604 0.625 0.673 0.633 0.638 0.638 0.683 0.651
Majority 0.500 0.456 0.605 0.366 0.500 0.518 0.654 0.428 0.500 0.485 0.628 0.395

0.500 0.542 0.673 0.453 0.500 0.528 0.662 0.439 0.500 0.467 0.614 0.377

Table 1: Performance of all the models on RumourEval-2019 (Derczynski et al., 2019) dataset. First and second
rows of each model represents seen event and unseen event experiment results respectively.

evaluation metrics to compare the performance of
models.

Hyperparameters: All the models are trained
for 50 epochs with 0.01 learning rate, Adam op-
timizer, dropout(0.2) regularizer, batchsize of 50,
hidden representation size of 64 and cross entropy
as the loss function. Different hyperparameters like
neural network layers (1, 2), numerical methods
(Euler, RK4, Dopri5 for RNODE and Bi-RNODE)
and aggregation strategy (concatenation or aver-
aging for Bi-LSTM Bi-GRU and Bi-RNODE) are
used for all the models and the best configuration
is selected from the validation data for different
experimental setups and train/test data splits.
4.2 Results and Analysis
The results of seen event and unseen event experi-
ment setup can be found in Table 1, where the first
and second rows for each model provides results on
seen event and unseen event respectively. We can
observe from Table 1 that for both seen event and
unseen event experiment setup, RNODE and Bi-

RNODE models performed better than the baseline
models in general for all the 3 events3. In particular
for the seen event setup, Bi-RNODE gives the best
result outperforming RNODE and other models for
most of the data sets and measures. Under seen
event experiment on Syndneysiege event, we plot
the ROC curve for all the models in Figure 3. We
can observe that AUC for Figures 3(a) and 3(e)
corresponding to RNODE and Bi-RNODE respec-
tively are higher than LSTM, GRU, Bi-LSTM , and
Bi-GRU.
5 Conclusion
We proposed RNODE, Bi-RNODE models for se-
quence classification of social media posts. These
models consider temporal information of the posts
and hidden representation are evolved as solution
to ODE. Through experiments, we show these mod-
els perform better than LSTMs on rumour stance
classification problem in Twitter

3Due to space constraint, Table 1 presents results for 3
events, Syndneysiege results in Figure 3.
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