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Preface

Many Asian countries are rapidly growing these days and the importance of communicating and
exchanging the information with these countries has intensified. To satisfy the demand for
communication among these countries, machine translation technology is essential.

Machine translation technology has rapidly evolved recently and it is seeing practical use especially
between European languages. However, the translation quality of Asian languages is not that high
compared to that of European languages, and machine translation technology for these languages has not
reached a stage of proliferation yet. This is not only due to the lack of the language resources for Asian
languages but also due to the lack of techniques to correctly transfer the meaning of sentences from/to
Asian languages. Consequently, a place for gathering and sharing the resources and knowledge about
Asian language translation is necessary to enhance machine translation research for Asian languages.

The Conference on Machine Translation (WMT), the world’s largest machine translation workshop,
mainly targets on European language. The International Workshop on Spoken Language Translation
(IWSLT) has spoken language translation tasks for some Asian languages using TED talk data, but
there is no task for written language. The Workshop on Asian Translation (WAT) is an open machine
translation evaluation campaign focusing on Asian languages. WAT gathers and shares the resources
and knowledge of Asian language translation to understand the problems to be solved for the practical
use of machine translation technologies among all Asian countries. WAT is unique in that it is an "open
innovation platform": the test data is fixed and open, so participants can repeat evaluations on the same
data and confirm changes in translation accuracy over time. WAT has no deadline for the automatic
translation quality evaluation (continuous evaluation), so participants can submit translation results at
any time.

Following the success of the previous WAT workshops (WAT2014 – WAT2021), WAT2022 will bring
together machine translation researchers and users to try, evaluate, share and discuss brand-new ideas
about machine translation. For the 9th WAT, we included several new translation tasks including
Structured Document Translation Task, Video Guided Ambiguous Subtitling Task, Khmer Speech
Translation Task, Two new translation tasks to the Restricted Translation task, Parallel Corpus Filtering
Task, Bengali Visual Genome Task, 5 new languages to the Multilingual Indic Machine Translation Task
and 1 new language to the Wikinews and Software Documentation Translation Task. We had 8 teams
participate in the shared tasks. About 300 translation results were submitted to the automatic evaluation
server, and selected submissions were manually evaluated. In addition to the shared tasks, WAT2022
also features research papers on topics related to machine translation, especially for Asian languages.
The program committee accepted 4 research papers.

We are grateful to "SunFlare Co., Ltd." and "Asia-Pacific Association for Machine Translation (AAMT)"
for partially sponsoring the workshop. We would like to thank all the authors who submitted papers. We
express our deepest gratitude to the committee members for their timely reviews. We also thank the
COLING2022 organizers for their help with administrative matters.

WAT 2022 Organizers
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Invited talk: Machine translation of Turkic languages: Current approaches and
Open challenges

Duygu Ataman

New York University

Abstract

Recent advances in neural machine translation have pushed the quality of machine translation systems
to the point where they are becoming widely adopted to build competitive systems. However, there
is still a large number of languages that are yet to reap the benefits of neural machine translation. In
this context, we present a review of the neural machine translation technology and the results from a
large-scale case study of the practical application of neural machine translation in the Turkic language
family in order to realize the applicability of prominent architectures and learning methods, data sets
as well as evaluation metrics in languages with different characteristics and under high-resource to ex-
tremely low-resource scenarios, in addition to identified limitations and promising directions for research
to contribute to the extension of the applicability of translation technology in more languages and domains.
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Abstract

This paper presents the results of the shared
tasks from the 9th workshop on Asian transla-
tion (WAT2022). For the WAT2022, 8 teams
submitted their translation results for the hu-
man evaluation. We also accepted 4 research
papers. About 300 translation results were sub-
mitted to the automatic evaluation server, and
selected submissions were manually evaluated.

1 Introduction

The Workshop on Asian Translation (WAT) is an
open evaluation campaign focusing on Asian lan-
guages. Following the success of the previous
workshops WAT2014-WAT2021 (Nakazawa et al.,
2021c), WAT2022 brings together machine trans-
lation researchers and users to try, evaluate, share
and discuss brand-new ideas for machine transla-
tion. We have been working toward practical use
of machine translation among all Asian countries.

For the 9th WAT, we included the following new
tasks/languages:

• Structured Document Translation Task: En-
glish ↔ Japanese, Chinese and Korean trans-
lation.

• Video Guided Ambiguous Subtitling Task:
Japanese → English video guided translation
for ambiguous subtitles.

• Khmer Speech Translation Task: Low-
resource Khmer → English/French speech
translation.

• Two new translation tasks to the Restricted
Translation task: Chinese ↔ Japanese.

• Parallel Corpus Filtering: Japanese ↔ En-
glish parallel corpus filtering.

• Bengali Visual Genome Task: English →
Bengali multi-modal translation has been
added, similar to the recurring Hindi and
Malayalam multi-modal translation tasks.

• 5 new languages to the Multilingual Indic Ma-
chine Translation Task (MultiIndicMT): As-
samese, Sindhi, Sinhala, Nepali and Urdu.

• 1 new language to the Wikinews and Soft-
ware Documentation Translation Task (NICT-
SAP): Vietnamese.

All the tasks are explained in Section 2.
WAT is a unique workshop on Asian language

translation with the following characteristics:
1



• Open innovation platform
Due to the fixed and open test data, we can re-
peatedly evaluate translation systems on the
same dataset over years. WAT receives sub-
missions at any time; i.e., there is no submis-
sion deadline of translation results w.r.t auto-
matic evaluation of translation quality.

• Domain and language pairs
WAT is the world’s first workshop that
targets scientific paper domain, and
Chinese↔Japanese and Korean↔Japanese
language pairs.

• Evaluation method
Evaluation is done both automatically and
manually. Firstly, all submitted translation re-
sults are automatically evaluated using three
metrics: BLEU, RIBES and AMFM. Among
them, selected translation results are assessed
by two kinds of human evaluation: pairwise
evaluation and JPO adequacy evaluation.

2 Tasks
2.1 ASPEC+ParaNatCom Task
Traditional ASPEC translation tasks are sentence-
level and the translation quality of them seem to
be saturated. We think it’s high time to move on to
document-level evaluation. For the first year, we
use ParaNatCom1 (Parallel English-Japanese ab-
stract corpus made from Nature Communications
articles) for the development and test sets of the
Document-level Scientific Paper Translation sub-
task. We cannot provide document-level training
corpus, but you can use ASPEC and any other ex-
tra resources.

2.2 Document-level Business Scene Dialogue
Translation

There are a lot of ready-to-use parallel corpora
for training machine translation systems, however,
most of them are in written languages such as web
crawl, news-commentary, patents, scientific papers
and so on. Even though some of the parallel cor-
pora are in spoken language, they are mostly spo-
ken by only one person (TED talks) or contain a lot
of noise (OpenSubtitle). Most of other MT evalua-
tion campaigns adopt the written language, mono-
logue or noisy dialogue parallel corpora for their
translation tasks. Traditional ASPEC translation

1http://www2.nict.go.jp/astrec-att/member/
mutiyama/paranatcom/

Lang Train Dev DevTest Test-2022
zh-ja 1,000,000 2,000 2,000 10,204
ko-ja 1,000,000 2,000 2,000 7,230
en-ja 1,000,000 2,000 2,000 10,668

Lang Test-N1 Test-N2 Test-N3 Test-N4
zh-ja 2,000 3,000 204 5,000
ko-ja 2,000 – 230 5,000
en-ja 2,000 3,000 668 5,000

Table 1: Statistics for JPC

tasks are sentence-level and the translation quality
of them seem to be saturated. To move to a highly
topical setting of translation of dialogues evaluated
at the level of documents, WAT uses BSD Cor-
pus2 (The Business Scene Dialogue corpus) for the
dataset including training, development and test
data for the first time this year. Participants of this
task must get a copy of BSD corpus by themselves.

2.3 JPC Task
JPO Patent Corpus (JPC) for the patent tasks was
constructed by the Japan Patent Office (JPO) in
collaboration with NICT. The corpus consists of
Chinese-Japanese, Korean-Japanese, and English-
Japanese parallel sentences of patent descriptions.
Most sentences were extracted from documents
with one of four International Patent Classifica-
tion (IPC) sections: chemistry, electricity, mechan-
ical engineering, and physics. As shown in Ta-
ble 1, each parallel corpus consists of training,
development, development-test, and three or four
test datasets, including two test datasets introduced
at WAT2022: test-2022 and test-N4. The test
datasets have the following characteristics:

• test-2022: the union of the following three
sets;

• test-N1: patent documents from patent fami-
lies published between 2011 and 2013;

• test-N2: patent documents from patent fami-
lies published between 2016 and 2017;

• test-N3: patent documents published between
2016 and 2017 with manually translated tar-
get sentences; and

• test-N4: patent documents from patent fami-
lies published between 2019 and 2020.

2https://github.com/tsuruoka-lab/BSD
2



Training 0.2 M sentence pairs

Test set I
Test 2,000 sentence pairs
DevTest 2,000 sentence pairs
Dev 2,000 sentence pairs

Test set II
Test-2 1,912 sentence pairs
Dev-2 497 sentence pairs
Context for Test-2 567 article pairs
Context for Dev-2 135 article pairs

Table 2: Statistics for JIJI Corpus

2.4 Newswire (JIJI) Task
The Japanese ↔ English newswire task uses JIJI
Corpus which was constructed by Jiji Press Ltd.
in collaboration with NICT and NHK. The corpus
consists of news text that comes from Jiji Press
news of various categories including politics, econ-
omy, nation, business, markets, sports and so on.
The corpus is partitioned into training, develop-
ment, development-test and test data, which con-
sists of Japanese-English sentence pairs. In addi-
tion to the test set (test set I) that has been pro-
vided from WAT 2017, a test set (test set II) with
document-level context has also been provided
from WAT 2020. These test sets are as follows.

Test set I : A pair of test and reference sentences.
The references were automatically extracted
from English newswire sentences and not
manually checked. There are no context data.

Test set II : A pair of test and reference sentences
and context data that are articles including test
sentences. The references were automatically
extracted from English newswire sentences
and manually selected. Therefore, the qual-
ity of the references of test set II is better than
that of test set I.

The statistics of JIJI Corpus are shown in Ta-
ble 2.

The definition of data use is shown in Table 3.
Participants submit the translation results of one

or more of the test data.
The sentence pairs in each data are identified

in the same manner as that for ASPEC using the
method from (Utiyama and Isahara, 2007).

2.5 ALT and UCSY Corpus
The parallel data for Myanmar-English translation
tasks at WAT2021 consists of two corpora, the ALT
corpus and UCSY corpus.

• The ALT corpus is one part from the Asian
Language Treebank (ALT) project (Riza
et al., 2016), consisting of twenty thousand
Myanmar-English parallel sentences from
news articles.

• The UCSY corpus (Yi Mon Shwe Sin and
Khin Mar Soe, 2018) is constructed by the
NLP Lab, University of Computer Studies,
Yangon (UCSY), Myanmar. The corpus con-
sists of 200 thousand Myanmar-English par-
allel sentences collected from different do-
mains, including news articles and textbooks.

The ALT corpus has been manually segmented
into words (Ding et al., 2018, 2019), and the UCSY
corpus is unsegmented. A script to tokenize the
Myanmar data into writing units is released with
the data. The automatic evaluation of Myanmar
translation results is based on the tokenized writ-
ing units, regardless to the segmented words in the
ALT data. However, participants can make a use of
the segmentation in ALT data in their own manner.

The detailed composition of training, develop-
ment, and test data of the Myanmar-English trans-
lation tasks are listed in Table 4. Notice that both
of the corpora have been modified from the data
used in WAT2018.

2.6 NICT-SAP Task
In WAT2021, we decided to continue the
WAT2020 task for joint multi-domain multi-
lingual neural machine translation involving 4
low-resource Asian languages: Thai (Th), Hindi
(Hi), Malay (Ms), Indonesian (Id). English (En) is
the source or the target language for the translation
directions being evaluated. The purpose of this
task was to test the feasibility of multi-domain
multilingual solutions for extremely low-resource
language pairs and domains. Naturally the
solutions could be one-to-many, many-to-one
or many-to-many NMT models. The domains
in question are Wikinews and IT (specifically,
Software Documentation). The total number of
evaluation directions are 16 (8 for each domain).
There is very little clean and publicly available
data for these domains and language pairs and thus
we encouraged participants to not only utilize the
small Asian Language Treebank (ALT) parallel
corpora (Thu et al., 2016) but also the parallel
corpora from OPUS3, other WAT tasks (past and

3http://opus.nlpl.eu/
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Task Use Content

Japanese to English

Training Training, DevTest, Dev, Dev-2, context for Dev2
Test set I To be translated Test in Japanese

Reference Test in English

Test set II
Test-2 Test-2 in Japanese
Context Context in Japanese for Test-2
Reference Test-2 in English

English to Japanese

Training Training, DevTest, Dev, Dev-2, context for Dev2
Test set I To be translated Test in English

Reference Test in Japanese

Test set II
To be translated Test-2 in English
Context in English for Test-2 Context in English for Test-2
Reference Test-2 in Japanese

Table 3: Definition of data use in the Japanese ↔ English newswire task

Corpus Train Dev Test
ALT 18,088 1,000 1,018
UCSY 204,539 – –
All 222,627 1,000 1,018

Table 4: Statistics for the data used in Myanmar-English
translation tasks

Language Pair
Split Domain Hi Id Ms Th
Train ALT 18,088

IT 254,242 158,472 506,739 74,497
Dev ALT 1,000

IT 2,016 2,023 2,050 2,049
Test ALT 1,018

IT 2,073 2,037 2,050 2,050

Table 5: The NICT-SAP task corpora splits. The cor-
pora belong to two domains: wikinews (ALT) and soft-
ware documentation (IT). The Wikinews corpora are N-
way parallel.

present) and WMT4. The ALT dataset contains
18,088, 1,000 and 1,018 training, development
and testing sentences. As for corpora for the IT
domain we only provided evaluation (dev and
test sets) corpora5 (Buschbeck and Exel, 2020)
and encouraged participants to consider GNOME,
UBUNTU and KDE corpora from OPUS. We
also encouraged the use of monolingual corpora
expecting that it would be for pre-trained NMT
models such as BART/MBART (Lewis et al.,
2020; Liu et al., 2020). In Table 5 we give
statistics of the aforementioned corpora which we
used for the organizer’s baselines. Note that the
evaluation corpora for both domains are created
from documents and thus contain document level
meta-data. Participants were encouraged to use
document level approaches. Note that we do not

4http://www.statmt.org/wmt20/
5Software Domain Evaluation Splits

exhaustively list6 all available corpora here and
participants were not restricted from using any
corpora as long as they are freely available.

2.7 Structured Document Translation Task
For the first time we introduce a structured doc-
ument translation task for English ↔ Japanese,
Chinese and Korean translation. The goal is to
translate sentences with XML annotations in them.
The key challenge is to accurately transfer the
XML annotations from the marked source lan-
guage words/phrases to their translations in the tar-
get language. The evaluation dataset for this task
was created by SAP and is an extension of the soft-
ware documentation dataset, which is used for the
NICT-SAP task. It consists of 2,011 and 2,002 seg-
ments in the development and test sets respectively.
Note that the dataset also comes with its XML
stripped equivalent and can be used to evaluate En-
glish ↔ Japanese, Chinese and Korean translation
for the software documentation domain. Given
that there is no training data available for this task,
it becomes more challenging.

2.8 Indic Multilingual Task (MultiIndicMT)
Owing to the increasing interest in Indian lan-
guage translation and the success of the multilin-
gual Indian languages tasks in 2018 (Nakazawa
et al., 2018), 2020 (Nakazawa et al., 2020) and
2021 (Nakazawa et al., 2021b), we decided to en-
large the scope of the 2021 task by adding 5 new
languages to the MultiIndicMT task, namely, As-
samese (As), Urdu (Ur), Sindhi (Si), Sinhala (Sd)
and Nepali (Ne). In addition to the original 10
Indic languages, alongside English (En), namely,
Hindi (Hi), Marathi (Mr), Kannada (Kn), Tamil

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
NICT-SAP-Task

4



(Ta), Telugu (Te), Gujarati (Gu), Malayalam (Ml),
Bengali (Bn), Oriya (Or) and Punjabi (Pa), we have
a total of 15 Indic languages being evaluated this
year. We used the FLORES-101 dataset’s7 dev and
devtest sets for development and testing both con-
taining roughly 1000 sentences each per language.
FLORES-101 is N-way parallel which ensures In-
dic to Indic translation evaluation although we did
not consider it this year.

The objective of this task, like the Indic lan-
guages tasks in 2018, 2020, and 2021, is to eval-
uate the performance of multilingual NMT models
for English to Indic and Indic to English translation.
The desired solution could be one-to-many, many-
to-one or many-to-many NMT models. In general,
we encouraged participants to focus on multilin-
gual NMT (Dabre et al., 2020) solutions. For train-
ing, we encouraged the use of the Samanantar cor-
pus (Ramesh et al., 2022) which covers 11 of the
15 Indic languages. For other languages, we asked
users to use the corpora from Opus, specifically the
Paracrawl datasets8 for Nepali and Sinhala. We
also listed additional sources of monolingual cor-
pora for participants to use.

2.9 English→Hindi Multi-Modal Task
This task is running successfully in WAT since
2019 and attracted many teams working on mul-
timodal machine translation and image captioning
in Indian languages (Nakazawa et al., 2019, 2020,
2021a).

For English→Hindi multi-modal translation
task, we asked the participants to use Hindi Visual
Genome 1.1 corpus (HVG, Parida et al., 2019a,b).9

The statistics of HVG 1.1 are given in Table 6.
One “item” in HVG consists of an image with a
rectangular region highlighting a part of the im-
age, the original English caption of this region and
the Hindi reference translation. Depending on the
track (see 2.9.1 below), some of these item compo-
nents are available as the source and some serve as
the reference or play the role of a competing candi-
date solution.

2.9.1 English→Hindi Multi-Modal Task
Tracks

1. Text-Only Translation (labeled “TEXT” in
WAT official tables): The participants are

7https://github.com/facebookresearch/flores
8https://opus.nlpl.eu/ParaCrawl.php
9https://lindat.mff.cuni.cz/repository/

xmlui/handle/11234/1-3267

Tokens
Dataset Items English Hindi
Training Set 28,930 143,164 145,448
D-Test 998 4,922 4,978
E-Test (EV) 1,595 7,853 7,852
C-Test (CH) 1,400 8,186 8,639

Table 6: Statistics of Hindi Visual Genome 1.1 used for
the English→Hindi Multi-Modal translation task. One
item consists of a source English sentence, target Hindi
sentence, and a rectangular region within an image. The
total number of English and Hindi tokens in the dataset
also listed. The abbreviations EV and CH are used in
the official task names in WAT scoring tables.

asked to translate short English captions (text)
into Hindi. No visual information can be used.
On the other hand, additional text resources
are permitted (but they need to be specified in
the corresponding system description paper).

2. Hindi Captioning (labeled “HI”): The partici-
pants are asked to generate captions in Hindi
for the given rectangular region in an input im-
age.

3. Multi-Modal Translation (labeled “MM”):
Given an image, a rectangular region in it and
an English caption for the rectangular region,
the participants are asked to translate the En-
glish text into Hindi. Both textual and visual
information can be used.

The English→Hindi multi-modal task includes
three tracks as illustrated in Figure 1.

2.10 English→Malayalam Multi-Modal Task
This task was introduced in WAT2021 using the
first multi-modal machine translation dataset in
Malayalam language. For English→Malayalam
multi-modal translation task we asked the partici-
pants to use the Malayalam Visual Genome corpus
(MVG for short Parida and Bojar, 2021).10

The statistics of MVG are given in Table 7. As in
Hindi Visual Genome (see Section 2.9), one “item”
in MVG consists of an image with a rectangular re-
gion highlighting a part of the image, the original
English caption of this region and the Malayalam
reference translation as shown in Figure 2. De-
pending on the track (see 2.10.1 below), some of
these item components are available as the source
and some serve as the reference or play the role of
a competing candidate solution.

10https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-3533
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Text-Only MT Hindi Captioning Multi-Modal MT

Image –
Source Text The woman is waiting to cross

the street
– A blue wall beside tennis court

System Output मिहला सड़क पार करने का इंतजार कर
रही है

सड़क पर कार टेिनस कोटर् के बगल में एक नीली दीवार
Gloss Woman waiting to cross the

street
Car on the road a blue wall next to the tennis

court

Reference Solution एक मिहला सड़क पार करने के िलए इं-
तजार कर रही है

सड़क के िकनारे खड़ी कारें टेिनस कोटर् के बगल में एक नीली दीवार
Gloss the woman is waiting to cross

the street
Cars parked along the side of the
road

A blue wall beside the tennis
court

Figure 1: An illustration of the three tracks of WAT 2022 English→Hindi Multi-Modal Task.

English Text: Two elephants standing in the water.

Malayalam Text: െവള്ളത്തിൽ നിൽ ന്ന ര ് ആനകൾ

Figure 2: Sample item from Malayalam Visual Genome
(MVG), Image with specific region and its description.

2.10.1 English→Malayalam Multi-Modal
Task Tracks

1. Text-Only Translation (labeled “TEXT” in
WAT official tables): The participants are
asked to translate short English captions (text)
into Malayalam. No visual information can
be used. On the other hand, additional text
resources are permitted (but they need to be
specified in the corresponding system descrip-
tion paper).

2. Malayalam Captioning (labeled “ML”): The
participants are asked to generate captions in
Malayalam for the given rectangular region in
an input image.

3. Multi-Modal Translation (labeled “MM”):
Given an image, a rectangular region in it and
an English caption for the rectangular region,
the participants are asked to translate the En-

Tokens
Dataset Items English Malayalam
Training Set 28,930 143,112 107,126
D-Test 998 4,922 3,619
E-Test (EV) 1,595 7,853 6,689
C-Test (CH) 1,400 8,186 6,044

Table 7: Statistics of Malayalam Visual Genome used
for the English→Malayalam Multi-Modal translation
task. One item consists of a source English sentence,
target Hindi sentence, and a rectangular region within
an image. The total number of English and Malayalam
tokens in the dataset also listed. The abbreviations EV
and CH are used in the official task names in WAT scor-
ing tables.

glish text into Malayalam. Both textual and
visual information can be used.

2.11 English→Bengali Multi-Modal Task
This new task, introduced in WAT2022, uses
a multimodal machine translation dataset
in Bengali language. The task mimics the
structure of English→Hindi (Section 2.9) and
English→Malayalam (Section 2.10) multi-modal
tasks. For English→Bengali multi-modal trans-
lation task we asked the participants to use the
Bengali Visual Genome corpus (BVG for short,
Sen et al., 2022).11

The statistics of BVG are given in Table 8. One
“item” in BVG again consists of an image with a
rectangular region highlighting a part of the image,
the original English caption of this region and the

11https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-3722
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English Text: The sharp bird talon.

Bengali Text: ধারােলা পািখ টাল

Figure 3: Sample item from Bengali Visual Genome
(BVG), Image with specific region and its description.

Bengali reference translation as shown in Figure 3.
Depending on the track (see Section 2.11.1 below),
some of these item components are available as the
source and some serve as the reference or play the
role of a competing candidate solution.

2.11.1 English→Bengali Multi-Modal Task
Tracks

1. Text-Only Translation (labeled “TEXT” in
WAT official tables): The participants are
asked to translate short English captions (text)
into Bengali. No visual information can be
used. On the other hand, additional text re-
sources are permitted (but they need to be
specified in the corresponding system descrip-
tion paper).

2. Bengali Captioning (labeled “BN”): The par-
ticipants are asked to generate captions in
Bengali for the given rectangular region in an
input image.

3. Multi-Modal Translation (labeled “MM”):
Given an image, a rectangular region in it and
an English caption for the rectangular region,
the participants are asked to translate the En-
glish text into Bengali. Both textual and vi-
sual information can be used.

2.12 Ambiguous MS COCO
Japanese↔English Multimodal Task

This is the 2nd year that we have organized this
task. We provide the Japanese–English Ambigu-
ous MS COCO dataset (Merritt et al., 2020) for
validation and testing, which contains ambiguous

Tokens
Dataset Items English Bengali
Training Set 28,930 143,115 113,978
D-Test 998 4,922 3,936
E-Test (EV) 1,595 7,853 6,408
C-Test (CH) 1,400 8,186 6,657

Table 8: Statistics of Bengali Visual Genome used
for the English→Bengali Multi-Modal translation task.
One item consists of a source English sentence, target
Bengali sentence, and a rectangular region within an im-
age. The total number of English and Bengali tokens in
the dataset also listed. The abbreviations EV and CH
are used in the official task names in WAT scoring ta-
bles.

verbs that may require visual information in im-
ages for disambiguation. The validation and test-
ing sets contain 230 and 231 Japanese–English sen-
tence pairs, respectively. The Japanese sentences
are translated from the English sentences in the
original Ambiguous MS COCO dataset.12

Participants can use the constrained and uncon-
strained training data to train their multimodal ma-
chine translation system. In the constrained setting,
only the Flickr30kEntities Japanese (F30kEnt-Jp)
dataset13 can be used as training data. In the un-
constrained setting, the MS COCO English data14

and STAIR Japanese image captions15 can be used
as additional training data.

We prepare a baseline using the double atten-
tion on image region method following (Zhao
et al., 2020) for both Japanese→English and
English→Japanese directions.

2.13 Japanese→English Video Guided MT
Task for Ambiguous Subtitles

This is a new Japanese→English multimodal task.
We provide VISA (Li et al., 2022), an ambigu-
ous subtitles dataset, including 35, 880, 2, 000, and
2, 000 samples for training, validation, and testing,
respectively. The dataset contains parallel subti-
tles in which the Japanese source subtitles are am-
biguous and may require visual information in cor-
responding video clips for disambiguation. Fur-
thermore, according to the cause of ambiguity, the
dataset is divided into Polysemy and Omission.

Participants can use the constrained and uncon-
strained training data to train their multimodal ma-
chine translation system. In the constrained setting,

12http://www.statmt.org/wmt17/multimodal-task.html
13https://github.com/nlab-mpg/Flickr30kEnt-JP
14https://cocodataset.org/#captions-2015
15https://stair-lab-cit.github.io/STAIR-captions-web/
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only the VISA dataset16 can be used as training
data. In the unconstrained setting, pre-trained mod-
els, additional data from other sources can be used
as additional training sources.

We prepare a baseline using the spatial hierar-
chical attention network following (Gu et al., 2021)
with both motion and spatial features.

2.14 Low-Resource Khmer→English/French
Speech Translation Task

This is the first time that WAT has hosted a speech
translation task. The purpose of this task is to iden-
tify effective techniques for speech translation of
Khmer into English and French. We expect that
the low-resource nature of Khmer will pose a rea-
sonable challenge. To this end, we have curated a
dataset from the ECCC corpus (Soky et al., 2021),
which is an international court dataset consisting
of text and speech in Khmer, English, and French.
The dataset used for WAT 2022 contains 11, 563,
624, and 626 utterances for training, validation,
and testing, respectively. This dataset has a wide
range of speakers: witnesses, defendants, judges,
clerks or officers, co-prosecutors, experts, defense
counsels, civil parties, and interpreters.

Participants can use the constrained and uncon-
strained training data to train their speech machine
translation system. In the constrained setting, only
the provided ECCC dataset17 can be used as train-
ing data. Additionally, participants may use pre-
trained models such as BART, mBART, mT5, and
wav2vec 2.0 as applicable. In the unconstrained
setting, additional data from other sources can also
be used.

We prepare a baseline using the transformer-
based model presented in (Soky et al., 2021) for
both Khmer→English and Khmer→French direc-
tions.

2.15 Restricted Translation Task

The Restricted Translation task was first intro-
duced in WAT2021 (Nakazawa et al., 2021c). In
this task, participants are required to submit a sys-
tem that translates source texts under given con-
straints about the target vocabulary. At inference
time, vocabulary constraints are provided as a list
of target words and phrases, consisting of scientific
technical terms in the target language. The system

16https://github.com/ku-nlp/VISA
17https://github.com/ksoky/ECCC_DATASET

outputs must contain all these target words. We in-
troduced English↔Japanese tasks in the previous
campaign, and we also added Chinese↔Japanese
tasks this year. We employ the ASPEC corpus for
all the translation tasks and allow participants to
use any other external data sources.

Restricted Vocabulary List Creation We
built a new vocabulary constraints for the
Chinese↔Japanese tasks by extracting phrase
pairs from the evaluation data (“dev/devtest/test”)
by the following steps: (1) extracting term can-
didates for each language, and (2) making the
alignments between the extracted terms in both
languages to make phrase-level translation pairs.
More concretely, we automatically extracted the
term candidates from the ASPEC corpus using
termextractor18. We then obtained term lists
for each sentence pair in the ASPEC corpus
according to the extracted term candidates. To
this end, we asked one Japanese-Chinese bilingual
speaker to make alignments between the term lists
for each sentence pair, and obtained the phrase
pair lists. We conducted the source-based direct
assessment (Cettolo et al., 2017; Federmann,
2018) on the dictionaries created by the process
above. We employed another two bilingual anno-
tators to give translation scores ranging [0, 100]
for Chinese→Japanese and Japanese→Chinese
directions respectively. We then filtered out the
translation pairs with average scores less than
50. Thus, we publicized the restricted vocabulary
lists for each language direction, along with the
corresponding source-side terms and annotation
scores19. Table 9 reports the statistics of the
vocabulary constraints in the evaluation data for
English↔Japanese and Chinese↔Japanese tasks.

Evaluation Metrics We evaluate submitted sys-
tems with two distinct metrics: (1) BLEU score
as a conventional translation accuracy and (2) a
consistency score: the ratio of the number of sen-
tences satisfying exact match of given constraints
over the whole test corpus. For the “exact match”
evaluation, we conduct the following process. In
English, we simply lowercase hypotheses and con-
straints, then judge character-level sequence match-

18We used termex_janome.py and termex_nlpir.py
for Japanese and Chinese texts, respectively. http://
gensen.dl.itc.u-tokyo.ac.jp/pytermextract/

19All scores are publicly available at the task
page: https://sites.google.com/view/
restricted-translation-task/2022.
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En-Ja Ja-En Zh-Ja Ja-Zh
(# phrase, # char) (# phrase, # word) (# phrase, # char) (# phrase, # char)

Dev. (2.8, 16.4) (2.8, 6.6) (1.2, 4.7) (1.2, 3.8)
Devtest (3.2, 18.2) (3.2, 7.3) (1.5, 5.5) (1.5, 4.5)
Test (3.3, 18.1) (3.2, 7.4) (1.4, 5.2) (1.4, 4.2)

Table 9: Statistics of the restricted vocabulary in the evaluation data. We report average number of phrases and
characters/words per source sentence.

ing (including whitespaces) for each constraint. In
Chinese and Japanese, we judge character-level se-
quence matching (including whitespaces) for each
constraint without any preprocessing. For the fi-
nal ranking, we also calculate the combined score
of both: calculating BLEU with only the exactly
matched sentences. We note that, in this scenario,
the brevity score in BLEU does not carry its usual
meaning, but the n-gram scores will maintain their
consistency.

2.16 Parallel Corpus Filtering Task

Machine translation systems are trained from
usually large corpora obtained from noisy data
sources. Noisy examples in the training corpora
are known as the main cause of reducing the trans-
lation accuracy of the resulting models (Khayral-
lah and Koehn, 2018), and this problem can be
mitigated by corpus filtering (Koehn et al., 2020),
which removes problematic examples from the
training corpus, so that the model is eventually
trained by cleaner dataset than the data source.

The motivation for this task is inspired by
the Parallel Corpus Filtering Tasks held in 2018,
2019, and 2020 Workshop on Machine Translation
(Koehn et al., 2020), in which the participants are
asked to filter the web crawled corpora, train the
NMT model on the cleaner subsets, and evaluate its
quality on a multi-domain test set. Unlike the tasks
in the WMT, the Parallel Corpus Filtering Task in
this workshop focuses on both filtering and domain
adaptation.

Specifically, this task lets the participants train
machine translation models under the following re-
strictions:

• The model architecture is fixed. The train-
ing program is provided as a fixed Docker im-
age by the organizer, and participants can only
run a specific training command to build their
own model. The same image is used in the fi-
nal evaluation.

Dataset # sentences
JParaCrawl v3.0 25.7M
ASPEC Train 3M
ASPEC Dev 1.8K
ASPEC Devtest 1.8K
ASPEC Test 1.8K

Table 10: Number of sentence pairs in the corpora used
in the parallel corpus filtering task.

• Training corpus is fixed. The whole cor-
pus is provided by the organizer, and partici-
pants are requested to find a subset of the cor-
pus that is more effective in achieving higher
translation accuracy on the given model archi-
tecture.

• The test set is from a single domain (scientific
paper domain) and its in-domain data is pro-
vided.

We adopted the Transformer model as the shared
architecture for this task.20

We asked the participants to select a subset
from JParaCrawl (Morishita et al., 2020), the
noisy English-Japanese web-crawled parallel cor-
pus, based on its cleanliness and domain-similarity.
The baseline model is obtained by training the
model on the whole set of this dataset. We also
provide the in-domain clean English-Japanese cor-
pus, the ASPEC (Nakazawa et al., 2016) dataset
except for the ‘test’ sub-set, which is used in the
evaluation.

We trained the model with the submitted data for
both English-Japanese and English-Japanese. We
evaluated the submission on both BLEU score (Pa-
pineni et al., 2002) and JPO adequacy as described
in Section 6.1 on the ASPEC test set.

The corpus statistics are summarized in Ta-
ble 10.
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Team ID Organization Country
TMU Tokyo Metropolitan University Japan
NICT-5 NICT Japan
sakura Rakuten Institute of Technology Singapore, Rakuten Asia. Singapore
CNLP-NITS-PP NIT Silchar India
NITR NIT Rourkela India
HwTscSU Huawei Translation Services Center, 2012 Lab, Huawei co. LTD; School of

Computer Science and Technology, Soochow University
China

SILO_NLP Silo AI Finland
nlp_novices SCTR’s Pune Institute of Computer Technology India

Table 11: List of participants who submitted translations for the human evaluation in WAT2022

ASPEC NICT-SAP Parallel
Restricted Unstructured Structured Corpus

Team ID En-Ja Ja-En En-Ms (IT) Ms-En (IT) En-Ja/Ko/Zh Ja/Ko/Zh-En Filtering
TMU ✓ ✓
NICT-5 ✓ ✓
sakura ✓
HwTscSU ✓ ✓

Multimodal Indic
En-X (TX) En-X X-En

Team ID Hi Ml Bn As Bn Sd Si Ur Ne As Bn Sd Si Ur
CNLP-NITS-PP ✓ ✓ ✓ ✓ ✓ ✓
NITR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SILO_NLP ✓ ✓ ✓
nlp_novices ✓ ✓ ✓

Table 12: Submissions for each task by each team.

3 Participants

Table 11 shows the participants in WAT2022. The
table lists 8 organizations from various countries,
including Japan, China, India, Singapore and Fin-
land.

300 translation results by 8 teams were submit-
ted for automatic evaluation. Table 12 summarizes
the participation of teams across WAT2022 tasks
and indicates which tasks included manual evalua-
tion.

4 Baseline Systems

Human evaluations of most of WAT tasks were
conducted as pairwise comparisons between the
translation results for a specific baseline system
and translation results for each participant’s sys-
tem. That is, the specific baseline system served
as the standard for human evaluation. At WAT
2022, we adopted some of neural machine trans-
lation (NMT) as baseline systems. The details of
the NMT baseline systems are described in this sec-
tion.

20The Dockerfile for constructing the training
pipeline can be obtained from https://github.com/
MorinoseiMorizo/wat2022-filtering

The NMT baseline systems consisted of publicly
available software, and the procedures for build-
ing the systems and for translating using the sys-
tems were published on the WAT web page. We
also have SMT baseline systems for the tasks that
started at WAT 2017 or before 2017. SMT baseline
systems are described in the WAT 2017 overview
paper (Nakazawa et al., 2017). The commercial
RBMT systems and the online translation systems
were operated by the organizers. We note that these
RBMT companies and online translation compa-
nies did not submit their systems. Because our ob-
jective is not to compare commercial RBMT sys-
tems or online translation systems from companies
that did not themselves participate, the system IDs
of these systems are anonymous in this paper.

4.1 Tokenization
We used the following tools for tokenization.

4.1.1 For ASPEC, JPC, JIJI, and
ALT+UCSY

• Juman version 7.021 for Japanese segmenta-
tion.

21http://nlp.ist.i.kyoto-u.ac.jp/EN/index.
php?JUMAN
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• Stanford Word Segmenter version 2014-01-
0422 (Chinese Penn Treebank (CTB) model)
for Chinese segmentation.

• The Moses toolkit for English and Indonesian
tokenization.

• Mecab-ko23 for Korean segmentation.
• Indic NLP Library24 (Kunchukuttan, 2020)

for Indic language segmentation.
• The tools included in the ALT corpus for

Myanmar and Khmer segmentation.
• subword-nmt25 for all languages.

When we built BPE-codes, we merged source and
target sentences and we used 100,000 for -s op-
tion. We used 10 for vocabulary-threshold when
subword-nmt applied BPE.

4.1.2 For Indic and NICT-SAP Tasks
• For the Indic task we did not perform any ex-

plicit tokenization of the raw data.

• For the NICT-SAP task we only character seg-
mented the Thai corpora as it was the only lan-
guage for which character level BLEU was to
be computed. Other languages corpora were
not preprocessed in any way.

• Any subword segmentation or tokenization
was handled by the internal mechanisms of
tensor2tensor.

4.1.3 For Structured Document Translation
Task

• No tokenization was explicitly performed.

4.1.4 For English→Hindi,
English→Malayalam, and
English→Bengali Multi-Modal Tasks

• Hindi Visual Genome 1.1, Malayalam Visual
Genome, and Bengali Visual Genome come
untokenized and we did not use or recom-
mend any specific external tokenizer.

• The standard OpenNMT-py sub-word seg-
mentation was used for pre/post-processing
for the baseline system and each participant
used what they wanted.

22http://nlp.stanford.edu/software/segmenter.
shtml

23https://bitbucket.org/eunjeon/mecab-ko/
24https://github.com/anoopkunchukuttan/indic_

nlp_library
25https://github.com/rsennrich/subword-nmt

4.1.5 For English↔Japanese Multi-Modal
Tasks

• For English sentences, we applied lowercase,
punctuation normalization, and the Moses to-
kenizer.

• For Japanese sentences, we used KyTea for
word segmentation.

4.2 Baseline NMT Methods
We used the NMT models for all tasks. Un-
less mentioned otherwise we use the Transformer
model (Vaswani et al., 2017). We used Open-
NMT (Klein et al., 2017) (RNN-model) for AS-
PEC, JPC, JIJI, and ALT tasks, tensor2tensor26 for
the NICT-SAP task, HuggingFace transformers27

for the Structured Document Translation task and
OpenNMT-py28 for other tasks.

4.2.1 NMT with Attention (OpenNMT)
For ASPEC, JPC, JIJI, and ALT tasks, we used
OpenNMT (Klein et al., 2017) as the implemen-
tation of the baseline NMT systems of NMT with
attention (System ID: NMT). We used the follow-
ing OpenNMT configuration.

• encoder_type = brnn
• brnn_merge = concat
• src_seq_length = 150
• tgt_seq_length = 150
• src_vocab_size = 100000
• tgt_vocab_size = 100000
• src_words_min_frequency = 1
• tgt_words_min_frequency = 1

The default values were used for the other system
parameters.

We used the following data for training the NMT
baseline systems of NMT with attention.

• All of the training data mentioned in Sec-
tion 2 were used for training except for the AS-
PEC Japanese–English task. For the ASPEC
Japanese–English task, we only used train-
1.txt, which consists of one million parallel
sentence pairs with high similarity scores.

• All of the development data for each task was
used for validation.

26https://github.com/tensorflow/
tensor2tensor

27https://github.com/huggingface/
transformers

28https://github.com/OpenNMT/OpenNMT-py
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4.2.2 Transformer (Tensor2Tensor)
For the News Commentary task, we used ten-
sor2tensor’s29 implementation of the Transformer
(Vaswani et al., 2017) and used default hyperpa-
rameter settings corresponding to the “base” model
for all baseline models. The baseline for the News
Commentary task is a multilingual model as de-
scribed in Imankulova et al. (2019) which is trained
using only the in-domain parallel corpora. We use
the token trick proposed by Johnson et al. (2017)
to train the multilingual model.

For the NICT-SAP task, we used tensor2tensor
to train many-to-one and one-to-many models
where the latter were trained with the aforemen-
tioned token trick. We trained models for all lan-
guages except Vietnamese. We used default hy-
perparameter settings corresponding to the “big”
model. Since the NICT-SAP task involves two do-
mains for evaluation (Wikinews and IT) we used
a modification of the token trick technique for do-
main adaptation to distinguish between corpora for
different domains. In our case we used tokens
such as 2alt and 2it to indicate whether the sen-
tences belonged to the Wikinews or IT domain, re-
spectively. For both tasks we used 32,000 sepa-
rate sub-word vocabularies. We trained our mod-
els on 1 GPU till convergence on the development
set BLEU scores, averaged the last 10 checkpoints
(separated by 1000 batches) and performed decod-
ing with a beam of size 4 and a length penalty of
0.6.

4.2.3 Transformer (HuggingFace)
For the Structured Document Translation task, we
used the official mbart-50 model fine-tuned30 for
machine translation to directly translate the test
sets. We used the HuggingFace transformers im-
plementation to decode sentences using a beam of
size 4 and length penalty of 1.0. The tokenization
was handled by the mbart-50 tokenizer. Surpris-
ingly, this naive approach actually yielded good re-
sults.

4.2.4 Transformer (OpenNMT-py)
For the English→Hindi, English→Malayalam,
and English→Bengali Multimodal tasks we used
the Transformer model (Vaswani et al., 2018) as
implemented in OpenNMT-py (Klein et al., 2017)

29https://github.com/tensorflow/
tensor2tensor

30https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

and used the “base” model with default parame-
ters for the multi-modal task baseline. We have
generated the vocabulary of 32k sub-word types
jointly for both the source and target languages.
The vocabulary is shared between the encoder and
decoder.

5 Automatic Evaluation
5.1 Procedure for Calculating Automatic

Evaluation Score
We evaluated translation results by three metrics:
BLEU (Papineni et al., 2002), RIBES (Isozaki
et al., 2010) and AMFM (Banchs et al., 2015a).
BLEU scores were calculated using SacreBLEU
(Post, 2018). RIBES scores were calculated using
RIBES.py version 1.02.4.31 AMFM scores were
calculated using scripts created by the technical
collaborators listed in the WAT2022 web page.32

Note that AMFM scores were not produced for
all tasks. For the Structured Document Transla-
tion task, we used only the XML-BLEU metric
(Hashimoto et al., 2019), which takes into account
the accuracy of XML annotation transfer. All
scores for each task were calculated using the cor-
responding reference translations.

Except for XML-BLEU, which uses this imple-
mentation for evaluation, the following preprocess-
ing is done prior to computing scores. Before the
calculation of the automatic evaluation scores, the
translation results were tokenized or segmented
with tokenization/segmentation tools for each lan-
guage. For Japanese segmentation, we used three
different tools: Juman version 7.0 (Kurohashi et al.,
1994), KyTea 0.4.6 (Neubig et al., 2011) with full
SVM model33 and MeCab 0.996 (Kudo, 2005)
with IPA dictionary 2.7.0.34 For Chinese segmen-
tation, we used two different tools: KyTea 0.4.6
with full SVM Model in MSR model and Stanford
Word Segmenter (Tseng, 2005) version 2014-06-
16 with Chinese Penn Treebank (CTB) and Peking
University (PKU) model.35 For Korean segmen-
tation, we used mecab-ko.36 For Myanmar and
Khmer segmentations, we used myseg.py37 and

31http://www.kecl.ntt.co.jp/icl/lirg/ribes/
index.html

32lotus.kuee.kyoto-u.ac.jp/WAT/WAT2022/
33http://www.phontron.com/kytea/model.html
34http://code.google.com/p/mecab/downloads/

detail?name=mecab-ipadic-2.7.0-20070801.tar.gz
35http://nlp.stanford.edu/software/segmenter.

shtml
36https://bitbucket.org/eunjeon/mecab-ko/
37http://lotus.kuee.kyoto-u.ac.jp/WAT/
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Figure 4: The interface for translation results submission

kmseg.py.38 For English, French and Russian to-
kenizations, we used tokenizer.perl39 in the
Moses toolkit. For Indonesian, Malay, and Viet-
namese tokenizations, we used tokenizer.perl

my-en-data/wat2020.my-en.zip
38http://lotus.kuee.kyoto-u.ac.jp/WAT/

km-en-data/km-en.zip
39https://github.com/moses-smt/mosesdecoder/

tree/RELEASE-2.1.1/scripts/tokenizer/
tokenizer.perl

actually sticking to the English tokenization set-
tings. For Thai tokenization, we segmented the
text at each individual character. For Assamese,
Bengali, Gujarati, Hindi, Kannada, Malayalam,
Marathi, Nepali, Odia, Punjabi, Sindhi, Sinhala,
Tamil, Telugu, and Urdu tokenizations, we used In-
dic NLP Library40 (Kunchukuttan, 2020). The de-

40https://github.com/anoopkunchukuttan/indic_
nlp_library
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tailed procedures for the automatic evaluation are
shown on the WAT evaluation web page.41

5.2 Automatic Evaluation System
The automatic evaluation system receives transla-
tion results by participants and automatically gives
evaluation scores to the uploaded results. As
shown in Figure 4, the system requires participants
to provide the following information for each sub-
mission:

• Human Evaluation: whether or not they sub-
mit the results for human evaluation;

• Publish the results of the evaluation: whether
or not they permit to publish automatic evalu-
ation scores on the WAT2022 web page;

• Task: the task you submit the results for;

• Used Other Resources: whether or not they
used additional resources; and

• Method: the type of the method includ-
ing SMT, RBMT, SMT and RBMT, EBMT,
NMT and Other.

Evaluation scores of translation results that partic-
ipants permit to be published are disclosed via the
WAT2022 evaluation web page. Participants can
also submit the results for human evaluation using
the same web interface.

This automatic evaluation system will remain
available even after WAT2022. Anybody can reg-
ister an account for the system by the procedures
described in the application site.42

5.3 A Note on AMFM Scores
Unlike previous years we do not compute AMFM
scores on all tasks due to low participation this
year. For readers interested in AMFM and recent
advances, we refer readers to the following litera-
ture: Zhang et al. (2021b,a); D’Haro et al. (2019);
Banchs et al. (2015b).

6 Human Evaluation

In WAT2022, we conducted JPO adequacy evalu-
ation (Section 6.1).

41http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

42http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2022/application/index.html

5 All important information is transmitted correctly.
(100%)

4 Almost all important information is transmitted cor-
rectly. (80%–)

3 More than half of important information is transmit-
ted correctly. (50%–)

2 Some of important information is transmitted cor-
rectly. (20%–)

1 Almost all important information is NOT transmit-
ted correctly. (–20%)

Table 13: The JPO adequacy criterion

6.1 JPO Adequacy Evaluation

We conducted JPO adequacy evaluation for the top
two or three participants’ systems of pairwise eval-
uation for each subtask.43 The evaluation was car-
ried out by translation experts based on the JPO
adequacy evaluation criterion, which is originally
defined by JPO to assess the quality of translated
patent documents.

6.1.1 Sentence Selection and Evaluation

For the JPO adequacy evaluation, the 200 test sen-
tences were randomly selected from the test sen-
tences.

For each test sentence, input source sentence,
translation by participants’ system, and reference
translation were shown to the annotators. To guar-
antee the quality of the evaluation, each sentence
was evaluated by two annotators. Note that the
selected sentences are basically the same as those
used in the previous workshop.

6.1.2 Evaluation Criterion

Table 13 shows the JPO adequacy criterion from
5 to 1. The evaluation is performed subjectively.
“Important information” represents the technical
factors and their relationships. The degree of im-
portance of each element is also considered in
evaluating. The percentages in each grade are
rough indications for the transmission degree of
the source sentence meanings. For Structured Doc-
ument Translation, we instructed the evaluators to
consider the XML structure accuracy between the
source, the translation and the reference. The de-
tailed criterion is described in the JPO document
(in Japanese).44

43The number of systems varies depending on the subtasks.
44http://www.jpo.go.jp/shiryou/toushin/

chousa/tokkyohonyaku_hyouka.htm
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7 Evaluation Results
In this section, the evaluation results for WAT2022
are reported from several perspectives. Some of
the results for both automatic and human evalu-
ations are also accessible at the WAT2022 web-
site.45

7.1 Official Evaluation Results

Figures 5 and 6 show those of ASPEC-RT subtasks,
Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17
show those of Indic Multilingual subtasks, Figures
18, 19 and 20 show those of Multimodal subtasks,
Figures 21 and 22 show those of Parallel Corpus
Filtering subtasks, and Figures 23, 24, 25, 26, 27,
28, 29 and 30 show those of NICT-SAP subtasks.
Each figure contains the JPO adequacy evaluation
result and evaluation summary of top systems. The
detailed automatic evaluation results are shown in
Appendix A.

8 Findings

8.1 NICT-SAP Task

This year we only had 1 submission from team
“HwTscSU” who outperformed all previous years
submissions. They claim to have fine-tuned on the
devlopment set, which has a high degree of sim-
ilarity to the test set. This action ended up giv-
ing large improvements in translation quality over
non fine-tuned baselines. The human evaluation
showed that around 80% of translations had a score
of 4 or 5 indicating the high translation quality.

8.2 Structured Document Translation Task

We only had 1 submission this year from team
“NICT-5” who used similar ideas as our organizer
baseline where they used the M2M-100 model for
directly translating test sets. They also used the
detag-and-project approach where they translated
the sentences without XML and then inserted the
XML content using word alignment. They got bet-
ter scores in 3 out of 6 directions, but were not too
far behind in others. The human evaluation showed
that over 60% of the translations were scored 4 or
5 for English to Japanese/Korean/Chinese whereas
this number increased to 80% for the reverse direc-
tion.

45http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/

8.3 Indic Multilingual Task
In contrast to WAT 2021, this year we had
two teams who participated in the task, namely,
“NITR” and “CNLP-NITS-PP ”. They did not sub-
mit results for all pairs. Human evaluation was
done only for Nepali to English translation, where
the human ratings were mostly low. Due to poor
and inconsistent participation, it is difficult to
make any further observations.

8.4 English→Hindi Multi-Modal Task
This year three teams participated in the differ-
ent sub-tasks (TEXT, MM) of the English→Hindi
Multi-Modal task. The WAT2022 automatic eval-
uation scores for the participating teams are shown
in Tables 43 to 46. The team “nlp_novices” ob-
tained the highest BLEU score for the text-only
translation (TEXT) for both the evaluation (E-Test)
and challenge (C-Test) test set. The best perfor-
mance is obtained by fine-tuned Transformer using
OPUS Corpus as an additional resource. For the
multimodal sub-task (MM), we received two sub-
missions from the teams “CNLP-NITS-PP”, and
“Silo_NLP”, respectively. The team “Silo_NLP”
obtained the highest BLEU score for the multi-
modal translation (MM) for the evaluation (E-Test)
by extracting object tags from images and using
fine-tuned mBART. They used Flickr8 as an addi-
tional resource. The team “CNLP-NITS-PP” ob-
tained the highest BLEU score for the challenge (C-
Test) test set following transliteration-based phrase
pairs augmentation and visual features in training
using BRNN encoder and doubly-attentive-rnn de-
coder.

Human evaluation was done for the challenge
test set text-only translation (TEXT) as shown in
Figure 19. We observe that both BLEU and RIBES
can correctly predict the quality of translation as
measured by the manually annotated Adequacy.
“nlp_novices” is the best submission with almost
35% of sentences reaching the highest rank of “Al-
most all information is transmitted correctly”, see
the JPO adequacy scale in Table 13 which was used
in the evaluation.

8.5 English→Malayalam Multi-Modal Task
This year two teams “Silo_NLP”, and
“nlp_novices” participated in the different
sub-tasks (TEXT, MM) of the English→ Malay-
alam Multi-Modal task. The WAT2022 automatic
evaluation scores are shown in the Table 47, 48,
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Figure 5: Official evaluation results of aspecrt-en-ja.

Figure 6: Official evaluation results of aspecrt-ja-en.
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Figure 7: Official evaluation results of indic22-en-as.

Figure 8: Official evaluation results of indic22-as-en.

Figure 9: Official evaluation results of indic22-ne-en.
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Figure 10: Official evaluation results of indic22-en-bn.

Figure 11: Official evaluation results of indic22-bn-en.

Figure 12: Official evaluation results of indic22-en-sd.

18



Figure 13: Official evaluation results of indic22-sd-en.

Figure 14: Official evaluation results of indic22-en-si.

Figure 15: Official evaluation results of indic22-si-en.
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Figure 16: Official evaluation results of indic22-en-ur.

Figure 17: Official evaluation results of indic22-ur-en.
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Figure 18: Official evaluation results of mmchtext22-en-bn.

Figure 19: Official evaluation results of mmchtext22-en-hi.

Figure 20: Official evaluation results of mmchtext22-en-ml.
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Figure 21: Official evaluation results of parallel-corpus-filtering-en-ja.

Figure 22: Official evaluation results of parallel-corpus-filtering-ja-en.

22



Figure 23: Official evaluation results of software-en-ms.

Figure 24: Official evaluation results of software-ms-en.
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Figure 25: Official evaluation results of swstr22-en-ja.

Figure 26: Official evaluation results of swstr22-ja-en.

Figure 27: Official evaluation results of swstr22-en-ko.
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Figure 28: Official evaluation results of swstr22-ko-en.

Figure 29: Official evaluation results of swstr22-en-zh.

Figure 30: Official evaluation results of swstr22-zh-en.

25



49, 50.
For English to Malayalam text-only translation

the team “Silo_NLP” obtained a BLEU score
of 30.80 fine-tuning with pre-trained mBART-
50 model for the evaluation test set and team
“nlp_novices” obtained a BLEU score of 19.60
using the Simple Transformer model. For mul-
timodal, the team “Silo_NLP” obtained a BLEU
score of 41.00 for the evaluation test set and a
BLEU score of 20.40 for the challenge test set.
They extracted the object tags from the images with
fine-tuning mBART for the multimodal task.

Human evaluation was done for the challenge
test set text-only translation (TEXT) as shown in
Figure 20. Automatic (both BLEU and RIBES)
scores agree with the manual judgement on the
JPO adequacy scale (see Table 13), but it is im-
portant to mention that even for the better system
(“nlp_novices”) only a little less than 10% of sen-
tences have all information transmitted correctly.
If we consider Adequacy ranks 3–5 together (i.e.
about a half or more of information transmitted cor-
rectly), “nlp_novices” can produce about 55% of
sentences like that while “Silo_NLP” has only 30%
of sentences in these levels.

8.6 English→Bengali Multi-Modal Task

This year three teams participated in the different
sub-tasks (TEXT, MM) of the English→Bengali
Multi-Modal task. The WAT2022 automatic eval-
uation scores are shown in the Table 51, 52, 53, 54.

The team “Silo_NLP” obtained the highest
BLEU score for the text-only translation (TEXT)
for the evaluation (E-Test) set by using Trans-
former model and utilizing BNLIT Corpus as
an additional resource. The team “nlp_novices”
obtained the highest BLEU score on the chal-
lenge (C-Test) test set by fine-tuning the Trans-
former model. For the multimodal sub-task (MM),
we received two submissions from the teams
“CNLP-NITS-PP”, and “Silo_NLP”, respectively.
The team “CNLP-NITS-PP” obtained the highest
BLEU score for the evaluation (E-Test) test set fol-
lowing transliteration-based phrase pairs augmen-
tation and visual features in training using BRNN
encoder and doubly-attentive-rnn decoder. The
team “Silo_NLP” and “nlp_novices” obtained the
same BLEU score for the challenge (C-Test) test
set. The team “nlp_novices” followed the same ap-
proach as that for E-Test while team “Silo_NLP”
extracted the object tags from images and fine-

tuned mBART.
Human evaluation was done for the challenge

test set text-only translation (TEXT) as shown in
Figure 18. Automatic scores (both BLEU and
RIBES) agree on the best system (“nlp_novices”)
with the manual judgement on the JPO ade-
quacy scale (see Table 13) but they diverge for
“Silo_NLP” and “CNLP-NITS-PP” where both
receive Adequacy of 2.66 and differ in BLEU
and RIBES. “CNLP-NITS-PP” scores higher in
automatic metrics and actually very close to
the winning “nlp_novices”, see RIBES of 70.66
(“nlp_novices”) vs. 68.07 (“CNLP-NITS-PP”).
This suggests a problem with RIBES because the
difference in Adequacy is important: 3.53 vs 2.66.
One can also see a striking difference in the dis-
tribution of Adequacy levels between the winning
“CNLP-NITS-PP” (55% of sentences reach Ade-
quacy of 4 or 5) and its competitors (only 30% of
sentences reach 4 or 5), see the left part of Fig-
ure 18.

8.7 Restricted Translation Task
In this year, we received system submissions from
the team “TMU” for the English→ Japanese and
Japanese→ English tasks, and no systems submit-
ted to the Chinese↔Japanese tasks. The TMU
team employed a soft-constrained system that com-
bined two methods, namely the Lexical Constraint
Aware NMT (LeCA; Chen et al., 2020) and the
Multi-Source Levenshtein Transformer (MSLevT
Susanto et al., 2020). In case the soft constrained
method of LeCA does not satisfy the target-side
term requirements, the authors applied one of
the automatic post-editing methods to compensate
for those terms in the system outputs, such as
MSLevT, and achieved 100% performance on the
output of the constrained phrase pairs.

Table 14 reports the final score and two distinct
human evaluation results46. Regarding the final au-
tomatic evaluation score, we used SacreBLEU47

to calculate BLEU scores. More details are de-
scribed in Section 2.15. Moreover, we asked hu-
man bilingual speakers to assess three systems on

46In the final automatic score for En-Ja, we received an in-
quiry from TMU that the specification of the submission form
included backslashes before quotations, and they were detri-
mental to the evaluation of some constrained terms. The final
score without the backslash is as follows; LeCA+LevT (en-
semble): 42.1, LeCA+LevT: 39.3, LeCA only: 23.8.

47Detail settings: case.mixed, numrefs=1, smooth.exp, ver-
sion.1.5.1, (en-ja) lang=en-ja, tok=ja-mecab-0.996-IPA, (ja-
en) lang=ja-en.
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the English↔Japanese translation tasks.48 Two an-
notators were asked to assess the systems’ transla-
tion accuracy, and we also conducted another sys-
tem assessment by the source-based direct assess-
ment (src-based DA) (Cettolo et al., 2017; Feder-
mann, 2018), with two bilingual annotators.

In the English→Japanese direction (En-Ja), we
do not observe any consistent tendency among
three results. LeCA only is the most preferred
system by annotators in terms of translation ac-
curacy. However, the other two systems also
achieve higher evaluation scores as well as src-
based DA scores. These systems can not be sta-
tistically distinguished from the human reference.
On the other hand, the LeCA+LevT ensemble
model achieved the top performance in all metrics
in the Japanese→English direction (Ja-En), while
LeCA+LevT is less preferred in the src-based DA.

According to the HE (accuracy) results, we
observe that the LeCA+LevT (ensemble) system
achieves both the highest number of outputs with
score=5 (58%) and score=1 (6%) in the human
evaluation. For the outputs with score=1 in
LeCA+LevT (ensemble), texts other than the con-
strained terms were often omitted. This indicates
that the lack of the effects from the brevity penalty
in our final score can not capture under-generation
problems on the ensemble model. Therefore, we
eventually need to consider an alternative scoring
to address this issue in future work. Another ob-
servation is that annotators do not necessarily have
specific domain knowledge that would be required
to provide more accurate assessment. To address
this issue, we need to allow annotators to look up
the generated dictionaries during the assessment.
In conclusion, the trade-off between completing
vocabulary constraints and achieving high transla-
tion performance remains challenging, even in the
soft-constrained model.

8.8 Parallel Corpus Filtering Task
We received a single submission from team
‘sakura’, Rakuten Institute of Technology. They
submitted two systems, one leverages feature decay
algorithms(FDA) and the other one uses probabil-
ity scores of the NMT model trained on the AS-

48Two systems, that is “LeCA only” and “LeCA+LevT”,
were originally designated by the team “TMU” for human
evaluation, however, none of those systems are top-ranked on
our metrics. Therefore, we decided to additionally include
each top-ranked system (LeCA+LevT (ensemble)) to the hu-
man evaluation.

PEC corpus. They submitted the top 5M-scored
sentence pairs as a clean dataset.

Table 15 summarized the evaluation results. We
carried out human evaluation only for the base-
line and the FDA-based method since the NMT
probability-based model was inferior to the base-
line in terms of the BLEU scores.

The results show that the submission based on
the FDA surpasses the baseline in both language
directions on both BLEU and human evaluation
while reducing the data size to 20%.

9 Conclusion and Future Perspective
This paper summarizes the shared tasks of
WAT2022. We had 8 participants worldwide who
submitted their translation results for the human
evaluation, and collected a large number of use-
ful submissions for improving the current machine
translation systems by analyzing the submissions
and identifying the issues.

This year we had smaller number of participants
compared to the last year. For the next WAT work-
shop, we want attract much more people to join our
shared tasks.
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En-Ja Outputs final HE (Accuracy) HE (src-based DA)
LeCA+LevT (ensemble) 52.7 4.18 76.4*
LeCA+LevT 50.5 4.19 76.6*
LeCA only 37.6 4.24 74.9
Human Reference – – 76.6
Ja-En Outputs final HE (Accuracy) HE (src-based DA)
LeCA+LevT (ensemble) 40.8 4.31 74.1*
LeCA+LevT 38.1 4.22 72.0
LeCA only 23.0 4.14 73.3
Human Reference – – 74.7

Table 14: Human evaluation results of translation accuracy run by WAT and source-based direct assessments, rang-
ing [0, 5] and [0, 100], respectively. The “final” column reports the final score of the automatic evaluation metric
described in the Section 2.15. * indicates that the systems and Human Reference are not statistically distinguishable
to the annotators.

En-Ja
Team BLEU Human Eval.
sakura (FDA) 28.8 4.31
baseline 27.4 4.18
sakura (NMT Prob.) 26.7 —
Ja-En
Team final Human Eval.
sakura (FDA) 21.8 4.49
sakura (NMT Prob.) 19.9 —
baseline 19.4 4.35

Table 15: Results of the parallel corpus filtering task
evaluated on the ASPEC test set.
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Appendix A Submissions
Tables 16 to 63 summarize translation results sub-
mitted to WAT2022. Type and RSRC columns in-
dicate type of method and use of other resources.
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System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

TMU 6947 NMT NO 49.80 49.80 50.00 0.864394 0.865434 0.869480 0.788640
TMU 6948 NMT NO 50.80 51.60 51.30 0.867732 0.869859 0.873110 0.800450

Table 16: ASPECRT en-ja submissions

System ID Type RSRC BLEU RIBES AMFM
TMU 6942 NMT NO 39.60 0.799376 0.640000
TMU 6949 NMT NO 39.30 0.795787 0.653280

Table 17: ASPECRT ja-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6932 NMT NO 1.70 0.222952 −

Table 18: ECCC km-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6933 SMT NO 5.70 0.202578 −
ORGANIZER 6934 NMT NO 5.70 0.202578 −

Table 19: ECCC km-fr submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6963 NMT YES 3.50 0.537859 −
NITR 6998 NMT NO 15.50 0.706743 −

Table 20: INDIC22 as-en submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6966 NMT YES 4.50 0.547407 −

Table 21: INDIC22 bn-en submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6965 NMT YES 1.10 0.359265 −
NITR 7016 NMT NO 10.20 0.634631 −

Table 22: INDIC22 en-as submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6969 NMT YES 2.00 0.503286 −

Table 23: INDIC22 en-bn submissions

System ID Type RSRC BLEU RIBES AMFM
NITR 7009 NMT NO 6.30 0.579323 −

Table 24: INDIC22 en-sd submissions

System ID Type RSRC BLEU RIBES AMFM
NITR 7012 NMT NO 9.50 0.647028 −

Table 25: INDIC22 en-si submissions

System ID Type RSRC BLEU RIBES AMFM
NITR 7014 NMT NO 19.60 0.718763 −

Table 26: INDIC22 en-ur submissions
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System ID Type RSRC BLEU RIBES AMFM
NITR 7007 NMT NO 8.00 0.546125 −

Table 27: INDIC22 ne-en submissions

System ID Type RSRC BLEU RIBES AMFM
NITR 7005 NMT NO 15.40 0.709039 −

Table 28: INDIC22 sd-en submissions

System ID Type RSRC BLEU RIBES AMFM
NITR 7003 NMT NO 8.20 0.632228 −

Table 29: INDIC22 si-en submissions

System ID Type RSRC BLEU RIBES AMFM
NITR 7000 NMT NO 20.50 0.744934 −

Table 30: INDIC22 ur-en submissions

System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

ORGANIZER 6543 NMT NO 47.04 48.86 46.96 0.870867 0.870604 0.869950 −

Table 31: JPC22 en-ja submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6544 NMT NO 44.51 0.857963 −

Table 32: JPC22 ja-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6542 NMT NO 72.79 0.952385 −

Table 33: JPC22 ja-ko submissions

System ID Type RSRC BLEU RIBES AMFM
kytea ctb pku kytea ctb pku

ORGANIZER 6540 NMT NO 44.73 45.77 45.48 0.871424 0.877354 0.875780 −

Table 34: JPC22 ja-zh submissions

System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

ORGANIZER 6541 NMT NO 73.55 74.58 73.89 0.956442 0.956203 0.956269 −

Table 35: JPC22 ko-ja submissions

System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

ORGANIZER 6539 NMT NO 51.03 51.64 51.14 0.887901 0.885180 0.887404 −

Table 36: JPC22 zh-ja submissions

System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

ORGANIZER 6536 NMT NO 58.87 60.50 58.83 0.905725 0.907156 0.904626 −

Table 37: JPCN4 en-ja submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6537 NMT NO 54.86 0.880671 −

Table 38: JPCN4 ja-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6535 NMT NO 74.73 0.958438 −

Table 39: JPCN4 ja-ko submissions

System ID Type RSRC BLEU RIBES AMFM
kytea ctb pku kytea ctb pku

ORGANIZER 6538 NMT NO 57.51 57.92 57.99 0.898847 0.906742 0.904318 −

Table 40: JPCN4 ja-zh submissions

System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

ORGANIZER 6534 NMT NO 76.69 78.17 77.09 0.963465 0.963548 0.963376 −

Table 41: JPCN4 ko-ja submissions

System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

ORGANIZER 6532 NMT NO 64.31 65.00 64.62 0.924617 0.922020 0.924463 −

Table 42: JPCN4 zh-ja submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6739 NMT NO 37.00 0.795302 −
SILO_NLP 6836 NMT NO 36.20 0.785673 −
nlp_novices 6733 NMT YES 43.10 0.816860 −

Table 43: MMEVTEXT22 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6740 NMT NO 39.40 0.802635 −
SILO_NLP 6958 NMT YES 42.00 0.796441 −

Table 44: MMEVMM22 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6742 NMT NO 37.20 0.770640 −
SILO_NLP 6838 NMT NO 29.60 0.728801 −
nlp_novices 6725 NMT YES 41.80 0.812500 −

Table 45: MMCHTEXT22 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6741 NMT NO 39.30 0.791468 −
SILO_NLP 6959 NMT YES 39.10 0.784169 −

Table 46: MMCHMM22 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
SILO_NLP 6848 NMT NO 30.80 0.589471 −
nlp_novices 6719 NMT YES 30.60 0.643987 −

Table 47: MMEVTEXT22 en-ml submissions
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System ID Type RSRC BLEU RIBES AMFM
SILO_NLP 6849 NMT NO 14.60 0.392158 −
nlp_novices 6720 NMT YES 19.60 0.535043 −

Table 48: MMCHTEXT22 en-ml submissions

System ID Type RSRC BLEU RIBES AMFM
SILO_NLP 6936 NMT NO 41.00 0.705349 −

Table 49: MMEVMM22 en-ml submissions

System ID Type RSRC BLEU RIBES AMFM
SILO_NLP 6937 NMT NO 20.40 0.533737 −

Table 50: MMCHMM22 en-ml submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6703 NMT NO 40.90 0.758246 −
CNLP-NITS-PP 6746 NMT NO 40.90 0.752543 −
SILO_NLP 6954 NMT NO 41.00 0.767212 −

Table 51: MMEVTEXT22 en-bn submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6704 NMT NO 22.50 0.614267 −
CNLP-NITS-PP 6745 NMT NO 26.70 0.680655 −
SILO_NLP 6843 NMT NO 22.60 0.605676 −
nlp_novices 6970 NMT YES 32.90 0.706596 −

Table 52: MMCHTEXT22 en-bn submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6743 NMT NO 43.90 0.780669 −
SILO_NLP 6939 NMT NO 42.10 0.754291 −

Table 53: MMEVMM22 en-bn submissions

System ID Type RSRC BLEU RIBES AMFM
CNLP-NITS-PP 6744 NMT NO 28.70 0.688931 −
SILO_NLP 6940 NMT NO 28.70 0.666817 −

Table 54: MMCHMM22 en-bn submissions

System ID Type RSRC BLEU RIBES AMFM
HwTscSU 6751 NMT NO 56.70 0.884286 −

Table 55: SOFTWARE en-ms submissions

System ID Type RSRC BLEU RIBES AMFM
HwTscSU 6752 NMT NO 45.50 0.819582 −

Table 56: SOFTWARE ms-en submissions

System ID Type RSRC BLEU RIBES AMFM
juman kytea mecab juman kytea mecab

ORGANIZER 6806 NMT NO − − 40.27 − − − −
NICT-5 6821 NMT NO − − 36.84 − − − −
NICT-5 6974 NMT NO − − 37.54 − − − −

Table 57: SWSTR22 en-ja submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6809 NMT NO 21.87 − −
NICT-5 6823 NMT NO 22.81 − −
NICT-5 6976 NMT NO 28.99 − −

Table 58: SWSTR22 en-ko submissions

System ID Type RSRC BLEU RIBES AMFM
kytea ctb pku kytea ctb pku

ORGANIZER 6811 NMT NO 28.03 − − − − − −
NICT-5 6827 NMT NO 32.34 − − − − − −
NICT-5 6978 NMT NO 32.38 − − − − − −

Table 59: SWSTR22 en-zh submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6807 NMT NO 28.20 − −
NICT-5 6822 NMT NO 25.02 − −
NICT-5 6975 NMT NO 25.37 − −

Table 60: SWSTR22 ja-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6810 NMT NO 10.80 − −
NICT-5 6824 NMT NO 23.80 − −
NICT-5 6977 NMT NO 24.35 − −

Table 61: SWSTR22 ko-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6812 NMT NO 29.14 − −
NICT-5 6826 NMT NO 28.50 − −
NICT-5 6979 NMT NO 29.06 − −

Table 62: SWSTR22 zh-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6706 OTHER NO 14.50 0.465183 −

Table 63: VIDEOGAS ja-en submissions
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Abstract

In text generation tasks such as machine trans-
lation, models are generally trained using cross-
entropy loss. However, mismatches between
the loss function and the evaluation metric are
often problematic. It is known that this problem
can be addressed by direct optimization to the
evaluation metric with reinforcement learning.
In machine translation, previous studies have
used BLEU to calculate rewards for reinforce-
ment learning, but BLEU is not well correlated
with human evaluation. In this study, we inves-
tigate the impact on machine translation quality
through reinforcement learning based on met-
rics that are more highly correlated with human
evaluation. Experimental results show that rein-
forcement learning with BERT-based rewards
can improve various evaluation metrics.

1 Introduction

Sequence-to-sequence models based on deep learn-
ing, such as attention-based LSTM (Bahdanau
et al., 2015; Luong et al., 2015) and Trans-
former (Vaswani et al., 2017), are capable of gen-
erating fluent sentences and have been used suc-
cessfully in many text generation tasks, such as
machine translation (Tan et al., 2020) and text sim-
plification (Alva-Manchego et al., 2020). Most pre-
vious studies on text generation use cross-entropy
loss between references and output sentences to
train the models based on maximum likelihood
estimation for each token. Differentiability of
cross-entropy loss enables gradient-based estima-
tion in a supervised learning framework, but it has a
Loss-Evaluation Mismatch problem (Ranzato et al.,
2016; Wiseman and Rush, 2016) in case of ma-
chine translation, where loss functions and evalua-
tion metrics are not consistent, e.g., cross-entropy
loss vs. BLEU (Papineni et al., 2002). That is, an
output sentence that is semantically adequate may
receive an unfairly low evaluation due to a superfi-
cial disagreement with the reference sentence.

Input

Sentence

Reference

Sentence

Output

Sentence
Translator

Reward

Figure 1: Machine translation based on deep reinforce-
ment learning.

Such a Loss-Evaluation Mismatch problem (Ran-
zato et al., 2016; Wiseman and Rush, 2016) can be
addressed by direct optimization of the evaluation
metric through reinforcement learning (Williams,
1992). Since non-differentiable functions can be
used as rewards in reinforcement learning, arbitrary
evaluation metrics such as BLEU (Papineni et al.,
2002), a word n-gram-based evaluation metric,
and BLEURT (Sellam et al., 2020), an embedding-
based evaluation metric, can be employed for the re-
wards of reinforcement learning. Performance im-
provements by using reinforcement learning have
been reported in deep learning-based text genera-
tion, such as machine translation (Ranzato et al.,
2016; Hashimoto and Tsuruoka, 2019; Yasui et al.,
2019) and text simplification (Zhang and Lapata,
2017; Nakamachi et al., 2020).

In machine translation, many previous stud-
ies (Ranzato et al., 2016; Wu et al., 2018;
Hashimoto and Tsuruoka, 2019; Kiegeland and
Kreutzer, 2021) have used BLEU as rewards in
reinforcement learning, but BLEU does not have
a sufficiently high correlation with human evalu-
ation. For machine translation metric tasks (Bo-
jar et al., 2017), evaluation metrics have been pro-
posed that correlate better with human evaluation
than BLEU, such as chrF (Popović, 2017) and
embedding-based evaluation metrics (Shimanaka
et al., 2019; Zhang et al., 2020; Sellam et al., 2020)
based on BERT (Devlin et al., 2019). Therefore,
reward calculation using these evaluation metrics
is expected to achieve further improvements in ma-
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chine translation based on reinforcement learning.
This paper investigates the effectiveness of using

surface-matching-based metrics and BERT-based
metrics as the rewards for reinforcement learning in
machine translation. Transformer-based machine
translation models are trained in the reinforcement
learning framework as shown in Figure 1. How-
ever, the action space for reinforcement learning of
machine translation is very large because it deals
with a vocabulary consisting of tens of thousands
of tokens. Therefore, as in previous studies (Ran-
zato et al., 2016; Hashimoto and Tsuruoka, 2019),
reinforcement learning is applied as fine-tuning
to machine translation models that have been pre-
trained by minimizing the cross-entropy loss. We
then examine multiple metrics for both reward cal-
culation and quality evaluation of machine transla-
tion, and investigate suitable reward functions for
reinforcement learning of machine translation.

Experimental results on the IWSLT-2014 De-
En translation task (Cettolo et al., 2014) revealed
that reinforcement learning with BLEU as a reward
function can only improve evaluation metrics based
on surface matching, BLEU and chrF. On the other
hand, reinforcement learning using BERT-based
metrics as reward functions, such as BLEURT and
BERT fine-tuned on the Semantic Textual Similar-
ity (STS) estimation tasks (Cer et al., 2017), im-
proved various metrics.

2 Reinforcement Learning for Machine
Translation

In this study, pre-trained machine translation mod-
els are fine-tuned by deep reinforcement learning
using various evaluation metrics as rewards. Sec-
tion 2.1 describes pre-training of the machine trans-
lation model, followed by fine-tuning with rein-
forcement learning in Section 2.2, and finally, Sec-
tion 2.3 outlines a machine translation metrics as a
reward function for reinforcement learning.

2.1 Pre-training

The neural machine translation model consists of
an encoder that encodes input sentences and a de-
coder that generates output sentences. The en-
coder is given a sequence of tokens of the input
sentence x = (x0, x1, ..., xL) and outputs the hid-
den state h = (h0, h1, ..., hL). The decoder out-
puts the token sequence of the output sentence
y = (y0, y1, ..., yM ), given the hidden state h
generated by the encoder. The probability of to-

ken yt generation is maximized subject to x and
y<t = (y1, ..., yt−1). The log-likelihood of the
output prediction is computed as follows.

log p(yi|xi) =
M∑

t=1

log p(yit|yi<t, x
i) (1)

Pre-training minimizes the follow-
ing cross-entropy loss for a dataset
D = (x1, y1), ..., (xN , yN ) consisting of in-
put sentences x and output sentences y of length
M or less.

LMLE = −
N∑

i=1

M∑

t=1

log p(yit|yi<t, x
i) (2)

2.2 Fine-tuning

REINFORCE (Williams, 1992) is used for fine-
tuning machine translation models based on re-
inforcement learning. REINFORCE is a type of
policy gradient algorithm in which a machine trans-
lation model is trained to maximize the expected
reward.

The loss function for fine-tuning is obtained by
weighting the log-likelihood by the reward.

LR =
N∑

i=1

M∑

t=1

(R(ŷi)−Rb) log p(ŷ
i
t|ŷi<t, x

i),

(3)
where ht is the hidden state of the decoder at time t,
R is the reward function, Rb is the baseline reward,
and ŷi is the output sentence from the decoder. In
this study, the average reward within a mini-batch
is used as the baseline reward.

To stabilize the training, the following loss func-
tion is used during reinforcement learning as in
previous studies (Hashimoto and Tsuruoka, 2019).

L = λLMLE + (1− λ)LR (4)

2.3 Rewards for Reinforcement Learning

In this study, the following evaluation metrics are
used as rewards for reinforcement learning.

• BLEU1 (Papineni et al., 2002) evaluates the
surface token similarity between the output
and reference sentences, using the word n-
gram agreement rate.

1https://github.com/mjpost/sacrebleu
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Reward BLEU Sent. BERT BERT Reg. SimCSE chrF BERTScore BLEURT STS BERT Mean rank

None 33.73 75.66 0.0478 82.10 54.27 58.47 0.0639 3.654 7.75
BLEU 34.26 74.91 0.0202 81.93 54.39 58.01 0.0234 3.641 7.50
Sent. BERT 33.78 75.79 0.0513 82.24 54.38 58.72 0.0649 3.656 6.00
BERT Reg. 33.47 75.80 0.0557 82.32 54.25 58.64 0.0681 3.650 5.75
SimCSE 33.73 75.84 0.0512 82.25 54.37 58.76 0.0669 3.659 5.13
chrF 33.90 75.81 0.0517 82.24 54.45 58.69 0.0671 3.657 4.63
BERTScore 33.96 75.80 0.0511 82.30 54.48 58.80 0.0677 3.658 4.00
BLEURT 33.85 75.90 0.0572 82.33 54.44 58.92 0.0759 3.660 2.38
STS BERT 34.09 76.11 0.0528 82.52 54.62 59.10 0.0700 3.684 1.50

Table 1: Reinforcement learning performance of machine translation on IWSLT-2014 De→En task (bold indicates
improvement by reinforcement learning, underlined indicates the highest value)

• chrF1 (Popović, 2017) evaluates the surface
token similarity between the output and refer-
ence sentences, using F1 scores of character
n-grams and word n-grams.

• BERTScore2 (Zhang et al., 2020) evaluates
the semantic similarity between the output
and reference sentences, using maximum
matching of contextualized token embed-
dings obtained from pre-trained RoBERTa
(roberta-large) (Liu et al., 2019).

• STS BERT (Yasui et al., 2019) evaluates
the semantic similarity between the output
and reference sentences, using BERT (Devlin
et al., 2019) fine-tuned on the STS task (Cer
et al., 2017).

• Sentence BERT3 (Reimers and Gurevych,
2019) evaluates the semantic similarity be-
tween the output and reference sentences, us-
ing BERT fine-tuned on Natural Language
Inference (NLI) task (Bowman et al., 2015).

• SimCSE4 (Gao et al., 2021) evaluates the se-
mantic similarity between the output and ref-
erence sentences, using RoBERTa fine-tuned
by contrastive learning on sentence pairs with
entailment labels in the NLI corpus as positive
examples.

• BERT Regressor (Shimanaka et al., 2019)
evaluates the semantic similarity between the
output and reference sentences, using BERT
fine-tuned on the metric task (Bojar et al.,
2017).

2https://github.com/Tiiiger/bert_score
3https://huggingface.co/

sentence-transformers/all-mpnet-base-v2
4https://huggingface.co/princeton-nlp/

sup-simcse-roberta-large

• BLEURT5 (Sellam et al., 2020) evaluates the
semantic similarity between the output and
reference sentences, using BERT pre-trained
on an augmented data generated automatically
by round-trip translation, and then fine-tuned
on the metric task (Bojar et al., 2017).

3 Evaluation Experiments

3.1 Settings

IWSLT-2014 German-to-English task (Cettolo
et al., 2014) was used for both pre-training and
fine-tuning by reinforcement learning. The training
dataset consists of 159, 392 sentence pairs, the vali-
dation dataset consists of 7, 245 sentence pairs, and
the test dataset consists of 6, 750 sentence pairs.

Transformer (Vaswani et al., 2017) was used as
the machine translation model, with 6 layers, 4
heads, 256 dimensions, and dropout rate of 0.3.
In the pre-training, the optimization method was
Adam (Kingma and Ba, 2015) (learning rate of
0.0003), the batch size was set to 2, 048, and the
training was stopped by early stopping for BLEU
on the validation data. In reinforcement learn-
ing, the optimization method was Adam (learning
rate of 0.00001), λ = 0.3, batch size was 512,
and training was stopped by early stopping for the
evaluation metrics used as the reward. Reinforce-
Joey6 (Kiegeland and Kreutzer, 2021) was used for
implementation.

The evaluation metrics in Section 2.3 were used
for the reward calculation and the performance
evaluation. STS BERT (Yasui et al., 2019) and
BERT Regressor (Shimanaka et al., 2019) were im-

5https://storage.googleapis.com/
bleurt-oss/bleurt-large-512.zip

6https://github.com/samuki/
reinforce-joey
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cs-en de-en fi-en lv-en ru-en tr-en zh-en Mean

BLEU 0.412 0.413 0.565 0.393 0.460 0.531 0.524 0.471
chrF 0.517 0.531 0.671 0.525 0.599 0.607 0.591 0.577
STS BERT 0.535 0.597 0.667 0.637 0.611 0.589 0.608 0.606
Sentence BERT 0.632 0.621 0.692 0.685 0.690 0.657 0.635 0.659
SimCSE 0.696 0.628 0.684 0.696 0.713 0.660 0.672 0.678
BERTScore 0.710 0.745 0.833 0.756 0.746 0.751 0.775 0.759
BERT Regressor 0.712 0.732 0.858 0.804 0.775 0.789 0.765 0.776
BLEURT 0.845 0.845 0.870 0.865 0.861 0.846 0.860 0.856

Table 2: Pearson correlations with human evaluation in the WMT-2017 Metrics task (bold indicates the best score)

plemented using BERTBASE
7 from HuggingFace

Transformers8 (Wolf et al., 2020).

3.2 Results

Table 1 shows the experimental results. The
first line, “None”, is the baseline where only
pre-training was performed without reinforcement
learning. The comparison between the baseline
and the reinforcement learning after the second
line shows that the performance of all methods im-
proved with reinforcement learning when the same
evaluation metrics were used for both rewards and
evaluation.

When BLEU was used as the reward, reinforce-
ment learning improved only BLEU and chrF,
i.e., surface-matching-based metrics, while perfor-
mance deteriorated for the other BERT-based met-
rics. On the other hand, when chrF, also based on
surface matching, was used as the reward, all eval-
uation metrics were improved by reinforcement
learning.

Among the BERT-based rewards, reinforcement
learning with Sentence BERT shows small im-
provement from the baseline model across the
board, indicating that Sentence BERT is less ef-
fective. Reinforcement learning with SimCSE as
the reward did not improve BLEU, and reinforce-
ment learning with BERT Regressor as the reward
resulted in worse BLEU than the baseline model.

Among the BERT-based rewards, we confirmed
that the use of BERTScore, BLEURT, and STS
BERT improved the performance of all the eval-
uation metrics tested in this study. In particular,
STS BERT achieved the best performance on the
majority of the evaluation metrics and was the most

7https://huggingface.co/
bert-base-uncased

8https://github.com/huggingface/
transformers

suitable reward function for reinforcement learning
of machine translation.

4 Analysis

4.1 Meta-Evaluation of Evaluation Metrics

In this section, we examine whether the evaluation
metrics that were effective as rewards for reinforce-
ment learning in the experiments in Table 1 are
highly correlated with the human evaluation of ma-
chine translation. In this analysis, we investigate
the Pearson correlations between evaluation met-
rics and human evaluation for to-English language
pairs in the WMT-2017 metrics task (Bojar et al.,
2017). This task covers 7 language pairs: cs-en,
de-en, fi-en, lv-en, ru-en, tr-en, and zh-en. Each
560 sentence pair (output and reference sentence
pairs) is evaluated by human experts.

The results of the analysis are shown in Table 2.
It can be seen that BERT-based evaluation metrics
have a higher correlation with human evaluation
than surface-matching metrics, BLEU and chrF.
In particular, BLEURT shows the best correlation
with human evaluation for all language pairs. How-
ever, contrary to expectations, STS BERT, which
was the best reward for reinforcement learning, had
a low correlation with human evaluation.

4.2 Correlations among Evaluation Metrics

In this section, we examine whether the correla-
tions among the evaluation metrics affect the per-
formance evaluation of reinforcement learning. As
in Section 4.1, this section investigates the Pear-
son correlations among the metrics for to-English
language pairs in the WMT-2017 metrics task.

The results are shown in Table 3. First, it can
be seen that the correlation between BLEU and the
other metrics was low. Although the correlation
of BLEU with chrF, based on word n-gram match-
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BLEU STS BERT chrF SimCSE Sent. BERT BERT Reg. BLEURT BERTScore Mean

BLEU - 0.449 0.788 0.417 0.428 0.517 0.496 0.641 0.534
STS BERT 0.449 - 0.671 0.772 0.788 0.648 0.665 0.636 0.661
chrF 0.788 0.671 - 0.616 0.635 0.608 0.613 0.715 0.664
SimCSE 0.417 0.772 0.616 - 0.856 0.653 0.717 0.664 0.671
Sent. BERT 0.428 0.788 0.635 0.856 - 0.674 0.712 0.662 0.679
BERT Reg. 0.517 0.648 0.608 0.653 0.674 - 0.866 0.798 0.681
BLEURT 0.496 0.665 0.613 0.717 0.712 0.866 - 0.805 0.696
BERTScore 0.641 0.636 0.715 0.664 0.662 0.798 0.805 - 0.703

Table 3: Pearson’s correlation coefficient between evaluation metrics

ing, and BERTScore, based on token-embedding
matching, was relatively high, the correlation with
sentence embedding-based metrics was low. These
results indicates that BLEU may not be suitable
sentence-based global evaluation. These character-
istics of BLEU might have had effects on the low
performance of BLEU in Tables 1 and 2.

Table 3 also indicates that the high performance
of STS BERT in many of metrics as shown in Ta-
ble 1 was unlikely due to the effect of compatibility
between metrics because STS BERT tended to have
relatively low correlations with other metrics.

5 Conclusion

In this study, we investigated BERT-based evalua-
tion metrics as rewards for reinforcement learning
in machine translation. The evaluation metrics can
be used for both reward calculation and perfor-
mance evaluation of machine translation. In the
experiments, we examined the evaluation metrics
in the total combination of using it as a reward and
using it as a performance evaluation.

Experimental results on German-to-English
translation of IWSLT-2014 show that reinforce-
ment learning using BERT fine-tuned on STS task
as a reward (STS BERT) can improve performance
on many of evaluation metrics. The correlation
between STS BERT and other evaluation metrics
was relatively low, and this indicates that the high
performance of STS BERT was unlikely due to
the effect of metric compatibility. However, STS
BERT has a relatively low correlation with human
evaluation in the WMT-2017 metrics task and is
not a good evaluation metric from this perspective.

BERTScore and BLEURT have high correlations
with human evaluation and relatively high corre-
lations with other evaluation metrics, and also im-
proved all metrics as rewards for reinforcement
learning. Therefore these metrics can also be con-
sidered good rewards.

As future work, we plan to use quality estima-
tion (Specia et al., 2018) without reference sen-
tences as a reward for reinforcement learning of
machine translation. Rewards based on quality es-
timation have the potential to improve machine
translation models in an unsupervised manner.
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Maja Popović. 2017. chrF++: Words Helping Character
N-grams. In Proceedings of the second conference
on machine translation, pages 612–618.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence Level Train-
ing with Recurrent Neural Networks. In Proceedings
of the 4th International Conference on Learning Rep-
resentations.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing, pages 3982–3992.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning Robust Metrics for Text Genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892.

Hiroki Shimanaka, Tomoyuki Kajiwara, and Mamoru
Komachi. 2019. Machine Translation Evaluation
with BERT Regressor. arXiv:1907.12679.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018. Quality Estimation for Machine
Translation. Synthesis Lectures on Human Language
Technologies, 11(1):1–162.

Zhixing Tan, Shuo Wang, Zonghan Yang, Gang Chen,
Xuancheng Huang, Maosong Sun, and Yang Liu.
2020. Neural machine translation: A review of meth-
ods, resources, and tools. AI Open, 1:5–21.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ronald J. Williams. 1992. Simple Statistical Gradient-
Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, pages 229–256.

Sam Wiseman and Alexander M. Rush. 2016. Sequence-
to-Sequence Learning as Beam-Search Optimization.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1296–1306.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin

42



Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-Art Natural Language Processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A Study of Reinforcement Learning
for Neural Machine Translation. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3612–3621.

Go Yasui, Yoshimasa Tsuruoka, and Masaaki Nagata.
2019. Using Semantic Similarity as Reward for Re-
inforcement Learning in Sentence Generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics: Student Re-
search Workshop, pages 400–406.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In Proceed-
ings of the 8th International Conference on Learning
Representations, pages 1–43.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
Simplification with Deep Reinforcement Learning.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 584–
594.

43



Proceedings of the 9th Workshop on Asian Translation, pages 44–50
October 17, 2022.

Improving Jejueo-Korean Translation With Cross-Lingual Pretraining
Using Japanese and Korean

Francis Zheng, Edison Marrese-Taylor, Yutaka Matsuo
Graduate School of Engineering

The University of Tokyo
{francis, emarrese, matsuo}@weblab.t.u-tokyo.ac.jp

Abstract

Jejueo is a critically endangered language spo-
ken on Jeju Island and is closely related to but
mutually unintelligible with Korean. Parallel
data between Jejueo and Korean is scarce, and
translation between the two languages requires
more attention, as current neural machine trans-
lation systems typically rely on large amounts
of parallel training data. While low-resource
machine translation has been shown to benefit
from using additional monolingual data during
the pretraining process, not as much research
has been done on how to select languages other
than the source and target languages for use
during pretraining. We show that using large
amounts of Korean and Japanese data during
the pretraining process improves translation by
2.16 BLEU points for translation in the Jejueo
→ Korean direction and 1.34 BLEU points for
translation in the Korean → Jejueo direction
compared to the baseline.

1 Introduction

Low-resource machine translation has recently at-
tracted more attention in the field of natural lan-
guage processing, as neural machine translation
(NMT) systems typically do not perform well for
low-resource languages, where parallel data are
lacking (Koehn and Knowles, 2017). Current ma-
chine translation systems typically use tens or even
hundreds of millions of parallel sentences as train-
ing data, but this type of data is only available for
a small number of language pairs (Haddow et al.,
2022). However, there are many examples of low-
resource languages that have many speakers (Had-
dow et al., 2022), so more attention is needed in
the field of machine translation to serve speakers
of these languages. Additionally, for the purpose
of helping to preserve language and culture and
providing equitable access to technology, it is im-
portant to improve machine translation for speakers
of all languages, even those that have a small num-
ber of speakers.

Jejueo (Jeju language, ISO 639-3 language code
jje) is a language spoken on Jeju Island, located just
south of the Korean Peninsula. It is closely related
to but mutually unintelligible with Korean (ISO
639-3 language code: kor) (Yang et al., 2020b).
It was also classified as a critically endangered
language by UNESCO in 2010, meaning that its
youngest fluent speakers are grandparents or great-
grandparents (Yang et al., 2020b). Despite aca-
demic efforts to preserve Jejueo (Yang et al., 2017;
Saltzman, 2017; Yang et al., 2020a, 2018), data-
driven approaches have not been explored deeply
(Park et al., 2020). There are only 5,000 - 10,000
fluent speakers of Jejueo, and most of these speak-
ers are more than 70 years old (Park et al., 2020),
so it is hard to acquire Jejueo data itself, let alone
parallel data between Jejueo and Korean. Despite
this scarcity of data, translation between Jejueo
and Korean is an important task due to their lack of
mutual intelligibility.

We propose a method that uses an mBART (Liu
et al., 2020) implementation of FAIRSEQ1 (Ott et al.,
2019) and leverages the use of large amounts of
linguistically similar languages during pretraining
to improve the accuracy of translation between Ko-
rean and Jejueo. We show that using large amounts
of Japanese and Korean monolingual data during
pretraining improves translation by 2.16 BLEU

points in the Jejueo → Korean direction and 1.34
BLEU points in the Korean → Jejueo direction over
the baseline.

2 Related Work

Park et al. (2020) published a parallel dataset for
Korean and Jejueo, described later in Section 3.1.2,
and used a Transformer (Vaswani et al., 2017) with
six encoder and decoder blocks and eight attention
heads for translation in both directions between
Korean and Jejueo. The authors used FAIRSEQ (Ott

1https://github.com/pytorch/fairseq
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Table 1: Monolingual Dataset Statistics

Dataset Description Size Tokens
JA Japanese 6.6 GB 1,638,553,045
KO Korean 5.7 GB 1,603,938,119
ZH Chinese (written in traditional characters) data 5.9 GB 2,257,606,300

MIX A mix of monolingual data from Bulgarian,
English, French, Irish, Korean, Latin, Spanish,
Sundanese, Vietnamese, and Yoruba

11.5 GB 3,206,224,170

Table 2: JIT Dataset Statistics (Park et al., 2020)

Total Train Dev Test
Parallel sentences 170,356 160,356 5,000 5,000

Jejueo words 1,421,723 1,298,672 61,448 61,603
Korean words 1,421,836 1,300,489 61,541 61,806

Jejueo word forms 161,200 151,699 17,828 18,029
Korean word forms 110,774 104,874 14,362 14,595

et al., 2019) to run their experiments and Sentence-
Piece 2 (Kudo and Richardson, 2018) for byte-pair
encoding (BPE) segmentation. They experimented
with different vocabulary sizes and found that a
vocabulary size of 4,000 produced the best results,
establishing a new baseline for translation between
Jejueo and Korean. They achieved BLEU (Papineni
et al., 2002) scores of 67.70 for the Jejueo → Ko-
rean direction and 43.31 for the Korean → Jejueo
direction on the test set of their parallel dataset.
Then, they followed an approach by Sennrich et al.
(2016), who showed that machine translation mod-
els can be improved with monolingual data, and
augmented “both the source and target sides of the
training set with the same number of randomly sam-
pled Korean sentences from a Wikidump” (Park
et al., 2020). This improved their BLEU scores to
67.94 for the Jejueo → Korean direction and 44.19
for the Korean → Jejueo direction on the test set of
their parallel dataset.

Zheng et al. (2021) explored the use of large
amounts of monolingual data during the pretrain-
ing process to improve translation between low-
resource languages from the Americas and Spanish.
Instead of monolingual data from either the source
or target language, languages from all over the
world were used in this training process to expose
the model to a wide variety of linguistic features,
allowing for improvements of BLEU scores that

2https://github.com/google/
sentencepiece

were 1.64 higher and CHRF scores that were 0.0749
higher on average than the baseline for those lan-
guage pairs.

We build on this work by taking a closer look
at how the selection of language for these mono-
lingual data used during the pretraining process
affects translation quality in the case of transla-
tion between Jejueo and Korean. Our methods are
described in the following section.

3 Methods

3.1 Data

We experimented with four sets of monolingual
data described in Table 1 and Jejueo-Korean par-
allel data described in Table 2. Tokenization was
performed as described in Section 3.2. Details on
the size of and amount of tokens used from each
language in the MIX dataset can be found in Table 6
in Appendix A.

3.1.1 Monolingual Data
The monolingual datasets JA, KO, ZH, and MIX

were obtained from CC1003 (Wenzek et al., 2020;
Conneau et al., 2020). The Japanese dataset JA was
chosen for its similarity in syntax and vocabulary
to Korean and Jejueo, and the Korean dataset KO

was chosen to provide more data for one side of
translation between Korean and Jejueo. The Chi-
nese dataset ZH was selected because both Korean
and Jejueo (and Japanese, for that matter) have

3http://data.statmt.org/cc-100/
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Table 3: Datasets Used in Pretraining

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
MIX JA, KO, ZH JA, KO KO JA ZH

loanwords from Chinese even though Chinese has
a vastly different syntax and writing system.

The dataset MIX compiles data from a variety
of widely-spoken languages across the Americas,
Asia, Europe, Africa, and Oceania and was in-
cluded in hopes of allowing the model to learn from
a wider range of language families and linguistic
features.

We use these monolingual data as part of our
pretraining, as this has been shown to improve re-
sults with smaller parallel datasets (Conneau and
Lample, 2019; Liu et al., 2020; Song et al., 2019).
Different combinations of these datasets are used
in our pretraining to examine the effect of language
similarity on translation accuracy after finetuning.

3.1.2 Parallel Data

Parallel data between Korean and Jejueo are from
the Jejueo Interview Transcripts (JIT) dataset4

(Park et al., 2020). These data were compiled
from data from the Center for Jeju Studies, which
collected data by interviewing senior Jeju citizens
in Jejueo and having these interviews transcribed
and translated into Korean by experts (Park et al.,
2020).

3.2 Preprocessing

All data were tokenized using a unigram (Kudo,
2018) implementation of SentencePiece (Kudo and
Richardson, 2018) in preparation for our multilin-
gual model. We used a vocabulary size of 6,000 and
a character coverage of 0.9995, as the languages
used have a rich character set, especially the JA,
KO, and ZH datasets. Separate SentencePiece mod-
els were trained for each combination of datasets
shown in Table 3.

All data were then sharded for faster processing.
With our SentencePiece model and vocabulary, we
used FAIRSEQ (Ott et al., 2019) to build vocabular-
ies and binarize our data.

The Jejueo-Korean parallel training, develop-
ment, and test sets for finetuning and evaluating
our models were the same as those used by the

4https://www.kaggle.com/datasets/
bryanpark/jit-dataset

authors of the JIT dataset (Park et al., 2020) and
are described in Table 2.

3.3 Pretraining

We pretrained six different models on different
combinations (Table 3) of the datasets described in
Section 3.1.1 using an mBART (Liu et al., 2020)
implementation of FAIRSEQ (Ott et al., 2019). We
also included 8.7 MB (160,356 sentences) of Jejeuo
training data from the JIT dataset as part of the pre-
training process for each combination of datasets.
Each model was pretrained on 32 NVIDIA V100
GPUs for two hours.

Balancing data across languages
Due to the large variability in size amongst the
different datasets used in pretraining, we used an
exponential sampling technique used in Conneau
and Lample (2019); Liu et al. (2020) to re-sample
text according to smoothing parameter α as fol-
lows:

qi =
pαi∑N
j=1 p

α
j

(1)

In equation 1, qi refers to the resampling proba-
bility for language i given a multinomial distribu-
tion {qi}i=1...N with original sampling probability
pi.

Because we want our model to work well with
low-resource languages such as Jejueo, we set the
smoothing parameter α to 0.25 (instead of 0.7 as
used in mBART (Liu et al., 2020)) to reduce model
bias towards the higher proportion of data from
high-resource languages.

Hyperparameters
Using FAIRSEQ (Ott et al., 2019), we trained our
models using a Transformer (Vaswani et al., 2017)
with six encoder and decoder layers with eight at-
tention heads each, a hidden dimension of 512, a
feed-forward size of 2048, and a learning rate of
0.0003. Each model was optimized using Adam
(Kingma and Ba, 2015) with hyperparameters β =
(0.9, 0.98) and ϵ = 10−6. For regularization, we
used a dropout rate of 0.1 and a weight decay of
0.01.
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3.4 Finetuning
We performed finetuning using the best check-
points (chosen using loss as a metric) from each
of our pretrained models on the Jejueo → Korean
translation task and Korean → Jejueo translation
task. Using FAIRSEQ (Ott et al., 2019), we fine-
tuned our models using the same hyperparameters
used during pretraining, except for the dropout rate,
which we changed to 0.5. We found that a higher
dropout rate improved the translation output from
our models.

3.5 Evaluation
We evaluated translations outputted by our mod-
els with detokenized BLEU (Papineni et al., 2002;
Post, 2018) using the SacreBLEU library5 (Post,
2018) on the test data from the parallel dataset JIT.
We also used CHRF (Popović, 2015) to measure
performance at the character level.

4 Results and Analysis

Table 4: Jejueo → Korean Results

BLEU CHRF
Baseline 67.94
Model 1 MIX 65.79 0.7664
Model 2 JA, KO, ZH 64.04 0.7542
Model 3 JA, KO 70.10 0.8009
Model 4 KO 67.61 0.7788
Model 5 JA 66.90 0.7739
Model 6 ZH 62.95 0.7436

Table 5: Korean → Jejueo Results

BLEU CHRF
Baseline 44.19
Model 1 MIX 42.97 0.5665
Model 2 JA, KO, ZH 41.17 0.5553
Model 3 JA, KO 45.53 0.5867
Model 4 KO 42.58 0.5626
Model 5 JA 42.35 0.5573
Model 6 ZH 42.47 0.5608

We compiled our results in Table 4 and Table 5.
The best BLEU scores on the test data achieved by
the authors who published the Korean and Jejueo
parallel dataset (Park et al., 2020) are displayed as
a baseline. To the best of our knowledge, these

5https://github.com/mjpost/sacrebleu

baseline BLEU scores are the highest published
for this dataset, and there are no existing baseline
CHRF scores.

Model 3, primarily trained on Japanese and Ko-
rean data (in addition to a small amount of Jejeuo
training data, as described in Section 3.3), per-
formed the best, beating the baseline by 2.16 BLEU

points for translation in the Jejueo → Korean di-
rection and 1.34 BLEU points for translation in the
Korean → Jejueo direction. Model 4, which made
use of only Korean and Jejeuo data, performed sim-
ilarly to the baseline, despite having employed a
much larger amount of Korean data. Model 1 and
Model 2 performed even worse, which suggests
that pretraining using languages that are more dif-
ferent from Korean and Jejeuo can be detrimental
to model quality. Though Model 1’s Korean →
Jejueo score is a bit higher than that of Model 4,
there is a marked drop in score for the the Korean
→ Jejueo direction in Model 2 and the Jejueo →
Korean direction for both Model 1 and Model 2.

Though Park et al. (2020) did not publish CHRF
scores, we calculated CHRF scores to see if a sim-
ilar trend could still be seen. When using CHRF
scores, we can still see that Model 3 performed the
best. Additionally, it still holds true that Model
4 performed better than Model 1 and Model 2 in
the Jejueo → Korean direction and that Model 1
slightly beats Model 4 in the Korean → Jejueo
direction followed by a steeper drop in score for
Model 2 in this direction.

The similar trends in CHRF scores and BLEU

scores amongst the six models suggest that the se-
lection of languages used in the pretraining stage
has a marked effect on model quality. Japanese,
Korean, and Jejueo share many similar character-
istics, such as having a similar syntax and having
a high proportion of vocabulary of Chinese ori-
gin. While Chinese shares some vocabulary with
Japanese, Korean, and Jejueo, it operates under a
vastly different syntax and has a much lower de-
gree of linguistic similarity. As can be seen from
the results for Model 2, the addition of the Chinese
dataset ZH may have thus hampered model quality.
Model 1, which incorporates languages from all
over the world, suffers from a similar issue, but the
sheer variety of languages used may have helped
it perform better than Model 2, as the model was
exposed to a larger variety of linguistic features.

Model 4, however, also did not perform as well
as Model 3 and achieved close, but not higher
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scores compared to the baseline, as it did not have
enough linguistic variety from which to learn. Thus,
while it is important to introduce linguistic variety
to the model during pretraining, data must be se-
lected carefully such that there is still a relatively
high degree of linguistic similarity, perhaps most
particularly in terms of syntax.

Model 5 and Model 6 both performed worse than
Model 4, which was expected, as Korean is used
in translation between Jejueo and Korean and is
closely related to Jejueo itself. Model 6’s perfor-
mance displayed a more pronounced drop in trans-
lation quality in the Jejueo → Korean direction,
performing nearly 5 BLEU points worse than the
baseline and more than 7 BLEU points worse than
Model 3. This marked difference is also reflected
in the CHRF scores. Model 5 performed more simi-
larly to Model 4, which may be due to the linguistic
similarity between Korean and Japanese.

Model 4, Model 5, and Model 6 all performed
similarly, however, in the Korean → Jejueo direc-
tion. Their performance is also similar to that of
Model 1 and that of Model 2 in this direction, indi-
cating that only a particular combination of lan-
guages can bring about a marked improvement
in translation quality. Additionally, the fact that
Model 1 and Model 2 achieved similar performance
despite having used much more data than Model 4,
Model 5, and Model 6 shows that Model 3’s higher
translation quality may not be due to simply having
more data but instead be due to having a more ad-
vantageous combination of languages, though this
needs more exploration in future work.

It is also worth noting that translation from Je-
jueo to Korean performs significantly better than
translation from Korean to Jejueo. This is likely
due to the fact that a single Korean word may have
multiple translations in the Jejueo dataset while
a single word in Jejueo typically corresponds to
just one word in Korean. Thus, translation qual-
ity as measured by BLEU and CHRF is higher for
translation in the Jejueo → Korean direction. This
was also observed in Park et al. (2020)’s baseline
translations. Another potential reason for this dif-
ference is the fact that Korean data outside of the
parallel data was used during the pretraining pro-
cess, where as no additional Jejueo data was used,
giving the model overwhelmingly more exposure
to Korean vocabulary and a relatively small amount
of exposure to Jejueo vocabulary. Perhaps more
Jejueo data is needed for the model to better learn

how different Jejueo words are used in different
contexts.

5 Conclusions and Future Work

We have shown how pretraining on a large amount
of carefully selected monolingual data can im-
prove the quality of translation between Korean
and Jejueo, a low-resource language pair. By using
Japanese and Korean data during the pretraining
process, our model was exposed to some linguistic
diversity beyond Korean and Jejueo from a lan-
guage of relatively high linguistic similarity, allow-
ing our model to improve translation by 2.16 BLEU

points for translation in the Jejueo → Korean di-
rection and 1.34 BLEU points for translation in the
Korean → Jejueo direction in comparison to the
baseline.

If enough is known linguistically about the
source and target languages, it is important to care-
fully select additional but similar languages to use
during the pretraining process. Pretraining with
Korean alone and pretraining with other languages
of low linguistic similarity generated models that
performed worse than the baseline. Syntactic sim-
ilarity may be of particular importance, as Ko-
rean, Jejueo, and Japanese all share a similar syn-
tax while differing mostly in vocabulary. Korean,
Japanese, and Jejueo are all considered synthetic
SOV (subject-object-verb) languages, while Chi-
nese is an analytic SVO language. This drastic
difference in syntax may explain how using Chi-
nese during the pretraining process resulted in a
marked drop in translation quality.

Japanese, Jejueo, and Korean, however, do share
many words that come from Chinese origins. For
future work, we are interested in better leveraging
these cognates found amongst Korean, Jejueo, and
Japanese as shared representations that can be used
as additional linguistic information for improving
translation quality.
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Abstract

In this paper, we describe our TMU English–
Japanese systems submitted to the restricted
translation task at WAT 2022 (Nakazawa et al.,
2022). In this task, we translate an input sen-
tence with the constraint that certain words or
phrases (called restricted target vocabularies
(RTVs)) should be contained in the output sen-
tence. To satisfy this constraint, we address
this task using a combination of two techniques.
One is lexical-constraint-aware neural machine
translation (LeCA) (Chen et al., 2020), which
is a method of adding RTVs at the end of in-
put sentences. The other is multi-source Lev-
enshtein transformer (MSLevT) (Wan et al.,
2020), which is a non-autoregressive method
for automatic post-editing. Our system gener-
ates translations in two steps. First, we gener-
ate the translation using LeCA. Subsequently,
we filter the sentences that do not satisfy the
constraints and post-edit them with MSLevT.
Our experimental results reveal that 100% of
the RTVs can be included in the generated sen-
tences while maintaining the translation quality
of the LeCA model on both English to Japanese
(En→Ja) and Japanese to English (Ja→En)
tasks. Furthermore, the method used in pre-
vious studies requires an increase in the beam
size to satisfy the constraints, which is compu-
tationally expensive. In contrast, the proposed
method does not require a similar increase and
can generate translations faster.

1 Introduction

We participated in the restricted translation task
at WAT 2022. In this task, we were given pairs
of an input sentence and a list of restricted target
vocabularies (RTVs), wherein words or phrases are
stored in a random order. Next, we were asked to
generate a translated sentence for the input sentence
that contained all the RTVs in the corresponding
list. This setting is intended for cases where a user
wishes to translate technical terms or proper nouns
consistently by specifying these words in advance.

Previous studies have shown that neural machine
translation (NMT) models (Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017) ex-
hibit high translation performance in machine trans-
lation. Additionally, studies to control output in
NMT under terminological constraints have been
conducted (Hasler et al., 2018; Dinu et al., 2019;
Chen et al., 2020; Song et al., 2020). However,
several of these studies were set up to be available
a bilingual dictionary rather than only the desired
words to output.

In the previous year, the first shared task of
restricted translation was performed, for which
Chousa and Morishita (2021) achieved the high-
est score (Nakazawa et al., 2021). Their proposed
method combines a “soft” method (which does not
ensure constraint satisfaction using data augmen-
tation (Chen et al., 2020)) and a “hard” method
(which ensures constraint word satisfaction using
grid beam search (Hokamp and Liu, 2017; Post and
Vilar, 2018)). Their results revealed that certain
constraint terms could be satisfied with only soft
methods. We speculated whether the constraints
could be satisfied by correcting those that were not
satisfied by automatic post-editing.

In this study, we tackled this task in two gen-
eration steps. First, we generated the transla-
tion by a soft method (lexical-constraint-aware
NMT (LeCA)). Next, we filtered the sentences
that did not satisfy the constraints and post-edited
those with multi-source Levenshtein transformer
(MSLevT) (Wan et al., 2020). In general, hard
methods employs a computationally expensive
decoding algorithm compared with conventional
beam search. We adopted MSLevT, an efficient
non-autoregressive model, as the automatic post-
editting from the perspective of computational com-
plexity. In addition, while performing post-editing
in MSLevT, RTVs were provided as initial values.
Subsequently, the sentences were generated with re-
peated modifications according to the Levenshtein
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transformer process. The restriction of delete and
insert operations to RTVs ensured that RTVs would
appear in the output in the order provided as the
initial value. Consequently, we had to determine
the order of the RTVs in advance. We used the
cosine similarity of the embedding of each word
in LeCA’s generated text and RTVs, which were
obtained using fasttext (Bojanowski et al., 2017),
to determine the order of the RTVs.

We submitted the system outputs to the En→Ja
task and Ja→En tasks. We successfully included
100% of the constraint words in the system’s out-
put without significantly compromising the BLEU
score of the LeCA model. We confirmed the ef-
fectiveness of the proposed method in reordering
constraint words by calculating Spearman’s rank
correlation coefficient for the reordered constraint
words and the constraint words in the reference.

2 System Overview

First, we used a baseline model called lexical-
constraint-aware NMT (Chen et al., 2020), for
translation that considers constraint words. How-
ever, because this method did not ensure that con-
straint words would appear in the generated text, au-
tomatic post-processing correction was performed
on the sentences that failed to satisfy the constraints
in the LeCA output to ensure that the constraints
were satisfied. The automatic correction was per-
formed by reordering the RTVs using fasttext (Bo-
janowski et al., 2017) and then, using MSLevT
(Wan et al., 2020).

2.1 Lexical-Constraint-Aware NMT

The LeCA model is designed to induce the model
to include pre-specified words in the generated sen-
tences by data augmentation. In particular, the
RTVs are concatenated at the end of the input sen-
tence, thus ensuring that LeCA obtains the source
sentence and RTVs simultaneously before the de-
coding step and is expected to be able to start de-
coding, taking into account constraint words. Fur-
thermore, LeCA employs a pointer network, which
is expected to copy the constraint words concate-
nated in the input sentence at the appropriate places
while generating the translation.

2.2 Sorting RTV with fasttext

Synonyms of the constraint words and those close
to the surface form of the constraint words tended
to appear in the output of LeCA when the constraint

En Ja

0.664 0.718

Table 1: Evaluation of the proposed RTV-sorting
method by Spearman’s rank correlation coefficient be-
tween the order of sorted RTVs and that of references.

words were not included in the output. Therefore,
we addressed the reordering of the constraint words
under the assumption that the words corresponding
to the constraint words are included in the output
of LeCA.

We adopted the following steps to align each
RTV with a word in the LeCA outputs.

1. We obtained word embeddings of each word
(both RTV and LeCA output) via fasttext.

2. If the RTV is a phrase consisting of multiple
words, its embedding is the average of the
embeddings of each word that constitutes the
RTV. Assuming that the number of words in
the output range of LeCA corresponding to an
RTV is equal to the number of words in the
RTV, the embedding of the output words of
LeCA is summarized by taking the average
over the n-gram of the number of words in the
RTV. We call the n-gram “word block” and
regard the first word in the word block as the
representative word.

3. Cosine similarity ranking is considered for the
RTV and all the word blocks.

4. Essentially, the RTV is considered to cor-
respond to the word block with the high-
est ranking. However, if the corresponding
word block (representative word) overlaps
with other RTVs, the one with a higher co-
sine similarity is assigned priority. The RTV
discarded here is considered to correspond to
the next highest ranking word block.

Note that in a few cases, the number of output
words of LeCA was smaller than the total number
of words of RTVs. In such cases, the RTV was
reordered randomly. 1

Table 1 lists the Spearman’s rank correlation
coefficients. There were calculated from the RTV
order when the proposed method used, and the RTV
order that appeared in the reference in the entire

1In our experiments, we observed only one case in the
Ja→En validation data set.
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Figure 1: Decoder of Levenshtein transformers. The de-
coder repeats deletion, insertion, and replacement until
the sentence is complete. This figure shows an exam-
ple given three RTVs. The colored characters represent
these. The generated Japanese sentence means “And, it
was confirmed to enable also to detect change of flow
rate and volume.”, corresponding to “流速”, “流量”,
and “体積” for “flow rate”, “volume”, and “detection”,
respectively.

test set. A positive correlation was observed, thus
verifying the effectiveness of the proposed method.

2.3 Automatic Post-Editing by multi-source
Levenshtein transformer

MSLevT has two encoders: one encoder is fed with
the source sentence and the other with the output
of the LeCA. Tebbifakhr et al. (2018) contends that
in the APE task, a better representation of attention
can be obtained by concatenating the outputs of
two such encoders and subsequently passing them
as an attention key.

Moreover, the decoder is provided with RTVs in
parallel as initial values, and it operates similar to
a Levenshtein transformer (Gu et al., 2019) (See
Figure 1). The Levenshtein transformer generates
sentences by repeating three phases, namely delete
tokens, insert placeholders, and replace placehold-
ers with new tokens, until the generated sentences
stop varying or the number of iterations attains a
pre-defined max-iteration. In the task setting in this
study, both the deletion of RTVs given in the initial
step and insertion of placeholders into the RTVs
are undesirable. Therefore, we designed the model
to prohibit these operations while generating the
outputs.

2.4 Post-processing

We performed post-processing because the output
of the model needed to be matched with that of
the reference for submission. In particular, English
words, certain symbols, and spaces in the Japanese
text were normalized to full-width characters. In
addition, in some cases, the model failed to recog-
nize out-of-vocabulary characters in the constraint
words that were not included in the training data
and output special tokens. For these cases, we re-
placed the spans of constraint words that contained
special tokens with constraint words.

3 Experimental Setup

3.1 Dataset

We used the provided ASPEC (Nakazawa et al.,
2016) dataset. This dataset contains three million
parallel sentences as training data; 1,790 parallel
sentences as validation data; and 1,812 parallel sen-
tences as test data. ASPEC training sentences are
ordered by sentence alignment scores. Therefore,
the sentences at the end are considered relatively
noisy data. Morishita et al. (2017) reported that
the translation quality of training with the original
three million corpus is less than that of training
with only the first two million sentences. There-
fore, we used only the first two million sentences
as training data.

Referring to Chousa and Morishita (2021) and
Morishita et al. (2019), we tokenized both Japanese
and English sentences using MeCab (Kudo et al.,
2004) with the mecab-ipadic-NEologd 2 dic-
tionary and mosestokenizer 3, respectively.
Next we split these into subwords using senten-
cepiece (Kudo and Richardson, 2018), where the
vocabulary size was set to 4,000.

3.2 Evaluation

Based on the official evaluation, we evaluated the
outputs of our system using two metrics: the BLEU
score (Papineni et al., 2002) and consistency score.

BLEU score. The BLEU score is calculated
based on the n-gram matching rate between hy-
pothesis and reference. We calculated it by
SACREBLEU (Post, 2018).

2https://github.com/neologd/
mecab-ipadic-neologd

3https://pypi.org/project/
mosestokenizer/
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En→Ja Ja→En

BLEU RIBES AMFM BLEU RIBES AMFM

LeCA 51.3 0.873 0.800 39.3 0.796 0.653
LeCA + MSLevT 49.6 0.869 0.786 39.5 0.800 0.641
LeCA + MSLevT (dist→org) 49.9 0.870 0.786 39.6 0.800 0.638
LeCA + MSLevT (dist+org) 50.0 0.869 0.789 39.6 0.799 0.640

LeCA (× 5 ensemble) + MSLevT (dist+org) 52.2 0.877 0.789 41.3 0.808 0.654

Table 2: Results of the official score. Herein, “dist→org” implies that the model is pretrained with distilled data
for ten steps and then finetuned by original data; and “dist+org” implies that the model is trained with mixed data
consisting of distilled and original data.

En→Ja Ja→En

FS AS FS AS

LeCA 37.6 4.24 23.0 4.22
LeCA + MSLevT (dist+org) 50.5 4.19 38.1 4.14

LeCA (× 5 ensemble) + MSLevT (dist+org) 52.7 4.18 40.8 4.31

Table 3: Results of human evaluation. Herein, FS denotes final score; and AS denotes adequacy scores on a 5-point
scale.

Consistency score. The consistency score is the
percentage of sentences in the test corpus that could
be translated by including the given RTVs in the
output. Whether or not an RTV is included in a
sentence is determined by an exact match. While
evaluating English sentences, we lowercased hy-
potheses and references, and performed character-
based sequence matching (including white spaces).

Final score. For the final ranking, the score was
calculated by combining the BLEU and consis-
tency scores. In particular, the BLEU score was
calculated with only the exact match sentences.
Essentially, translations that did not satisfy the con-
straints were replaced to empty the string before
measuring the BLEU score.

3.3 Model

LeCA. We used the Transformer big model. The
implementation was based on that of Chen et al.
(2020). The hyperparameters were based on the
previous work of Chousa and Morishita (2021),
with a learning rate of 0.001, max-token of 4,000,
mini-batch size of 512,000 tokens, and the Adam
optimizer.

fasttext. We used fasttext, which is available as a
Python module. 4 Fasttext was learned from scratch

4https://fasttext.cc/docs/en/
python-module.html

using three million sentences of training data for
Japanese and English.

multi-source LevT. We used an almost identical
model and hyperparameters used in the previous
study of Wan et al. (2020). However, their imple-
mentation could adversely affect the RTV when
LevT performs delete and insert operations. There-
fore, we modified the implementation to prohibit
delete and insert operations on the RTV, referring
to the implementation of Susanto et al. (2020).

In general, non-autoregressive models are known
to improve the BLEU score by performing knowl-
edge distillation (Gu et al., 2018; Zhou et al., 2020).
Therefore, we prepared distilled data (which is
LeCA’s output as reference) for the training step.
We used distilled data in two strategies, as follows.
One is wherein the model is pretrained on the dis-
tilled data for ten steps and then finetuned by the
original data. The other is wherein the model is
trained with mixed data consisting of the distilled
and original data.

4 Results

4.1 Official Evaluation

Official score Table 2 lists the official BLEU,
RIBES (Isozaki et al., 2010), and AMFM (Banchs
et al., 2015) scores, calculated in the evaluation
server for our submissions. The results revealed
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En→Ja Ja→En

Model BLEU CS FS BLEU CS FS

LeCA 52.0 0.805 36.0 39.0 0.719 19.6
MSLevT 35.8 1.000 35.8 32.6 1.000 32.6
MSLevT (dist→org) 37.5 1.000 37.5 32.2 1.000 32.2
MSLevT (dist + org) 44.4 1.000 44.4 39.4 1.000 39.4
LeCA + MSLevT 50.1 1.000 50.1 39.3 1.000 39.3
LeCA + MSLevT (dist + org) 50.5 1.000 50.5 39.3 1.000 39.3

Table 4: Results of our evaluation. Herein, “dist→org” implies that the model is pretrained on the distilled data
for ten steps and then, finetuned by the original data; “dist+org” implies that the model is trained with mixed data
consisting of the distilled and original data; and CS and FS denote consistency score and final score, respectively.

En→Ja Ja→En

beam size sec/sent ratio sec/sent ratio

LeCA
5 0.094 ×1.00 0.099 ×1.00
30 0.221 ×2.35 0.228 ×2.30

LeCA + MSLevT (proposed) 5 0.115 ×1.22 0.126 ×1.27

Table 5: Inference time on GPU.

that LeCA’s scores were higher than those of
LeCA+MSLevT. However, LeCA’s output did not
include 100% constraints. The use of distilled data
for training MSLevT tended to be marginally more
effective. The reason for the marginal improve-
ment in scores may be that few sentences required
automatic post-processing in MSLevT.

Human Evaluation Table 3 lists the human eval-
uation and official final scores (Nakazawa et al.,
2022). Human evaluation performed adequacy
scores on a 5-point scale by the WAT organization.
Our proposed method has higher Final Scores 5

because it reliably includes RTVs in the output, but
the adequacy of the human evaluation tends to be
marginally lower.

4.2 Our Evaluation

Table 4 lists the scores obtained in our evaluation.

English to Japanese Although LeCA achieved
the highest BLEU score, the consistency score was
0.805, and the final score was significantly lower
by 16.0. In contrast, “MSLevT” (which is the result
of passing the LeCA’s output through MSLevT) ex-
hibited a significant decrease in BLEU, although

5The evaluation by the organizer in the ja-en test set
showed that consistency score did not reach 100%. We found
that this was due to the inclusion of escape sequences in 39
sentences at submission.

all the RTVs could be output. However, our pro-
posed combined approach (“LeCA + MSLevT”)
maintained BLEU scores comparable to those of
LeCA and the consistency score was 1.000.

With regard to the effectiveness of the distillation
data for MSLevT, training the model with mixed
data consisting of the distilled and original data
is the most effective approach for improving the
BLEU score. However, MSLevT’s improvement
by distilled data had a negligible impact on “LeCA
+ MSLevT” (by 0.4 points). The likely cause of
this is that the revision of only the 20% texts by
MSLevT is not influenced by the presence or ab-
sence of distilled data. An analysis of this aspect is
for future work.

Japanese to English Although LeCA achieved
a BLEU score of 39.0, the consistency score was
0.719, and the final score was significantly lower
by 19.4. In contrast, “MSLevT” exhibited a de-
crease in BLEU, although all the RTVs could be
output. However, our proposed combined approach
(“LeCA + MSLevT”) maintained BLEU scores
comparable to those of LeCA and the consistency
score was 1.000 (similar to En→Ja).

Moreover, the effectiveness of the distillation
data for MSLevT exhibited a trend similar to that
of En→Ja. However, the BLEU score of “MSLevT”
was higher than those of “LeCA” and “LeCA +
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MSLevT (dist + org).” This implies that for English
texts, applying all the LeCA outputs to MSLevT is
more effective compared with being selective.

4.3 Inference Time

In the previous study by Chousa and Morishita
(2021), the authors used grid beam search to gen-
erate translations. However, they reported that the
method generated repetitions when the beam size
was small and could not generate all the constraint
words. Therefore, they performed a preliminary
experiment and determined the beam size as 30
to generate a translation that included all the con-
straint words. However, larger beam sizes require
more inference time. In contrast, our method can
satisfy the RTVs without increasing the beam size.

Table 5 lists the time required for inference by
LeCA with beam sizes of 5 and 30, and that by the
proposed method with 5. The experiments verified
that the time required to generate the translations
by the proposed method was significantly shorter
than that by LeCA with a beam size of 30.

5 Related Work

NMT with terminology constraints have been stud-
ied widely. In particular, the Machine Trans-
lation using Terminologies task in WMT2021
(Akhbardeh et al., 2021) had a setting that was
highly similar to that in this study. Unlike this
study, WMT’s task provided terminology dictionar-
ies. Consequently, such setting-specific approaches
were observed. For example, Wang et al. (2021)
employed a method of replacing words in the input
sentence that corresponded to constrained source
words with the constrained target words. Further-
more, Ailem et al. (2021) used a selective constraint
word selection method during training based on dic-
tionaries.

Bergmanis and Pinnis (2021) worked on a simi-
lar task in a setting that was marginally looser than
that in this study. They differed from the other
studies in that they focused on word conjugation
as well, although their approach was to replace
the constraining words in the input sentence with
words from the target side. They added a process of
lemmatizing the words to be replaced on the target
side to ensure that the model could flexibly learn
conjugations.

In the previous year, Chousa and Morishita
(2021) achieved the highest score in the restricted
translation task in WAT2021 (Nakazawa et al.,

2021). Their proposed method combines LeCA
and grid beam search (Hokamp and Liu, 2017; Post
and Vilar, 2018). Although grid beam search can
consistently output constraint words, it incurs high
computational cost and is known to adversely affect
translation accuracy if a sufficient beam width is
not adopted. Chousa and Morishita (2021) demon-
strated that this problem can be mitigated by com-
bining grid beam search with LeCA.

6 Conclusion

We introduced an automatic post-editing approach
for the restricted translation task of WAT 2022.
In our experiments, 100% of the RTVs could be
included in the generated sentences while maintain-
ing the translation quality of LeCA. Furthermore,
our method does not require any preliminary exper-
iments to determine the beam size and can gener-
ate translations faster while satisfying constraints
compared with existing methods using grid beam
search.
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Abstract

In this paper we describe our submission to
the shared tasks of the 9th Workshop on Asian
Translation (WAT 2022) on NICT–SAP Task
under the team name “HwTscSU”. The tasks
involve translations from 5 languages into En-
glish and vice-versa in two domains: IT do-
main and Wikinews domain. The purpose is to
determine the feasibility of multilingualism, do-
main adaptation or document-level knowledge
given very little to none clean parallel corpora
for training. Our approach for all translation
tasks mainly focus on pre-training NMT mod-
els on general datasets and fine-tuning them on
domain-specific datasets. Due to the scarcity of
parallel corpora, we collect and clean the OPUS
dataset, including three IT domain corpora, i.e.,
GNOME, KDE4, and Ubuntu. We then train
Transformer models on the collected datasets
and fine-tune them on corresponding dev sets.
The BLEU scores are greatly improved in com-
parison with other systems.

1 Introduction

Explorations on machine translation have come
far since the era of neural machine transla-
tion (NMT) (Kalchbrenner and Blunsom, 2013).
Owing to the incorporation of novel structures
such as CNN (Gehring et al., 2017) and Trans-
former (Vaswani et al., 2017), modern NMT mod-
els are able to compete with human translation.

However, the performance of neural machine
translation is often highly relevant to the size of
available datasets. When the training datasets are
small in quantity, performances of NMT models
are often poor, especially for low-resource lan-
guages. Considering that it is often helpful, in such
low-resource scenarios, to leverage monolingual
or bilingual corpora from multiple languages and
domains to boost translation quality, we collected a
large amount of web-crawled datasets for training
models in the task.

The Workshop on Asian Translation1 (Nakazawa
et al., 2022) is an open machine translation eval-
uation campaign focusing on Asian languages.
WAT gathers and shares the resources and knowl-
edge of Asian language translation to under-
stand the problems to be solved for the prac-
tical tasks of machine translation technologies
among all Asian countries. Among those tasks,
we participated on NICT-SAP tasks which evalu-
ate Hindi/Thai/Malay/Indonesian/Vietnamese ↔
English translation in two domains: IT domain
(Software Documentation) and Wikinews domain
(ALT). IT domain and Wikinews are two extremely
low-resource domains for machine translation, es-
pecially when concerning languages such as Hindi,
Thai, Malay, Indonesian and Vietnamese. Often, in
these domains, there is no clean bilingual parallel
corpus at all (the IT domain), or the size of avail-
able corpora is extremely small (the Wikinews).

Both two corpora contain a lot of technical
terms. Moreover, some technical terms are domain-
specific and do not exist in general dictionaries.
Therefore, we focus on domain adaptation for trans-
lations of both IT and Wikinews domains.

In this paper, we describe our simple approach
involving Transformer pre-training and fine-tuning.
We first collected and cleaned rich sentence pairs
from public dataset. Following Berling Lab (Park
and Lee, 2021), for both NICT-SAP IT domain
and ALT domain tasks we first collected public
dataset from OPUS (Tiedemann, 2012) such as
but not limited to GNOME, KDE4 and Ubuntu.
Then we chose G-Transformer (Bao et al., 2021)
as our model and pre-train the baseline with these
datasets. Finally, as fine-tuning on domain-specific
dataset greatly boosts translation performance in
WMT evaluation (Barrault et al., 2020; Akhbardeh
et al., 2021), we fine-tuned the pre-trained models
on corresponding dev set officially provided for

1https://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2022/index.html
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high performance for all sub-tasks. Our method ob-
tained the new state-of-the-art results on IT-domain
tasks. We ranked first place on all NICT-SAP IT
domain tasks, especially achieving 10.74 improve-
ment for English to Malay. On ALT domain tasks,
we ranked first in one out of eight sub-tasks.

2 Task Description

2.1 NICT-SAP Shared Task
The NICT-SAP shared task is to translate texts be-
tween English and other five languages, that is,
Hindi (Hi), Thai (Th), Malay (Ms), Indonesian (Id),
and Vietnamese (Vi) in extremely low-resource
conditions. The task contains two domains: IT
domain and ALT domain.

The data in the Asian Language Translation
(ALT) domain (Thu et al., 2016) consists of trans-
lations obtained from WikiNews which is a multi-
lingual parallel corpus. The training, development,
and test sets are provided by the WAT organizers.
We filter translations that are longer than 512 to-
kens, resulting in fewer than 20K training sentences
in all languages.

The data in the IT domain consist of translations
of software documents. However, there is no clean
corpus from the IT domain for training. Different
from ALT domain, the WAT organizers only pro-
vide the development and test sets (Buschbeck and
Exel, 2020). In this case, we collected and cleaned
parallel corpora available through OPUS for train-
ing, where the domain is not fully identical with
the domains of the provided dev/test sets.

The dataset sizes of two given corpora are shown
in Table 1.

2.2 Evaluation Metric
We report the performance in BLEU (Papineni
et al., 2002) and RIBES (Isozaki et al., 2010),
which are official evaluation metrics.

3 Our Approaches

For our submissions we focus on training G-
Transformer (Bao et al., 2021) on OPUS dataset
from scratch and fine-tuning on dev sets. G-
Transformer is developed on FairSeq (Ott et al.,
2019) for document-level translation, and also sup-
ports Transformer-based sentence-level translation.

3.1 Data crawling and preprocessing
For all tasks, we pre-trained the sentence-level
Transformer models on web-crawled dataset as

baselines. Since the WAT organizers do not pro-
vide the training dataset for IT domain, we col-
lect it from public dataset including GNOME,
KDE4, Ubuntu,Tateoba, Tanzil, QED (Abdelali
et al., 2014), tico-19, OpenSubtitles, ELRC. We
download all the dataset from OPUS site and filter
translations that are longer than 512 tokens. Table 2
shows the statistics of the data obtained from the
site. Note that, the data obtained from GNOME,
KDE4 and Ubuntu are all in the IT domain, while
others are not.

3.2 Model configuration

For the NMT system, we use G-Transformer (Bao
et al., 2021) to train Transformer (Vaswani et al.,
2017) architecture models. We use Transformer-
base as our basic model setting, which has 6 layers
in both the encoder and decoder, respectively. For
each layer, it consists of a multi-head attention sub-
layer with 8 heads. We set the max sequence length
as 512 for both source and target sides. We use
an effective batch size of 8192 tokens. We chose
Adam (Kingma and Ba, 2015) as our optimizer,
with parameters settings β1 = 0.9, β2 = 0.98, and
warm-up steps 4000. The learning rate is set to be
5e−4 for NMT pre-training and domain fine-tuning.
We set the data type to the floating point 16 for
fast computation. Following Berling Lab (Park and
Lee, 2021), we change the hidden layer size from
512 to 1024 and the feed forward networks from
2048 to 4096 for better performances. In both pre-
training and fine-tuning, we save the checkpoints
every epoch and set the early-stop patience as 10
by evaluating the loss on the dev set. Each model
was trained on 2 V100 (32GB).

In preprocessing, we use Google sentence-
piece library2 to train separate SentencePiece mod-
els (Kudo, 2018) for each source-side and target-
side language. Then following Berling Lab (Park
and Lee, 2021), we set vocabulary size to 8,000 for
English, Malaysian and Vietnamese and to 16,000
for Hindi, Indonesian and Thai. We set a character
coverage to 0.995. Specifically, we only use IT do-
main datasets (Ubuntu, GNOME, KDE4) to train
SentencePiece models.

2https://github.com/google/
sentencepiece
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Domain Set En-Hi En-Th En-Ms En-Id En-Vi

ALT
Train 18,088 18,088 18,088 18,087 18,088
Test 1,018 1,018 1,018 1,018 1,018
Dev 1,000 1,000 1,000 1,000 1,000

IT
Train - - - - -
Test 2,073 2,050 2,050 2,037 2,000
Dev 2,016 2,048 2,050 2,023 2,003

Table 1: Data sizes (number of sentence pairs) for the NICT-SAP domain task provided officially after filtering.

Pair GNOME KDE4 Ubuntu ELRC TANZIL Opensubtitles tico-19 QED Tatoeba
En-Hi 145,706 97,227 11,309 245 187,080 93,016 3,071 11,314 10,900
En-Th 78 70,634 3,785 236 93,540 3,281,533 - 264,677 1,162
En-Ms 299,601 87,122 120,016 1,697 122,483 1,928,345 3,071 79,697 -
En-Id 47,234 14,782 96,456 2,679 393,552 926,8181 3,071 274,581 9,967
En-Vi 149 42,782 5,056 4,273 - 3,505,276 - 338,024 5,693

Table 2: Statistics (number of sentence pairs) of parallel corpora from OPUS. The data from GNOME, KDE4,
Ubuntu are IT domain.

Tasks Pre-training Fine-tuning
En→Hi 13.05 41.85
Hi→En 14.79 40.42
En→Th 15.81 40.44
Th→En 7.92 31.95
En→Ms 31.35 56.75
Ms→En 27.97 45.65
En→Id 42.77 59.36
Id→En 37.02 58.20
En→Vi 13.09 10.68
Vi→En 25.40 50.90

Table 3: BLEU’s comparison of pre-training and fine-
tuning in IT domain tasks.

4 Result

4.1 Pre-training and Fine-tuning

We pre-train the Transformer with the clean data
shown in Table 2. Then we fine-tune on corre-
sponding dev set for each sub-task. Table 3 shows
the comparison of their performances in IT domain.
Note that the BLEU scores are obtained by the
Mosesdecoder3 scripts rather than official results
because the official would evaluate Thai language
using character level BLEU. Except En→Vi, do-
main fine-tuning could get better performance.

3https://github.com/moses-smt/
mosesdecoder

4.2 NICT-SAP IT Domain Translation Task

We submitted the fine-tuned models which show
the best performance. Table 4 shows the overall
results on NICT-SAP IT domain. For multilingual
translation, it is popular to fine-tune mBART (Liu
et al., 2020) which is pre-trained on large-scale
monolingual corpora in many languages. However,
we simply pre-trained the models from scratch and
used relatively small corpus from OPUS. Domain
fine-tuning makes a huge improvement in perfor-
mance and we rank first in all sub-tasks in IT do-
main, as shown in Table 4. After submitting the
translations, we noticed that the improvement was
partially due to the overlaps between the dev set
and test set.

Tasks BLEU RIBES Rank
En→Hi 41.70 0.74 1
Hi→En 40.20 0.73 1
En→Th 70.10 0.89 1
Th→En 31.80 0.71 1
En→Ms 56.70 0.88 1
Ms→En 45.50 0.82 1
En→Id 58.80 0.78 1
Id→En 57.20 0.78 1
En→Vi 32.70 0.68 1
Vi→En 61.50 0.84 1

Table 4: Official BLEU/RIBES scores for NICT-SAP
IT domain tasks on leader-board. The rank is sorted by
BLEU score.
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Tasks BLEU RIBES Rank
En→Hi 20.30 0.74 7
Hi→En 21.30 0.76 3
En→Th 49.70 0.79 3
Th→En 16.10 0.75 3
En→Ms 43.10 0.91 3
Ms→En 38.90 0.89 3
En→Id 42.40 0.91 1
Id→En 40.00 0.89 3

Table 5: Official BLEU/RIBES scores for NICT-SAP
ALT domain tasks on leader-board. The rank is sorted
by BLEU score.

4.3 NICT-SAP ALT Domain Translation Task

Table 5 shows official results on NICT-SAP ALT
domain. We fine-tune the pre-trained models
showed in Table 3 on corresponding dev set. Al-
though the models are not pre-trained with in-
domain corpus, the performances are better than
other Transformer-base models. However, there
is still a gap between our models and other mod-
els which are fine-tuned from mBART (Liu et al.,
2020).

4.4 Fine-tuning on Document-Level Dataset

As G-Transformer (Bao et al., 2021) is designed for
document-level translation, finally we try to fine-
tune the pre-trained models on the dev sets at the
document-level through G-Transformer. However,
fine-tuning the document-level translation model
on dev sets does not achieve good performance.
For example, the dev set for En↔Ms contains 210
documents. And the performance changes from
31.35 to 29.14 in BLEU and 29.97 to 33.42 on
the two tasks, respectively, when moving from
sentence-level fine-tuning to document-level fine-
tuning. Therefore, the document-level fine-tuning
is less effective than the sentence-level fine-tuning.
We attribute it to two reasons. First, the number of
document in dev sets is too small to properly train
the new added document-level parameters. Second,
with small fine-tuning set, the model is not well
adopted to accept long sequences as inputs.

5 Conclusion

In this paper, we have described our translation
models to the NICT-SAP translation tasks on NICT-
SAP track. We first pre-train our models from
scratch on the datasets from OPUS. Then we fine-
tune the models on corresponding dev sets. Experi-

mental results have shown that our model ranked
firsts place for NICT-SAP IT domain tasks and
achieved good performance for NICT-SAP ALT
domain tasks.

References
Ahmed Abdelali, Francisco Guzman, Hassan Sajjad,

and Stephan Vogel. 2014. The amara corpus: Build-
ing parallel language resources for the educational
domain. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation,
pages 1044–1054. European Language Resources
Association.

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
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Abstract

We present our submission to the structured
document translation task organized by WAT
2022. In structured document translation, the
key challenge is the handling of inline tags,
which annotate text. Specifically, the text that
is annotated by tags, should be translated in
such a way that in the translation should con-
tain the tags annotating the translation. This
challenge is further compounded by the lack
of training data containing sentence pairs with
inline XML tag annotated content. However, to
our surprise, we find that existing multilingual
NMT systems are able to handle the translation
of text annotated with XML tags without any
explicit training on data containing said tags.
Specifically, massively multilingual translation
models like M2M-100 perform well despite
not being explicitly trained to handle structured
content. This direct translation approach is of-
ten either as good as if not better than the tra-
ditional approach of “remove tag, translate and
re-inject tag” also known as the “detag-and-
project” approach.

1 Introduction

Neural machine translation (Bahdanau et al., 2015)
using transformers (Vaswani et al., 2017) is gradu-
ally beginning to reach a saturation point in terms
of translation quality for major languages like En-
glish, French, Japanese, Chinese (Fan et al., 2021).
Most existing work focus on the translation of
plain text, where the sentence is translated individ-
ually or by considering its context via a document
level translation approach (Miculicich et al., 2018).
However, this does not directly address an impor-
tant real life application: “web page translation”.
Web pages are structured documents containing
formatted or annotated text, where the annotation
is done via inline tags or XML tags. When translat-
ing web pages, care must be taken to translate not
only the text but also the XML tags. For example,
This is a <b>sentence</b>. is an example of a

sentence in a structured document. Its translation
in Spanish should be: Esta es una <b>frase</b>.
where the <b> and </b> tags appropriately en-
close the translation of the word sentence which is
frase. The structured document translation task1 in
WAT 2022 aims at evaluating approaches for the
translation of text with XML tags or inline tags.
For a detailed overview of the task, kindly refer to
the overview paper (Nakazawa et al., 2022).

Since NMT models are sensitive to what they
are trained on, it is natural to assume that they
should be exposed to examples of how to handle
XML tags. Unfortunately, there is a scarcity of
training data containing XML tags to train NMT
models to handle structured content. Hashimoto
et al. (2019) provide training data for 7 languages,
but this is not possible for all languages. Therefore,
the most viable solution would be the “remove tag,
translate and re-inject tag” approach also known
as the detag-and-project approach (Zenkel et al.,
2021) shortened to DnP. The main problem with
DnP is that it needs high quality word alignments
and heuristic algorithms when reinserting the tags
into the translation. Therefore, poor translations,
poor alignments and heuristics lead to compound-
ing errors which can negatively affect the injection
process leading to poor transfer of structure.

In WAT 2022, we participated under the team
name “NICT-5” where we applied the DnP ap-
proach to the structured document translation task
for English to Japanese/Chinese/Korean as well
as Japanese/Chinese/Korean to English translation.
Given the large availability of pre-trained trans-
lation models, we decided to use the M2M-100
model. In order to compare against the DnP ap-
proach, we translated sentences containing XML
tags using this model and to our surprise, this ap-
proach was able to outperform the DnP approach
in some instances. Our analyses reveal that the

1https://lotus.kuee.kyoto-u.ac.jp/WAT/
NICT-SAP-Task/index.2022.struc.html
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DnP approach is better at transferring the XML
tag structure but gives poor automatic evaluation
scores in some cases as it fails to handle cases such
as non-closing tags and the tag injection for words
and phrases for which word alignment fails.

2 Related Work

Hashimoto et al. (2019) present a dataset from the
IT domain, same as the domain of the evaluation set
used in the task, that features XML markup, and
corresponding results using a constrained beam
search approach for decoding. They create and use
training data with XML tags but we do not and
instead opt to use direct translation and the detag-
and-project (DnP) approaches Hanneman and Dinu
(2020). The methods for tag transfer in Zenkel
et al. (2021) are relevant, although their focus is
on inserting tags into a fixed human translation.
Although the task evaluation sets contain complete
documents which can allow for context-sensitive
translation, such as in Miculicich et al. (2018), and
in-context evaluation (Läubli et al., 2018, amongst
others), we do not focus on these aspects in our
submission.

In terms of methods, according to our knowl-
edge, we are the first to report results on tag transfer
using a massively multilingual translation model
like M2M-100 (Tang et al., 2021; Fan et al., 2021)
which surprisingly lead to reasonable automatic
evaluation scores. We also submit results for the
DnP approach, but find that it does not always
outperform the direct translation approach. For
evaluation, WAT uses the XML-BLEU metric in
accordance with Hashimoto et al. (2019) but we
additionally report on the XML tag structure ac-
curacy to better understand the limitations of the
approaches we used.

3 Approaches

We use the direct translation (DiT) and the detag-
and-project (DnP) approaches for our submissions.

a. Direct translation: In this approach, we
directly translate the sentences with XML content
in them.

b. Detag-and-project: In this approach, we use
the following steps:

1. Remove the XML tags from the sentence and
make a list of words and phrases which are
wrapped with XML tags. In case of non-
closing tags, we do not handle them.

2. Translate the plain sentences.

3. Use a word aligner to align the words between
the plain sentence and its translation.

4. For each sentence, for each word or phrase
obtained in step 1, get its aligned target word
and phrase and wrap it with the applicable tag.

Note that the following considerations are to be
made:

• For translation, the NMT model’s tokenizer
can handle subword segmentation.

• For word alignment, tokenizers should be
used for unsegmented languages prior to align-
ment.

• To infer phrase alignment, we use the inside-
outside algorithm from Zenkel et al. (2021)
who also used an alternative approach called
the min-max algorithm, but we do not use it
in our submissions as we found the former to
be slightly better.

• When translating content wrapped hierarchi-
cally in XML tags, the innermost tags are dealt
with first.

4 Experiments

4.1 Dataset
We only use the official development and test sets
(located here) provided by the organizers. We fo-
cus on translation to and from English and Japane-
se/Korean/Chinese. We do not consider traditional
Chinese due to lack of reliable models and word
aligners.

4.2 Implementation
We implement the inside-outside approach in
Python along with other pre-processing scripts. For
word alignment we use awesome-align (Dou and
Neubig, 2021).2 as we do not have reliable train-
ing data for word alignment. awesome-align uses
mBERT3 and is known to work well even with-
out using fine-tuning to improve alignment quality.
For tokenization prior to word alignment, we use
mecab for Japanese4 and Korean5 and Stanford

2https://github.com/neulab/
awesome-align

3https://github.com/google-research/
bert/blob/master/multilingual.md

4https://taku910.github.io/mecab/
5https://github.com/SamuraiT/

mecab-python3
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XML-BLEU
Approach en→ja ja→en en→ko ko→en en→zh zh→en

DnP 36.84 25.02 22.81 23.80 32.34 28.50
DiT 36.40 18.76 28.99 24.35 32.38 29.06

Organizer 40.27 28.20 21.87 10.80 28.03 29.14
XML structure transfer accuracy (%)

Approach en→ja ja→en en→ko ko→en en→zh zh→en
DnP 84.38 85.35 86.93 80.24 85.40 84.16
DiT 81.66 23.51 82.34 77.85 83.53 81.26

Table 1: XML-BLEU and XML structure transfer accuracy scores for our submissions and the organizer submission.
Best scores are in bold.

segmenter for Chinese6.

4.3 Models Used
We use the M2M-100 (or M2M) 1.2 billion pa-
rameter model7 (Fan et al., 2021) which supports
100 languages. To our knowledge, M2M was not
trained to handle XML tags in sentences. We use
beam search with beam size 4 and length penalty
of 1.0.

4.4 Evaluation
WAT uses the XML-BLEU metric proposed by
Hashimoto et al. (2019) using a modified version8

of the publicly available repository. The modifica-
tion was done to handle the XML tags specific to
the evaluation sets. We use this modified code for
our analyses as well. Specifically, we calculate the
XML structure transfer accuracy, which indicates
the number of sentences whose XML structures
have been transferred into the translation. This only
concerns the structure and not the content wrapped
in the XML tags. There are 590 sentences in the
test set with XML tags in them and the accuracy
indicates the percentage of sentences with proper
structure transfer.

5 Results

We present in Table 1 the XML-BLEU scores and
the XML structure transfer accuracy for our sub-
missions. In the last row, we give the organizer
scores. According to their description, they seem to
use am mBART model for direct translation (DiT).
The results show that except for Japanese↔English

6https://nlp.stanford.edu/software/
stanford-segmenter-4.2.0.zip

7https://huggingface.co/facebook/
m2m100_1.2B

8https://github.com/prajdabre/
localization-xml-mt

translation and Chinese→English translation, our
submissions are better than the organizer’s submis-
sions. The organizer scores for Japanese↔English
translation are vastly better than ours for this di-
rection, and this may be due to the ability of
the mBART model they used to translate to/from
Japanese better than M2M-100. Indeed, for
Chinese→English translation, the gap between our
best and organizers is 0.08 XML-BLEU which is
negligible. For the remaining directions, our sub-
missions are substantially better by at least 4.35
XML-BLEU.

Comparing the DnP and DiT rows for our
submissions, it can be seen that except for
Japanese↔English translation, DiT is slightly if
not substantially better than DnP. This is quite sur-
prising since the M2M model was never explicitly
trained to handle XML tags. It is possible that the
model treats the tags as rare or unknown English
tokens which are usually copied as is in Japanese,
Chinese and Korean translation. We leave this in-
vestigation for the future.

With regard to the XML structure transfer accu-
racy, it is interesting that although the XML-BLEU
is higher for DnP, the structure transfer accuracy is
lower. Upon some manual investigation we found
the following:

• DnP is good at transferring structure but is
bad at transferring it in the right place. This is
due to the difficulty in aligning phrases which
is affected by language divergence and word
alignment quality. Using a high quality word
aligner should help resolve this partially.

• Whenever DnP is unable to align words or
phrases, the entire example wont count to-
wards the structure match accuracy. This hap-
pens in case of non-closing tags which we do
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not transfer as they do not wrap any word or
phrase making it hard, if not impossible, to
determine its position in the translation. How-
ever, this problem does not occur for DiP.

• DiP often hallucinates tags or discards them.
Since our NMT model was not explicitly
trained to handle tags, this makes sense. Some
constrained decoding would be helpful here.

Overall, the DnP approach needs a lot of invest-
ment but the returns are not equivalent. Future work
should focus more on the DiT approach which is
end-to-end and hence more attractive.

6 Conclusion

In this paper, we describe our submissions as team
“NICT-5” to the structured document translation
task in WAT 2022. We used the direct translation
and the detag-and-project approaches and to our
surprise found that the direct translation approach
outperforms detag-and-project approach slightly or
substantially depending on the language pair. Our
analyses reveal that the former approach has poorer
tag structure transfer accuracy, but still is better
than the latter approach, due to (a.) the latter’s
inability to handle the transfer of tags for content
that can’t be aligned with its translation and (b.)
the latter’s sensitivity to poor alignment. Rather
than working to improve the detag-and-project ap-
proach, we plan to focus more on the direct trans-
lation approach with constrained generation and
some additional training to handle structured con-
tent more effectively.
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Abstract

This paper introduces our neural machine trans-
lation system’s participation in the WAT 2022
shared translation task (team ID: sakura). We
participated in the Parallel Data Filtering Task.
Our approach based on Feature Decay Algo-
rithms achieved +1.4 and +2.4 BLEU points
for English→Japanese and Japanese→English
respectively compared to the model trained on
the full dataset, showing the effectiveness of
FDA on in-domain data selection.

1 Introduction

This paper introduces our neural machine transla-
tion (NMT) systems’ participation in the 9th Work-
shop on Asian Translation (WAT-2022) shared
translation tasks (Nakazawa et al., 2022). We par-
ticipated in the Parallel Corpus Filtering Task1 and
our team id is sakura.

The task consists of domain specific data selec-
tion out of noisy parallel corpus mined from the
web. The goal is to build English→Japanese and
Japanese→English models with better performance
on scientific domain. The constraint is to select the
data from JParaCrawl v3.0 (Morishita et al., 2020).
Only a subset of the data should be extracted and
no other actions, such as transformation or aug-
mentation, are allowed. The models built with
this data are evaluated using the test set from AS-
PEC (Nakazawa et al., 2016), a scientific domain
parallel corpus.

In our submissions, we used two independent
techniques viz. feature decay algorithms (Biçici
and Yuret, 2011; Biçici, 2013; Biçici and Yuret,
2015) (FDA) and log-likelihood scores. FDA based
submission achieved +1.4 and +2.4 BLEU for
English→Japanese and Japanese→English respec-
tively. Log-likelihood based submission achieved
+0.5 BLEU for Japanese→English direction only.

1https://sites.google.com/view/wat-fi
ltering/

Our submission related scripts can be accessed
through following public repository. 2

2 Data Selection

In this section we detail our approach to select
domain specific sentences. Our approach aimed to
extract the sentences from JParaCrawl (Morishita
et al., 2020) that were in-domain, based on the train
set of ASPEC (Nakazawa et al., 2016).

2.1 Feature Decay Algorithms
FDA is an n-gram based data selection technique.
It has shown a better performance when compared
to other word-based data selection methods (Silva
et al., 2018).The selection is based on n-grams, and
has demonstrated good performance when used to
train NMT models (Poncelas et al., 2018, 2019).

The strength of this technique is that it aims to
find a balance between the number of n-grams that
are present in the in-domain data and the hetero-
geneity of the n-grams. This is achieved by consid-
ering not only the relevance of each n-gram in the
domain but also how frequently it has been selected
already.

The technique iteratively selects the sentence s
(from a set of candidates, initially being the full
JParaCrawl set) with the highest score according to
the Equation (1):

score(s, SASPEC , Ssel) =∑
ngr∈{s⋂SASPEC} 0.5

count(ngr,Ssel)

len(s)

(1)

and adding it to a set of selected sentences Ssel.
The in-domain n-grams of s are obtained by

finding {s⋂SASPEC} (i.e. the intersection with
the in-domain set SASPEC). Each n-gram has a
contribution towards the score inversely propor-
tional to the number of instances in the selected set

2https://github.com/sukuya/wat2022-pa
rallel-data-filtering
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Ssel. By default, this is conducted by computing
0.5count(ngr,Ssel). In our system, we decided to fol-
low this configuration although it is not necessarily
the optimal (Poncelas et al., 2017; Poncelas, 2019).
We leave for future work exploring different con-
figurations and finding a better selection criterion.

The selection was executed considering the n-
grams of order up to 3 on the English side only.
Configurations where the selection is based on
both source and target sides have been reported to
achieve good results (Poncelas et al., 2022). How-
ever, on the Japanese side, it is unclear what should
be considered as n-gram (e.g. character-wise or
token-wise) to achieve the best performance.

Another important question is the number of sen-
tences that should be selected. For our system, we
selected 5M sentences. This decision is based on
the scores of FDA presented in Figure 1. In the plot,
there is a relatively sharp decrease in FDA scores
after 10M. From top 10M sentences we selected
5M based purely on empirical observations by car-
rying out experiments using 1M, 3M, 5M and 7M
sentences and ASPEC Dev set performance (see
Figure 2). We were mainly focused on minimising
the number of selected sentences without compro-
mising on model performance in terms of BLEU.

2.2 Normalised Log Probability Scores

Our second submission for the task involves using
the normalised log-probability scores, inspired by
dual conditional cross entropy filtering (Junczys-
Dowmunt, 2018). We train two separate models on
ASPEC Train, one for each direction. We calcu-
late normalised (by number of output tokens) log-
probability scores using marian-scorer (Junczys-
Dowmunt et al., 2018) for entire JParaCrawl using
these models. We calculate the final score for a par-
allel sentence by summing these two log-likelihood
scores. Finally, we sort the sentences based on fi-
nal scores and take the top 5M (4.634M unique)
sentences for our submission.

3 Model

We trained both English→Japanese and
Japanese→English models. We follow the
details from the organizers3 and build trans-
former (Vaswani et al., 2017) models using
Fairseq (Ott et al., 2019) framework. The
sentences were tokenized with a SentencePiece

3https://github.com/MorinoseiMorizo/w
at2022-filtering

Dataset Size
JParaCrawl 25.7M
ASPEC Train 3M
ASPEC Dev 1.8K
ASPEC Devtest 1.8K
ASPEC Test 1.8K

Table 1: Size (number of lines) of the datasets.

Submission BLEU Adequacy
Dev Test Test

FDA(5M) 28.8 28.4 4.31
Baseline(26M) 27.4 27.0 4.18
Marian-Score(5M) 26.7 26.1 xx

Table 2: Results: English to Japanese.

model (Kudo and Richardson, 2018) based on
BPE method with 32000 operations. We use train
and dev test from ASPEC only. The size of the
different datasets are reported in Table 1.

4 Results

In Table 2 and 3, we show the evaluation scores for
our submissions based on BLEU metric (Papineni
et al., 2002) and human evaluation (on 200 sen-
tences selected by organizers) from ASPEC Corpus
(official results). Our FDA based system is submit-
ted for official human evaluation and is labeled as
sakura-fda in the figures.

Figure 3 and 4 shows the detailed breakdown
of adequacy scores from the organisers. No other
team participated in the task, so top system sum-
mary is detailed in the Table 2 and 3.

We see that our best submission achieved +1.4
BLEU improvement over the system trained with
the full JParaCrawl set (the baseline) in the
English→Japanese direction and +2.4 points for
Japanese→English. This is achieved by selecting
5M sentences, approximately 20% of the data. The
second submission based on sum of normalised
log-likelihood scores shows minor improvement
of +0.5 BLEU on Japanese→English direction but

Submission BLEU Adequacy
Dev Test Test

FDA(5M) 21.3 21.8 4.49
Marian-Score(5M) 19.5 19.9 xx
Baseline(26M) 20.6 19.4 4.35

Table 3: Results: Japanese to English.
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Figure 1: FDA scores of the top-20M sentences (in log scale).

Figure 2: Evaluation of the NMT model (on dev
set) built using different amount of sentences selected
using FDA. The plot shows the BLEU scores for
English→Japanese (blue line) and Japanese→English
(dotted red line) models.

Figure 3: Adequacy evaluation results for English →
Japanese.

Figure 4: Adequacy evaluation results for Japanese →
English.

underperforms in other direction as well as dev test.

5 Conclusion

We presented our submissions (team ID: sakura)
to the WAT 2022 Parallel Data Filtering Task in
this paper. We described our data selection system
based on FDA and log-probability scores. FDA
based filtering showed effectiveness in finding a
subset of parallel sentences that were more useful
to train a scientific-domain NMT model than using
all the sentences. Our system was trained just on a
20% of the data and achieved +1.4 BLEU improve-
ment over the baseline in the English→Japanese
direction and +2.4 for Japanese→English.

As a future work, we want to use FDA in combi-
nation with the normalised log-probability scores.
The work of Soto et al. (2020) demonstrated that
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the inclusion metrics such as lexical richness can
boost the performance of FDA. More generally, we
plan to explore how can we improve a scientific
domain NMT model, by using limited amount of
ASPEC data along with JParacrawl. The motiva-
tion is to gauge the efficacy of FDA based approach
in data selection where very less in-domain data
is available along with lot of noisy mixed domain
data.
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Abstract

Multilingual Neural Machine Translation
(MNMT) exhibits incredible performance with
the development of a single translation model
for many languages. Previous studies on mul-
tilingual translation reveal that multilingual
training is effective for languages with lim-
ited corpus. This paper presents our submis-
sion (Team Id: NITR) in the WAT 2022 for
"MultiIndicMT shared task" where the objec-
tive of the task is the translation between 5 In-
dic languages(which are newly added in WAT
2022 corpus) into English and vice versa using
the corpus provided by the organizer of WAT.
Our system is based on a transformer-based
NMT using fairseq modelling toolkit with en-
semble techniques. Heuristic pre-processing
approaches are carried out before keeping the
model under training. Our multilingual NMT
systems are trained with shared encoder and
decoder parameters followed by assigning lan-
guage embeddings to each token in both en-
coder and decoder. Our final multilingual sys-
tem was examined by using BLEU and RIBES
metric scores.

1 Introduction

This paper illustrates the submission of the Multi-
IndicMT shared task at the 9th Workshop on Asian
Translation (WAT 2022)(Nakazawa et al., 2022) by
NIT Rourkela (Team Id: NITR). Building Machine
Translation (MT) model for 5 Indic languages ( As-
samese(as), Sindhi(sd), Sinhala(si), Urdu(ur) and
Nepali (ne)) to English and vice versa is the main
goal of this shared task wherein NITR has taken
part. These languages are newly added in WAT
2022 corpus. The method that is most often used
in machine translation is neural machine transla-
tion (Vaswani et al., 2017), (Bahdanau et al., 2014).
Language pairs with fewer parallel corpora are of-
ten subject to have poor NMT performance. This
happens because of a lack of translation expertise
as well as overfitting, which is unavoidable in a

low-resource environment. Since many Indian lan-
guages suffer from limited resources on an individ-
ual basis, creating high-quality machine translation
systems for Indian languages continues to be a dif-
ficult task. However, numerous methods, including
back translation (Sennrich et al., 2015), transfer
learning (Zoph et al., 2016), etc., are developed
to enhance the quality of low resource language
translations. Additionally, training is needed for
the model in each translation direction using con-
ventional methods. So, in order to enhance the per-
formance of language pairs with low resources, it is
standard procedure to develop Multilingual Neural
Machine Translation(MNMT) models by sharing
parameters with languages having high resources
(Firat et al., 2016), (Johnson et al., 2017), (He et al.,
2016). Hence, in this regard, the shared task for
WAT 2022 MultiIndicMT’s goal is to verify the use-
fulness of MT methods for Indian languages. We
have provided two MNMT models: a) one for In-
dic to English and the other for b) English to Indic.
NITR MT System is trained on two MNMT models
(Many to One and One to Many) based on Trans-
former Architecture using WAT 2022 MulitIndic
Corpus. Our MNMT systems are based on (John-
son et al., 2017)’s method, wherein a language-
specific token is appended to the input phrase in
both one-to-many and many-to-many models to
identify the target language to which the model
needs to convert. Our training corpus are cleaned
up thoroughly by using a set of heuristics tech-
niques because the transformer model is sensitive
to training noise (Liu et al., 2018). Finally, the
result are presented in terms of Bilingual Evalua-
tion Understudy (BLEU)(Papineni et al., 2002) and
Rank-based Intuitive Bilingual Evaluation Score
(RIBES)(Isozaki et al., 2010). In this paper, Sec-
tion 2 describes the related work which is followed
by the the detail description of data set in Section 3.
The experimental methodology being explained in
Section 4. The findings with results are discussed

73



in Section 5, and the paper concludes in Section 6.

2 Related Work

NMT framework can naturally include numerous
languages, despite the fact that the early study
on NMT focused on developing translation sys-
tems between two languages. As a result, research
work on MT systems, that involves more than two
languages, keeps on increasing significantly. Re-
cently, a lot of attention is paid to multilingual
neural machine translation since it allows one sin-
gle model to translate between different languages.
A many-to-many paradigm for multi-way trans-
lation employing shared attention and language-
specific encoders and decoders is presented by (Pan
et al., 2021). While transfer learning occurs im-
plicitly in multilingualism, more explicit use of
fine-tuning is an approach to accomplish the same
(Zoph et al., 2016). Transliteration across scripts of
related languages, as discussed in (Haddow et al.,
2018) (Goyal and Sharma, 2019), may enhance
the quality of multilingual models. Likewise, dif-
ferent methods that can be utilized to implement
MNMT systems are summarised by (Dabre et al.,
2020). (Sun et al., 2020) employs a fixed cross-
lingual embedding, a single shared encoder, and
language-specific decoders. By permitting positive
transfer from the high resource languages, multi-
ple studies on Multilingual NMT emphasizes the
benefits for language pairings with low resources,
enhancing the quality of the low resource ones.
In terms of the BLEU score, multilingual unsu-
pervised model tends to fare better than the bilin-
gual unsupervised baselines. Building on earlier
research by (Siddhant et al., 2022), (Bapna et al.,
2022) efforts are made to combine multilingual su-
pervised MT, zero-resource MT (Firat et al., 2016),
and self-supervised learning into a single model for
1000 languages. In the next section, we give detail
about the dataset which we have used.

3 Dataset

We used the dataset given by the organisers for gen-
erating the parallel corpus for Assamese, Nepali,
Sindhi, Sinhala and Urdu language. The organizer
have shared the MultiIndicMT WAT 2022 corpora,
which is made up of roughly 15 million parallel
sentences for 15 language pairs. From that corpus,
we have used the OPUS corpus (Tiedemann, 2012)
for the language pairs of Assamese, Nepali, Sindhi,
Urdu, Sinhala and English. No additional data is

used from any other sources. Table 1 shows the
data statistics of parallel corpus provided by WAT
2022 organizers. Urdu is having the largest num-
ber of sentences whereas Assamese and Nepali are
relatively low in corpus size.

Table 1: Parallel corpora statistics

EN to Indic Sentences
en-as 140000
en-ne 700000
en-ur 6100000
en-sd 1700000
en-si 3300000

4 Methodology

In this section, we give details about the system
those are submitted to the WAT2022 for Multi-
IndicMT Shared Task (Nakazawa et al., 2022).
We present findings for two categories of mod-
els: a) Many-En: Multilingual many-to-one system
trained with all parallel data of five language pairs
that are provided in WAT 2022, and b) En-Many:
Multilingual many-to-one system trained with par-
allel data using the same corpus but in opposite
direction. In this method, a shared encoder-decoder
transformer architecture is employed to train our
multilingual models.

4.1 Data Preprocessing

MultiIndicMT WAT 2022 corpora contains noisy
sentences in many languages. So, filtering and
pre-processing are carefully done to remove those.
According to earlier research (Junczys-Dowmunt,
2018), a strict data filtering strategy is essential to
keep quality of data. Out of many pre-processing
techniques used by us, some of them are mentioned
as inspired by (Li et al., 2019).

• Remove the sentence pair if either the source
or the target sentence contains words longer
than 35.

• If the source sentence has at least 10 charac-
ters in a different language, remove the sen-
tence pair.

• Remove the sentence pair if the source sen-
tence contains at least 60 % characters from a
different language (UTF-8 ranges are utilised
for this purpose).
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• Remove sentences in which the language on
the source and target sides is the same.

• Remove any sentences that have redundant
translations or HTML elements.

Table 2: Filtered Parallel corpora statistics

EN to Indic Filtered Filtered Sentences
en-as 3.60% 134960
en-ne 5.80% 659400
en-ur 13.74% 5261860
en-sd 7.62% 1570460
en-si 11.65% 2915550

With implementation of the above techniques,
We filtered the bilingual corpus accounting to ap-
proximate 8.48% sentence being filtered from the
complete corpus as shown in Table 2. Then, we
tokenize data for both Indian languages and En-
glish using the IndicNLP library and the Moses
Tokenizer (Koehn et al., 2007) respectively.

4.2 Tokenization

Indic Languages do not share many terms at the
non-root level despite having many cognates. Uti-
lizing Indian languages at the sub-word level,
which assures greater vocabulary overlap, is there-
fore the more effective strategy. As a result, we
have used the widely accepted method of byte pair
encoding (BPE) to break down each word into
its sub-word parts (Sennrich et al., 2015). BPE
units, which come in a variety of lengths, offer the
proper context for translation systems involving
related languages. Data sparsity is not an issue
because their vocabularies are significantly smaller
than those of the morpheme and word-level mod-
els. Learning BPE merging rules helps in a situ-
ation where numerous languages are involved. It
not only helps in identifying common sub-words
among them, but also ensures that each language
pair is segmented properly.

5 Experimental Setup

This section describes the complete pipeline used
to produce the translation systems for the WAT
MultiIndic shared task submission.

5.1 Finetuning and Training

A multilingual model makes it possible to translate
between several languages using a common word

piece vocabulary. This is much easier than training
separate models for each language pair. The Trans-
former(Vaswani et al., 2017) model (with 6 layers
of encoder and decoder, 8 heads, 512 embedding
size, and 2048 feed-forward size for each of them)
is applied to implement our work. NITR MT Sys-
tem was trained on NVIDIA Quadro RTX 5000 ma-
chine having one GPU card. Further, for the imple-
mentation of the multilingual system, the advantage
of Fairseq (Ott et al., 2019) library is considered.
The method adopted by us is put forth by (Johnson
et al., 2017) towards provisioning of a "language-
specific token" driven technique that shares the
attention mechanism and a single encoder-decoder
network to create multilingual models. The input
sequence includes a language token to indicate the
direction of translation. Given this input, the de-
coder learns to produce the goal. This method,
which is proven to be easy and efficient, compels
the model to generalize across linguistic boundaries
during training. To optimize model parameters, we
have employed the Adam optimizer (Kingma and
Ba, 2015).
Irrespective of time and resource constraints in or-
der to experiment with several models, the last five
checkpoints (360000–400000 iterations) are com-
bined. Based on the correctness of the validation
set, all our models are trained with early stopping
criteria. After reassembling translated BPE seg-
ments during testing, the sentences translated are
reverted to the previous language scripts. Lastly,
the precision of our translation models is evaluated
through BLEU and RIBES.

6 Results

The quality of our translation files are evaluated by
the organisers using BLEU and RIBES, based on
metrics on the official WAT 2022 MultiIndicMT
test set (Nakazawa et al., 2022). To determine the
BLEU scores of baseline models, multi-bleu.perl
script is availed. When evaluating the Multi-
IndicMT task, organizers prefer to tokenized ref-
erence and hypothesis files to find out the BLEU
score. Moses-tokenizer is used for tokenization.
We present results provided by the organizers for
English to Indic and Indic to English language pairs
which are based on the translation files that we have
submitted (Nakazawa et al., 2022). Table 3 and 4
displays the multilingual models official BLEU and
RIBES scores. In terms of scores, we notice that
Urdu is having more than 15 BLEU score for both
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Table 3: Result of One to Many(EN -> Indic) languages considering the evaluation Metrics.

Baseline Our System
en->Indic BLEU RIBES BLEU RIBES
en->as - - 10.20 0.634631
en->ur - - 19.60 0.718763
en->sd - - 6.30 0.579323
en->si - - 9.50 0.647028

Table 4: Result of Many to One (Indic->English) languages considering the evaluation Metrics.

Baseline Our System
Indic->en BLEU RIBES BLEU RIBES
as->en - - 15.50 0.706743
ne->en - - 8.00 0.546125
ur->en - - 20.50 0.744934
sd->en - - 15.40 0.709039
si->en - - 8.20 0.632228

the directions (En->Indic and Indic->En). Because
of the time and resource constraints, we were not
able to work with other indic languages.

7 Conclusion

In this paper, we highlight the MultiIndicMT
shared task as submitted by us to WAT 2022.
Through provisioning of two multilingual NMT
models, one-to-many (English to 5 Indic languages)
and many-to-one (4 Indic languages to English)
we get competitive outcomes. In our process,
test-runs are executed combining with several pre-
processing and training strategies sequentially. Al-
though we have used sufficient data filtering tech-
niques, still it is observed that the training data gets
contaminated with noise. Therefore, investigating
more efficient data filtering methods as well as their
effects on MT performance is another promising
future area. In future, we look forward to extend
our research that will help in fine-tuning of both
encoder and decoder during the monolingual unsu-
pervised training in order to improve the quality of
the synthetic data generated during the process.
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Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe,
Yusuke Oda, and Sadao Kurohashi. 2022. Overview
of the 9th workshop on Asian translation. In Pro-
ceedings of the 9th Workshop on Asian Translation
(WAT2022), Gyeongju, Republic of Korea. Associa-
tion for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li.
2021. Contrastive learning for many-to-many mul-
tilingual neural machine translation. arXiv preprint
arXiv:2105.09501.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Aditya Siddhant, Ankur Bapna, Orhan Firat, Yuan Cao,
Mia Xu Chen, Isaac Caswell, and Xavier Garcia.
2022. Towards the next 1000 languages in multilin-
gual machine translation: Exploring the synergy be-
tween supervised and self-supervised learning. arXiv
preprint arXiv:2201.03110.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2020. Unsuper-
vised neural machine translation with cross-lingual
language representation agreement. ACM Transac-
tions on Audio, Speech, and Language Processing,
pages 1170–1182.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Lrec, volume 2012, pages 2214–
2218. Citeseer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Barret Zoph, Deniz Yuret, Jonathan May, and
Kevin Knight. 2016. Transfer learning for low-
resource neural machine translation. arXiv preprint
arXiv:1604.02201.

77



Proceedings of the 9th Workshop on Asian Translation, pages 78–81
October 17, 2022.

Investigation of Multilingual Neural Machine Translation for Indian
Languages

Sahinur Rahman Laskar1, Riyanka Manna2

Partha Pakray1, Sivaji Bandyopadhyay1

1Department of Computer Science and Engineering, National Institute of Technology, Silchar, India
2Department of Computer Science and Engineering, Adamas University, Kolkata, India

{sahinurlaskar.nits, riyankamanna16}@gmail.com
{parthapakray, sivaji.cse.ju}@gmail.com

Abstract
In the domain of natural language process-
ing, machine translation is a well-defined task
where one natural language is automatically
translated to another natural language. The
deep learning-based approach of machine trans-
lation, known as neural machine translation
attains remarkable translational performance.
However, it requires a sufficient amount of
training data which is a critical issue for low-
resource pair translation. To handle the data
scarcity problem, the multilingual concept has
been investigated in neural machine transla-
tion in different settings like many-to-one and
one-to-many translation. WAT2022 (Work-
shop on Asian Translation 2022) organizes
(hosted by the COLING 2022) Indic tasks:
English-to-Indic and Indic-to-English trans-
lation tasks where we have participated as
a team named CNLP-NITS-PP. Herein, we
have investigated a transliteration-based ap-
proach, where Indic languages are transliter-
ated into English script and shared sub-word
level vocabulary during the training phase. We
have attained BLEU scores of 2.0 (English-
to-Bengali), 1.10 (English-to-Assamese), 4.50
(Bengali-to-English), and 3.50 (Assamese-to-
English) translation, respectively.

1 Introduction

Due to the advancement of deep learning tech-
niques, neural machine translation (NMT) attains
remarkable progress for single pairs translation
with a large amount of bilingual corpus (Bah-
danau et al., 2015; Luong et al., 2015; Vaswani
et al., 2017). Moreover, NMT shows good trans-
lational performance for low-resource Indian lan-
guages (Pathak and Pakray, 2018; Pathak et al.,
2018; Laskar et al., 2019a,b, 2020, 2021b,a, 2022).
Recent years, researchers have been investigating
multilingual NMT from various aspects, zero-shot,
pivot-based, and different settings, namely, many-
to-one, one-to-many, many-to-many (Johnson et al.,
2017; Tan et al., 2019). In (Ramesh et al., 2022),

authors developed Samanantar, a parallel dataset
for 11 Indian languages. They converted all Indic
data into a common Devanagari script and took
the advantage of lexical sharing at the sub-word
level for transfer learning during the training pro-
cess. They explored multilingual NMT models for
English-to-Indic and vice-versa by considering lan-
guage tags for indicating Indic languages on the
source side (Johnson et al., 2017). Similarly, we
have investigated multilingual NMT in the Indic
tasks of WAT2022. The difference is that instead
of converting all Indic data into a common Devana-
gari script, we have converted all Indic data into
English script and attempted to take the benefits
of lexical sharing at the sub-word level for both
source and target languages.

The rest of the paper is organized as follows:
Section 2 presents the review of related works. The
system description is briefly discussed in Section
3. Section 4 reports the results and Section 5 con-
cludes the paper with future scope.

2 Related Work

The literature survey finds out very limited work
on multilingual NMT, specifically, for English-
to-Indic and Indic-to-English translation (Ramesh
et al., 2022). They contributed Samanantar dataset
which comprises parallel corpora of 11 Indic lan-
guages with English side parallel sentences and ex-
plored the multilingual NMT model for English-to-
Indic and Indic-to-English. They used Fairseq (Ott
et al., 2019) toolkit for transformer-based model
training via multilingual settings of many-to-one
and one-to-many (Johnson et al., 2017).

3 System Description

We have employed the OpenNMT-py (Klein
et al., 2017) toolkit to build multilingual
transformer-based NMT models for English-
to-Indic and Indic-to-English translation. We
have used parallel corpora provided by the

78



WAT2022 organizers (Nakazawa et al., 2022).
Additionally, we have used English-Assamese
parallel corpus (Laskar et al., 2020). We have
maintained the equal ratio (1 : 1) for Eng-Indic
(Asm/Ben/Guj/Hin/Kan/Mal/Mar/Tel/Tam/Pan/Npi/

Ory) language pairs of the dataset in the mul-
tilingual NMT settings and data statistics are pre-
sented in Table 1. We have converted all Indic data
into English script using the Indic-trans, translit-
eration script1 (Bhat et al., 2014). We have per-
formed jointly byte pair encoding (sub-word level)
(Sennrich et al., 2016) on the transliterated Indic
sentences and English sentences with 40k merge
operations. The sub-word level source-target vo-
cabulary is shared during the training process of the
multilingual NMT model. We have used special to-
kens (language tags) for Indic side languages at the
one-to-many (English-to-Indic) setting (Johnson
et al., 2017). We have followed the default settings
of the 6 layer transformer model (Vaswani et al.,
2017) in the training process. The NMT model is
trained on a single GPU with early stopping criteria
i.e., the model training is halted if does not con-
verge on the validation set for more than 10 epochs.
The obtained trained model is used to translate the
test data provided by the WAT2022 organizers. For
English-to-Indic language translation, the predicted
sentences are converted into the respective Indic
languages using the Indic-trans script.

4 Results

The WAT2022 shared task organizer (Nakazawa
et al., 2022) published the evaluation re-
sult2 (INDIC22en-as/INDIC22as-en/INDIC22en-
bn/INDIC22bn-en) at the Indic translation task
for English-to-Indic and Indic-to-English and our
team achieve the second position for English-to-
Assamese and vice-versa translation. We have par-
ticipated with a team name CNLP-NITS-PP in the
English-Assamese and English-Bengali submission
tracks of the same task where a total of two teams
participated. The automatic evaluation metrics,
BLEU (Papineni et al., 2002), RIBES (Isozaki et al.,
2010) are used for evaluation of results. Table 2
presents the results of our system. The quantitative
results show that our investigation of the transliter-
ation Indic languages into English script does not
provide a reasonable translation accuracy for the

1https://github.com/libindic/
indic-trans

2http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

multilingual NMT model of English-Assamese and
English-Bengali pairs translation.

Translation BLEU RIBES
Eng-to-Asm 1.10 0.359265
Asm-to-Eng 3.50 0.537859
Eng-to-Ben 2.00 0.503286
Ben-to-Eng 4.50 0.547407

Table 2: Our system’s results (official) for Eng-Asm
(English-Assamese) and Eng-Ben (English-Bengali) lan-
guage pair at the Indic task.

5 Conclusion and Future Work

In this work, we have investigated multilingual
NMT for Indic task of WAT2022 by taking the
advantage of sub-word level source-target lexical
sharing during the training. However, we need to
do more experiments to improve the translational
performance of low-resource pairs by utilizing pre-
trained multilingual models.
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Abstract

We study the effects of a local and punc-
tual pretranslation of the source corpus on
the performance of a Transformer translation
model. The pretranslations are performed at the
morphological (morpheme translation), lexical
(word translation) and morphosyntactic (nu-
meral groups and dates) levels. We focus on
small and medium-sized training corpora (50K
∼ 2.5M bisegments) and on a linguistically dis-
tant language pair (Japanese and French). We
find that this type of pretranslation does not
lead to significant progress. We describe the
motivations of the approach, the specific dif-
ficulties of Japanese-French translation. We
discuss the possible reasons for the observed
underperformance.

1 Introduction

There are many techniques to improve the perfor-
mance of a neural translation system without chang-
ing the size of the training corpus, without increas-
ing the computational power, and independently
of the tuning of the translation system: enriching
vocabulary embedding (e.g. Ding and Duh (2018)),
injecting linguistic information (e.g. Sennrich and
Haddow (2016)), reordering (e.g. Kawara et al.
(2021)), etc. These techniques are absolutely cru-
cial for language pairs with few corpora, and when
computing power is limited.

We propose here to apply another technique,
which to our knowledge has not been studied so
far with neural translation. It consists in pretrans-
lating short segments of the source corpus. We
proceed with handmade rules and vocabulary trans-
lation lists. We will observe its effects on Japanese-
French, with several corpus sizes (50K-2.5M biseg-
ments). This is indeed a language pair that remains
poorly endowed with large, freely accessible and
good quality corpora.

The aim of pretranslation is to reduce the lin-
guistic distance between the two languages and

to facilitate learning. The advantage is that it can
be applied even with limited knowledge about the
translation rules between the two languages. In ad-
dition, building the pretranslation rule by hand does
not necessitate annotated resources (that maybe do
not exist).

In section 2 we present the difficulties specific to
French-Japanese. In section 3 we describe the type
of pretranslations we have carried out. In section 3,
we describe an experimental setup used to evaluate
the effects of those pretranslations. We will see in
section 5 that it is difficult to correlate these results
with the properties of the corpora.

2 Challenges of Japanese-French
Translation

Japanese and French are known to be linguistically
distant languages. We present here briefly the most
notable points of divergence, which may impact
their joint treatment.

Japanese and French use different writing sys-
tems. Japanese uses about 2300 characters. French
uses about 50 (including capitals). The two sys-
tems share only Arabic numerals and some English
words written in Latin characters in Japanese texts.
The sharing of vocabulary is therefore of little in-
terest when training a translation model.

Word formation in the two languages does not
correspond. French is a richly inflected language.
Flexion concerns almost all parts of speech. On the
contrary, Japanese morphology varies only for a
part of verbs and adjectives (native Japanese lexical
stratum). Japanese is also considered an agglutina-
tive language. With the same meaning, many ex-
pressions in Japanese and French are not formed at
the same level: expressions formed at the morpho-
logical level in Japanese are formed at the syntactic
level in French and vice versa (see example be-
low “seem not to want to drink”; CONJ:conjugation
suffix):

no- mita- kuna- katta- rou
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RAD CONJ CONJ CONJ CONJ

drink want NEG PAST seem

sembl- ait ne pas vouloir boire
RAD CONJ AUX AUX V V

seem PAST NEG NEG want drink

Word order is different at several levels. In writ-
ing, Japanese is an SOV language where the or-
der is semi-free, with possible pragmatic effects.
French is a SVO language. Word order also di-
verges within phrases. In Japanese, in most cases,
the complements (nominal, propositional) precede
the head of the phrase. In French, they appear on
either side of the head:

daidokoro1 no2 ookii3 teeburu4

kitchen GEN large table
grande3 table4 de2 <la> cuisine1

“large table of <the> kitchen”

A major source of difficulty in comparing or
translating the two languages is the absence in
Japanese of many components that are obligatory
in French. Japanese uses few quantification marks
(determiners etc.) and makes extensive use of bare
nouns. A bare noun phrase will often have sev-
eral possible translations in French (see also a dis-
cussion involving Japanese and English in (Bond,
2001). Many sentence components are elided in
Japanese. Japanese is a pro-drop language. Un-
like in French, the place of absent components is
not occupied by a pronoun. In addition, titles and
press headlines have a specific syntax in Japanese
(Noguchi, 2002).

Constraints between distant structures exist in
both languages but do not concern the same parts
of speech. In French, distant words can share the
same gender and number marks. This is the case
of subject-verb agreement, for example. Japanese
is known to use floating quantifiers consisting of a
numeral and a classifier. The choice of the classifier
depends on the quantified noun.

[kami/pen]1 wo kitto san-[mai/bon]1 kau.
{paper/pen} O cert. 3 - CL/CL1 buy
(He) certainly buy three papers/pens.

3 Pretranslation applied here

We study 5 levels of pretranslation. The pretransla-
tions are applied recursively (the pretranslation of
corpus i is added to that of corpus i− 1). The idea
is that a single modification cannot substantially
improve the translation. We must therefore study
an accumulation of pretranslations. An example of

sentence pretranslation is given in the table 8. C0
is the baseline corpus.

3.1 C1: Compositional structures
We pretranslate two structures whose translation
is in general independent of the context: numerals
and dates. Japanese numerals come in two forms:
Sino-Japanese system (百万) or anglophone “Ara-
bic” system (1,000,000). The treatment of numer-
als may seem anecdotal, but we found that they
were unexpectedly poorly translated by the models
trained on small corpora. This can be explained,
among other things, by the variants of notation.
Pretranslation is therefore both a translation and a
kind of normalisation:

The translation of dates requires a triple pro-
cessing: reordering, pretranslation of the numerals,
global translation.

1910年year3月month3日day
reorder→ 3日day3月month1910年year
transl.→ 3 mars 1910

Ambiguous expressions are left as they are, such
as一日 which means «un jour» or «le premier (du
mois)».

Choosing not to translate ambiguous expressions
has disadvantages. Indeed, it is possible that some
occurrences of an expression are not translated. We
are not able to assess the number of cases involved,
nor the effect on the performance of the translation
model.

3.2 C2: Suffixes, punctuation, proper names
Affixes are translated if their translation is “rela-
tively” regular: 主義 (shugi) → isme. In general,
the linguistic segmentation of Japanese separates
the suffix from the radical. But in order to get closer
to the French form, which does not separate the suf-
fix from its radical, we do not separate in Japanese
either. It is left to the statistical segmentation (BPE)
to separate or not. The form is systematically put
in the singular.

共産N 主義SUFF («kyōsan shugi»)
→共産 isme →共産isme

Punctuation is simplified and brought closer to
that of French. This concerns mainly interrogative
marks: か? → ?;か。→ ? .

Most of the changes in C1 concern the transla-
tion of proper names. We used several resources:
an existing dictionary (jalexgram 0.37), Wikipedia

83



translations and translations available in unidic-cwj.
Considering the possible segmentation errors and
translation errors (in particular from the Wikipedia),
we roughly filtered: the ratio <source word length /
target word length> must not exceed 0.4 (in bytes).
We do not translate one character-words because
they are frequently ambiguous. We obtain a dictio-
nary of 30,000 translated proper names.

It should be noted that the transcription (e.g.
Hepburn: Tōkyō, Kunrei: Toukyou, other: Tokyo)
is not unified within the corpora and within the dic-
tionary. It is therefore possible that a translation in
the dictionary does not correspond to a translation
in the target corpus.

3.3 C3: Common nouns (CN)
In French, CNs are variable in number and are as-
sociated with a determiner, which does not exist in
Japanese. We pretranslate using the singular and
do not add a determiner. Most CNs have several
translations, which depend on the context. For all
occurrences of a noun, we will use a single transla-
tion, and always the same one. This is therefore a
very rough pretranslation. 36,700 CNs have been
translated (from Jalexgram).

3.4 C4:Verbal nouns (VN) in nominal position
Japanese VNs (e.g. benkyō) have two distributions.
Followed by a support verb, they behave as ver-
bal radicals (e.g. benkyōvn suru “litt. study do;
to study”). Otherwise, they are used as CNs (e.g.
“studies”). The corresponding forms in French oc-
cur with a determinant, but mostly at the singular
form. We translate VNs in nominal position, in
singular, without determiner. Here again, this is a
rough pretranslation. 7,350 VNs were used.

4 Experiment

4.1 Corpus

We use the Cjafr-v3 (Blin and Cromières, 2022)
corpus1. To our knowledge, this is the largest and
freely available “ready to use” corpus currently
available. The core contains 400K bisegments
translated by humans. A majority of the bisegments
are from TED (Reimers and Gurevych, 2020). We
add a part of the extension of Cjafr (≈2M of biseg-
ments). It is made of various crawled corpora.

From this corpus of 2.5M bisegments, and after
preprocessing, two training corpora of 50K and

1Download from http://crlao.ehess.fr/
rblin/ tajafr.php

500K bisegments are randomly extracted. For all
experiments, the fine-tuning and evaluation corpora
always remain the same (but the preprocessing is
different).

The evaluation is carried out on two test cor-
pora: PUD (1000 bisegments) 2 and ted.test (3000
bisegments from TED corpus).

The corpus are morphologically analysed and
segmented using mecab (Kudo, 2006) and the
Unidic-cwj (Oka, 2017) dictionary. Some segmen-
tation errors are corrected with ad-hoc rules (the
same for all the experiments, including the baseline
corpus). We apply thus a BPE segmentation (12K
words for Japanese, 8K words for French; with
SentencePiece (Kudo and Richardson, 2018)). The
segmentation model is trained with the pretrans-
lated train corpus. A description of the corpora
is provided in Tables 3, 6 and 7).In particular, we
evaluate the proximity (with BLEU) between the
pretranslated corpora and the target corpus, after
BPE segmentation.

4.2 Training and results

The training is executed with Opennmt-py.2.0.0
(Klein et al., 2017) 3. the batch_size is set to
2048 and the word_vec_size is set to 256.

In order to reduce the variance of the results due
to the random nature of the training, we perform
three trainings for each corpus and calculate the
average. Table 1 and 2 provide the BLEU scores 4.
For the evaluation, punctuation is separated. The
raw scores are of course very different depending
on the size of the training corpus. To compare them,
we propose the proportional difference between the
baseline score (A) and the score after pretranslation
(B): B-A/A.

Several additional settings have been experi-
mented but no one provided a significant difference
with those described above. For the sake of place,
we do not present them here. Those settings are:
segmentation with shared vocabulary (BPE seg-
mentation set to 16K words; evaluation with TER
(Snover et al., 2006) and Chrf (Popovic); best result
instead of average; evaluation after re-tokenisation.

2Test corpus used at CoNL 2017 shared task on parsing
Universal Dependencies. lindat.mff.cuni.cz/ repository/ xmlui/
handle/11234/1-2184

3The hyperparameters are those suggested in
opennmt.net/OpenNMT-py/FAQ.html#how-do-i
-use-the-transformer-model; 2021/06/01

4Calculated using multi-BLEU
www.statmt.org/wmt06/shared-task/
multi-bleu.perl, default settings
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50 500 2M5
C0 4.20 14.27 15.75
C1 0.00% 2.22% 5.31%
C2 -18.08% 4.37% -0.74%
C3 0.32% 4.13% 5.23%
C4 2.78% 3.62% 11.64%

Table 1: BLEU score; corpus PUD; proportional varia-
tion with respect to the baseline C0

50 500 2M5
C0 3.05 9.53 15.64
C1 -1.97% 3.57% -5.80%
C2 -10.18% 4.20% -0.21%
C3 -0.55% 2.66% -1.26%
C4 -2.84% 1.54% -13.40%

Table 2: BLEU score; corpus ted.test; proportional vari-
ation with respect to the baseline

5 Discussion

As expected, pretranslation increases the proximity
(measured in BLEU, on BPE segmented corpus) be-
tween the Japanese and French corpora (see Tab.5).
For the smaller training corpora (50K bisegments),
the progression is a little less than 1 point (knowing
that in percentage, this represents 50%). The PUD
corpus shows the most notable progress (+1.63
points). However, it should be noted that, whatever
the corpus, the proximity is low, with or without
pretranslation (<3.80 BLEU).

The results do not show significant progress. In
some cases, there is even a deterioration. Nor is
there a clear causal link between the (quantified)
characteristics of the corpus and the results.

Compared to the size of the training corpus (50K,
500K or 2.5M bisegments), we observe a system-
atic but modest improvement for the 500K biseg-
ment corpus. This behaviour is correlated with a
very slight superiority of the vocabulary variety
(tab.4). In other words, for this size of corpus and
type of corpus, the greater variety of the corpus
could improve the translation.

Concerning the test corpora, we observe better
results for PUD. Again, in parallel, we note that
the variety of vocabulary is slightly higher for PUD
(tab.4). Moreover, if we observe the proportional
difference of the number of words in Japanese and
French (# words ja - # words fr/ # words ja) we
see that PUD is close to train.2M5 (tab.7). We also
observe a (very slightly) higher proximity between

ja and fr (BLEU) for PUD (Tab.5).
We also repeated the C2 and C4 experiment

with vocabulary sharing (word number for BPE
segmentation is set at 16K). The results are slightly
lower than with the separated vocabularies. This
can be explained by the low number of common
word strings, even after pre-translation. Vocab-
ulary sharing does not improve the results after
pre-translation.

It is difficult to establish a causal relationship
between the (quantifiable) characteristics of the
corpora and the results. Indeed, it can be observed
that corpus features such as proximity (BLEU) or
vocabulary variety are present in the base corpus
CO. The pre-translation does not change anything,
and even reduces these features.

6 Conclusion

Based on the assumption that proximity between
languages could facilitate learning by a neural trans-
lation model, we locally pre-translated words and
morphosyntactic structures in the source language.
No significant results were observed. Some results
have deteriorated. We tried to correlate these re-
sults with quantifiable features of the corpora but
no clear causal relationships appeared. Several hy-
potheses are possible. Either the pre-translation is
not thorough enough and more components need
to be pre-translated to see a notable positive effect.
In this case, a more massive intervention should be
considered, or even coordinated with an interven-
tion on the target. Or the linguistic characteristics
of the two languages do not allow any progress
through pre-translation. This could be confirmed
by carrying out the same work on another language,
for example SOV language (e.g. Basque) and/or
with a poorer morphology SVO language (English).
We have observed three corpus sizes. There is a
slight improvement for the corpus of 500K words
(vs 50K and 2.5M). To better understand the rea-
sons for this behaviour, we propose to repeat the
experiments with intermediate corpus sizes .
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train.2M5 val PUD ted.test
C0 2,527,216 2,964 1,000 2,929

Table 3: # bisegments

train.50 train.500 train.2M5 val PUD ted.test
fr 30.44 31.33 30.88 21.24 27.49 24.93
C0 31.74 32.27 30.80 18.81 25.83 24.95
C1 31.11 32.48 31.01 19.20 25.93 25.07
C2 32.30 32.48 30.95 19.34 26.54 25.37
C3 31.42 32.13 31.14 20.25 26.90 25.06
C4 31.78 32.25 31.03 20.21 27.19 26.13

Table 4: Vocabulary variety (# of original words in a sample of 10K words/10K).

train.50 train.500 train.2M5 val PUD ted.test
C0 2.84 2.60 2.17 0.07 0.49 0.12
C1 2.82 2.60 2.18 0.12 0.70 0.18
C2 3.13 2.87 2.46 0.42 1.43 0.44
C3 3.61 3.40 2.92 0.64 1.95 0.67
C4 3.79 3.57 3.07 0.65 2.12 0.74

Table 5: Proximity of the ja src corpora and the fr corpus; BLEU scores

train.2M5 val PUD ted.test
C0 19.36 25.12 33.10 25.91
C1 19.32 25.08 33.00 25.93
C2 19.37 25.13 33.40 25.96
C3 20.04 25.93 34.51 26.84
C4 20.19 26.09 34.84 27.00

Table 6: Average length of the japanese segments, after BPE segmentation

train.2M5 val PUD ted.test
48,970,553 71,855 33,673 79,270

C0 -0.11% 3.61% -1.70% -4.27%
C1 -0.28% 3.47% -1.99% -4.20%
C2 -0.05% 3.66% -0.82% -4.08%
C3 3.43% 6.94% 2.49% -0.84%
C4 4.19% 7.61% 3.45% -0.24%

Table 7: # words; proportional variation with respect to the French target corpus
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C0 _196 9 _年 _8 _月 _, _パウロ _6 _世 _法王 _が _バチカン _の _法律 _から _死刑 _を _廃
止 _し _, _すべて _の _犯行 _に _対し _て _死刑 _判決 _は _取り除か _れ _た _。

C1 _août _196 9 _, _パウロ _6 _世 _法 王 _が _バ チ カン _の _法律 _から _死刑 _を _廃
止 _し _, _すべて _の _犯行 _に _対し _て _死刑 _判決 _は _取り除か _れ _た _。

C2 _août _196 9 _, _Paul os _6 _世 _法 王 _が _V at ican _の _法律 _から _死刑 _を _廃
止 _し _, _すべて _の _犯行 _に _対し _て _死刑 _判決 _は _取り除か _れ _た _。

C3 _août _196 9 _, _Paul os _6 _世 _pape _が _V a tic an _の _loi _から _peine _de _mort _を _廃
止 _し _, _すべて _の _crime _に _対し _て _peine _de _mort _判決 _は _取り
除か _れ _た _。

C4 _août _196 9 _, _Paul os _6 _世 _pa pe _が _V a tic an _の _loi _から _peine _de _mort _を _廃
止 _し _, _すべて _の _crime _に _対し _て _peine _de _mort _jugement _は _取り
除か _れ _た _。

C4’ _août _196 9 _, _Paul os _6 _世 _pa pe _が _V a tic an _の _loi _から _peine _de _mort _を _廃
止 _し _, _すべて _の _crime _に _対し _て _peine _de _mort _jugement _は _取り
除か _れ _た _。

fr _en _août _196 9 _, _le _p ape _Paul _VI _a _reti ré _la _peine _de _mort _de _la _loi _du
_V ati can _et _l _’ _a _reti rée _de _toutes _les _infra ctions _.

Table 8: Example of pretranslations and BPE segmentation; C4’ is obtained sharing the vocabulary; “In August
1969 , Pope Paul VI removed the death penalty from the Vatican law and revoked it from all offences . ”
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Abstract

Recently, numbers of works shows that the per-
formance of neural machine translation (NMT)
can be improved to a certain extent with using
visual information. However, most of these con-
clusions are drawn from the analysis of exper-
imental results based on a limited set of bilin-
gual sentence-image pairs, such as Multi30K.
In these kinds of datasets, the content of one
bilingual parallel sentence pair must be well
represented by a manually annotated image,
which is different with the actual translation
situation. Some previous works are proposed
to addressed the problem by retrieving images
from exiting sentence-image pairs with topic
model. However, because of the limited collec-
tion of sentence-image pairs they used, their im-
age retrieval method is difficult to deal with the
out-of-vocabulary words, and can hardly prove
that visual information enhance NMT rather
than the co-occurrence of images and sentences.
In this paper, we propose an open-vocabulary
image retrieval methods to collect descriptive
images for bilingual parallel corpus using im-
age search engine. Next, we propose text-aware
attentive visual encoder to filter incorrectly col-
lected noise images. Experiment results on
Multi30K and other two translation datasets
show that our proposed method achieves signif-
icant improvements over strong baselines.

1 Introduction

With the development of NMT, the role of visual
information in machine translation has attracted
researchers’ attention(Elliott et al., 2017; Barrault
et al., 2018; Specia et al., 2016). Although we are
still not clear about the specific role of visual in-
formation in NMT(Caglayan et al., 2019; Elliott,
2018), visual information can assist NMT model to
achieve better translation performance (Calixto and
Liu, 2017; Calixto et al., 2017; Su et al., 2021). Dif-
ferent with those text-only NMT(Bahdanau et al.,

∗*Corresponding author

Table 1: Comparison of example from Multi30K dataset
and United Nations News.

2014; Gehring et al., 2016), a bilingual parallel
corpora with manual image annotations are used
to train a multimodal NMT model by an end-to-
end framework, and therefore, most of the previous
conclusions are drawn from the analysis of experi-
mental results based on a limited set of manually
annotated bilingual sentence-image pairs, specifi-
cally, Multi30K(Elliott et al., 2016).

In Multi30K, as shown in 1, the sentences con-
sists mostly of common and simple words, and
the content of each bilingual parallel sentence pair
is well represented by a single image. Table 1
also shows an example of bilingual sentence-image
pair from an actual news report of United Nations
News1. It is obviously that there is a dramatic dif-
ference between the data of Multi30K and the real-
world multimodal translation situations. There-
fore, results and evidences based on Multi30K
can hardly proved the effectiveness of multimodal
NMT model in an actual translation situation, in
which sentences contain rare and uncommon words
and are partially described by images.

To address the problem, Zhang et al. (2019) pro-
posed to transform the existing sentence-image
pairs into a topic-image lookup table, and a group

1https://news.un.org/en/
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of images with similar topics to the source sen-
tence is retrieved from the topic-image lookup
table. However, the topic-image lookup table is
made from a limited collection of sentence-image
pairs, such as Multi30K and MS COCO image
caption dataset (Lin et al., 2014), their image re-
trieval method is difficult to deal with the out-of-
vocabulary words. Besides, results from Zhang
et al. (2019) can hardly prove that the performance
of NMT is improved by visual information rather
than the co-occurrence of images and sentences.
Their model may suffer problems in translating
sentences with images that are not contained in the
topic-image lookup table.

In this paper, we propose an open-vocabulary
image retrieval methods to collect images for bilin-
gual parallel corpus using image search engine,
thus addressing the problems caused by limited
collection of sentence-image pairs in Zhang et al.
(2019). In detail, to focus on the major part of
the sentence, we apply the term frequency-inverse
document frequency (TF-IDF). Instead of a single
keyword, we use multiple words as search query
for image retrieval to ensure that the contents of col-
lected images are partially consistent with the given
sentences. Since the quality of images from search
engine may be varied, we propose to apply a simple
but effective attention layer, and introduce a text-
aware attentive visual encoder to filter incorrectly
collected noise images. The proposed method is
then evaluated on three translation datasets, includ-
ing the Multi30K English-to-German, WMT’16
English-to-German, Global Voices (Tiedemann,
2012) English-to-German. Experiment results
show that our proposed method achieves significant
improvements over strong baselines. To summa-
rize, out contributions are primarily three-fold:

(1) We present an open-vocabulary image retrieval
methods with image search engine that over-
comes the shortcomings of Zhang et al. (2019)
caused by limited image collection.

(2) The proposed method enables the text-only
NMT to use visual information from the col-
lected images that are partially consistent with
input sentences, which is more close to the ac-
tual translation situations.

(3) We further discuss the influence of visual in-
formation in the proposed multimodal NMT
model , which verified the effectiveness and
generality of the proposed approach.

2 Related Work

Recently, multimodal NMT models have gradu-
ally become a hot topic in machine translation re-
search. They use image information to improve the
translation effect of NMT models through different
methods.

In some cases, visual features are directly used as
supplementary information to the text presentation.
For example, Huang et al. (2016) takes global vi-
sual features and local visual features as additional
information for sentences. Calixto and Liu (2017)
initializes the encoder hidden states or decoder hid-
den states through global visual features. (Calixto
et al., 2017) uses an independent attention mecha-
nism to capture visual representations. (Caglayan
et al., 2016) incorporates spatial visual features into
the multimodal NMT model via an independent at-
tention mechanism. On this basis, Delbrouck and
Dupont (2017) employs Compact Bilinear Pooling
to fuse two modalities. Su et al. (2021) introduces
image-text mutual interactions to refine their se-
mantic representations. Lin et al. (2020) attempts
to introduce the capsule network into multimodal
NMT, they use the timestep-specific source-side
context vector to guide the routing procedure.

All the above work is performed on the Multi30K
dataset. However, some recent studies indicate
that the visual features may play a less important
role in the NMT model than previously thought.
(Ive et al., 2019; Zhang et al., 2017; Grönroos
et al., 2018). Such problems are mainly caused
by the limitations of the Multi30K dataset. Zhang
et al. (2019) presents a universal visual represen-
tation method that overcomes the shortcomings of
Multi30K dataset. However, all their image infor-
mation still comes from Multi30K, which is obvi-
ously not enough to represent complex machine
translation corpus.

3 Background

In this section, we give a simple description of the
multimodal NMT model proposed by Calixto et al.
(2017). The multimodal NMT model is composed
of one text encoder, one visual encoder and one
decoder with two attention mechanisms. The multi-
modal NMT aims to construct an end-to-end neural
network to model P = (Y |X, I) as follows:

log p(Y |X, I) =

M∑

i=1

log p(yt|y<t, C,A)
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where I represents visual features, X =
(x1, x2, . . . , xL) is the source sentence, and Y =
(y1, y2, . . . , yM ) is the target sentence. The text
encoder is a Bi-directional Recurrent Neural Net-
work (RNN) with Gated Unit(GRU)(Cho et al.,
2014) and learn a time-dependent text hidden states
C = (h1, h2, . . . , hN ) for the source sentence. The
visual encoder is a pretrained convolutional neural
network (CNN) and a visual representation A for
the given image.

The decoder is a conditional GRU (cGRU)2 with
two separate attention mechanisms. The text atten-
tion mechanism generates a time-dependent con-
text vector ct based on the text hidden states C and
the hidden state proposal s

′
t as follows:

ct = fatt_text(C, s
′
t) (1)

Meanwhile, the visual attention computes a time-
dependent context vector it based on the visual
feature maps A and the hidden state proposal s

′
t as

follows:

it = fatt_img(A, s
′
t) (2)

Where s
′
t is calculated by the previous hidden state

st−1 and the previously generated target word yt−1.

4 Our Proposed Method

Figure 1 shows the 4 components of our proposed
method, consisting of image retrieval, text-aware at-
tentive visual encoder, RNN text encoder and trans-
lation decoder with co-attention & bi-attention.

4.1 Image Retrieval
In this section, we will introduce the proposed
open-vocabulary image retrieval methods using im-
age search engine.

Similar with Zhang et al. (2019), to focus on the
major part of the sentence and suppress the noise
such as stopwords and low-frequency words, we ap-
ply the term frequency-inverse document frequency
(TF-IDF) (Witten et al., 2005) to create search
queries for image search engines. Specifically,
given the ith (i = 1, 2, . . . , N , N represents the
number of samples in the training set) source lan-
guage sentence Xi = {x1i , x2i , . . . , xLi } of length
L, Xi is first filtered by as stopword list3, and the
filtered input sentence Xf

i is obtained. We then
2https://github.com/nyu-dl/dl4mt-

tutorial/blob/master/docs/cgru.pdf
3https://github.com/stopwords-iso/

stopwords-en

regard Xf
i as a document di, and compute the TF-

IDF score TIi,j for each word xji (j = 1, 2, . . . , L)
in di. The formula is as follows:

TIi,j =
ni,j∑
k ni,k

× log
|D|

1 + |{k|xji ∈ dk]}|
where ni,j is the number of occurrences of the word
xji in document di,

∑
k ni,k represents the total

number of words in document di. |D| = N repre-
sents the total number of source language sentences
in the training data, and |{k|xji ∈ dk]}| represents
the number of sentences including xji in the dataset.
For input sentence Xi, words are then listed in
descending order by TIi,j score, represented as
Qi = (xt1i , x

t2
i , . . . , x

tL
i ) (TIi,t1 ≥ TIi,t2 ≥ . . . ≥

TIi,tL).
Instead of using the top-k high TF-IDF words

separately, we concatenate several words from the
top-k high TF-IDF words as search query. Specifi-
cally, for the sorted words list Qi, the mth search
query qm is defined as following:

qm = concat(xt1i , x
t2
i , . . . , x

tm
i )

Where concat(·) means that words are concate-
nated with blanks as separator. search query qm is
then applied in image search engine and the first
available image is collected as the mth image for
input sentence Xi, represented as Am

i . According
to the results of preliminary experiment, we build
5 search queries and collect 5 images for each sen-
tence4.

4.2 Text-Aware Attentive Visual Encoder
For each collected image, we employ a 50-layer
Residual Network (ResNet-50) (He et al., 2016)
to represent the visual semantic information as a
196× 1024 feature vector.

As described in Section 4.1, for source language
sentence Xi, we collect 5 images A1

i , A
2
i , . . . , A

5
i

using image search engine. In order to filter the
incorrectly collected noise images, we apply a sim-
ple but effective scaled dot-product attention in
visual encoder, where the visual representation Ai

of input sentence Xi is defined as the following
formula:

Ai =

5∑

m=1

αi,mAm
i

4In the preliminary experiments, we find that the pro-
posed image retrieval method collect less noise and achieves a
slightly better translation performance than the method that
uses a single word as search query.
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Figure 1: The overview of the framework of our proposed method

where αi,m represents the weight of mth images
for input sentence Xi. The αi,m is then computed
as follows:

αi,m = softmax(W (Am
i ) · C ′

i)

C
′
i =

1

N

N∑

t=1

hti

where softmax(·) stands for softmax activation
function, and C

′
i represents an average pool of the

hidden states Ci = (h1i , h
2
i , . . . , h

N
i ) for input sen-

tence Xi.
Finally, the obtained 196 × 1024D visual rep-

resentation is considered as a matrix Ai =
(a1

i ,a
2
i , . . . ,a

L
i ), a

l
i ∈ R1024. Each of the L =

196 rows consists of a 1024D feature vector that

represents a specific image region. Visual repre-
sentation Ai = (a1i , a

2
i , . . . , a

L
i ) and text represen-

tation Ci = (h1i , h
2
i , . . . , h

N
i ) are then used as the

inputs of tanslation decoder .

4.3 Translation Decoder

As shown in figure 2, we apply a bi-directional
attention network5 and a co-attention network (Su
et al., 2021) to model underlying semantic interac-
tions between text and image.

The bi-directional attention network is used

5According to the result of the preliminary experiment, we
found that Transformer-based model can hardly produce an
advantage in performance on such small dataset as Multi30K.
Therefore, we chosed LSTM as our basic model. As a future
work, we are going to integrate Transformer into our proposed
method and evaluate it on some larger datasets.

92



Figure 2: multimodel NMT model with deep semantic
interactions

to enhance text and image representations.
Specifically, we use text representation Ci =
(h1i , h

2
i , . . . , h

N
i ) and visual representation Ai =

(a1i , a
2
i , . . . , a

L
i ) for bi-direction attention net-

work to obtain a shared alignment matrix S ∈
RN×L.The alignment matrix is computed as fol-
lows:

Sn,l = g(hni · ali)

where g(·) is a scalar function.The Sn,l ∈ RN×L

measures how well the n-th row vector in Ci se-
mantically matches the l-th row vector in Ai. After
that, Text-to-Visual Attention hni and Visual-to-Text
Attention ali will be calculated respectively accord-
ing to the alignment matrix S. The hni calculation
formula is as follows:

wt2v
n = softmax(Sn:)

hni = hni +
∑

l

wt2v
nl a

n
i

The ali calculation formula is as follows:

wv2t
l = softmax(S:l)

ali = ali +
∑

i

wv2t
ln hni

Among them, wt2v
n signifies which image re-

gions are most relevant to each source word. wv2t
l

signifies which source words semantically match
each visual region mostly. Thus, we can get
the final visual feature maps Ai=(a1i , a

2
i , . . . , a

L
i ),

and the vectors for the whole source sentence
Ci=(h

1
i , h

2
i , . . . , h

N
i ). Finally, we substituted Ci

and Ai into formulas (1) and (2) in Section 3 to
obtain the time-dependent context vector ct and the
time-dependent visual vector it.

5 Experiments

5.1 Data
To evaluate our approach, we experimented with
three commonly used machine translation dataset,
including multimodal machine translation dataset
Multi30K (Elliott et al., 2016) English-to-German
(EN-DE), Global Voices English-to-German (EN-
DE)(Tiedemann, 2012), and WMT’ 16 (100k)
English-to-German (EN-DE).

Multi30K Multi30K dataset consists of about 31k
bilingual sentence-images pairs, . In this pa-
per, we use 29K English to German parallel
sentence pairs with visual annotations as the
training set. The 1,014 English to German
sentence pairs visual annotations are used as
dev set. Finally, the test2016 test dataset is
used for evaluation.

Global Voices Global Voices (EN-DE) dataset
consists of more than 70k bilingual sentence
pairs from summaries of news articles. We
randomly sample 2000 data as dev set, 2000
as test set, and use the remained as training
set.

WMT’16 (100k) WMT dataset (EN-DE) consists
of more than 4.5M bilingual sentence pairs
mainly from the proceedings of the European
Parliament. In order to focus on evaluating
the effectiveness of the retrieved visual infor-
mation, we attempt to exclude the influence
of data size, and randomly sampled 100k sen-
tence pairs as our training set instead of the to-
tal 4.5M sentence pairs, which is similar to the
number of sentences in the Multi30K dataset
and Global Voices. We used Newstest2016 as
the test set.

5.2 System Setting
Image Retrieval Implementation We used the
Microsoft Bing6 as image search engine. As de-
scribed in Section 4.1, for each source language
sentence, we build 5 search queries and collect 5
images for each sentence. Specifically, if the num-
ber of words is less than 5 after stopword filtering,
we simplely repeat the keyword list several times

6https://global.bing.com/images
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to ensure that the number of remained words is
enough for creating 5 search queries.

Model Implementation: We implemented our
proposed model on the top of Su et al. (2021),
which was developed based on OpenNMT (Klein
et al., 2017). We used MOSES7 scripts to tokenize,
normalize, and lowercase both source and target
sentences. For text encoder, we used bi-directional
RNN with GRU to extract text features. One 256D
single-layer RNN was used for both forward and
backward. For visual encoder, we used the res4f
layer of pre-trained ResNet-50 (He et al., 2016) to
extract visual features. We used Adam optimizer
with mini-batches size of 32 to train all models,
and set the learning rate as 0.001.

We trained the model up to 15 epochs, and the
training was early-stopped if BLEU (Papineni et al.,
2002) score of dev set did not improve for 3 epochs.
The model with highest BLEU score of the dev set
was selected to evaluate the test set. In order to
reduce the influence of random seeds on the exper-
imental results and ensure the stability of the final
experimental results, we repeated the experiment
5 times with fixed 5 random seeds and used the
macro average of BLEU scores as the final result.

Baseline For each dataset, we used the text-only
LSTM (Graves, 2012) as a baseline.

For Multi30K dataset, we quantitatively com-
pared the proposed method with the following mod-
els:

• Zhang et al. (2019) used a text-only Trans-
former and proposed a universal visual repre-
sentation method by retrieving images from a
topic-image lookup table.

• Su et al. (2021) used a bi-direction attention
network and a co-attention mechanism to en-
hance semantic interaction of text and images.

• Zhao et al. (2021) proposed a novel integra-
tion strategy Word-Region Alignment(WRA)
of the MNMT model that leverages the WRA
to guide the model to translate certain source
words into target words while attending to se-
mantically relevant image regions.

We trained these models by employing the same
training set and the same training parameters as
the proposed model, and report the 4-gram BLEU
score (Papineni et al., 2002) for all baselines as
well as the proposed method.

7http://www.statmt.org/moses/

Method BLEU Score
Text-only NMT

Bi-LSTM (Calixto et al., 2017) 33.7
Transformer (Zhang et al., 2019) 36.86

Multimodal NMT with Original Images
Zhang et al. (2019) 36.86
Zhao et al. (2021) 38.40
Su et al. (2021) 39.20

The proposed method 38.14
Multimodal NMT with Retrieved Images

Zhang et al. (2019) 36.94
The proposed method 38.43

Table 2: Results on Multi30K

System BLEU Score
Global Voices WMT’16 (100k)

Text-only
9.22 7.99

LSTM
The proposed 9.81 8.41

Method

Table 3: Results on Global Voices and WMT‘16 (100k)

5.3 Experimental Results

Table 2 shows the experimental results on Multi30K
dataset. The proposed method obtains a BLEU
score of 38.43. Compared with the text-only NMT
(Calixto et al., 2017; Vaswani et al., 2017), the
proposed method obtains a significantly higher
BLEU score. Compared with the multimodal NMT
methods with original images (Zhang et al., 2019;
Zhao et al., 2021; Su et al., 2021), our proposed
method obtains a comparable BLEU score8. Com-
pared with the multimodal NMT method with re-
trieved images (Zhang et al., 2019), the perfor-
mance gain of the proposed method is approxi-
mately 1.5 BLEU.

Futhermore, we quantitiatively compared our
study with text-only NMT (Calixto et al., 2017)
on two dataset, i.e., Global Voices and WMT’16
(100k), which consist of bilingual sentence pairs
without visual annotation. As shown in Table 3, the
proposed method achieved a higher BLUE score,
demonstrating the effectiveness of the proposed
search engine based image retrieval. More experi-

8For Su et al. (2021), we trained the multimodal NMT
model using the same parameters with our proposed method,
and got a comprable BLEU score of 38.1 with our proposed
method.
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Figure 3: Example of correct translation by the proposed method

mental results and discussions for the influence of
collected images are described in Section 6.

Figure 3 shows an example of correct transla-
tion by the proposed method. In this example,
English words “nightclub” is failed to be trans-
lated by the model of Su et al. (2021), as well as
the text-only NMT. It is mainly because that the
text infomation is not enough for translating while
the original image from Multi30K is ambiguous
and misleading. In the proposed method, we col-
lected 5 images with image search engine accord-
ing to the method described in Section 4.1, among
which 3 images provide effective visual informa-
tion about “nightclub”, and therefore, the proposed
method correctly translate “nightclub” into “Nacht-
club”. Besides, benefit from visual information
about “guitar player”, the proposed method gener-
ates a partially correct translation “Gitarrespieler
spielt”, while is the model of Su et al. (2021) incor-
rectly translate “guitar player” into “Musiker spielt”
(musician).

6 Analysis and Discussion

6.1 Influence of the Number of Images

For each sentence, several images can be ob-
tained by following the image retrieval method
in section 4.1. To evaluate the influence of the
number of paired images m, we constrained m
in {1, 2, 3, 4, 5, 6, 7, 8} for experiments on the
Multi30K dataset. As shown in figure 4, for dif-

Dataset images BLEU

Multi30K

Text-only 37.77
Random Images 37.65
Blank Images 37.79

Retrieved Images 38.43

Global Voices

Text-only 9.22
Random Images 9.29
Blank Images 9.46

Retrieved Images 9.81

WMT‘16 (100k)

Text-only 7.99
Random Images 8.11
Blank Images 8.31

Retrieved Images 8.41

Table 4: Translation effect of different data sets under
different image conditions

ferent m, we used the images retrieved by search
engine and the original images in Multi30K dataset
respectively for experiments. For images retrieved
based on search engines, as the number of images
increases, the BLEU score also increased at the
beginning(from 37.96 to 38.43) and then decreased
when m exceeds 5. The reason might be that re-
trieving too many images through search engines
will lead to an increase in the number of noise im-
ages. Therefore, we set m = 5 in our models, and
drawn a same conclusion as Zhang et al. (2019).

For the original Multi30K image, it only has the
visual features of an image, so as the number of
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Dataset Sentence Retrieved image

Multi30K The person in the striped shirt is
mountain climbing.

Global Voices Now the city is under a siege
from the security forces.

WMT’16 In the future, integration will be
a topic for the whole of society
even more than it is today.

Table 5: Examples of retrieved image from different datasets

Figure 4: Influence of number of images on the BLEU
score.

images increases, the BLEU score has no obvious
upward trend. In addition, when m is less than 3,
the BLEU score of the image using the original
Multi30K is higher than that of the retrieved image.

6.2 Influence of the Quality of Images

To evaluate the influence of the quality of collected
images, we train the proposed model with randomly
retrieved unrelated images, blank images, and re-
trieved images from image search engine, respec-

Dataset Number of noise images
Multi30K 61

Global Voices 228
WMT’16 685

Table 6: Number of noise images in 1000 collected
images for each dataset

tively. The evaluation results are shown in table 4.
It is obvious that proposed method achieves the
highest BLEU score on all Multi30K and Global
Voices, demonstrating the effectiveness of visual
information from collected images.

Compared with the model with random images
and blank images, the performance gain of col-
lected images is approximately 0.7 & 0.6 BLEU
score on Multi30K, and 0.5 & 0.3 BLUE score on
Global Voices. However, on the WMT’16 (100k)
dataset, model with collected images obtains al-
most the same BLUE score as the model with blank
images.

One of the possible reason is that sentences from
WMT dataset contains fewer entity words that can
be represented by images, and therefore, the pro-
posed search engine based image retrieval method
collects numbers of noise images. Sentences from
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WMT’16 (100k) describe abstract concepts and
complex events, while sentences from Multi30K
and Global Voices describe real objects and people,
which is more reliable for image retrieval. Exam-
ples of retrieved images of each dataset are shown
in Table 5. For the sentence from Multi30K dataset,
our method easily retrieves an image that represents
“A man is rock climbing”. For the sentence from
Global Voice dataset, the retrieved image is par-
tially consistent with the source sentence, contain-
ing contents of “city”,“siege” and“forces”. How-
ever, for the sentence from WMT’16 dataset, it is
obvious that the retrieved image contains little ef-
fective visual information and can hardly provide
assistance to translation.

To verify the hypotheses, we randomly sampled
1,000 images from the collected image set of each
dataset, and manually classify the collected images
into 2 classes, i.e., class of images that can provide
visual information of the search query, and class
of images that can not. Images in second class are
defined as noise images. As shown in Table 6, for
Multi30K dataset, only 61 out of 1000 collected
images sampled are noise images, and the propor-
tion is 6.1%. However, in the WMT’16 dataset,
the number of noise images obtained through re-
trieval is 685, accounting for more than half of
the total number of images.Therefore, our method
performs poorly on the WMT’16 dataset. For the
Global Voices dataset, the number of noise im-
ages is 228, which is between the Multi30K and
WMT’16 dataset, and the retrieved images also
show better performance than the NMT model. It
is insteresting to find that collected image set for
Multi30K has smallest proportion of noise image
and achieves the biggest gain of translation per-
formance, while the collected image set has the
largest proportion of noise image and achieves the
smallest gain of translation performance.

7 Conclusions

In this paper, inspired by problem of Zhang et al.
(2019) caused by applying limited collections
of sentence-image pairs, we propose an open-
vocabulary image retrieval methods to collect de-
scriptive images for bilingual parallel corpus using
image search engine, and introduce text-aware at-
tentive visual encoder to filter incorrectly collected
noise images. Experiment results show that our pro-
posed method achieves significant improvements
over strong baselines, especially on Multi30K and

Global Voices. Further analysis shows that the ef-
fectiveness of the proposed methods in translating
sentences that describe real objects and people.

As one of our future work, we are going to eval-
uate our proposed method on some larger datasets,
such as the entire WMT’16 dataset, and analyze
the influence of the number of texts for the task of
multimodal NMT.
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Abstract
This paper provides the system description
of “Silo NLP’s" submission to the Workshop
on Asian Translation (WAT2022). We have
participated in the Indic Multimodal tasks
(English→Hindi, English→Malayalam, and
English→Bengali, Multimodal Translation).
For text-only translation, we trained Transform-
ers from scratch and fine-tuned mBART-50
models. For multimodal translation, we used
the same mBART architecture and extracted
object tags from the images to use as visual
features concatenated with the text sequence.

Our submission tops many tasks including
English→Hindi multimodal translation (eval-
uation test), English→Malayalam text-only
and multimodal translation (evaluation test),
English→Bengali multimodal translation (chal-
lenge test), and English→Bengali text-only
translation (evaluation test).

1 Introduction

Machine translation (MT) is a classic sub-field in
NLP which investigates the usage of computer soft-
ware to translate text or speech from one language
to another without human involvement (Yang et al.,
2020). Although MT performance has reached
near the level of human translators for many high-
resource languages, it remains challenging for
many low-resource languages (Popel et al., 2020;
Costa-jussà et al., 2022). Also, effective usage of
other modalities (e.g. image) in MT is an important
research area in the past few years (Sulubacak et al.,
2020; Parida et al., 2021b,a).

The WAT is an open evaluation campaign fo-
cusing on Asian languages since 2013 (Nakazawa
et al., 2020, 2022). In the WAT2022 Multimodal
track, a new Indian language Bengali was intro-
duced for English→Bengali text, multimodal trans-
lation, and Bengali image captioning task.1

1https://ufal.mff.cuni.
cz/bengali-visual-genome/
wat-2022-english-bengali-multim

The multimodal translation tasks in WAT2022
consist of image caption translation, in which the
input is a descriptive source language caption to-
gether with the image it describes, while the output
is a target language caption. The multimodal input
enables the use of image context to disambiguate
source words with multiple senses.

In this system description paper, we explain our
approach for the tasks (including the sub-tasks) we
participated in:

Task 1: English→Hindi (EN-HI) Multimodal
Translation

• EN-HI text-only translation
• EN-HI multimodal translation

Task 2: English→Malayalam (EN-ML) Multi-
modal Translation

• EN-ML text-only translation
• EN-ML multimodal translation

Task 3: English→Bengali (EN-BN) Multimodal
Translation

• EN-BN text-only translation
• EN-BN multimodal translation

2 Data sets

We used the data sets specified by the organizer
for the related tasks along with additional synthetic
data for performance improvement. The use of
additional data places some2 of our submissions in
the unconstrained track.

Task 1: English→Hindi Multimodal Translation
For this task, the organizers provided HindiVisu-
alGenome 1.1 (Parida et al., 2019)3 dataset (HVG
for short). The training part consists of 29k English
and Hindi short captions of rectangular areas in
photos of various scenes and it is complemented

2All except the EN–HI and EN–ML text-only systems.
3https://lindat.mff.cuni.cz/

repository/xmlui/handle/11234/1-3267
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by three test sets: development (D-Test), evalua-
tion (E-Test) and challenge test set (C-Test). Our
WAT submissions were for E-Test (denoted “EV”
in WAT official tables) and C-Test (denoted “CH”
in WAT tables).

For the synthetic image features, we use the
Flickr8k data set (Hodosh et al., 2013). Even
though it is an image captioning data set, we dis-
card the images, treating the data set as in-domain
monolingual data. We use a machine translation
into Hindi (Rathi, 2020) as the target side, and gen-
erate image features using the procedure described
in Section 3.4.

The statistics of the datasets are shown in Ta-
ble 1.

Task 2: English→Malayalam Multimodal
Translation For this task, the organizers pro-
vided MalayalamVisualGenome 1.0 dataset4

(MVG for short). MVG is an extension of the
HVG dataset for supporting Malayalam, which be-
longs to the Dravidian language family (Kumar
et al., 2017). The dataset size and images are
the same as HVG. While HVG contains bilingual
English–Hindi segments, MVG contains bilingual
English–Malayalam segments, with the English,
shared across HVG and MVG, see Table 1.

Task 3: English→Bengali Multimodal Transla-
tion For this task, the organizers provided Ben-
galiVisualGenome 1.0 dataset5 (BVG for short).
BVG is an extension of the HVG dataset for sup-
porting Bengali. The dataset size and images are
the same as HVG, and MVG, see Table 1.

3 Experimental Details

This section describes the experimental details of
the tasks we participated in.

3.1 EN-HI, EN-ML, EN-BN text-only
translation

For EN–HI and EN–ML text-only (E-Test and
C-Test) translation, we fine-tuned a pre-trained
mBART-50 model (Tang et al., 2020) without using
any additional resources.

For EN-BN text-only (E-Test) translation, we
used the Transformer base model as implemented
in Open-NMT-Py6 using Bangla Natural Language

4https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3533

5http://hdl.handle.net/11234/1-3722
6https://opennmt.net/OpenNMT-py/

Image

Faster R-CNN

person,tennis racket,
potted plant,vase

Object tags

A large pipe ex-
tending from the
wall of the court.

Source text

Concatenate

A large pipe extending
from the wall of the

court.##person,tennis
racket,potted

plant,vase

Input text

mBART-50

कोटर् क दीवार से िनक्ल
हुई एक बड़ी पाइप
Translation

Figure 1: Multimodal translation pipeline.

Image to Text (BNLIT) (Jishan et al., 2019) as
an additional dataset. The BNLIT is an image-
to-text dataset containing 8743 images and their
corresponding text in Bengali. For our experiment,
we used Bengali text and translated it into English.

Subword units were constructed using the word
pieces algorithm (Johnson et al., 2017). Tokeniza-
tion is handled automatically as part of the prepro-
cessing pipeline of word pieces. We generated the
vocabulary of 32k sub-word types jointly for both
the source and target languages. The training steps
are defined for 300K with 5K as validation steps
and checkpoint steps. For translation, we decoded
using beam search with beam size 5.

For C-Test we fine-tuned a pre-trained m-BART-
50 model without any additional resources.

3.2 EN-HI, EN-ML, EN-BN Multimodal
translation

Our multimodal translation pipeline is shown in
Figure 1. For EN-HI multimodal (E-Test and C-
Test) translation, we used the object tags extracted
from the HVG dataset images (see Section 3.3) for
image features and concatenated them with the text.

100



Set Sentences Tokens
English Hindi Malayalam Bengali

Train 28930 143164 145448 107126 113978
D-Test 998 4922 4978 3619 3936
E-Test 1595 7853 7852 5689 6408
C-Test 1400 8186 8639 6044 6657

Table 1: Statistics of our data used in the English→Hindi, English→Malayalam, and English→Bengali Multimodal
task: the number of sentences and tokens.

Additionally, we used synthetic image features (see
Section 3.4. The combined data set was used to
fine-tune a pre-trained mBART-50 model.

For EN-ML multimodal (E-Test and C-Test)
translation, we used object tags extracted from the
MVG dataset images and concatenated with the
text, and fine-tuned on the mBART-50 model.

For EN-BN (E-Test and C-Test) translation, we
used object tags extracted from the BVG dataset
images and concatenated with the text, and fine-
tuned on the mBART-50 model.

For all the multimodal translation experiments
using mBART, the decoding beam size was set to
5. Since we used the pre-trained mBART model
and fine-tuned it on the visual genome datasets, we
did not build our own vocabulary but rather used
the pre-trained mBART vocabulary without any
modifications.

3.3 Extracted image features

We derive the list of object tags for a given image
using the pre-trained Faster R-CNN with ResNet-
101-C4 backbone. It can recognize 80 object types
from the COCO data set (Lin et al., 2014). Based
on their confidence scores, we pick the top 10 ob-
ject tags. In cases where less than 10 object tags are
detected, we consider all the detected tags. Figure 2
shows examples of object tags detected for images
from the challenge test set. The detected object
tags are then concatenated to the English sentence
which needs to be translated to Hindi, Malayalam,
and Bengali. The concatenation is done using the
special token ‘##’ as the separator. The separator is
followed by comma-separated object tags. Adding
objects enables the model to utilize visual concepts
which may not be readily available in the original
sentence. The English sentences along with the
object tags are fed to the encoder of the mBART
model.

3.4 Synthetic image features

We generate synthetic training data for the multi-
modal translation task by enriching text-only data

using synthetic image features (Grönroos et al.,
2018). Grönroos et al. (2018) use continuous im-
age features and generate the synthetic dummy fea-
tures by taking the average vector of the features
in the training data. We improve on this proce-
dure by generating discrete features individually
for each enriched training example by decoding
from a sequence-to-sequence (s2s) model. The
s2s model is trained using the multimodal train-
ing data (HVG), but instead of training the nor-
mal way, we use both source language and target
language text as input (with a separator token be-
tween), and our object tags as the output. The
model is a Transformer-base (Vaswani et al., 2017)
model trained using the Marian-NMT (Junczys-
Dowmunt et al., 2018) framework. The trained
model is then used to enrich text-only parallel data
with synthetic features.

Our method applies to any text-only parallel data,
even though in this experiment we use it to enrich
the text from an image captioning data set. Due
to the relatively small size of the multimodal train-
ing data sets, domain match of additional training
data has great importance for multimodal transla-
tion (Grönroos et al., 2018). It is therefore impor-
tant to apply domain adaptation techniques when
using general-domain text-only parallel data.

4 Results

We report the official automatic evaluation results
of our models for all the participating tasks in Ta-
ble 2.

On the E-Test sets, our multimodal systems re-
ceive the highest BLEU scores for English→Hindi
and English→Malayalam, and our text-only sys-
tems outperform other text-only systems for
English→Malayalam and English→Bengali. Our
multimodal systems consistently outperform our
text-only systems, with increases between +1.1 and
+10.2 BLEU.

On the C-Test challenge sets, we have the high-
est BLEU score for English→Bengali multimodal
translation. Again, our multimodal systems outper-
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English input: Red dragon fruit on a fruit stand.
Object tags: person, banana, apple, broccoli
Text-only translation: एक �ाद के फल पर लाल नारंगी फल
Gloss: Red orange fruit on a flavored fruit
Multimodal translation: एक फल ��ड पर लाल ड� ैगन फल।
Gloss: Red dragon fruit on a fruit stand.
Reference: फल ��ड पर लाल ड� ैगन फल।
Gloss: Red dragon fruit on a fruit stand.

English input: A metal and stone column holding a bell and cross.
Object tags: clock
Text-only translation: एक धातु और घड़ी पकड़े �ए
Gloss: Holding a metal and a watch
Multimodal translation: एक धातु और प�र के �ंभ एक घंटी और �ॉस पकड़े �ए।
Gloss: A metal and stone pillar holding a bell and a cross.
Reference: एक धातु और प�र के �ंभ एक घंटी और �ॉस के आधार बन� �ए।
Gloss: A metal and stone pillar forming the basis of a bell and cross.

English input: date the photo was taken
Object tags: teddy bear, cat
Text-only translation: ছিব ছিব িচ� করা হয়
Gloss: Picture is picture picture
Multimodal translation: ছিব �তালা হেয়িছল
Gloss: The picture was taken
Reference: তািরখ�ট ছিব �তালা হেয়িছল
Gloss: The date it was photographed

English input: open door of a second bus
Object tags: suitcase, person, bus, backpack, truck, traffic light
Text-only translation: এক�ট দু�ট বােসর �খালা দরজা
Gloss: An open door of two buses
Multimodal translation: এক�ট ি�তীয় বােসর দরজা
Gloss: A second bus door
Reference: ি�তীয় বােসর দরজা �খালা
Gloss: The door of the second bus is open

English input: the two male players are after the ball
Object tags: person, sports ball, motorcycle, umbrella, tennis racket, backpack
Text-only translation: ഒരു ജിറാഫ് പു�് തി�ു�ു
Gloss: A giraffe eats grass
Multimodal translation: ര�് പുരുഷ കളി�ാർ പ�ിന് േശഷം
Gloss: Two male players after the ball
Reference: ര�് പുരുഷ കളി�ാർ പ�ിന് പുറേകയാണ്
Gloss: Two male players are behind the ball

English input: Grass growing on the grass tennis court.
Object tags: person, tennis racket, sports ball
Text-only translation: പു�് െട�ീസ് േകാർ�ിൽ വളരു� പു�്.
Gloss: Grass is the grass that grows on a tennis court.
Multimodal translation: പു�് െട�ീസ് േകാർ�ിൽ പു�് വളരു�ു.
Gloss: Grass grows on a grass tennis court.
Reference: �ഗാസ് െട�ീസ് േകാർ�ിൽ പു�് വളരു�ു.
Gloss: Grass grows on a grass tennis court.

Figure 2: Sample translations for the challenge test set. Both the text-only and multimodal translations are shown.
The object tags detected and used in the multimodal translation setup are also shown. Hindi translations are shown
for the top two images, Bengali translations are shown for the middle two images, and Malayalam translations are
shown for the bottom two images.
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Type of data Data set Images Source text Target text Sentences

MMT Hindi Visual Genome ✓ ✓ ✓ 29k

Monolingual Flickr8k + ✓ + 40k

Captioning Translation

MT

feat. synth.

Figure 3: Process for generating synthetic image features. Green arrows indicate processes to synthesize data, and
green plus signs indicate the resulting synthetic data. MT is short for machine translation, feat. synth. for image
feature synthesis.

WAT BLEU HUMAN NOTE
System and WAT Task Label Silo NLP Best Comp Silo NLP Best Comp
English→Hindi MM Task
MMEVTEXT21en-hi 36.2 42.9
MMEVMM22en-hi 42.0 39.4
MMCHTEXT22en-hi 29.6 41.8 2.715 3.078
MMCHMM22en-hi 39.1 39.3
English→Malayalam MM Task
MMEVTEXT21en-ml 30.8 30.6
MMEVMM22en-ml 41.0 –
MMCHTEXT22en-ml 14.6 19.5 2.013 Not Available
MMCHMM22en-ml 20.4 –
English→Bengali MM Task
MMEVTEXT22en-bn 41.0 41.0
MMEVMM22en-bn 42.1 43.9
MMCHTEXT22en-bn 22.6 32.9 2.658 3.525 Competitor used external data
MMCHMM22en-bn 28.7 28.7

Table 2: WAT2022 Automatic and Manual Evaluation Results for English→Hindi, English→Malayalam, and
English→Bengali. Rows containing “TEXT" in the task label name denote text-only translation track, and the rows
representing “MM" denote multimodal translation including text and images. “–" indicates single submission for
the task. For each task, we show the score of our system (Silo NLP) and the score of the best competitor in the
respective task.

form our text-only systems, with increases between
+5.7 and +9.5 BLEU.

It should be noted that our English→Hindi multi-
modal system and English→Bengali text-only sys-
tem are unconstrained, making use of substantial
additions of in-domain data. For these language
pairs, the increase in translation quality can not be
attributed entirely to multimodality. However, for
English→Malayalam both systems use the same
training sentences, making these systems compara-
ble. The English→Malayalam multimodal system
outperforms the text-only system by +10.2 BLEU
for E-test and +5.7 BLEU for C-test. As the C-test
challenge set is constructed to contain translational
ambiguity, the improvement is an indication that
the image features are useful for disambiguation.
The human evaluation scores from the WAT orga-
nizers for the available sub-tasks are updated in
Table 2.

We demonstrate examples of translations ob-
tained for the challenge test set in Figure 2. The
extracted image features in the form of object tags
are also shown for each image in the figure. We ob-

serve that the multimodal translations are notably
better than the text-only translations. This is consis-
tent with the pattern of the BLEU scores in Table
2.

5 Conclusions

In this system description paper, we presented
our system for three tasks in WAT2022: (a)
English→Hindi, (b) English→Malayalam, and (c)
English→Bengali Multimodal Translation. We re-
leased the code through Github for research7.

In the next step, we will explore the usage of
synthetic features in multimodal translation for the
Malayalam and Bengali languages, to make use
of available text-only corpora for these language
pairs.

7https://github.com/shantipriyap/
SiloNLP_WAT2022
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Žabokrtskỳ. 2020. Transforming machine transla-
tion: a deep learning system reaches news translation
quality comparable to human professionals. Nature
communications, 11(1):1–15.

Ankit Rathi. 2020. Deep learning apporach for image
captioning in Hindi language. In 2020 International
Conference on Computer, Electrical & Communica-
tion Engineering (ICCECE), pages 1–8. IEEE.

Umut Sulubacak, Ozan Caglayan, Stig-Arne Grönroos,
Aku Rouhe, Desmond Elliott, Lucia Specia, and Jörg
Tiedemann. 2020. Multimodal machine translation
through visuals and speech. Machine Translation,
34(2):97–147.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

104



you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Shuoheng Yang, Yuxin Wang, and Xiaowen Chu. 2020.
A survey of deep learning techniques for neural ma-
chine translation. arXiv preprint arXiv:2002.07526.

105



Proceedings of the 9th Workshop on Asian Translation, pages 106–110
October 17, 2022.

PICT@WAT 2022: Neural Machine Translation Systems for Indic
Languages

Anupam Patil
anupampatil44@gmail.com

Isha Joshi
joshiishaa@gmail.com

Dipali Kadam
ddk@pict.edu

SCTR’s Pune Institute of Computer Technology, India

(Team ID: 5592)

Abstract
Translation entails more than simply translat-
ing words from one language to another. It
is vitally essential for effective cross-cultural
communication, thus making good translation
systems an important requirement. We de-
scribe our systems in this paper, which were
submitted to the WAT 2022 translation shared
tasks. As part of the Multi-modal translation
tasks’ text-only translation sub-tasks, we sub-
mitted three Neural Machine Translation sys-
tems based on Transformer models for English
to Malayalam, English to Bengali, and English
to Hindi text translation. We found significant
results on the leaderboard for English-Indic
(en-xx) systems utilizing BLEU and RIBES
scores as comparative metrics in our studies.
For the respective translations of English to
Malayalam, Bengali, and Hindi, we obtained
BLEU scores of 19.50, 32.90, and 41.80 for
the challenge subset and 30.60, 39.80, and
42.90 on the benchmark evaluation subset
data.

1 Introduction

The initial approach used in machine translation
was rule-based. RBMT (Rule-Based Machine
Translation) models use linguistic information
about both the source and the target language to
generate the translation. Platforms such as Aper-
tium 1 use this approach. Eventually, SMT (Sta-
tistical Machine Translation) models came about,
which did not use a predefined set of rules but in-
ferred the rules by analyzing the given text (Koehn
and Senellart, 2010). While SMT-based models
provide more natural translations, RBMT systems
provide translations that are truer to the original
text (Forcada et al., 2011).

Machine translation (MT) systems have strug-
gled with ambiguity in the source language while

1https://github.com/apertium

translating text, among other challenges. With
the advent of deep learning techniques, neural net-
works are being used for machine translation tasks.
Neural machine translation (NMT) models use mas-
sive amounts of training data and computational
power to correctly identify the importance of the
portion of the text data to generate the output text
(Popel et al., 2020).

Recent advances in neural machine translation
have focused on translating a source language into
a specific target language. For this job, several
approaches have been offered. Early NMT archi-
tectures used a fixed length approach to generate
variable length outputs. The source text’s length
was fixed, irrespective of the length of the text.
Models such as RCTM (Kalchbrenner and Blun-
som, 2013) and RNNEncdec (Cho et al., 2014) use
this approach. Eventually, newer architectures be-
gan using a variable length representation for the
input text. GNMT (Wu et al., 2016) and ByteNet
(Kalchbrenner et al., 2016) are architectures that
use layered neural networks for translation (Tan
et al., 2020).

In this paper, we describe our NMT systems,
which were submitted to the translation shared
tasks at WAT 2022 (Nakazawa et al., 2022) .

2 Related Work

The majority of NMT research has focused on us-
ing monolingual data or parallel data that includes
other language pairs. NMT systems have consis-
tently outperformed conventional machine trans-
lation methods such as rule-based and statistical-
based approaches. NMT models typically operate
with a fixed vocabulary; however, the translation is
an open-vocabulary problem. Several approaches
have been proposed to resolve this issue. Byte-Pair-
Encoding (BPE) (Sennrich et al., 2015) enables
NMT model translation on open vocabulary by en-
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Table 1: Sample translations generated by our systems for the given English inputs.

coding rare and unknown words as a sequence of
subword units.

NMT models typically employ the conventional
sequence-to-sequence learning architecture, made
up of an encoder and a decoder. In encoder-decoder
mechanisms, words are translated into word em-
beddings in the encoder and then transferred to
the decoder, which generates the following word
in the translation using an attention mechanism,
encoder representations, and preceding words. Sev-
eral methodologies based on deep neural networks
have been proposed, such as Recurrent Neural Net-
works (Cho et al., 2014), LSTM (Sutskever et al.,
2014), Convolutional Neural Networks (Gehring
et al., 2017), and Transformers (Vaswani et al.,
2017), which can serve as encoders and decoders.
Several approaches have been explored for machine
translation in Malayalam, Bengali and Hindi.

2.1 Malayalam

Malayalam is a Dravidian language primarily spo-
ken in southern India. It is a low resource lan-
guage with very few usable resources for the pur-
pose of training NMT models (Premjith et al.,
2019). A rule-based approach for English to Malay-
alam translations has been proposed by Rajan et al.
(2009). A modified rule-based approach using an
SMT system was introduced by Rahul et al. (2009).
There is little work in English to Malayalam trans-
lation systems that are based on deep neural net-
works, an example being the Google NMT system
(Johnson et al., 2017).

2.2 Bengali

Bengali is the world’s seventh most widely spo-
ken language, however, it has received less fo-
cus in NMT work due to a lack of resources and
poor corpus quality. Attempts to bridge this gap,
specifically with regard to machine translation have
been made by proposing new corpora (Hasan et al.,
2020) and the use of attention-based techniques
(Dabre et al. (2021), Abujar et al. (2021)) for im-
proving upon existing systems.

2.3 Hindi
There has been a lot of focus given to the Hindi
language in NMT literature in recent years,
with the availability of good quality corpora
(Kunchukuttan et al. (2017), Bojar et al. (2014))
thus enabling the development of effective NMT
systems.

The recent development of Multilingual Models
((Dabre et al. (2021), Kakwani et al. (2020)) pri-
marily focused on Indic languages has helped gain
traction in the research community for MT.

3 Methodology

3.1 Data Description and Preprocessing
We use the datasets provided in the WAT 2022
shared tasks for our experiments. The datasets
of all the three languages comprise 28,929, 997,
and 1,595 English-Indic language sentence pairs
for the training, dev, and eval subsets respectively,
along with their corresponding images. We train
and fine-tune the models using this data. The chal-
lenge subset additionally comprises 1,400 similar
instances. The Malayalam and Bengali datasets are
an extension to the HindiVisualGenome dataset,
thus all three sets have the same set of sentence
pairs while supporting their respective language.
The language pair (English-Bengali) is running for
the first time as a shared task.

We perform Normalisation, which minimizes
the number of unique tokens in the text, and use
the SentencePiece 2 tokenizer while utilizing the
Byte-Pair-Encoding (BPE) (Sennrich et al., 2015)
technique on the words present in a sentence.

3.2 Models and Training
We trained models using cutting-edge transformer-
based neural machine translation (NMT). The ar-
chitecture is based on a standard transformer archi-
tecture with 6 self-attentive layers in both the en-
coder and decoder networks, each with 8 attention

2https://github.com/google/
sentencepiece
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Team en–ml en–bn en–hi
BLEU RIBES BLEU RIBES BLEU RIBES

nlp_novices (ours) 19.50 0.536689 32.90 0.706596 41.80 0.812483
Team 1 14.60 0.392158 22.60 0.605676 29.60 0.728801
Team 2 12.98 0.378045 22.50 0.614267 30.72 0.736262
Team 3 – – 26.70 0.680655 37.20 0.770640

Table 2: Details of official submission results on the challenge subset of data for en–ml, en–bn and en–hi translation
systems.

Team en–ml en–bn en–hi
BLEU RIBES BLEU RIBES BLEU RIBES

nlp_novices (ours) 30.60 0.643987 39.80 0.745190 42.90 0.816564
Team 1 30.80 0.589471 41.00 0.767212 36.20 0.785673
Team 2 30.49 0.580807 40.90 0.758246 39.78 0.776892
Team 3 – – 40.90 0.752543 37.01 0.795302

Table 3: Details of official submission results on the evaluation subset of data for en–ml, en–bn and en–hi transla-
tion systems.

heads per layer. For all our experiments, we use
transformer models that follow the strategy imple-
mented in OPUS MT (Tiedemann and Thottingal,
2020), which utilizes the Marian-NMT (Junczys-
Dowmunt et al., 2018) toolkit and finetune them on
the data provided for the shared tasks.

We obtained optimal performance on the
English-Malayalam and English-Hindi translation
tasks using en-ml 3 and en-hi 4 bilingual NMT
models respectively. For the English-Bengali trans-
lation task, we achieved competent results using a
multilingual NMT model 5.

The experiments were conducted in a Linux envi-
ronment using an NVIDIA Tesla P100 GPU accel-
erator with 16 GB RAM and CUDA 11.2 installed.
We train three separate MT models for the three
indic languages in our experiments. The models
utilize the AdamW (Loshchilov and Hutter, 2017)
optimizer for optimization of model parameters
with 0.00002 as the initial learning rate.

We observed varied results based on the num-
ber of epochs of training for each Indic language
we translate to. We train the English to Hindi, En-
glish to Malayalam, and English to Bengali NMT
models for 30, 20, and 25 epochs respectively after

3https://github.com/Helsinki-NLP/
OPUS-MT-train/tree/master/models/en-ml

4https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/models/
eng-hin

5https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/models/
eng-mul

observing optimal performance for the respective
systems.

4 Results

The metrics used to evaluate the translations were
the Bilingual Evaluation Understudy (BLEU) (Pap-
ineni et al., 2002) and Rank-based Intuitive Bilin-
gual Evaluation Score (RIBES) (Isozaki et al.,
2010) metrics. Table 2 and 3 contain the BLEU and
RIBES scores6 obtained in each translation task,
i.e. English to Malayalam, English to Bengali and
English to Hindi on the challenge subset and the
evaluation subset. For the English to Malayalam,
English to Bengali and English to Hindi translation
tasks, we were able to achieve BLEU scores of
19.50, 32.90 and 41.80 respectively (on the chal-
lenge subset), as reported in Table 2. As seen in
Table 3, for the evaluation set, BLEU scores of
30.60, 39.80 and 42.90 were achieved for each
translation task.

We have provided a comparative analysis be-
tween the effects of using fine-tuned pre-trained
models and models trained from scratch. The op-
timal results on the leaderboard were obtained us-
ing the fine-tuned models. Table 4 depicts the dif-
ference in performance of the models with and
without pre-training under similar training meth-
ods. To obtain comparable results using non pre-
trained models, additional training and data re-
sources would be required.

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html
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Language Pair With pre-training Without pre-training
Test Challenge Test Challenge

en-ml 30.60 19.50 0.65342 0.21455
en-bn 39.80 32.90 0.00057 0.14980
en-hi 42.90 41.80 2.03818 0.92631

Table 4: Effect of using pre-trained models on the performance by comparative analysis using BLEU scores.

The disparity between the performance with re-
spect to the challenge set and the evaluation set
(reported in Table 2 and 3) can be attributed to the
following reasons:

• Firstly, the challenge set had 1232 unique En-
glish words (ignoring stopwords), while the
evaluation set had 1256; the number of com-
mon words between the two of them being
only 552.

• Additionally, the number of intersecting terms
(ignoring stopwords) between the train set +
the challenge set and the train set + the evalu-
ation set is 976 and 1109 respectively.

The above reasons may explain the ambiguity
that arises when it comes to the translation of some
unique words.

Table 1 illustrates sample translations of three
common English sentences taken from the shared
task data. The table reports translations of the given
English inputs in Malayalam, Bengali, and Hindi.

5 Conclusion

In this paper, we discuss the submissions made to
three tasks at WAT 2022: Neural Machine Trans-
lation Systems for Indic Languages. We partici-
pated in the text-only subtask of the multimodal
translation tasks of English to Malayalam, English
to Bengali, and English to Hindi translations. In
the future, we would like to experiment with mul-
timodal MT models and incorporate multimodal
aspects for the facilitation of better translation sys-
tems.
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Abstract

Automatic translation of one natural language
to another is a popular task of natural language
processing. Although the deep learning-based
technique known as neural machine translation
(NMT) is a widely accepted machine transla-
tion approach, it needs an adequate amount
of training data, which is a challenging issue
for low-resource pair translation. Moreover,
the multimodal concept utilizes text and visual
features to improve low-resource pair transla-
tion. WAT2022 (Workshop on Asian Transla-
tion 2022) organizes (hosted by the COLING
2022) English to Bengali multimodal transla-
tion task where we have participated as a team
named CNLP-NITS-PP in two tracks: 1) text-
only and 2) multimodal translation. Herein, we
have proposed a transliteration-based phrase
pairs augmentation approach which shows im-
provement in the multimodal translation task
and achieved benchmark results on Bengali Vi-
sual Genome 1.0 dataset. We have attained the
best results on the challenge and evaluation test
set for English to Bengali multimodal trans-
lation with BLEU scores of 28.70, 43.90 and
RIBES scores of 0.688931, 0.780669, respec-
tively.

1 Introduction

In recent years, multimodel approaches have shown
remarkable contributions in various NLP applica-
tions such as machine translation, caption gen-
eration, etc. Especially in machine translation,
multiple input modalities, like text, image, or au-
dio/speech, integrate with NMT, known as multi-
modal NMT (MNMT), attempts to improve low-
resource pair translation by merging visual features
in addition to textual features (Shah et al., 2016).
The attention-based encoder-decoder architecture
of NMT handles various issues of long-term depen-
dency and variable-length phrases via sequence-
to-sequence learning and attains a state-of-the-art
technique of machine translation (MT) (Bahdanau

et al., 2015; Luong et al., 2015). Also, NMT
shows remarkable performance for low-resource
Indian languages (Pathak and Pakray, 2018; Pathak
et al., 2018; Laskar et al., 2019a,b, 2020a, 2021b,
2022b). Further, to handle the data scarcity prob-
lem, the authors (Sen et al., 2020) augmenting
phrase pairs and the source language transliteration-
based (Laskar et al., 2022a) approach to enhance
text-only based for low-resource pair translation.
This paper aims to investigate English to Bengali
multimodal translation task in WAT2022 with a pro-
posed transliteration-based phrase pairs augmenta-
tion approach.

The rest of the paper is organized as follows:
Section 2 presents the review of related works. The
system description is briefly discussed in Section
3. Section 4 reports the results and Section 5 con-
cludes the paper with future scope.

2 Related Work

In the literature survey, there is minimal existing
work, particularly on the English to Bengali mul-
timodal translation task (Parida et al., 2021). In
(Parida et al., 2021), they used Bengali Visual
Genome 1.0 (Sen et al., 2022b) adopted ViTA
(Gupta et al., 2021) approach where they extracted
object tags from the image and utilized mBART
model (Liu et al., 2020) for encoding English sen-
tences with the object tags and decoding to generate
the Bengali translation. The obtained BLEU scores
were 43.5 and 26.8 on the evaluation and challenge
test sets, respectively. Moreover, the related exist-
ing works are available on English to Hindi mul-
timodal translation task (Dutta Chowdhury et al.,
2018; Sanayai Meetei et al., 2019; Laskar et al.,
2019c, 2020b, 2021a). The authors (Laskar et al.,
2020b, 2021a) used Hindi Visual Genome 1.1 and
adopts RNN-based MNMT model (Calixto and
Liu, 2017; Calixto et al., 2017) with advantages
pre-trained word embeddings on monolingual cor-
pus, achieved BLEU scores of 39.28, 39.46 on
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challenge and evaluation test set respectively. This
work investigates transliteration-based phrase pairs
augmentation to improve the multimodal transla-
tion task of English to Bengali.

3 System Description

We have carried out four operations: transliteration-
based phrase pairs augmentation, data preprocess-
ing, model training, and testing. The OpenNMT-py
(Klein et al., 2017) tool is utilized to build multi-
modal and text-only models separately.

3.1 Dataset Description

The dataset namely, Bengali Visual Genome 1.01

(Sen et al., 2022b,a) is used in this task, which is
provided by WAT2022 organizer (Nakazawa et al.,
2022). In this dataset, the duplicates (text and im-
age) are present in the train set, which have im-
age ID numbers 2328549, 2391240, and 2385507.
Therefore, we have removed those duplicates, and
thus train set contains 28,927 images and the same
number of corresponding English-Bengali paral-
lel sentences. The validation and test (evaluation
and challenge) set contains 998, 1,595, and 1,400
images and parallel text data.

3.2 Transliteration-based Phrase Pairs
Augmentation

In this phase, firstly, we have expanded the training
amount of data via augmentation of phrase pairs to
the train set. To improve low-resource pair transla-
tion, (Sen et al., 2020) utilized SMT-based phrase
pairs to increase training data via augmentation
strategy. We have also followed same (Sen et al.,
2020) and utilized Giza++ (Och and Ney, 2003)
to extract phrase pairs(Laskar et al., 2021a) from
the English-Bengali parallel train set. Before aug-
mentation to the parallel train set, duplicates and
blank lines are removed. The statistics of extracted
phrase pairs are shown in Table 1.

Secondly, English source sentences are translit-
erated using indic-trans2 (Bhat et al., 2014)in to
Bengali script following (Laskar et al., 2022a).
The goal of the transliteration approach is to al-
low subword-level lexical sharing between source
and target sentences that will be shared during the
training process.

1https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3722

2https://github.com/libindic/
indic-trans

3.3 Data Preprocessing, Model Training, and
Testing

The image/visual features are independently ex-
tracted from the image data using pre-trained CNN-
VGG193 for train, validation, and test data. During
feature extraction, the coordinate or bounded box
region information (X, Y, width, height) of the im-
ages is considered, which is available in the Bengali
Visual Genome 1.0 (Sen et al., 2022b). Moreover,
we have augmented image features of extracted
phrase pairs. To select relevant images of the cor-
responding phrase pairs, we have searched each
phrase in the original parallel corpus (train set), if
it is found, then the corresponding image and its
coordinate information are considered. But there is
a problem if multiple sentences contain the same
phrase subset. To tackle this issue, a filtering step
solution is considered.

• First, for every phrase pair extracted from the
corpus, we found the matching English seg-
ments from the corpus which have the English
phrase of the En-Bn phrase pair as a sub-string
(filter-1).

• If the length of the resulting data frame, i.e.,
the number of matching English segments for
the English part of the phrase is 0, then the
phrase is skipped and considered invalid. If
the length is 1, since only one English segment
matches it, that segment is directly selected.

• On the other hand, if the length is more than
1, i.e., more than 1 English segments have the
English phrase as a sub-string, the resulting
English segments are again filtered (filter-2) to
check if the corresponding Bengali phrase of
the phrase pairs also has subset in the Bengali
segments.

– If after filter-2, the result is 0, i.e., there
are no matching Bengali segments that
have the Bengali phrase as a sub-string,
then from the filter-1 data-frame, i.e., the
final segment from matching English seg-
ments is randomly selected.

– If the number of matches after Bengali
segment matching is 1, then that single
segment is selected.

3https://github.com/iacercalixto/
MultimodalNMT
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Number of Phrase Pairs Tokens
En Bn

127,897 442,657 364,644

Table 1: Statistics of extracted phrase pairs.

– If the number of Bengali phrase matches
is more than 1, then a matching segment
is randomly selected with a seed value.

For tokenization and preprocessing of text data, the
OpenNMT-py toolkit is utilized. We have trained
separately for multimodal and text-only NMT us-
ing the OpenNMT-py toolkit. During multimodal
NMT training, the bidirectional RNN (BRNN) at
the encoder and doubly-attentive RNN at the de-
coder are used by following default settings of (Cal-
ixto and Liu, 2017; Calixto et al., 2017). We have
trained on a single GPU with early stopping cri-
teria i.e., the model training is halted if does not
converge on the validation set for more than 10
epochs. We have used a batch size of 32 during
the training process. The optimum trained models
of multimodal and text-only NMT are applied to
the evaluation and challenge test set. The primary
difference in the testing phase is that multimodal
NMT uses visual features of image test data. The
source English sentences of test data are translit-
erated and then applied to the trained model to
generate the predicted target Bengali sentences.

4 Result and Analysis

The WAT2022 shared task organizer (Nakazawa
et al., 2022) published the evaluation result4 of
the multimodal translation task for English to Ben-
gali, where our team achieves the first position in
multimodal submission for both challenge and eval-
uation test set. Herein, we have participated with
a team named CNLP-NITS-PP in the multimodal
and text-only submission tracks, where a total of
three teams participated. The automatic evalua-
tion metrics, BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) are used for evaluation of re-
sults. Table 2 presents the results of our system.
The quantitative results show that the multimodal
NMT outperforms text-only NMT due to the use
of visual and textual features. Furthermore, we
have attained benchmark results on the evaluation
and challenge test set, which is higher compared

4http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

to (Parida et al., 2021). It shows +0.40 and +1.9
increment in terms of BLEU score, which realized
that our approach i.e., transliteration-based phrase
pairs augmentation improves the translational per-
formance of multimodal NMT. Moreover, Figure
1 and 2 present best and worst outputs along with
transliteration of Bengali words and Google trans-
lation. In Figure 1, the predicted sentences for
both multimodal and text-only represent the same
contextual meaning. Here, the only difference is
that prachir (“wall") word in the case of the mul-
timodal predicted sentence whereas dewal word
in the case of the text-only predicted sentence and
Google translation. These two words represent the
same meaning corresponding to the reference sen-
tence. However, both multimodal and text-only
predicted wrong translations.

5 Conclusion and Future Work

In this work, we have proposed a transliteration-
based phrase pairs augmentation approach which
has been introduced in the WAT2022 multimodal
translation task of English to Bengali. The mul-
timodal NMT attains a higher score than the text-
only NMT model and other existing works. Further-
more, the designed multilingual-based approach
will be investigated to improve the translational
performance of low-resource multimodal NMT.
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Abstract

Machine translation translates one natural lan-
guage to another, a well-defined natural lan-
guage processing task. Neural machine trans-
lation (NMT) is a widely accepted machine
translation approach, but it requires a sufficient
amount of training data, which is a challenging
issue for low-resource pair translation. More-
over, the multimodal concept utilizes text and
visual features to improve low-resource pair
translation. WAT2022 (Workshop on Asian
Translation 2022) organizes (hosted by the
COLING 2022) English to Hindi multimodal
translation task where we have participated as a
team named CNLP-NITS-PP in two tracks: 1)
text-only and 2) multimodal translation. Herein,
we have proposed a transliteration-based phrase
pairs augmentation approach, which shows im-
provement in the multimodal translation task.
We have attained the second best results on the
challenge test set for English to Hindi multi-
modal translation with BLEU score of 39.30,
and a RIBES score of 0.791468.

1 Introduction

The multimodal NMT (MNMT) concept aims to
include different input modalities, such as images
in addition to text and attempts to improve low-
resource pair translation by merging visual features
in addition to textual features (Shah et al., 2016).
The attention-based encoder-decoder architecture
for NMT handles various issues of long-term de-
pendency and variable-length phrases via sequence-
to-sequence learning and attains a state-of-the-art
technique of machine translation (MT) (Bahdanau
et al., 2015; Luong et al., 2015). Also, NMT shows
remarkable performance for low-resource Indian
languages (Pathak and Pakray, 2018; Pathak et al.,
2018; Laskar et al., 2019a,b, 2020a, 2021c,b). Fur-
ther, to handle the data scarcity problem, the au-
thors (Sen et al., 2020) augmenting phrase pairs and
the source language transliteration-based (Laskar
et al., 2022) approach to enhance text-only based

for low-resource pair translation. This paper aims
to investigate the English to Hindi multimodal
translation task in WAT2022 with a proposed
transliteration-based phrase pairs augmentation ap-
proach (as discussed in 3.2).

The rest of the paper is organized as follows:
Section 2 presents the review of related works. The
system description is briefly discussed in Section
3. Section 4 reports the results and Section 5 con-
cludes the paper with future scope.

2 Related Works

The literature survey explores existing works
on MNMT for English-Hindi language pair
(Dutta Chowdhury et al., 2018; Sanayai Meetei
et al., 2019; Laskar et al., 2019c, 2021a). We par-
ticipated in WAT2020 on multimodal translation
task for English to Hindi translation and attained
the best results with a BLEU score of 33.57 on
the challenge test set(Laskar et al., 2020b) using
RNN-based MNMT model (Calixto and Liu, 2017;
Calixto et al., 2017) and taking advantage of pre-
trained word embeddings of the monolingual cor-
pus. Later, we improved the results in WAT2021
(Laskar et al., 2021a) using phrase pairs augmenta-
tion. In this work, we have investigated a proposed
transliteration-based phrase pairs augmentation ap-
proach to enhance the multimodal translational per-
formance of English to Hindi.

3 System Description

The experiments are carried out in four operations,
namely, transliteration-based phrase pairs augmen-
tation, data preprocessing, model training, and test-
ing. The OpenNMT-py (Klein et al., 2017) tool is
utilized to build multimodal and text-only models
independently. The difference between our pre-
vious work (Laskar et al., 2020b) and this work
is that the current work uses transliteration-based
phrase pairs augmentation.
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3.1 Dataset Description

The dataset namely, Hindi Visual Genome 1.11

(Parida and Bojar, 2020) is used in the multimodal
translation task of English-to-Hindi, which is pro-
vided by WAT2022 organizer (Nakazawa et al.,
2022). In this dataset, duplicates (text and image)
are present in the train set (Laskar et al., 2020b),
which have image ID numbers 2328549, 2391240,
and 2385507. Therefore, we have removed those
duplicates and thus train set contains 28,927 images
and the same number of corresponding English-
Hindi parallel sentences. The validation, test (eval-
uation and challenge) set contains 998, 1,595, and
1,400 images and parallel sentences.

3.2 Transliteration-based Phrase Pairs
Augmentation

In this operation, the English-Hindi parallel train
set is first used to extract source-target phrase pairs,
which are then added to the train set. (Sen et al.,
2020) used SMT-based phrase pairs to enrich train-
ing data in order to enhance low-resource pair trans-
lation. To extract phrase pairs (Laskar et al., 2021a),
we have used Giza++ (Och and Ney, 2003) follow-
ing (Sen et al., 2020). Duplicates and blank lines
are eliminated before adding to the parallel train
set. Table 1 presents the statistics for the phrase
pairs that were extracted. Table 2 presents the data
statistics for the train set (before and after augmen-
tation). Afterwards, the sentences from English
sources are transliterated into Hindi script using
indic-trans 2 (Bhat et al., 2014). The translitera-
tion strategy aims to enable lexical sharing at the
sub-word level between source and target sentences
that will take place during training. The sample
overlaps words (bold marks) of transliterated En
and Hi tokens of the training set, are presented in
Figure 1.

3.3 Data Preprocessing, System Training, and
Testing

The pre-trained CNN-VGG193 is used to extract
the image/visual features from the image data. Un-
like (Laskar et al., 2020b, 2021a), we have consid-
ered the co-ordinate or bounded box region infor-
mation (X, Y, width, height) of the images as the

1https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3267

2https://github.com/libindic/
indic-trans

3https://github.com/iacercalixto/
MultimodalNMT

Figure 1: Sample overlap words (bold marks) in the
transliterated source (En) and target (Hi) sentence (train
set).

visual features, which are available in the Hindi Vi-
sual Genome 1.1 (Parida and Bojar, 2020). More-
over, we have augmented image features of ex-
tracted phrase pairs. To select relevant images of
the corresponding phrase pairs, we have searched
each phrase in the original parallel corpus, if it
is found then the corresponding image and its co-
ordinate information are considered. But there is
a problem if multiple sentences contain the same
phrase subset. To handle this issue, a filtering step
solution is considered.

• First, for every En-Hi phrase pair extracted
from the corpus, we found the matching En-
glish segments from the corpus which have
the English part of the phrase pair as a sub-
string (filter-1).

• If the length of the resulting data-frame i.e.,
the number of matching English segments for
the English part of the phrase is 0, then the
phrase is skipped as it is invalid. If the length
is 1, since only one English segment matches
it, that segment is directly selected.

• On the other hand, if the length is more than
1 i.e. more than 1 English segments have the
English phrase as sub-string, the resulting En-
glish segments are again filtered (filter-2) to
check if the corresponding Hindi phrase of
the phrase pairs also has subset in the Hindi
segments.

– If after filter-2, the result is 0, i.e., there
are no matching Hindi segments that
have the Hindi phrase as sub-string, then
from the filter-1 data-frame, i.e. the fi-
nal segment from matching English seg-
ments is randomly selected.
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Number of Phrase Pairs Tokens
En Hi

158,131 392,966 410,696

Table 1: Data Statistics of extracted phrase pairs.

Train Set Number of Parallel Sentence/Segments
Before Augmentation 28,927
After Augmentation 187058

Table 2: Data Statistics of train set (before and after augmentation).

– If the number of matches after Hindi seg-
ment matching is 1, then that single seg-
ment is selected.

– If the number of Hindi phrase matches is
more than 1, then a matching segment is
randomly selected with a seed value.

The OpenNMT-py toolkit has been used for text
data tokenization, preprocessing, and conducting
independent training sessions for text-only and mul-
timodal NMT. We have followed the default set-
tings of (Calixto and Liu, 2017; Calixto et al., 2017)
and employed the bidirectional RNN (BRNN) at
the encoder and doubly-attentive RNN at decoder
during the training process of multimodal NMT.
We have used a batch size of 32, a dropout value
of 0.3, and an Adam optimizer with 0.002 learning
rate during the training process. We have trained
on a single GPU with early stopping criteria i.e.,
the model training is halted if does not converge
on the validation set for more than 10 epochs. The
obtained optimum trained models of multimodal
and text-only NMT were applied to the evaluation
and challenge test set. The basic difference in the
testing phase is that multimodal NMT uses visual
features of image test data. The source English
sentences of test data are transliterated and then ap-
plied to the trained model to generate the predicted
target Hindi sentences.

4 Result and Analysis

The WAT2022 shared task organizer (Nakazawa
et al., 2022) published the evaluation result5 of the
multimodal translation task for English to Hindi.
We participated with the team name CNLP-NITS-
PP in the multimodal and text-only submission
tracks of the same task where four teams partici-
pated. The automatic evaluation metrics, BLEU

5http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

Figure 2: Sample predicted output on challenge test
data.
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Our System Test Set BLEU RIBES

Text-only NMT
Challenge 37.20 0.770640
Evaluation 37.00 0.795302

Multi-modal NMT
Challenge 39.30 0.791468
Evaluation 39.40 0.802635

Table 3: Our system’s results (official) on English to Hindi multimodal translation Task.

Other System Test Set BLEU RIBES
Multi-modal NMT (Team: Volta (First Position)) Challenge 51.60 0.859645
Multi-modal NMT (Team: Organizer) Challenge 20.34 0.644230

Table 4: Other system’s results (official)4 on English to Hindi multimodal translation Task.

Figure 3: Manual comparison of MNMT output (with-
out transliteration and with transliteration).

(Papineni et al., 2002), RIBES (Isozaki et al., 2010)
were used for evaluation of results. Table 3 and 4
reported the official results of our and other systems
(Team: Volta (first position) and Organizer). Our
team and another team (Volta) achieved the second
and first position in multimodal submission for the
challenge test set. The quantitative results show
that the MNMT outperforms text-only NMT due to
the use of visual and textual features. Furthermore,
our system’s results have improved compared to
our previous work on the same task (Laskar et al.,
2020b). The BLEU, RIBES scores of the present
work show (+5.73, +0.037327), increments on the
challenge test set for MNMT, where it is realized
that transliteration-based phrase pairs augmenta-
tion improves translational performance. The sam-
ple examples of outputs, along with Google trans-
lation and transliteration of Hindi words, are pre-
sented in Figure 2. Moreover, Figure 3 presents a
manual comparison of MNMT predicted outputs
where we have considered with or without translit-
eration in the phrase pairs augmentation model.

5 Conclusion and Future Work

In this work, we have proposed the use of
transliteration-based phrase pairs augmentation in

the WAT2022 multimodal translation task for En-
glish to Hindi translation. Our multimodal NMT
attained a higher score than that of the text-only
NMT model and existing work of (Laskar et al.,
2020b). A multilingual-based approach will be in-
vestigated to improve the translational performance
of low-resource multimodal NMT.
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